The Design of the RSVP Protocol

Robert Braden, Deborah Estrin, Steve Berson, Shai Herzog, Daniel Zappala

USC/Information Sciences Institute

FINAL REPORT
Contract DABT63-91-C-0001
27 May 1993 - 30 June 1995

ABSTRACT: RSVP, a setup protocol that creates flow-specific reservation state in rout-
ers and hosts, is a component of the QoS extensions to the Internet architecture known as
integrated services. RSVP was designed to provide robust, efficient, flexible, and exten-
sible reservation service for multicast and unicast data flows. This report summarizes the
key RSVP design decisions and their rationale.

1. Introduction

RSVP ReSerVation Protocpis a setup protocol for Internet resource reservations; its purpose is

to create flow-specific resource reservation state in routers and hosts. RSVP was designed as a
component of integrated service, a set of QoS extensions to the Internet architecture [ISIP92,
ISarch93]. The fundamental design of RSVP was developed by a research collaboration during the
period 1991-1993 [Zhang93]. Beginning in 1993, a further research and development collaboration
turned this proto-RSVP into a practical Internet protocol [RSVP95], and a prototype implementation
was constructed. Since 1995, the RSVP protocol has been further refined and documented as a
potential Internet standard by a Working Group of the IETF; the result is known as Version 1 of
RSVP [RSVPI7].

This document provides a concise overview of the RSVP protocol and documents the important
technical decisions that went into its design. Some of these ideas were expressed in [Zhang93], but
others have not previously been documented. The RSVP Functional Specification document de-
scribes the final protocol, but it does not describe the technical issues and choices that were made
or the alternatives that were considered; this document attempts to fill that gap.

The remainder of this section briefly recapitulates the integrated services context for RSVP and then
summarizes RSVP’s design objectives and basic architecture. Section 2 contains a concise summary
of the design of the RSVP Version 1 protocol. Section 3 discusses the most important particular
RSVP design issues and describes the alternatives that were considered. Section 4 concludes the
report.

1.1 Integrated Services

The best-effortservice provided by the original Internet design allows congestion-caused end-to-
end delays to grow indefinitely. To better support real-time applications, e.g., packet voice, packet
video, and distributed simulation, an extension to the Internet architecture has been developed. This

RSVP Project: Final Report 1

extension is known asitegrated servicesand a network that supports it is calledimtegrated
services packet netwofkSPN). With integrated services, an end system can request a particular
guality of service (Qo0S), e.g., bounded end-to-end queueing delay, for a particular data flow. Pro-
viding the QoS generally requires reservation of network resources in routers hosts along the path(s)
of the flow as well as in the end hosts.

In order to provide a requested QoS, the nodes of an ISPN must pederration setuadmission
control, policy contro| packet schedulingandpacket classificatiofunctions. Figure 1 illustrates
these functions in an ISPN router.

1. Reservation Setup

A reservation setup protocol is used to pass the QoS request originating in an end-system
to each router along the data path, or in the case of multicasting, to each router along the
branches of the delivery tree. In particular, RSVP was designed to be the reservation setup
protocol for an ISPN.

An RSVP reservation request is basically composedfloixspecand dfilter spec The
flowspec defines the desired QoS, and the filter spec defines the subset of the data stream,
i.e, the flow, that is to receive this QoS.

2. Admission Control

At each node along the path, the RSVP process passes a QoS request (flowspec) to an
admission controalgorithm, to allocate the node and link resources necessary to satisfy
the requested QoS. If admission control accepts the request, the necessary state is estab-
lished for it; otherwise, an error message is sent.

3. Policy Control

Before a reservation can be established, the RSVP process must als@ctiogubntrol
to ensure that the reservation is administratively permissible.

| RSVP Messages RSVP Messagesl

RSVP

[‘W
Routing queries

Policy
Control
Filter —
spl)ecs Admissian Flowspecs

Routes Control

Packet Packet
Classifier # Scheduler

Datg packets

Figure 1: Integrated Services Components in ISPN Router

RSVP Project: Final Report 2

4. Packet Scheduler

Assuming that admission control and policy control both succeed, the RSVP program
installs state in the localcket schedulesr other link-layer QoS mechanism, to provide

the requested QoS. The packet scheduler multiplexes packets from different reserved flows
onto the outgoing links, together with best-effort packets for which there are no reserva-
tions.

5. Packet Classifier

The RSVP process also installs state paaket classifieghich sorts the data packets
forming the new flow into the appropriate scheduling classes. The state required to select
packets for a particular QoS reservation, knownfileg is specified by the filter spec.

In Figure 1, the components shown below the horizontal dotted line are in the data packet forward-
ing path; these components are collectively caliaffic control The RSVP and routing processes
shown above the line typically execute in background. In an end system, the dotted line is
expected to represent the user/kernel boundary; the forwarding path is in the kernel, while RSVP
and routing protocols will execute in user space. Although admission control is shown below the
line, its operation may depend upon packet statistics gathered in the forwarding path.

1.2 RSVP Architecture

RSVP was designed to providabust, scalable, flexibl@gnd heterogeneougesource reservation
setup formulticastas well asunicastdata flows in an integrated services packet network. These
design requirements led to a number of basic architectural features: (1) a multipoint-to-multipoint
communication model, (2) receiver-initiated reservations, (3) cached (“soft”) state management in
routers, and (4) separation of reservations from routing.

(1) Multipoint-to-Multipoint Communication Model

RSVP was designed from the beginning to support multicast as well as unicast data de-
livery. In the RSVP model, the basic communication model is a simplex distribution of
data from m sources to n receivers using the same destination address. RSVP calls such
an m-to-n flow aessionFor a conferencing application, each participating host will play
both sender and receiver roles, and typically m = n. At the other extreme are broadcast
applications, where m = 1 and n may be >> 1. Figure 2a illustrates the data packets flowing
in a multicast session from two sender hosts S1 and S2 to three receiver nodes R1, R2,
and R3, through routers A, B, and C.

For unicast sessions, the IP destination address is not sufficient to define a session; addi-
tional demultiplexing information, calledy@neralized destination pois required at the
receiver. Thus, an RSVP session is logically defined by the pair:

(Destination IP Address, Generalized Destination Port).

