
Linux - Advanced Networking Overview

Version 1

Saravanan Radhakrishnan

Information and Telecommunications Technology Center

Department of Electrical Engineering & Computer Science

The University of Kansas

Lawrence, KS 66045-2228

August 22, 1999

1 Disclaimer

All the text in this document is purely based on my understanding of im-

plementation of various features. I have read some documents and I have

seen the code myself, and I describe them based on my understanding. If the

readers notice any description of a concept which appears contrary to their

understanding of the concept, the issue can be taken up for discussion and

corrections will be made to the document as necessary. I would appreciate

all suggestions and comments made in an attempt to make the quality of this

document better.

1

2 Introduction

Linux, a shareware operating system, supports a number of advanced net-

working features, thanks largely to the huge linux networking community.

Besides the reliable TCP/UDP/IP protocol suite, a number of new features

like �rewalls, QoS, tunneling etc. has been added to the networking kernel.

This document reviews these advanced networking features that have been

implemented in the linux kernel, from a con�guration, implementation and

usage standpoint. Examples of usage and pointers to references have been

given when appropriate.

The advanced networking features that have been dealt with in this doc-

ument include the Quality of Service support in linux, which encompasses

a description of the di�erentiated services e�ort, the �rewall implementa-

tion using ipchains, the VPN implementation using GRE tunnels and the

advanced routing implementation using netlink sockets.

The later part of this document discusses briey some of the common tools

that are available on linux. This section will discuss "zebra", a distributed

routing software that is used to con�gure a linux box as a router, and a

con�guration tool to set up �rewalls.

3 QoS Support in Linux

3.1 Introduction

This section discusses the QoS support that is available in the recent linux

kernels. The QoS support in the kernel provides the framework for the im-

plementation of various IP QoS technologies like integrated services [1] and

di�erentiated services [2]. Let us begin by discussing the details of the con-

�guration, implementation and usage of the QoS support in linux.

3.2 Con�guration

The support for quality of service is available from linux kernel versions

2.1.90. However, the support is more comprehensive in the more recent ker-

nels. This document is written with reference to the kernel version 2.2.1. This

kernel also has support for di�erentiated services in the form of a patch, that

can be downloaded from ftp://lrcftp.ep.ch/pub/linux/di�serv/patches/ds-

3.patch.gz. This patch needs to be applied in order to exercise all the QoS

2

features supported in linux. The latest linux kernels can be downloaded from

http://www.kernelnotes.org/.

1. Apply the di�-serv patch to the linux-2.2.1 source tree.

2. Do a 'make xcon�g' or 'make menucon�g' or 'make make con�g' in the

/usr/src/linux directory.

3. Set the EXPERIMENTAL OPTIONS to 'y'.

4. Under networking options, say 'y' to the following kernel options: Ker-

nel/User netlink socket, Routing messages,TCP/IP networking and

QoS and/or fair queueing. After turning on the QoS and/or fair queu-

ing option, enable the CBQ, CSZ, PRIO, RED, SFQ, TEQL, TBF,

GRED, DS MARK, 'tcindex' classi�er, Packer Classi�er API, U32 clas-

si�ers and routing table based classi�er.

5. Do a 'make dep; make clean; make bzilo'

6. Reboot the linux box using the new kernel image.

Having discussed the con�guration of the QoS support in linux, let us

now discuss the details involved in the implementation of these features. The

location of all the kernel related �les referred to in the rest of this document

are speci�ed with respect to the /usr/src/linux directory.

3.3 Implementation

3.3.1 Basic Principle

The basic principle involved in the implementation of QoS in linux is shown

in Figure 1. This �gure shows how the kernel processes incoming packets, and

how it generates packets to be sent to the network. The input de-multiplexer

examines the incoming packets to determine if the packets are destined for

the local node. If so, they are sent to the higher layer for further processing.

If not, it sends the packets to the forwarding block. The forwarding block,

which may also received locally generated packets from the higher layer, looks

up the routing table and determines the next hop for the packet. After this,

it queues the packets to be transmitted on the output interface. It is at this

point that the linux tra�c control comes into play. Linux tra�c control can

3

OUTPUT QUEUEInput De-Multiplexing FORWARDING

TRAFFIC CONTROL

TCP, UDP

Packets in
Packet out

Figure 1: Linux Tra�c Control

be used to build a complex combination of queuing disciplines, classes and

�lters that control the packets that are sent on the output interface.

