
z2z: Discovering Zeroconf Services
Beyond Local Link

Jae Woo Lee∗, Henning Schulzrinne∗, Wolfgang Kellerer† and Zoran Despotovic†
∗ Department of Computer Science, Columbia University, New York, USA

{jae,hgs}@cs.columbia.edu
† DoCoMo Communications Laboratories Europe, Munich, Germany

{kellerer,despotovic}@docomolab-euro.com

Abstract—The Zeroconf technology, better known as Apple
Bonjour, is one of the most prominent solutions for service
discovery in local area networks. Zeroconf uses multicast to attain
its goal of eliminating configurations in service discovery. The
multicast-based design, however, makes it difficult for Zeroconf
services to reach beyond the local link. This makes the technology
unsuitable for certain discovery scenarios which would otherwise
be good candidates.

This paper presents the Zeroconf-to-Zeroconf Toolkit (z2z),
our first attempt to realize a hybrid architecture that combi nes
the simplicity of Zeroconf with the scalability of DHT-based
peer-to-peer networks. Our z2z connects multiple Zeroconf
subnets using OpenDHT. By doing so, it extends the reach of
existing Zeroconf-enabled applications beyond the local link.
Furthermore, it provides a framework on which to build a
global service discovery solution based on Zeroconf.

Index Terms—Zeroconf, service discovery, Bonjour, DHT,
OpenDHT, iTunes, z2z.

I. I NTRODUCTION

Zero Configuration Networking (Zeroconf) [1] solves the
following problem: when multiple IP-enabled devices are
physically connected with one another, one device should be
able to use the services provided by another without requiring
the user to configure the devices manually. For example, when
a user connects two computers either directly using an Ethernet
crossover cable or via an Ethernet switch, he should be able
to accomplish his file-transfer task by simply starting up the
appropriate applications at both ends. The applications should
discovereach other without the user telling them where to find
them.

Today, Zeroconf technology is one of the most widespread
solutions for service discovery in local area networks. Bonjour
is Apple [2]’s Zeroconf implementation, and it is an integral
part of Mac OS X operating system. Bonjour is also installed
on a large fraction of the personal computers running Win-
dows operating system, thanks to the popularity of iTunes—
Apple’s music playing application—which installs Bonjour
for Windows as part of its installation process. For UNIX-
like platforms, there is a mature open-source implementation
of Zeroconf called Avahi [3], which comes preinstalled in a
number of major Linux distributions such as Debian [4] and
Ubuntu [5]. On the hardware side, virtually every printer sold
today supports Zeroconf. The number of Zeroconf-enabled

applications is rapidly increasing as well, as evidenced bythe
growing number of Zeroconf service types registered in [6].

The multicast-based design of Zeroconf, however, effec-
tively limits its usage to the local subnet. This presents no
problem for the discovery scenarios that are primarily moti-
vated by hardware devices, such as discovering the printersin
a network. But as the focus of Zeroconf is shifting towards
more sophisticated services provided by software applications,
the limited reach of the services often makes the technology
unsuitable for many discovery scenarios that would otherwise
be perfect candidates for Zeroconf. For example, a number
of chat applications (such as Apple’s iChat) use Zeroconf to
discover other users in the local link and display them in their
ad hocbuddies window. A straightforward extension of this
mechanism is to discover those people who have convened for
the same purpose even if their computers are not in the same
local network, such as a group of people attending an academic
conference scattered in a number of adjacent buildings, or
using a mixture of wired and wireless networks which are
usually separate subnets. As another example, iTunes lets a
group of officemates share their music. It would be nice to
include the coworkers working at home or at a remote satellite
location.