RSVP should allow a receiver to make a reservation for a subset of the traffic on a particular
multipoint-to-multipoint session, and this selection should take place as close to the source
as possible, to avoid wasting network resources. For example, the traffic subset might be
defined by particular sender host(s), by particular layers of a layer-encoded video signal,
or both. We can describe this selection information by the pair:

(Source IP Address, Generalized Source Port).

In principle, selection of a traffic subset to receive a reservation may depend upon any
fields in the IP header, in the transport protocol header, or in an application-layer header.
The “generalized ports” thus stand for all header fields, other than the IP addresses, that

RSVP Project: Final Report 3

are used for selection. However, for simplicity and efficiency, the current RSVP protocol
supports a much more restricted set of header fields for classifying data packets; in par-
ticular, it goes no deeper into the packet than the transport layer header.

To accommodate a variety of applications, RSVP provides flexible semantics for sharing
reservations at common nodes. For example, to support reservation channel switching for
video, a receiver wantsdistinctreservation for each sender’s traffic. On the other hand,

it is more useful to have a single shared reservation channel for audio traffic. Because of
silences, such a shared audio channel requires a network bandwidth that is essentially
constant, independent of m; i.e., all sendersstamea single reservation. To select one

of these cases, each reservation request carries the binary-valued sharing ahalade:
vs.distinct The sharing attribute is carried in a vector of attributes callestyhenf the
reservation; other style attributes are discussed later.

, (2

(A)
\

Y, \ /

R) R ® @

Fig 2a: Session data packets Fig 2b: Reservation requests from
andPath messages receivers R2 and R3 for sender S1.

(2) Receiver-Initiated Reservations

A major concern of RSVP design is scaling to large n, i.e., to many receivers. The basic
RSVP design strategy to achieve large-n scaling is toegséver-initiated(also known

as leaf-initiated reservations. The receiver end system initiates an RSVP reservation
request at a leaf of the multicast distribution tree or at the unicast destination; this request
then travels towards the sender(s), as shown in Figure 2b.

In general, a reservation request message travels only as far as the first multicast router at
which another receiver's reservation already exists for the same session. At that point, the
new request imergedwith the previous reservation, and a single request travels upstream.
The merged reservation has a flowspec that is the ‘largest’ of the requests being merged.
For example, in Figure 2b the requests from receivers R2 and R3 are merged in router A.

While receiver initiation is critical for multicast sessions, it is not critical for unicast. It
was suggested that RSVP could support both sender initiation and receiver initiation, and
allow applications to choose. However, economy of mechanism was achieved by support-
ing only receiver initiation.

RSVP Project: Final Report 4

(3) Soft State

To achieve robustness and simplicity, RSVP creates “soft” state within the network. Soft
state times out if it is not periodically refreshed. The RSVP architecture thus leaves re-
sponsibility for state maintenance to the endpoint hosts, which must periodically re-initiate
the same RSVP control messages.

Since there is no distinction between initial setup and maintenance of state, RSVP state
automatically adapts to routing changes, multicast group membership, and reservation
modifications. For example, if state is lost or a route changes, the next refresh message
will establish the reservation (assuming admission control succeeds) along the new route.
Also, an existing reservation can be modified by simply sending an RSVP message con-
taining the new reservation parameters; no separate mechanism is needed for modifying
reservations.

(4) Separation of Reservation from Routing

A basic architectural principle is that integrated services is an optional extension to the
underlying best-effort data delivery of the Internet; best-effort service must always be
available. For example, receiver R1 may join the multicast group in Figure 2a without
making a reservation. The data stream received by R1 will then obtain only best-effort
service on the last hop from router B. Note that R1'’s traffic will then get a “free ride” on
the reservations established by receivers R2 and R3 upstream of B. Such “free” reserva-
tions are unavoidable without a major change to multicast semantics and mechanism as
well as increased cost to the network; they are therefore accepted as part of the service
model.

Since multicast forwarding must function whether or not there are reservations, the natural
modularity is to separate reservation from routing, making RSVP a pure reservation setup
protocol. This separation allows RSVP to operate with the wide variety of present and
future routing protocols in the Internet, with minimal changes. Document [RSRR96] de-
scribes a generic route lookup interface between RSVP and routing.

The minimum functionality required of routing to support reservations is answering RSVP
gueries for the next hop for a given Destination Address (unicast) or a given (Destination
Address, Sender Address) pair (multicast). This allows RSVP to make its reservations
along the path that the data will take, while route computation and installation are left to
the routing protocol itself. A small extension to this simple route query function provides
asynchronous route-change notification to RSVP, as described below in Section 3.5.

However, this minimum functionality has its limitations: it forces RSVP to use whatever
multicast routes are available for a particular multicast group. If any of these routes do not
have the resources to support a reservation request, the requesting application must either
lower its request or give up. If the multicast routes change, RSVP must adapt to the new
routes and re-establish its reservation by contacting admission control at each new node.
This may cause at least a temporary service disruption. Moreover, there is no guarantee
that the new routes will be able to support the same QoS as the old routes.

In order to more effectively support real-time applications, research is being pursued on
how the network routing protocol and RSVP can cooperate to provide stable routes that
deliver the applications’ desired QoS [Zappala97]. Since global knowledge cannot be
assumed, this more advanced routing/reservation cooperation must be based upon local
or partial knowledge. It is expected to result in an iterative process, as follows. (1) The
routing protocol is responsible for identifying a route that has the possibility of meeting
the receiver's requirements. (2) The reservation protocol verifies the availability of re-
sources along the route and attempts to reserve resources for the user. (3) If the reservation

RSVP Project: Final Report 5

request is unsuccessful, this process repeats, with the routing protocol finding a new route
for the reservation protocol to try. Once a reserved route is obtained, the routing protocol
maintains (“pins”) the route for the receiver.

2. OVERVIEW OF THE RSVP PROTOCOL

This section summarizes the RSVP protocol with minimal explanation. The reasoning behind many
of the protocol features is presented later in Section 3.

2.1 Data Flow Definitions

In principle, a filter spec defines the flow (i.e., the subset of the data stream) to receive a particular
QoS. In practice, flow definition is divided into two parts, the session definition and the filter spec.
Thus, the session specifies the destination and the filter spec specifies the “rest”. In particular, the
basic filter spec format defines a sender to the session.