From an implementation standpoint, what this means is this. When queu-

ing disciplines are created for a device, a pointer to the queue is maintained

in the device structure (in include/netdevice.h). The IP layer, after adding

the necessary header information to a packet (in net/ipv4/ip output.c) , calls

the function dev queue xmit (in net/core/dev.c). A portion of this code is

shown below.

q = dev->qdisc;

if (q->enqueue) {

q->enqueue(skb, q);

qdisc_wakeup(dev);

return 0;

}

.

.

.

.

if (dev->hard_start_xmit(skb, dev) == 0)

.

.

.

This function shows that before actually sending the packet on the output

interface (by doing a hard start xmit), the packet is enqueued in the queue

maintained by the device, if one exists. Thus, an mentioned before, tra�c

control is implemented just before the packet is sent to the device driver.

As already mentioned, the linux tra�c control mechanism provides the

basic framework for the development of integrated services [1] and di�eren-

tiated services [2] support in linux. This is shown in Figure 2.

4

CLASSPOLICEFILTER

CLASSIFIER

POLICING
PACKET

SCHEDULER

SHAPER/
DROPPER

METER

MARKER

CLASSIFIER

QUEUING DISCIPLINE

CLASSIFIER

LINUX KERNEL
TRAFFIC CONTROL

TRAFFIC
DIFFSERV

CONDITIONER

INTSERV NODE

Figure 2: Framework for developing "intserv" and "di�serv"

As shown in Figure 2, the QoS support in linux consists of the following

three basic building blocks, namely:

� Queueing discipline

� Classes

� Filters/Policers

Let us now discuss these basic blocks in detail.

3.4 Queuing Disciplines

This section discusses queuing disciplines, which form a basic. building block

for the support of QoS in linux. It also discusses the various queuing disci-

plines that are supported in linux. Each network device has a queue asso-

ciated with it. There are 11 types of queuing disciplines that are currently

supported in linux, which includes:

� Class Based Queue (CBQ)

� Token Bucket Flow (TBF)

5

� Clark-Shenker-Zhang (CSZ)

� First In First Out (FIFO)

� Priority

� Tra�c Equalizer (TEQL)

� Stochastic Fair Queuing (SFQ)

� Asynchronous Transfer Mode (ATM)

� Random Early Detection (RED)

� Generalized RED (GRED)

� Di�-Serv Marker (DS MARK)

Queues are identi�ed by a handle <major number:minor number>, where

the minor number is zero for queues. Handles are used to associate classes

to queuing disciplines. Classes are discussed in the next subsection.

Queuing disciplines and classes are tied to one another. The presence

of classes and their semantics are fundamental properties of the queuing

disciplines. In contrast, �lters can be arbitrarily combined with queuing

disciplines and classes, as long as the queuing disciplines have classes. Not

all queuing disciplines are associated with classes. For example, the Token

Bucket Flow (TBF) does not have any classes associated with it.

Figure 3 shows an example queue. In this example, there are two types of

queuing disciplines, one for high priority and one for low priority. The �lter

selects the one for high priority, while the remaining are treated low priority.

The low priority packets are served by a FIFO queue, while the high priority

packets are served by a Token Bucket Flow Algorithm. The TBF queue is

used to ensure that the low priority packets are not starved.

One of the main advantages of the QoS support in linux is the exibil-

ity with which the combination of queues and classes can be set up. Each

queuing discipline may have a number of classes. These classes don't store

the packets themselves, but instead, use another queuing discipline for this

purpose, which in turn, may have a number of classes and so on. It is this

exibility that makes the QoS support in linux unique.

When a linux kernel con�gured for QoS support is booted up, the function

net dev init (in net/core/dev.c) calls the function pktsched init (in net/sched/sch api.c)

6

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

FILTER "HIGH"

"LOW"

QUEUEING DISCIPLINE WITH TWO DELAY PRIORITIES

FIFO

TBF, rate = 1Mbps

Figure 3: An Example Queue

to initialize the tra�c control unit in the linux kernel. In pktsched init, the

queuing disciplines that have been compiled into the kernel are all regis-

tered and initialized. The pointers to access the the functions tc ctl qdisc,

tc dump qdisc, tc ctl tclass and tc dump tclass, which are used to perform

various functions on queuing disciplines and classes are also initialized in

pktsched init.