In this paper, we present an approach to extend the reach of
Zeroconf service discovery, inspired by the recent innovation
in peer-to-peer network research. Structured peer-to-peer over-
lay networks based on distributed hash tables (DHT) became
popular as the substrates on which global-scale distributed
systems are built. A DHT network is characterized by an
efficient algorithm to map an arbitrary string to a particular
node in the network and to produce a routing path of a bounded
number of hops from any node to that node. The mapping
is deterministic and results in a uniform distribution (or other
desired distributions for some algorithms) of the strings among
the participating nodes. This enables efficient implementations
of a number of global-scale services such as file sharing
and overlay multicast. Our approach is to connect multiple
Zeroconf subnets using a DHT network. We have designed
and implemented the Zeroconf-to-Zeroconf Toolkit (z2z) that
connects Zeroconf subnets using OpenDHT, a publicly acces-
sible DHT service. A z2z process running in a subnetexports
locally available Zeroconf services into OpenDHT. Another
z2z process running in a different subnet can then look up



the services in OpenDHT, andimport them into its own
local network as if they had originated locally. Such imported
services are indistinguishable from the real local services in
the eyes of the applications, and thus the imported services
simply show up along with other locally available services in
the existing, unmodified Zeroconf-enabled applications.

Our contributions are twofold. First, we propose a hybrid
architecture that combines the ease of Zeroconf with the
scalability of DHT-based peer-to-peer networks. Second, we
developed a practical tool that can extend the reach of any ex-
isting Zeroconf-enabled application without modification. The
modular software design also makes it a suitable framework
on which to build a global service discovery system based on
Zeroconf.

The remainder of the paper is organized as follows. Sec-
tion II starts with background information on Zeroconf and
OpenDHT, and ends with an architecture overview of z2z.
Section III describes the usage of the z2z command line
executable, provides a message flow based explanation of how
it works, and finally delves into the implementation detail.
Section IV lists related work. Lastly, Section V discusses
possible future directions of this effort.

II. BACKGROUND AND APPROACH

A. Zeroconf, mDNS, DNS-SD, and Bonjour

There is some confusion about what exactly the term
Zeroconf means. The term came from the IETF Zero Config-
uration Networking Working Group [7], which was chartered
to develop a requirements specification for networking in the
absence of configuration and administration. The working
group identified three requirements for zero configuration
networks:

1) IP address assignment without a DHCP server;
2) Host name resolution without a DNS server;
3) Local service discovery without any rendezvous server.

For the first requirement, the working group produced the self-
assigned link-local addressing standard (RFC 3927) [8], which
is implemented in major operating systems today. The working
group never reached a consensus regarding the second and
third requirements, and it became inactive without producing
any further specification.

Meanwhile, Apple introducedBonjour. Bonjour is the
implementation of Multicast DNS (mDNS) [9] and DNS-
based Service Discovery (DNS-SD) [10] protocols, which are
Apple’s proposals for the second and third requirements of
Zeroconf. As Bonjour became widespread, the term Zeroconf
became synonymous with the abstraction that Bonjour
implements, namely the mDNS and DNS-SD protocols. Our
use of the term Zeroconf is in this spirit.

The self-assigned link-local addressing described in RFC
3927 establishes the foundation for Zeroconf by ensuring that
IP networking is functional as long as the link layer is present.
This aspect of Zeroconf is not relevant in our discussion of
z2z, however, since we assume that the subnets are connected
to the Internet.

The second requirement of Zeroconf is satisfied by mDNS.
An mDNS daemon is essentially a DNS server. It uses the
same DNS record types and the same packet layout. In fact,
an application querying for a DNS record would not be able
to tell whether a response came from mDNS or a conventional
unicast DNS server. There are, however, a few important
differences:

• mDNS is run byevery host in a local link whereas a
conventional DNS system runs on a single server host.

• Queries are sent via multicast to all hosts in the local link
using UDP port 5353 instead of 53, the conventional port
for DNS.

• All mDNS record names must end in “.local.”. The
resolution of such names are routed to mDNS by the
operating system.

A mDNS daemon provides local host name resolution using
A type records. For example,

Toms-Computer.local. A 160.39.243.99

DNS-SD, together with mDNS, satisfies the third require-
ment of Zeroconf. DNS-SD defines the naming conventions
for PTR, SRV, and TXT records carried by mDNS daemons.
PTR records are used to enumerate the service instances of
a particular type. The service instances are mapped to the
host names and port numbers using SRV records. TXT records
accompany the SRV records in order to provide additional in-
formation about the service instances. The following example
illustrates this concept:

_daap._tcp.local. PTR
Tom’s Music._daap._tcp.local.

_daap._tcp.local. PTR
Joe’s Music._daap._tcp.local.