Although generalized ports could in principle be defined by application-layer header fields, RSVP
Version 1 limits the generalized ports to transport-layer demultiplexing fields. The generalized
destination port is specified by a port number and the IP Protocol Id, while the generalized source
port is specified by a port number (assuming the same protocol Id as the session). Furthermore, the
Thus, an RSVP Versionskessioris defined by the triple:

(Destination Address, IP Protocol Id, Destination Port);
The basic form of RSVP filter spec selects one specific sender defined by the pair:
(Source Address, Source Port)

Source Port and Destination Port values are the corresponding UDP/TCP port fields if the Protocol
Id is UDP or TCP; otherwise, the value zero is assumed for both port values. Two other filter spec
forms have been defined, for IPv6 flow ids [RSVP97] and for data streams using IPSEC [IPSEC97];
others may be introduced in the future.

2.2 RSVP Messages

RSVP creates and maintains state by periodically sending control messages in both directions along
the m-to-n data paths for a session. RSVP messages are sent as IP datagrams and are captured and
processed in each node -- router or host -- along the path(s), to establish, modify, or refresh state.

There are two primary RSVP message typesvandPath.
0 Resv(Reservation request) messages

Resvmessages are periodically initiated by receivers to request reserveggnsies-
sages travel upstream (i.e., against the direction of data flow) to reateation state

in each node. See Figure 2b. E&dbsv message is sent to the unicast address of the
previousRSVP hop.

A Resvmessage forwarded by a node is obtained by merging all related incoming reser-
vation requests, as described later. A new or mod¥esymessage is forwarded only as
far as the node at which merging causes it to have no net effect on upstream reservations.

o Path messages

RSVP Project: Final Report 6

A Path message is initiated by a sender and travels downstream, addressed to the multicast
or unicast destination address of the session, to quatiiestatein each node. RSVP in

each node queries routing in order to forwaRhth message along the exact path(s) that

the corresponding data packets will traverse, as shown in Figure 2P &hahessage
contains information about the sender that initiated it, and the path state basically consists
of a description of every sender to the given ses$tath messages carry the same IP

TTL as the data packets, so they have the same range.

Path messages carry three distinct kinds of information.
(1) Specification of previous RSVP hop.

EachPath message carries the IP address and logical interface number (Logical
Interface Handle or LIH) of the node that last forwarded this message. This

information, recorded in the path state, is used to Reggmessages upstream
to that previous hop.

(2) Tspec describing sender traffic

This Tspec is used to prevent over-reservation on the links nearest to the sender,
as described in Section 3.2

(3) Adspec to measure path properties

The Adspec is updated at each hop to measure properties of the path for the use of the
receiver for making reservations.

Although path state and reservation state time out if not refreshed, the following two message types
can be used to promptly and explicitly ‘tear down’ state.

o ResvTear(Reservation Teardown) messages

AResvTearmessage deletes specific reservation state, traveling upstream following the same
path(s) as the correspondiRgsvmessage. It travels only as far as the node where merging
will cause it to have no effect on upstream reservations.

o PathTear (Path Teardown) messages

A PathTear message deletes path state, traveling downstream following the same path(s) as
the correspondingath message (and the data).

There are also error messages correspondiRgttbandResvmessages, as follows.

0 ResvVErr (Reservation Error) messages

AResVErr message may report an error found while proceseganessage or a spontaneous

error in reservation state. It travels downstream to all receivers that may have contributed to
the error (see below).

o PathErr (Path Error) messages

A PathErr message reports an error in processiRgth message. It travels upstream to the
corresponding sender.

A ResvErr message includes the flowspec that failed and an information bit called InPlace. This bit
is set on if the error being reported was an admission control failure in which an existing reservation
was being modified or increased. In this case, the RSVP specification requires the existing reservation

remain in effect (see Section 3.3), and this is reflected by setting the InPlace bit on in the resulting
ResvEr message.

RSVP Project: Final Report 7

Normally, a node forwards a ResvErr message to all next hops for which there is reservation state

in the node, for the matching sender and session. That is, a ResvErr message is normally flooded to
the entire subtree of receivers with reservations, downstream of the error. However, if a node receives
a ResvErr message with the InPlace bit on, it suppresses forwarding this message to any next hop
whose reservation request carried a flowspec that is strictly smaller than the flowspec that failed.

2.3 RSVP State
2.3.1 Reservation State

An elementary reservation request contains the following information that is saved in the reservation
state:

* D= (Destination Address, IP Protocol ID, Destination Port) triple defining the session.

* NHOP = Next Hop address, i.e., the IP address of the RSVP-capable node from which
theResvmessage arrived.

* LIH = Logical Interface Handle defining the outgoing interface to which the
reservation applies.

* Q= flowspec defining the requested QoS.
*Fq, ... R, alist of filter specs defining the senders to receive the QoS.
* Style
This state is stored in a reservation state element (RSE), which is distinguished by:
(D, NHOP) for a shared style
(D, NHOP, F) for a distinct style

A Resvmessage may carry a single elementary reservation request, or for one style (FF; see below),
multiple elementary reservation requests may be packed into aReglenessage.

2.3.2 Path State
A Path message contains the following information:
* D= (Destination Address, IP Protocol ID, Destination Port) triple defining the session.

* PHOP = Previous Hop address, i.e., the IP address of the RSVP-capable node
from which th@ath message arrived.

* LIH = Logical Interface Handle (discussed below) for the outgoing interface of the
previous hop.

* T= Tspec defining the QOS parameters of the data traffic stream that will be sent.

* S= Sender Template defining the sender IP address and source port from which
the data will be sent.

* Adspec, used by integrated services to gather end-to-end characteristics of the path.

The state received inRath message is stored as a path state element (PSE), which is distinguished by:

(D, S) for unicast sessions, or

RSVP Project: Final Report 8

(D, S, Incoming interface) for multicast sessions.

2.4 Styles

Much of RSVP's flexibility resides in the vector of reservation attributes callestyttee The style
currently specifies values for two attributes:

o Sharing attribute: values &baredor Distinct
0 Sender Selection attribute: values Exglicit, Wildcard, or Assured

The sharing attribute was described earlier. 3draer selectioattribute controls how senders are
selected; it also controls tkeopeof a request, i.e., the set of senders towards which it is forwarded.
The following two values are defined for sender selection:

-- Explicit: TheResvcontains filter specs that explicitly select those senders whose packets will
receive the reservation; this set of senders is also the scope of the reservation.