The functions that are supported on the various queuing disciplines are

discussed in the following sections. These functions are de�ned in the Qdisc ops

structure in include/net/pkt sched.h.

3.4.1 Enqueue

The enqueue function enqueues a packet with the queueing discipline. Pack-

ets are enqueued in the following manner. As already shown in the previous

section, when the IP layer calls dev queue xmit, the enqueue function of the

queuing discipline attached to the device is called. This portion of the code

in net/core/dev.c is shown below:

q = dev->qdisc;

if (q->enqueue) {

q->enqueue(skb, q);

qdisc_wakeup(dev);

return 0;

}

In the enqueue function of a queuing discipline, the �lters are run one by

one until a match occurs. Once the match occurs, the enqueue function of

the queueing discipline "owned" by that class is executed. For example, in

the cbq enqueue function (in net/sched/sch cbq.c),

7

struct cbq_class *cl = cbq_classify(skb, sch);

int len = skb->len;

if (cl && cl->q->enqueue(skb, cl->q) == 1)

.

.

The function cbq classify is used to apply the �lters and determine the

class to which to the packet belongs. After that, the enqueue function of

the queuing discipline owned by that class is called. This queuing discipline

may have its own classes, which in turn may be associated with some other

queuing discipline, and so on, which makes the usage exible, as was discussed

earlier.

At this point, it is worth mentioning that when a class is created, the

default queuing discipline that it owns is a Priority FIFO queue. The portion

of the code (in net/sched/sch cbq.c) that does this is shown below.

static int cbq_init(struct Qdisc *sch, struct rtattr *opt)

{

.

.

.

if (!(q->link.q = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops)))

q->link.q = &noop_qdisc;

.

.

.

}

This can be changed by doing a graft operation, that will be discussed

later in the section on classes.

3.4.2 Dequeue

The dequeue function dequeues a packet for sending. It returns the next

packet that needs to be sent out on the output interface. This packet is

determined by the scheduler in the queuing discipline. The scheduler can be

very complicated for complex queuing disciplines like the CBQ. At the same

8

time, it can be very simple too, as in the case of a FIFO queue. The dequeue

function for a simple FIFO queuing discipline (in net/sched/sch �fo.c) is

shown below:

static struct sk_buff *

pfifo_dequeue(struct Qdisc* sch)

{

return __skb_dequeue(&sch->q);

}

As shown in this example, the next packet in the queue is dequeued and

returned, which is desired behavior from a simple FIFO.

The dequeue function for a priority FIFO is shown next.

static struct sk_buff *

prio_dequeue(struct Qdisc* sch)

{

.

.

.

for (prio = 0; prio < q->bands;prio++) {

qdisc = q->queues[prio];

skb = qdisc->dequeue(qdisc);

if (skb) {

sch->q.qlen--;

return skb;

}

}

.

.

.

}

As shown in this example, whenever the prio dequeue function is called,

packets from the highest priority queue are sent �rst. After all the packets

in the highest priority level are sent, packets from the next priority level are

dequeued. This required behavior is provided by the portion of the code

given above.

9

Having discussed the dequeue function of the queuing disciplines, let

us now see the places where the dequeue function is invoked. Whenever

a packet is enqueued in dev queue xmit, the qdisc wakeup function (in in-

clude/net/pkt sched.h) is invoked in an attempt to send the packet that was

just enqueued. qdisc wakeup invokes the qdisc restart function (in net/sched/sch generic.c),

which invokes the dequeue function of the queuing discipline attached to the

device. The dequeue function returns the next packet that needs to be sent

out on the interface. qdisc restart then invokes hard start xmit of the device

to send the packet down to the device. If hard start xmit fails for some rea-

son, the packet is requeued in the queuing discipline. The requeue function

is discussed in a later section.

qdisc wakeup can also be invoked from the watchdog timer handlers in

the CBQ, TBF and CSZ schedulers. In the dequeue function of these queuing

disciplines, when a packet is dequeued to be sent on the output interface, a

watchdog timer is initiated. If for some reason, qdisc restart does not send

the packet out in time, the watchdog timer will go o� and qdisc restart is

called. For example, the setting of the TBF watchdog timer in tbf dequeue

(in net/sched/sch tbf.c) is shown below:

static struct sk_buff *

tbf_dequeue(struct Qdisc* sch)

{

.