Tom’s Music._daap._tcp.local. SRV
0 0 3689 Toms-Computer.local.

Tom’s Music._daap._tcp.local. TXT
"Version=196613" "Password=false"
"Media Kinds Shared=3"

Toms-Computer.local. A 160.39.243.99

This is a textual representation (edited for clarity) of a few
DNS records produced by Apple’s iTunes music player ap-
plication when its music sharing option is enabled. The PTR
records are used to enumerate the two serviceinstances(Tom’s
Music and Joe’s Music) that are currently available in the local
network for the “ daap. tcp” servicetype. The host name and
port number for a specific service instance (Tom’s Music in
this case) is provided by a SRV record. A TXT record with the
same name as the SRV record carries additional information
about the service instance. Finally, an A record maps the local
host name to an IP address.

The mDNS daemons running on each host in a local link
collectively store and manage the PTR, SRV, TXT, and A
records for the services registered in the local subnet. The



queries and the answers are then exchanged via link-local
multicast.

B. OpenDHT

OpenDHT is a publicly accessible DHT service [11], [12].
It consists of 200–300 globally distributed hosts running the
Bamboo DHT algorithm [13]. Each host also acts as a client
gateway exposing a simpleput and get interface. From a
client application’s point of view, it is simply a remote storage
facility where the client application canput or get key-value
pair data items.

The put and get operations are performed via XML
RPC [14]. This black-box approach greatly simplifies appli-
cation development because the client applications do not
need to integrate DHT access libraries. On the flip side, since
OpenDHT does not reveal the nodes in the DHT routing
path, it is difficult to implement an application that uses such
information, such as an overlay multicast built atop a DHT
substrate [15].

We chose OpenDHT for the initial implementation of z2z,
mainly because of its ease of use. OpenDHT is sufficient
for our current use of DHT, which is limited to storing and
retrieving service announcements. Other DHT algorithms and
implementations can easily be substituted in the future when
OpenDHT no longer satisfies our needs.

Any OpenDHT node can act as a gateway to which a
client application sends a put or get request, but for the best
performance, a gateway node should be chosen so that it is
close to the client host in terms of the network topology.
For locating the nearest gateway, OpenDHT uses an overlay
anycast service called OASIS [16]. Our z2z uses the OASIS
mechanism by default, but it also lets the user specify a
particular OpenDHT gateway as a command line option.

C. Architecture Overview of z2z

The basic design of z2z is simple. A z2z process running
in a Zeroconf subnet gathers all the service announcements of
a particular type (specified by the user) andexportsthem into
OpenDHT. Another z2z process running in a different subnet
can thenimport those services bygettingthose announcements
from OpenDHT and register them in its own subnet as if
they had originated locally. Figure 1 depicts such a scenario.
Multiple z2z processes can be present in a single subnet as
well. Section V discusses this case.

Since each data item in OpenDHT is a key-value pair,
z2z associates a key with each service item that it exports
into OpenDHT. By default, z2z uses the service name as the
key (after prepending it with “z2z.opendht.” to avoid name
collision in OpenDHT). For example, an iTunes music share
might be exported by z2z under the key, “z2z.opendht.Tom’s
Music”, where “Tom’s Music” is the name under which Tom
is sharing his music library in iTunes. Section III-A explains
this in more detail.

III. D ESIGN AND IMPLEMENTATION

The current version of z2z is a command line program
written in Java. This section starts with a few examples of

Fig. 1. Two Zeroconf subnets A and B are exchanging local services with
each other. Of course, z2z is not limited to only two subnets.Any number of
subnets can export and import services to and from OpenDHT using z2z.

command line usage to explain the basics. Then it shows
how z2z works under the hood by following the message
flows when exporting and importing service items. Finally we
discuss some of the issues we encountered in implementing
z2z.