-- Wildcard : TheResvcontains no filter spec; the reservation applies to all upstream senders, and
the scope is also all upstream senders.

Table 1 shows the three attribute combinations that are included in the protocol and the abbreviated
names given to them.

We can now summarize the reservation parameters for the three styles. We represent an elementary
reservation request with the notation F{Q}, where F is the filter spec and Q is the flowspec.

o WF style: No filter spec (“*”) meaning all senders, sharing flowspec Q.

WF(*{Q})

o FF style: Alist of k > 0 (filter spec, flowspec) pairs, defining k independent and distinct reser-
vations.

FF(F1{Q1}, ..., Fk{QKk})

o SE style: Alist of k > O filter specs defining senders sharing the same reservation, which is defined
by the flowspec Q.

SE((F1, ..., FK){Q})

2.5 Merging Reservations

RSVP'sreceiver-initiated reservations accom- ,
modate heterogeneous QoS requests from dif- Sharing
ferent receivers. At each node in which multi= -

cast delivery replicates data packets, RSVPSende_r Distinct Shared
merges the corresponding reservations into a>¢€lection

single reservation message to be sent u —
Strfam_ J p"Expllcn FF style SE style

When RSVP merges two reservations, theirWildcard (not defined) WF style
flowspecs are combined to define areservation
‘large’ enough to satisfy both requests. If the
flowspecs can be strictly ordered, the ‘larger’ Table 1: Styles
of the two is used; otherwise, a third flowspec
that is ‘larger’ than both is constructed. This

RSVP Project: Final Report 9

combination, which is called the Least-Upper-Bound (LUB), is associative and commutative. In
Figure 2b, for example, if R2 and R3 request QoS defined by flowspecs Q2 and Q3, then router A
computes merges these into LUB(Q2, Q3) which is forwarded towards S1. The parameters passed
to traffic control in router A cause traffic policing of the outgoing data stream with the ‘smaller’
reservation, or both if they are not orderable.

Merging of different styles is not allowed. The following rules are used for merging reservations of
the same style. The issue of which reservations to merge will be discussed below.

o Merging WF style: No change (except to SCOPE object; see Section 3.7).

0 Merging FF style: Combine the lists of Fi{Qi} pairs into a single list. Wherever the same
filter spec occurs twice, replace by a single pair using the LUB of the Q’s:

H{Qa}, F{Qb} ==> F { LUB(Qa,Qb) }
o Merging SE style: Take the union of the filter spec lists and the LUB of the flow specs:

(Fal, ...){Qa}, (Fbl,..){Qb} ==> ((Fal, ...) U (Fbl,...)) { LUB(Qa,Qb)}

An elementary RSVP reservation request is forwarded towards all senders whose data packets will
be sorted into that reservation class. This establishes a fundamental predicate relation between path
state (PSEs) elements and reservation state elements (RSEs). Consider an RSE on an outgoing
interface Ol and with filter specs,F.. k, and a PSE for sender S. We say that the PSE ‘maps onto’

the RSE if data packets from S to the session are routed to Ol and if the RSE includeémsian F

specifies the sender S. Let X be a PSE for sender S; in general, the flowspec that is forwarded towards
S is formed by merging the flowspecs in all RSEs that X maps onto.

RSVP forwards eacResvmessage to a particular previous hop (PHOP) node for which it has path
state. Assume a particular PHOP node P, and det & S;, ... §, } be the set of senders (or

alternatively, the corresponding PSEs) whidath messages came from PR&svmessage sent to
P may contain only filter specs that match a sendegiT ke detailed rules for forming the Resv

message for P depend upon shde
o WF Style:

Areduced set Gof eligible senders is formed fromy@sing the received SCOPE objects

(see Section 3.7 below). Then the outgoing flowspec Q is formed by merging the flowspecs
from all RSEs that any of the PSEs remaining ig i@ap onto.

o SE Style

A set G is formed, containing those senders igt@at map onto some RSE. Then the

outgoing flowspec is formed by merging the flowspecs in the RSEs that any of the PSEs
in G’gmap onto. The outgoing filter spec is the simply the filter specs that match the PSEs
for G's.

o FF Style

The outgoing Resv message will contain a list of (flowspec, filter spec) pairs, one for each
sender in @. Each filter spec matches a PSE i @nd the corresponding flowspec is

formed by merging the flowspecs in the RSEs that this PSE maps onto.

Finally, we must specifwhento forward a merged reservation message. For explanatory purposes,
suppose that RSVP in each node maintained explicit state for ouigeswefresh messages; we
call this the merged reservation state (MRS). RSVP would maintain its MRS consistent with the

RSVP Project: Final Report 10

path and reservation state in the node. A node would sBed\arefresh message to a particular
PHOP node whenever:

(1) a new MRS element was added for that PHOP,
(2) the MRS element for that PHOP changed (to reflect a change in path and/or reservation state),
(3) the refresh timer went off, or
(4) local repair was needed (see later).
If an element of MRS was deleted, a ResvTear message would be sent to that PHOP.

Actual implementations may not keep MRS state, but instead dynamically compute the merged state
as needed; however, the effect must be the same as the rules above.

2.6 Distributed State Management

RSVP is designed to create “soft” state, which times out if it is not refreshed soon enough. The only
permanent state is in the end nodes. The algorithms for refreshing and timing out state are a funda-
mental aspect of RSVP.

2.6.1 Hop-by-Hop Refreshes

When aResvrefresh message is sent, its contents are generally computed by merging multiple
reservation state elements, each of which is itself refreshed independently. It is not useful to think
of a Resv refresh message as travelling end-to-end; instead, each RSVP node sends refreshes for its
local reservation state independently of refreshes it receives. However, whenever the contents of a
potential refresh message changes, that refresh message must be sent immediately. That is, a new
or modified Resv message is forwarded immediately by each hop, until it reaches a hop where
merging will not modify the state at the next hop.

The state management rules described here are desigiesfonessages and state. The case of

Path messages and state is simpler, because there is no merging of path state. However, for unifor-
mity RSVP applies the same state management rules to both reservation and path state. Therefore,
Path messages are also refreshed independently by each node.