.

.

if (!sch->dev->tbusy) {

.

.

del_timer(&q->wd_timer);

q->wd_timer.expires = jiffies + delay;

add_timer(&q->wd_timer);

}

.

.

.

10

This example shows the way the watchdog timer is set. Yet another

way of calling the dequeue function on a device is via qdisc run queues (in

net/sched/sch generic.c) from net bh (in net/core/dev.c). net bh is the bot-

tom half handler of the networking stack in linux and is executed whenever

packets are queued up for processing. In qdisc run queues, qdisc restart is

invoked and the rest of the actions are similar to those explained already.

Having discussed the dequeue function of a queuing discipline, let us now

discuss the requeue function.

3.4.3 Requeue

The requeue function of a queuing discipline requeues a packet for trans-

mission. After dequeueing the packet, if for some reason, the packet is not

transmitted, the packet needs to be put back in the queue at the same po-

sition from where it was dequeued. The reasons for which a hard start xmit

may fail include:

� If the device cannot establish its busy status before the start of the

transmission.

� If the device is itself buggy.

� If the fastroute option is enabled.

The simplest example to demonstrate the requeue function is the p�fo requeue

(in net/sched/sch �fo.c). The portion of the code that does the requeuing is

shown below:

static int

pfifo_requeue(struct sk_buff *skb, struct Qdisc* sch)

{

__skb_queue_head(&sch->q, skb);

return 1;

}

For a simple FIFO queue, the requeue function should put the packet back

at the head of the queue. This is what is done in the portion of the code

shown above. The requeue function is di�erent from an enqueue function in

that the requeue function should put the packet back in the same place from

11

where it was dequeued, and it should not be reected in the statistics that

are maintained for the queue, since it was already processed by an enqueue

function.

Let us now discuss the drop function of a queuing discipline.

3.4.4 Drop

The drop function is used to drop a packet from the queue. This is a very

simple function which may be needed in the case of certain queuing disciplines

like the RED and the GRED. These queuing disciplines will need to drop

some packets under certain conditions. A portion of the GRED code (in

net/sched/sch gred.c) is shown below:

static int

gred_drop(struct Qdisc* sch)

{

.

.

.

skb = __skb_dequeue_tail(&sch->q);

if (skb) {

q= t->tab[(skb->tc_index&0xf)];

sch->stats.backlog -= skb->len;

sch->stats.drops++;

q->backlog

-=

skb->len;

q->other++;

kfree_skb(skb);

return

1;

}

.

.

}

As can be seen from above, the drop function simply involves dequeuing

the packet from the queue and freeing the memory occupied by it.

Next, let us discuss the init function of a queuing disciplines.

12

3.4.5 Init

The init function of a queuing discipline is used to initialize and con�gure the

parameters of a queuing discipline when it is created. The init function can

be passed the arguments that will used to con�gure the queuing discipline.

Each of the queuing disciplines need di�erent sets of parameters during the

process of the initial con�guration. These parameters will be discussed in

detail during the discussion on the usage of the tra�c control features in

linux. All the scheduler related �les, for example, sch cbq.c, sch tbf.c etc.

contain the scheduler data structure, that is the parameters that will used by

the scheduler to determine the packet that needs to be sent next. This data

structure can be very simple for certain queuing disciplines, for example, pri-

ority FIFO, or it can really very complicated for certain queuing disciplines,

for example CBQ.

The scheduler data structure, for a simple FIFO (in net/sched/sch �fo.c)

is shown below:

struct fifo_sched_data

{

unsigned limit;

};

The only parameter that a FIFO scheduler needs is the maximum length

of the queue. The above structure shows the limit argument which indicates

the maximum length of the queue, beyond which packets are dropped. In

the �fo init function (in net/sched/sch �fo.c), the following portion of code

demonstrates the initialization and con�guration that is done in general, in

the init function of a queuing discipline.

static int fifo_init(struct Qdisc *sch, struct rtattr *opt)

{

struct fifo_sched_data *q = (void*)sch->data;

if (opt == NULL) {

q->limit = sch->dev->tx_queue_len;

if (sch->ops == &bfifo_qdisc_ops)

q->limit *= sch->dev->mtu;

}

else

{

13

struct tc_fifo_qopt *ctl = RTA_DATA(opt);

if (opt->rta_len < RTA_LENGTH(sizeof(*ctl)))

return -EINVAL;

q->limit = ctl->limit;

}

return 0;

}

In the above function, if the limit argument is speci�ed, the init function

sets the limit to the speci�es value. If this is not speci�ed, it defaults the

limit to the MTU of the device.