A. Usage Examples

z2z exports local Zeroconf service announcements to
OpenDHT, which then can be imported by other z2z processes
anywhere in the world. For example:

z2z --export:opendht _daap._tcp

will export the iTunes music shares found in the local network
to OpenDHT. When exporting to OpenDHT, z2z always stores
each service using its service name as the key. For example,
if one of the music shares exported by the command above is
“Joe’s Music”, Joe’s friend in a different network who wants
to listen to Joe’s music needs to issue the following command:

z2z --import:opendht --key "Joe’s Music"

indicating that he wants to bring in any service stored under
the name “Joe’s Music”. (If Joe’s music share was password-
protected, the friend should use as key “Joe’s MusicPW”
because iTunes adds the postfix to the service name of a
protected share.) Also, any character that is neither a letter
nor a digit will not be used in matching the key, and the
comparison is case-insensitive, so the command above is same
as:

z2z --import:opendht --key "joesmusic"

It is also possible to tell the exporter to use additional keys in
addition to the service’s own service name:

z2z --export:opendht _daap._tcp
--key "music from office network"

will make z2z export the local iTunes shares not only under
their own service names but also under the string “music from
office network”. This lets an employee working at home issue



Fig. 2. (1) z2z discovers a service instance of the typedaap. tcp by issuing
a PTR query; (2) The service instance is further resolved to obtain the host
name, IP address, and other additional information, using SRV, A, and TXT
queries; (3) z2z constructs a key-value pair from the information and sends
a put message to OpenDHT.

the following command to bring inall music shares of his
office network.

z2z --import:opendht
--key "music from office network"

Multiple keys are also allowed in the command line, in which
case z2z will store multiple records in OpenDHT for the same
service, one for each specified key.

B. Message Flow

1) Exporting: Figure 2 shows how z2z exports a service
announcement to OpenDHT. First, z2z sends out a PTR
query via multicast to discover service instances of the type
daap. tcp. In Bonjour parlance, this is calledbrowsing, and it

is performed by calling a Bonjour API function. Tom’s iTunes
music share is shown here as the example service instance
discovered.

The discovered instance is thenresolvedin order to obtain
the details of the service. This is also done by calling a
Bonjour API function, which makes SRV and TXT queries
to obtain the local host name, port number, and any other
additional information about the service stored in the TXT
record. (Figure 2 has the Password attribute as an example
of what is stored in the TXT records.) In a normal Zeroconf
service discovery situation, the IP address is not needed since
the local host name can identify the host in the local network.
However, since the service information that z2z exports to
OpenDHT can be used from anywhere on the Internet, the
local host name is not sufficient to locate the host. For this
reason, z2z resolves the local host name to its IP address
and includes it in the service information that it publishesto
OpenDHT. Currently z2z does not export the service if the IP
address is in the private address space [17]. A future version
will address this issue (Section V).

Once z2z obtains all the relevant information about a service
instance, it makes aput call into OpenDHT in order to store
the service item under the specified keys (as explained in

Fig. 3. (1) z2z retrieves a service item from OpenDHT by sending a get
message for the key “tomsmusic”. (2) The service item is registered as if
it had originated locally. This is done by inserting PTR, SRV, TXT, and A
records into the local mDNS daemon.

Section III-A). Each data item in OpenDHT has a Time-To-
Live (TTL) value associated with it. A record is expired in
OpenDHT unless it is refreshed with its TTL. Sending theput
message again refreshes the record. Thus, z2z keeps sending
the put request to OpenDHT as long as the service instance
is present in the local network. The TTL of the service item
and the interval by which z2z resends the put request are by
default 5 minutes and 60 seconds, respectively, and they can
be changed using the command line parameters.

2) Importing: Figure 3 shows another z2z process in an-
other network importing Tom’s music share that had been
previously exported. First, z2z makes aget call to OpenDHT
to retrieve the records stored under the key, “tomsmusic”. z2z
then registersthe retrieved service into its local network. All
the hosts in the network (including the same host on which
the z2z process is running) will see the service as if it had
originated from the local network, i.e., the iTunes applications
running on this network will show “Tom’s Music” as one of
the shared music libraries in the network. This is accomplished
by the Bonjour API functions that inject PTR, SRV, TXT, and
A records into the local mDNS daemon.

Note that an A type record for afake host name
is added to mDNS. (We use names such as “remote-
160.39.243.99.local.”, but any name can be used as long as
it ends with “.local.” and does not conflict with other host
names in the local network.) This record points to the remote
IP address of the machine that is actually providing the service.
This trick of registering a remote service masquerading as a
local one is calledproxy registeringin Bonjour terminology.