Independent refreshing of each node brings another benefit: it allows each hop to choose an appro-
priate refresh rate in order to adapt to the level of RSVP control messages and perhaps congestion
in the link; this is discussed below.

Once local state is established, an RSVP node sends refreshes forward for that state until it is removed
or times out. Any other rule (e.g., ceasing to send refreshes when one or more refreshes are not
received) would make losses accumulate along the path; another rule would also be incompatible
with merging. A consequence of this rule is that successive nodes time out sequentially; the Nth
node will time out after a time proportional to N. RSVP avoids this O(N) time out period by requiring

that timeout of local state generate a teardown message. If the teardown message is generated in the
first node and travels to the Nth node, all state will be deleted at once. If the Teardown message is
lost at some node, an additional timeout period will be needed to delete the state beyond the loss,
but the total time will be O(1) rather than O(N).

2.6.2 Refresh Period and State Timeout

Suppose that a node sets a refresh timeout period of R, so that it genBedesefresh every R
seconds. Actually, a node must randomize the inter-transmission interval, in the range [0.5R,1.5R].
The value of R is carried in each refresh message. The node that receives the message then refreshes

RSVP Project: Final Report 11

the corresponding state element by resetting its timeout timer with a lifetitiailis a multiple
of the received R. In particular, the RSVP spec calls for:

T, =(K+05)*15*R [1]

If the number K is an integer and R is a constant, this formula should ensure that state will not time
out even if K-1 or fewer successive refresh messages are lost. The factor 1.5 handles the worst-case
due to randomization of the actual inter-refresh times. The 0.5 term is to avoid races.

As a result of this mechanism, the values of R and K do not have to be standardized across all routers;
they can be configured according to experience and circumstances, and they can be adjusted adap-
tively. Furthermore, R and K can be determined independently by the sending and receiving ends
of the refresh hop.

If the sender increases R rapidly but one or more successive packets are lost, the receiving node’s
value of R may be out of date, allowing a false timeout. Version 1 RSVP solves this problem by
limiting the rate of increase in R: the ratio of R in two successive timeout intervals cannot exceed
a fixed constank, themaximum slew ratioFor a given K, we can calculaté\ahat will protect

against false timeout, assuming that L or fewer successive messages are lost. As illustrated in Figure
4a, suppose that packets sent at tigant at timet,; are received, but packets sent at timet2t

... {_are lost. Then:

t St +NOR*15 i=1,..,L+1 (2]

If state is not to time out before the packet sent at tijeis received, then 14 - ty must be less
than or equal to 1.5*R*K (by [1] and omitting the 0.5 term). Using [2], we get:

15R*(A + A2+ ... +AL*) = 1. 5*R*K (2]

Results of solving this equation by for small K and L, are shown in Figure 4b. This calculation
makes very conservative assumptions: the 0.5 term in formula [1] is ignored, and the R sent in a
message is that for the interval just ending. On the basis of this table, the RSVP spec places a limit
A = 1.30 on the slew rate, assuming K = 3. Experience may suggest other values in the future.

2.6.3 State Timeout Granularity

A PSE (sender) is the unit for timing out and refreshing path state. The timeout unit for reservation
state is a single filter spec. That is, individual state timers are associated with: an entire WF reser-
vation, each (flowspec, filter spec) pair of an FF reservation, or each filter spec in an SE reservation.

Time sent—-{p tq t. tLe1 K= 3 4 5
L L= 1] 1.30 1.56 1.79
H i 2| 1 115 1.28

L lost packets

3 x 1 1.09

R values_ L L+1 X 1

in packets ™ R AR A"RATTR 4] x
Fig. 4a: L successive lost packets Fig 4b: MaxA as function of K and L

and slew rata

RSVP Project: Final Report 12

3. RSVP Design Issues

The RSVP protocol described in Section 2 represents the resolution of a number of protocol design
issues. This section discusses some of the important issues and the reasoning behind the decisions.

3.1 Data Selection

RSVP allows each receiver to selectively make reservations for subsets of a session’s data packets.
In particular, FF and SE styles allow sender selection. For example, in Figures 2a and 2b, sender
S2 is sending data to the session but no receiver is making a reservation for it.

If the application is really not interested in receiving data from S2, it is desirable in the interest of
network efficiency to suppress data packets from S2 until a receiver “switches channels” to it. One
approach would be a reservation style in which data packets are dropped if there is no reservation
for them. However, this would directly contradict the basic architectural principle that best-effort
service must be the default; for example, it would prevent R1 from receiving S2’s data if it joins
the multicast group as a best-effort receiver.

Therefore, the fundamental design decision was made that:

* Routing determinesrhich packets are forwarded, but
* RSVP determinebhowthey are forwarded,

and best-effort is always the default QoS. To select among senders, multicast routing must provide
a sender-joincapability, a feature that would be equally useful for best-effort service. To allow
selection among layer-encoded subsets of a video stream, each layer can be sent as a different
multicast group. A receiver will simply join the group(s) of the data subflows it wanted to receive.

3.2 Heterogeneity

RSVP supports what we may call “downstream heterogeneity”, that is, heterogeneous QoS requests
from different receivers. This requires merging flowspecs vitesvmessages are forwarded, as
explained earlier. RSVP also handles “upstream heterogeneity”, that is senders with heterogeneous
traffic flows (Tspecs); this might result from different link access speeds, for example. RSVP will
not make a reservation larger than the traffic flow that can come down a particular link. For example,
consider a shared reservation with senders S1 and S2 in Figure 2a. S2 might have a lower bandwidth
access link that cannot support the LUB of the requests from R2 and R3. This problem is handled
by installing a reservation using an effective Tspec that is the “min” of the Tspec from the path state
and the Tspec included within the flowspec. For a shared reservation, where there may be multiple
senders, the sum of the sender Tspecs is used.

One of the unexpected results of the RSVP research effort has been the realization that the hetero-
geneity that can be achieved without severe complexity is quite limited. For example, RSVP does
not allow the style to be heterogeneous; merging of reservations with different styles was considered
and rejected. Shared and distinct styles would be fundamentally incompatible, while merging ex-
plicit and wildcard styles (which in practice means SE + WF => WF) could cause unexpected flows
in an SE reservation. Another example of a major consequence of heterogeneity and is the “killer
reservation” problem, discussed in the next section.