3.4.6 Reset

The reset function of a queuing discipline is used to reset the queuing disci-

pline to its initial state. It clears all queuing disciplines, timers are stopped

etc. The reset of a queuing discipline also results in a reset of the queuing

discipline of the classes of this queuing discipline. As an example, let us take

a look at the FIFO queuing discipline. The �fo reset (in net/sched/sch �fo.c)

function is shown below:

static void

fifo_reset(struct Qdisc* sch)

{

struct sk_buff *skb;

while ((skb=__skb_dequeue(&sch->q)) != NULL)

kfree_skb(skb);

sch->stats.backlog = 0;

}

In this example, the reset function results in the queue being drained, and

the memory occupied by these packets are recovered. The backlog is set to

zero. This is a simple example, which did not involve timers. A slightly more

complicated example is discussed next. Let us take a look at the function

tbf reset (in net/sched/sch tbf.c):

static void

tbf_reset(struct Qdisc* sch)

{

14

struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data;

skb_queue_purge(&sch->q);

sch->stats.backlog = 0;

PSCHED_GET_TIME(q->t_c);

q->tokens = q->buffer;

q->ptokens = q->mtu;

sch->flags &= ~TCQ_F_THROTTLED;

del_timer(&q->wd_timer);

}

This example involves clearing of the backlog as well as resetting of the timers.

This explains the operations of the reset function of a queuing discipline.

3.4.7 Destroy

The destroy function of a queuing discipline is used to remove the queu-

ing discipline. It also removes all the classes and �lters associated with

queuing discipline. This is implemented in the qdisc destroy function (in

net/sched/sch generic.c). An important portion of this function is shown is

below:

void qdisc_destroy(struct Qdisc *qdisc)

{

.

.

.

for (qp = &qdisc->dev->qdisc_list; (q=*qp) != NULL; qp = &q->next)

.

.

.

}

This portion of the code shows that a linear search is performed to deter-

mine the queuing discipline that needs to be destroyed, after which the mem-

ory occupied by the queue is released. As an example of the destroy function,

let us take a look at the cbq destroy function (in net/sched/sch cbq.c):

static void

15

cbq_destroy(struct Qdisc* sch)

{

struct cbq_sched_data *q = (struct cbq_sched_data *)sch->data;

struct cbq_class *cl;

unsigned h;

for (h = 0; h < 16; h++) {

for (cl = q->classes[h]; cl;

cl = cl->next)

cbq_destroy_filters(cl);

}

for (h = 0; h < 16; h++) {

for (cl = q->classes[h]; cl; cl = cl->next)

if (cl != &q->link) cbq_destroy_class(cl);

}

qdisc_put_rtab(q->link.R_tab);

}

This function results in the �lters and the classes associated with the

queuing discipline being deleted. As was already mentioned, the destruction

of a class results in the destruction of the queuing discipline owned by that

class, which can be seen from the cbq destroy class function shown below:

static void cbq_destroy_class(struct cbq_class *cl)

{

cbq_destroy_filters(cl);

qdisc_destroy(cl->q);

qdisc_put_rtab(cl->R_tab);

#ifdef CONFIG_NET_ESTIMATOR

qdisc_kill_estimator(&cl->stats);

#endif

kfree(cl);

}

Let us now discuss the last function associated with a queuing discipline,

namely the dump function.

16

3.4.8 Dump

The dump function is used to dump diagnostic data associated with a queuing

discipline. Each queuing discipline maintains di�erent diagnostic data that

is dumped when the dump function is invoked. There is nothing more that

needs to be elaborated about this function.

This concludes the discussion on the implementation of queuing disci-

plines. Let us now discuss the implementation of classes in the linux kernel.