It is tricky to manage the lifetime of an imported service
because the only way to learn that the service has been expired
from OpenDHT is to try toget it. The approach taken by z2z
is as follows. z2z keeps makingget calls cycling through the
keys specified by the user. There can be multiple keys and
for each key there can be multiple service items. For each
service item retrieved, it imports it if it is a new service. If
an already imported service is retrieved again, it updates its
refresh time-stamp. There is a thread that collects stale services



(those that have not been refreshed for a while) and removes
them from the network. The interval betweenget calls and
the stale threshold are by default 10 seconds and 5 minutes,
respectively, and they can be changed using the command line
parameters.

If there is another z2z process in the local subnet and it
is exporting, the imported services will be discovered by that
z2z exporter. We need a mechanism to prevent the exporter
from exporting the imported service again. A short signature
is added as a TXT attribute so that the exporter can distinguish
the imported services from the native local services.

C. Implementation

1) C++ Prototype: The first prototype of z2z was imple-
mented in C++ using the C version of the Bonjour client
API. We developed and tested it in Mac OS X first and
subsequently ported it to Windows. For OpenDHT access, we
used the open-sourcexmlrpc-c library [18]. Using Cygwin
environment [19], we were able to build and use the library
in Windows as well.

This approach was problematic because the Bonjour client
library in Windows uses the Winsock library, which is incom-
patible with Cygwin’s socket-related functions. In particular,
Cygwin’s select() function fails when called with socket
descriptors opened by the Bonjour library. Our workaround
was to build two separate executables: one under native
Windows environment (Microsoft Visual C++ compiler) and
another under Cygwin environment (gcc compiler). The two
executables communicated through a socket connection.

2) Open-source Java Implementation:The porting issues
of the C++ prototype led us to rewrite z2z from scratch in
Java. We used the Java version of the Bonjour client API,
and for OpenDHT access, we used Apache XML-RPC [20].
The Zeroconf-to-Zeroconf Toolkit, version 1.0, was released
under BSD license and is now available for download from
SourceForge.net [21].

It is developed and tested under Mac OS X and Windows.
In Windows, it requires Bonjour for Windows available from
Apple [22]. (Bonjour for Windows is also automatically in-
stalled when iTunes is installed.) The support for Linux or
other POSIX-compliant platforms providing Zeroconf through
Avahi is planned for a future version.

3) Implementation Issues:The proxy registering mecha-
nism described in Section III-B2 is unfortunately not available
in the current Java Bonjour client API. The problem is that
the current version of Java Bonjour API does not provide a
way to inject a type A record into the local mDNS daemon.
(The C API does provide this functionality.) As a workaround,
z2z currently does a reverse lookup on the IP address and
puts in the real, global host name as the value of the SRV
record representing the service instance (as opposed to thefake
.local name used when proxy registering is available). This
eliminates the need of adding a type A record, but it makes
it impossible to import services from those IP addresses that
are reachable, but do not have global names associated with

them. For example, two private address networks might be
connected through a router.

A better workaround might be to use the fake .local host
names, but instead of injecting a type A record into mDNS,
z2z can listen for multicast and answer the A query itself. We
will consider implementing this solution in a future version if
the proxy registering API continues to be unavailable in the
Java Bonjour client library.

The Bonjour API function for registering a service takes as
a parameter the network interface index for which the service
is registered. Usually it is set to a special value indicating all
available interfaces. An interesting value one can pass here
is one that indicates that the service should be registered for
the local machine only. This option is supposed to register a
service in such a way that it is only visible on the machine
that registered the service, not any other host in the same
local network. This is useful in z2z because it is sometimes
undesirable to pollute the network with the imported services
that are intended only for a single user. It is an issue especially
in a large bridged wireless network where mDNS traffic
can have a significant impact on the network performance.
(See [23] for an example of such networks.)

Unfortunately, we were not able to incorporate this feature
into z2z successfully. Under certain conditions, registering
services for local machine only caused internal errors on the
mDNS daemon in Mac OS X. Another problem with this
option is that certain applications (iTunes being one of them)
ignore the services registered in such a way, severely limiting
the usefulness of the option.