Furthermore, the value of heterogeneous reservations for real applications is unclear. Enforcing
heterogeneity at multicast branch points requires policing the flows with the smaller reservations.

The application has no control over which particular data packets will receive the requested QoS
and which will receive only best-effort service and perhaps be dropped as a result. Layered encoding
using multiple multicast groups provides a much more promising solution to heterogeneous receiver
capability.

RSVP Project: Final Report 13

However, if heterogeneity were once excluded from the spec, it might be very difficult to add it at
a later time. The decision was therefore made to include the provisions for heterogeneity, especially
merging of reservations.

3.3 Killer Reservations

The“killer reservation” (KR) problem is a denial of quality-of-service that can result from merging
two different flowspecs; thus, it is a result of heterogeneity. If the path towards the source has
sufficient resources for the smaller of the reservations but not for the merged reservation request,
then the effect of merging can be to deny reservations to both.

We distinguish two versions of the KR problem, known as KR-I and KR-II.
KR-I Problem

The first killer reservation problem occurs when a reservation with flowspec Q1 is already
successfully in place, and another reservation with flowspec Q2 larger than Q1 arrives
such that the merged flowspec LUB(Q1,Q2) fails admission control in the current node
or in some node upstream. If RSVP simply replaces Q1 with the larger reservation and
then gets an Admission Control failure, the Q1 reservation will be lost.

The solution to KR-1 is fortunately simple: RSVP keeps an existing reservation in place
when making an admission control decision for a replacement reservation. If the new
reservation fails, &esvErr message is sent back but the original reservation is left in
place. Furthermore, the original (smaller) reservation Q1 continues to be refreshed up-
stream (however, see later discussion of “Error Behavior”).

A further feature was added to shield “innocent” receivers from ResvErr messages created
by a new receiver making a larger reservation; this mechanism involves the InPlace bit
and was described in Section 2.2.

KR-II Problem

In the second killer reservation problem, receiver 1 is persistently trying to make a reser-
vation Q2 that is being rejected somewhere upstream, and then receiver 2 attempts to
make a ‘smaller’ reservation Q1 that would succeed if it were not merged with Q2. It is
considered reasonable behavior for receiver 1 to (slowly but) persistently retry its failing
reservation, as a user application may reasonably poll for availability of a desired reser-
vation. However, such behavior should not prevent a smaller reservation from succeeding.

Unfortunately, there is no simple solution to this second problem, without adding at least
some additional state and processing complexity. The best solution to the KR-1l problem
is still an open issue. A partial solution has been included in the Version 1 RSVP spec,
but since it is not believed to be the best solution, we do not comment on it further here.

3.4 Non-RSVP Regions

To be useful, RSVP must be deployable in the real Internet. Deployment will be gradual, and at any
time there will be paths and regions of the Internet that do not support RSVP. Therefore, RSVP was
designed to work transparently through arbitrary non-RSVP-capadaeR routers. This had a
surprisingly large impact on major details of the protocol.

(a) AnResvmessage must be routed through a non-R region to the appropriate previous RSVP-
capable node. RSVP handles this routing problem by atigmessages. Eaétath mes-
sage carries the IP address of the previous RSVP-capable hop, and since it has the IP desti-
nation address of the session,Rlagh message is automatically and correctly forwarded along
the data path(s) through non-R clouds.

RSVP Project: Final Report 14

We note that if there were no non-R nodes, the routing functidatbfmessages would not
be needed, since multicast routing protocols directly provide the previous hop address.

(b) For multicast delivery, the route depends upon the IP source address as well as the destination
address. To be reliably routed through a non-R cloud, a muBa#simessage must therefore
carry the original sender address as its IP source address as it is forwarded hop by hop. Sending
a datagram with a specific non-local source address requires a kernel modification in some
implementations.

(c) Early RSVP designs allowdelath messages to bgacked i.e., to carry multiple sender
descriptions. However, pack@ath messages cannot satisfy point (b), so €ath message
can describe only a single sender. This is unfortunatedtir message overhead.

(d) A non-R region can result inResvmessage arriving on the wrong interface. As illustrated
in Figure 3a, the data flow and tRath messages go A->B->D, butResvmessage might
take a different return path. TResvmessage is unicast to the previous RSVP hop, which is
router A, and it arrives at A on the wrong interface. Routers B, C, and D are non-R.

To solve this problem,Rath message carries a specification of the outgoing interface through
which it was sent, e.g., the A->B interface of router A. This specification, called the Logical
Interface Handle, is saved in the path state at the next hop and returned in a suBssyuent
message to the previous hop. Thus, router A makes the reservation on the A->B interface, as
a result of the LIH in th&esy regardless of which interface tResvarrives on.

(e) A non-R region can cause a message to arrive at the wrong RSVP-capable router, as illustrated
in Figure 3b. The situation is essentially the same as in Figure 3a, but Heestheessage
arrives at router C, which is RSVP-capable. If it tried to procesResemessage, C would
find no matching path state and send an error message. To solve this problem, an RSVP
message (other th&rath or PathTear) that is addressed to an RSVP-capable node must be
forwarded towards the destination without processing. Router C will forwaRethemes-
sage to A, where the LIH will cause the correct reservation to be made.

Path Path
msg msg
. o \ Resv
Z \ msg
: /r‘ <~
Non_RSVP
routers
Fig 3a: Non-RSVP RegioiResv Fig 3b: Non-RSVP RouteResv
arrives on wrong interface. arrives at wrong RSVP router.

RSVP Project: Final Report 15

() Since a non-RSVP region may perturb the QoS being provided to the user, an RSVP-capable
node must be able to detect the region and inform the receiver application. There is no perfect
solution to detection of a non-RSVP region. Each RSVP message carries the IP TTL (hop
count) field with which the datagram was originated. If the datagram arrives with a different
TTL, the node assumes that it must have traversed an non-R region. This technique does not
work in call cases, because of TTL adjustments due to tunnels; it may need to be supplemented
with explicit configuration.

3.5 Liveliness and Local Repair

Refresh messages make the RSVP state self-healing. If a route changes, for example, the next refresh
will (try to) re-establish a reservation along the new path. However, this basic robustness mechanism
can create excessive RSVP message overhead if the refresh rate R is set very small to achieve good
user responsiveness. It is therefore important to supplement the basic refresh mechanism with “live-
liness” mechanisms to provide more immediate response to changes.