3.5 Classes

As already mentioned, queues and classes are tied to one another. Each class

owns a queue, which by default is a FIFO queue. When the enqueue function

of a queuing discipline is called, the queuing discipline applies the �lters to

determine the class to which the packet belongs. It then calls the enqueue

function of the queuing discipline that is owned by this class.

There are two ways by which a class can be identi�ed. One is via the class

identi�er, which is speci�ed by the user. The other identi�er, which is used

within the kernel to identify a class, is referred to as the internal identi�er.

This ID is unique and is assigned by the queuing discipline. The class ID is

a u32 data type, while the internal ID is an unsigned long integer. Most of

the functions on classes use the internal ID to identify the class. However,

there are a few functions (like the get and the change function, which will be

discussed later) that use the class ID too.

Multiple class IDs may map to the same internal ID, however, the class

ID will convey some additional information from the classi�er to the queuing

discipline or class.

The class ID, similar to a queuing discipline identi�er, is structured in the

form of a < major number:minor number>. The major number corresponds

to their instance of the queuing discipline while the minor number identi�es

the class within that instance.

Not all queuing disciplines support classes. The ones that support classes

include the CBQ, the DS MARK, the CSZ and the p-FIFO queuing disci-

plines. The rest of the queuing disciplines do not support classes.

With this introduction on classes, let us now discuss the functions that can

be performed on classes. These functions are de�ned in the Qdisc class ops

structure in include/net/pkt sched.h.

The following operations are permitted for the manipulation of the classes

17

within the various queuing disciplines that support classes. This is de�ned

in include/net/pkt sched.h.

3.5.1 Graft

The graft function on a class is used to attach a new queuing discipline to

a class. As mentioned in the previous section, the default queuing discipline

attached to a class when it is created, is a FIFO queue. To change this queu-

ing discipline, a graft operation is performed on the class. As an example,

let us take a look at the cbq graft function in net/sched/sch cbq.c.

static int cbq_graft(struct Qdisc *sch, unsigned long arg,

struct Qdisc *new, struct Qdisc **old)

{

struct cbq_class *cl = (struct cbq_class*)arg;

if (cl) {

if (new == NULL) {

if ((new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops))==NULL)

return -ENOBUFS;

new->classid = cl->classid;

}

if ((*old = xchg(&cl->q, new)) != NULL)

qdisc_reset(*old);

return 0;

}

return -ENOENT;

}

As shown above, the cbq graft function is called with the new queuing

discipline. By default, if no queuing discipline is speci�ed, a FIFO queuing

discipline is attached to the class. If the new queuing discipline is speci�ed,

then the class is attached to it. That is, when a packet to be enqueued is

classi�ed to this class, the enqueue function of the queuing discipline attached

to this class is called. The old queuing discipline that was attached to the

class is returned in the "old" variable.

18

The qdisc graft function in net/sched/sch api.c is another example for

the graft function. This function is called from the tc ctl qdisc function in

the same �le. The tc ctl qdisc function is invoked whenever an attempt is

made to create, delete, change or get a queuing discipline.

3.5.2 Get

The get function is used to return the internal ID of a class, given its class

ID. The get function increments the usage count of the class. As an example,

let us take a look at the cbq get function in net/sched/sch cbq.c.

static unsigned long cbq_get(struct Qdisc *sch, u32 classid)

{

struct cbq_sched_data *q = (struct cbq_sched_data *)sch->data;

struct cbq_class *cl = cbq_class_lookup(q, classid);

if (cl) {

cl->refcnt++;

return (unsigned long)cl;

}

return 0;

}

static __inline__ struct cbq_class *

cbq_class_lookup(struct cbq_sched_data *q, u32 classid)

{

struct cbq_class *cl;

for (cl = q->classes[cbq_hash(classid)]; cl; cl = cl->next)

if (cl->classid == classid)

return cl;

return NULL;

}

As shown in this function, the get function calls the cbq class lookup

function to map the class ID to the internal ID. The cbq class lookup func-

tion searches the list of classes to determine the class with the speci�ed class

ID and return a pointer to the corresponding cbq class structure, which con-

tains the internal ID of the class, in addition to other information. The

19

get function is invoked in the tc ctl tclass function in net/sched/sch api.c.