IV. RELATED WORK

Apple’s solution for Zeroconf beyond local link is Wide-
area Bonjour [24]. Wide-area Bonjour replaces the Multicast
DNS in Bonjour with the conventional unicast DNS, thereby
removing the link-local confinement of Bonjour services.
This comes at a cost of setting up and maintaining a real
DNS server, which makes Wide-area Bonjour unsuitable for a
discovery solution for transient or ad hoc services. Moreover,
the client hosts need to know the DNS servers to which they
can send queries and publish services. In short, Wide-area
Bonjour requiresconfiguration.

We believe that z2z is the first attempt at interconnecting
Zeroconf subnets using a DHT-based peer-to-peer network.
But there have been a number of attempts at making Zeroconf
services available beyond the local subnet.

Rendezvous Proxy [25] offers a simple GUI interface for
a user to enter the information about a remote Zeroconf
service, such as the IP address and port number where the
service can be found. It makes the service available locally
by performing the proxy registration, the same technique
described in Section III-B2. It is intended as a way to establish
a simple point-to-point connection when the user knows the
exact nature and location of the service that he wishes to bring
into his local network.



LogMeIn Hamachi [26] is a peer-to-peer virtual private net-
work (VPN) solution that provides a virtual LAN connectivity
over the Internet. Service discovery is not the main focus of
this solution, but Zeroconf is claimed to work in the virtual
LAN environment. The fact that it operates on top of a virtual
LAN imposes a practical limit on the number of networks it
can connect.

Simplify Media [27] applies the idea of social network to
iTunes music sharing. Instead of the open peer-to-peer network
used by z2z, it uses a private social network to enable iTunes
music sharing among friends. Currently Simplify Media is an
iTunes-only solution, whereas z2z is a generic solution forall
Zeroconf services.

V. D ISCUSSION ANDFUTURE WORK

The current implementation of z2z allows multiple z2z
processes running in a network to export or import the same
set of services. Normally this is not a problem. When a service
is exported to OpenDHT by multiple z2z processes, the effect
is simply that the service gets refreshed more frequently. When
a service is imported into a network by multiple z2z processes,
Bonjour recognizes that the DNS resource records being
registered are identical, and it treats them as the redundant
announcements for a single service. In fact, Apple suggests
this as a possible fault-tolerance mechanism [28].

The effect of such redundant registrations on a large local
area network, however, needs to be investigated. The multicast
traffic from mDNS can have a significant impact on the
performance of a large network. This has led some network
operators to employ filtering of mDNS traffic [23]. We plan to
investigate if, and to what extent, the presence of z2z processes
exacerbate the problem. If the redundant registration turns out
to be a significant factor, it is straightforward to ensure that
only one z2z process is responsible for importing a given
remote service.

On the export side, we can eliminate the redundant
OpenDHT refreshes by ensuring that only one z2z process
is exporting a service type under a given key. This can be
implemented using Bonjour. A z2z process can advertise a
name constructed from the service type and the key that it
intends to export, and then use Bonjour’s built-in name conflict
resolution mechanism to see if another z2z process is already
exporting the type under the same key. It is unclear, however,
that the reduction of OpenDHT calls outweighs the additional
multicast traffic.

Privacy is another important consideration when z2z is
used in a large network, especially when there are a large
number of users, such as in a University campus network.
When a user publishes a service using a Bonjour-enabled
application (when a user shares his music library in iTunes
for example), he expects his service to be available in the
local network, but he may not be aware that the service can
be carried outside the local network by z2z. Therefore we
emphasize that z2z should be used in a way that respects the
privacy of the users in the local network. It should be noted,
however, that z2z does not introduce any new technology that

facilitates the invasion of privacy. One can easily browse and
resolve the local services using many other readily available
tools, and then post the information on a web page, for
example.

Currently z2z does not work in a network behind a Network
Address Translation (NAT) gateway. We plan to implement the
NAT traversal techniques [29], [30] in z2z in order to make it
useful in the network settings that employ NAT, such as most
home networks.

Another area of improvement is searching for services.
Currently in order to import a service from OpenDHT, the
key under which the service was exported must be given
exactly. Various extensions are possible. A hierarchical index
can be built and stored in OpenDHT from a list of keywords—
possibly extracted automatically from the service name and
the TXT record—in a manner similar to [31]. We can also
replace OpenDHT with other DHT systems that support more
complex queries.