One liveliness mechanism depends upon a new service from routing: an immediate notification to
RSVP when aroute that RSVP is using changes. Upon such route change notification, RSVP institutes
a procedure calleddcal repair”: it sends immediat®ath and/orResvrefreshes as appropriate

down the new path.

Here are some examples of liveliness considerations for RSVP.

(1) A host H1 is the first to join a particular multicast group down a new branch of the multicast
distribution tree.

In the node R at which the new branch is spliced onto the tree, routing should signal a route
change (new outgoing interface) to RSVP. Local repair in R will then forwRathemessage

down the new branch to H1, which does not have to await a refresh timeout to asVits
message.

(2) A host H2 on a LAN joins a group to which another host on the LAN already belongs.

Each node on the LAN will be receiving all RSPRth messages, whether or not they are
destined for the host. Note that a host, like a router, intercepts RSVP packets without regard
to whether they are addressed to the node. Therefore, host H2 should already have any path
state for the new group, so H2 should not have to await a refresh timeout to $eesVits
message.

(3) An application in host H3 joins an RSVP session for which path state is already available, as
in (2).

RSVP must generate an immediate Event upcall to the application.

There may be cases where a specific routing protocol has properties that create race conditions with
RSVP, so that the liveliness approaches in (1) and (2) may sometimes fail. In these cases, the RSVP
refresh timeout is guaranteed to heal the situation in time. However, it is possible that experience
will show that there are important failures of liveliness that will require additional RSVP protocol
mechanisms. For example, a host might send a new type of RSVP message that triggers an immediate
path refresh when needed.

3.6 Extensibility

To turn the general architecture of RSVP into a practical Internet protocol, many design choices had

to be made. Every one of the many possible services and features of RSVP has a cost in complexity
of design and implementation. It was therefore necessary to choose a limited subset of the possible
features for version 1 of the RSVP protocol. Since we have no experience with an ISPN, these choices

RSVP Project: Final Report 16

must be based only on prognostication of the likely importance of each feature, and it is very likely
that future experience will require revision and expansion of the feature set. It was therefore important
to choose an easily-extensible packet format for RSVP messages.

The RSVP message therefore carries a minimal fixed-format header followed by a variable list of
(type, length, value) data structures that are caligeicts The type of an object is the pair: (class,
C-type); class defines the function of the object and C-Type specifies a particular format for a given
class.

From the message syntax viewpoint, many RSVP extensions require only the definition of one or
more new C-Type formats for existing object classes. This extension mechanism has already been
used to add support for IPv6 as well as IPv4. It has also been used to extend RSVP to support data
flows that use the IP Security (IPSEC) mechanism [IPSEC97]. Several other object extensions have
also been proposed.

3.7 Wildcard Reservation Looping

Two unexpected problems were found for reservations with wildcard sender selection [Scope96].
The first is that reservations may be made along links that are not used by data. The second is that
in a topology with loops, the reservation state can become self-refreshing, so that the reservation
state will persist indefinitely long even after the receivers stop refreshing it. The solution to both of
these problems requires that Resvmessage carry an explicit list of the IP addresses of sender
hosts; this list is contained in a SCOPE object. The requirement for a SCOPE object was a disap-
pointment, because the primary argument in favor of the WF style was that it would scale well for

a large number of senders m. The SCOPE object means that the size of a VREssiphessage

will increase linearly with m. However, WF style was retained because it does save classifier state,
as noted earlier.

See [Scope96] for a careful explanation of these issues and why a SCOPE list solves them. Also
note that the SCOPE object can be greatly reduced in size for a multicast session when routing
uses a shared tree [RSRR96].

3.8 Extended Styles

Table 1 showed the RSVP styles that are included in Version 1 of RSVP. The undefined combination
(Wildcard, Distinct) was not used because it adds no new capabilities. For example, an application
(or a last-hop router) could create the same effect by sending an FF reservation listing all senders,
using the complete sender list available in the path state.

It might appear that WF style could similarly be omitted, since it can be simulated using SE style.
This was considered; however, the WF style has a potentially important advantage over SE when
there is a large number of senders: WF can significantly reduce the amount of state in the Classifier.
WEF requires only one classifier entry, while SE requires an entry per sender. WF also is able to
respond with a reservation more quickly when a new sender appears. Therefore, WF was retained
in the spec.

The early RSVP design work defined another style, called dynamic filter (DF), whose attributes are
shown in Table 2. DF style is defined using the following additional value of the sender selection
attribute:

-- Assured: Th&®esvmessage contains filter specs to explicitly select those senders whose packets
will receive the reservation. However, the scope is wildcard, i.e., reservations will be put in
place towards all senders, regardless of whether they are included in the explicit selection. The

RSVP Project: Final Report 17

Assured attribute must be accompanied

with an integer parameter N, the maxi- Sharing
mum number of dis;inct reservations to
bfa r_nade; howev_er, in e_ach node no MOr8\der Distinct Shared
distinct reservations will be made thanS lecti
the actual number of upstream senders>€/€ction
The Assured attribute is designed to allowEXplicit FF style SE style
channel switching without fear of admission— :
control failure, once a reservation is in place.Wildcard (not defined)] WF style
DF style: A list of kz 0 filter specs, and aAssured DF style (not defined
max number of reservation channels N.
DF(N, (F1, ..., FK){Q}) Table 2: Extended Styles

The DF (“Dynamic Filter”) style was dropped from the Version 1 spec due to its complexity and
the uncertainty about its importance.

Merging DF style:

Take the union of the filter spec lists, and the LUB of the flowspecs, and the sum of the
channel numbers but limited to the number of upstream senders.

DF(Nab, ((Fal, ...) U (Fb1, ...)) { LUB(Qa,Qb) })
where:
Nab = min(Na + Nb, Number of senders upstream)

DF style was dropped from the Version 1 specification because of its complexity and because its
usefulness was in doubt.

There are many other possible styles, representing a trade-off among functionality, complexity, and

overhead. Furthermore, design choices were required even for some of the styles that were included.
Consider for example the rule for merging SE style reservations in the case when the merged filter
spec lists overlap.

* The chosen interpretation is to simply take the union of the filter spec lists and the LUB of the
flowspecs. However, this approach may cause unexpected interference between merged res-
ervations. Suppose SE((F1,F2){Q}) and SE((F2,F3){Q}) are merged, and that the common
flowspec Q can provide lossless service for (only) two senders. The rRagaadquest: SE(
(F1,F2,F3){Q}) shares the reservation among three senders, which may cause packet losses.

* An alternative approach might split a single SE reservation into multiple parallel SE reservations
when filter spec lists overlap. In the example above, the result of the merge would be three
separate reservations: SE(F1{Q}), SE(F2{Q}), and SE(F3{Q}). This approach would protect
users from interference by other receivers but use more resources.

An application might want either interpretation of the SE style; perhaps two different styles are
needed.

3.9 Other Simplifications

As RSVP was turned into a practical protocol by the IETF, a number of other simplifications were
made.

RSVP Project: Final Report 18

3.9.1 Sessions

RSVP defines the flow to a given destination address and port as a session. This is a natural basis
for reservations, assuming that all data packets with the same address will be take the same route
(in steady state) through the Internet, because reservation state can be installed along this unique
route. RSVP also treats sessions as independent for the purpose of reservations; it does not support
multi-session (i.e., multiple destination address) reservations. This restriction is expected to be
satisfactory for the majority of the expected applications of integrated services, but some examples
are already known that require a more general reservation model. Such a generalization would add
syntactic as well as semantic complexity to the protocol.

3.9.2 Filter Specs

If RSVP were designed in full generality, a filter spec would select on arbitrary combinations of
data packet header fields. An early version of the RSVP spec approached this generality by using
filter specs that were variable-length mask-and-match bit strings. An even more general approach
was suggested: pseudo-code defining a program for a filter pseudo-machine. However, all of this
generality was dropped in favor of simple UDP/TCP port numbers.

Another generalization that was considered was to allow wildcard port numbers. However, this led
to somewhat complex matching rules, and wildcard ports were eliminated from Version 1.

3.9.3 Error Behavior

There are a number of issues in the error model that RSVP presents to a receiver and the control
over error behavior available to an application. The current RSVP design has made the very simplest
choices for error behavior.

As a simple example of error behavior, suppose that Admission Control fails in a particular node.
The current rule is that the node returrResvError message and neither installs the reservation
state nor forwards it upstream. However, some applications may wish to take a more aggressive
approach, obtaining reservations across as many of the nodes of the path as possible, hoping that it
will get adequate service despite failure in one or more nodes. The risk here is that every upstream
router might reject the request, resulting in a floodRe$vErr messages. Although the current

RSVP spec takes the conservative approach, we anticipate that a future revision of RSVP will
provide applications with some control over their aggressiveness in the face of localized failures.

3.9.4 Liveliness Control by Applications

The refresh rate is a trade-off between RSVP message overhead and the liveliness of RSVP’s
adaptation to changes. An early version of the protocol allowed an end user to specify the maximum
refresh rate, i.e., to set a minimum liveliness. Such a provision may only be viable if there is some
form of ‘cost’ attached to a user’s liveliness specification. The importance of this feature was unclear,
so it was eliminated from the protocol.

4. Conclusions and Acknowledgments

This document has presented an overview of the elaboration of the RSVP protocol architecture into
a practical Internet protocol. There have been some surprises -- in particular, the problem of wildcard
routing, the many consequences of non-RSVP regions, and the limitations of heterogeneity -- but
the general architecture of RSVP has been vindicated, and the general objectives of the protocol
have been met. RSVP is simple, robust, scalable (with the size of a multicast group), flexible,
deployable, and extensible.

The basic conceptual design of RSVP was performed during 1991-1993 by a research collaboration
of Lixia Zhang (Xerox PARC), Deborah Estrin (USC/ISI), Scott Shenker (Xerox PARC), Sugih

RSVP Project: Final Report 19

Jamin (USC/Xerox PARC), and Daniel Zappala (USC). Zhang did the design and simulation of the
major RSVP features, and Jamin successfully demonstrated an early research prototype of RSVP
in May 1993. Further definition and refinement of the RSVP protocol was then carried out by a
collaboration of ISI, PARC, MIT, and BBN researchers: in particular, Scott Shenker and Lee Breslau
(PARC), John Wroclawski and Dave Clark (MIT), Craig Partridge (BBN), and the authors of this
report (ISI).

5. References

[IPSEC97] Berger, L. and T. O'MalleiRSVP Extensions for IPSEC Data Flow&TF Work in
Progress, March 1997.

[ISIP92] Clark, D., Shenker, S., and L. Zha8gpporting Real-Time Applications in an Integrated
Services Packet Network: Architecture and Mechaniginsc. SIGCOMM '92, Baltimore, MD,
August 1992.

[ISarch93] Braden, R., Clark, D., and S. Shenk#egrated Services in the Internet Architecture
an OverviewRFC1633, October 1993.

[Zhang93] Zhang, L., Deering, S., Estrin, D., Shenker, S., and D. ZaR8\&®: A New Resource
ReSerVation ProtocollEEE Network, September 1993.

[RSVP95] Zhang, L., Braden, R., Estrin, D., Herzog, S., and S. J&esgurce ReSerVation
Protocol -- Version 1 Functional Specificatid&eTF Work in Progress, July 1995.

[RSVP97] Braden, R. (Ed.), Zhang, L., Berson, S., Herzog, S., and S. Rasdurce ReSerVation
Protocol -- Version 1 Functional Specificatid&TF Work in Progress, May 1997.

[Scope96] Zappala, DRSVP LOOP Prevention for Wildcard Reservatio8sinternal document,
February 1996. Available from ftp://ftp.isi.edu/rsvp/docs/WF.scope.ps.

[RSRR96] Zappala, DRSRR: A Routing Interface for RSMPTF Work in Progress, November
1996. Available from: http://www.isi.edu/rsvp/pubs.html.

[Zappala96] Zappala, D., Braden, B., Estrin, D., and S. Shelmkerdomain Multicast Routing
Support for Integrated Services Netwq¢hite Paper, December 1996. Available as IETF Work
in Progress, March 1997.

RSVP Project: Final Report 20

RSVP Project: Final Report

21