REFERENCES

[1] Zero Configuration Networking. [Online]. Available: http://www.
zeroconf.org/

[2] Apple Inc. [Online]. Available: http://www.apple.com/
[3] Avahi. [Online]. Available: http://avahi.org/
[4] Debian GNU/Linux. [Online]. Available: http://www.debian.org/
[5] Ubuntu. [Online]. Available: http://www.ubuntu.com/
[6] DNS-SD service types. [Online]. Available: http://www.dns-sd.org/

ServiceTypes.html
[7] Zero Configuration Networking (zeroconf) Working Group

charter. [Online]. Available: http://www.ietf.org/html.charters/OLD/
zeroconf-charter.html

[8] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic configuration of
IPv4 link-local addresses,” RFC 3927, May 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc3927.txt

[9] S. Cheshire and M. Krochmal. (2006) Multicast DNS.
Internet draft. [Online]. Available: http://files.multicastdns.org/
draft-cheshire-dnsext-multicastdns.txt

[10] ——. (2006) DNS-based service discovery. Internet draft. [Online].
Available: http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt

[11] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “Opendht: A public dht service and its uses,”
2005. [Online]. Available: citeseer.ist.psu.edu/rhea05opendht.html

[12] OpenDHT home page. [Online]. Available: http://opendht.org/
[13] The Bamboo distributed hash table. [Online]. Available: http:

//bamboo-dht.org/
[14] XML-RPC home page. [Online]. Available: http://www.xmlrpc.com/
[15] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “SCRIBE: A

large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in communications (JSAC), vol. 20,
no. 8, pp. 1489–1499, 2002. [Online]. Available: citeseer.ist.psu.edu/
castro02scribe.html

[16] M. Freedman, K. Lakshminarayanan, and D. Mazieres, “Oasis: Anycast
for any service,” 2006. [Online]. Available: citeseer.ist.psu.edu/757191.
html

[17] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot,and E. Lear,
“Address allocation for private internets,” RFC 1918, Feb.1996.
[Online]. Available: http://www.ietf.org/rfc/rfc1918.txt

[18] XML-RPC for C and C++. [Online]. Available: http://xmlrpc-c.
sourceforge.net/

[19] Cygwin home page. [Online]. Available: http://www.cygwin.com/
[20] Apache XML-RPC. [Online]. Available: http://ws.apache.org/xmlrpc/
[21] Zeroconf-to-Zeroconf Toolkit (z2z). [Online]. Available: http:

//sourceforge.net/projects/z2z/
[22] Bonjour for Windows. [Online]. Available: http://www.apple.com/

support/downloads/bonjourforwindows.html



[23] OIT filters mDNS. [Online]. Available: http://www.net.princeton.edu/
filters/mdns.html

[24] S. Cheshire and D. H. Steinberg,Zero Configuration Networking: The
Definitive Guide. Sebastopol, CA: O’Reilly Media, 2005, ch. 5.

[25] Rendezvousproxy: Tutorial. [Online]. Available: http://ileech.
sourceforge.net/index.php?content=RendezvousProxy-Tutorial

[26] LogMeIn Hamachi. [Online]. Available: https://secure.logmein.com/
products/hamachi/vpn.asp

[27] Simplify Media. [Online]. Available: http://www.simplifymedia.com/
[28] Technical Q&A QA1311: Registering a Bonjour service multiple times.

[Online]. Available: http://developer.apple.com/qa/qa2001/qa1311.html

[29] J. Rosenberg. (2007) Interactive connectivity establishment (ICE):
A protocol for network address translator (NAT) traversal for
offer/answer protocols. Internet draft. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-mmusic-ice-17

[30] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN -
simple traversal of user datagram protocol (UDP) through network
address translators (NATs),” RFC 3489, Mar. 2003. [Online]. Available:
http://tools.ietf.org/html/rfc3489

[31] L. Garcés-Erice, P. A. Felber, E. W. Biersack, G. Urvoy-Keller, and
K. W. Ross, “Data indexing in peer-to-peer dht networks,” inICDCS
’04: Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS’04). Washington, DC, USA: IEEE Com-
puter Society, 2004, pp. 200–208.