The tc ctl tclass function is invoked whenever an attempt is made to create,

delete or change a class.

3.5.3 Put

The put function is invoked when a class previously referenced using the get

function is de-referenced. It decrements the usage count of the class. If the

usage count reaches zero, put may remove the class itself. As an example,

let us take a look at the cbq put function in net/sched/sch cbq.c.

static void cbq_put(struct Qdisc *q, unsigned long arg)

{

struct cbq_class *cl = (struct cbq_class*)arg;

start_bh_atomic();

if (--cl->refcnt == 0)

cbq_destroy_class(cl);

end_bh_atomic();

return;

}

As shown above, the cbq put function decrements the usage count of

the class, and if zero, destroys the class. The put function is invoked in

the tc ctl tclass function in net/sched/sch api.c. The tc ctl tclass function is

invoked whenever an attempt is made to create, delete or change a class.

3.5.4 Change

The change function on a class is used to change the properties associ-

ated with a class. However, the change function is also used to create

classes at times. As an example, let us see the cbq change function in

net/sched/sch cbq.c in detail. The cbq change function is invoked with the

queuing discipline, the class ID of the class whose properties need to be

changed or added and the new properties that need to associated to the

class. This can be seen below:

static int

cbq_change(struct Qdisc *sch, u32 classid, u32 parentid, struct rtattr **tca,

20

unsigned long *arg)

{

.

.

}

After performing some initial checks, the properties speci�ed are associ-

ated to the class one by one. This can be seen the following portion of the

code:

if (tb[TCA_CBQ_WRROPT-1]) {

cbq_rmprio(q, cl);

cbq_set_wrr(cl, RTA_DATA(tb[TCA_CBQ_WRROPT-1]));

}

if (tb[TCA_CBQ_OVL_STRATEGY-1])

cbq_set_overlimit(cl, RTA_DATA(tb[TCA_CBQ_OVL_STRATEGY-1]));

This portion of the code sets the priorities and weighted round robin

parameters for a class. It also sets the overlimit information. These details

about the CBQ will be discussed in more detail in a later section. It should

be noted that this function can be used to not only change the properties

of an existing class, but it can also be used to create a new class with the

properties speci�ed. This fact is clear from the following portions of the code.

static int

cbq_change(struct Qdisc *sch, u32 classid, u32 parentid, struct rtattr **tca,

unsigned long *arg)

{

struct cbq_class *cl = (struct cbq_class*)*arg;

.

.

if (cl) {

/* Change properties */

.

.

return 0;

}

21

/* Create a new class and assign the properties to the class */

.

.

.

}

The change function is invoked in the tc ctl tclass function in net/sched/sch api.c.

The tc ctl tclass function is invoked whenever an attempt is made to create,

delete or change a class.

3.5.5 Delete

The delete function on a class is used to delete the class. It determines the

usage of the class, by checking the reference count, and if zero, de-activates

and removes the class. As an example, let us take a look at the cbq delete

function in net/sched/sch cbq.c.

static int cbq_delete(struct Qdisc *sch, unsigned long arg)

{

struct cbq_sched_data *q = (struct cbq_sched_data *)sch->data;

struct cbq_class *cl = (struct cbq_class*)arg;

if (cl->filters || cl->children || cl == &q->link)

return -EBUSY;

start_bh_atomic();

if (cl->next_alive)

cbq_deactivate_class(cl);

if (q->tx_borrowed == cl)

q->tx_borrowed = q->tx_class;

if (q->tx_class == cl) {

q->tx_class = NULL;

q->tx_borrowed = NULL;

}

cbq_unlink_class(cl);

cbq_adjust_levels(cl->tparent);

22

cl->defmap = 0;

cbq_sync_defmap(cl);

cbq_rmprio(q, cl);

if (--cl->refcnt == 0)

cbq_destroy_class(cl);

end_bh_atomic();

return 0;

}

The above function is an example of the delete function on a class. Let

us now look into the walk function.

3.5.6 Walk

The walk function on a class is used to iterate over all the classes of a

queuing discipline and invokes a callback function for each of the classes.

This is usually used to obtain diagnostic data for all the classes of a queu-

ing discipline. For example, let us take a look at the cbq walk function in

net/sched/sch cbq.c.

static void cbq_walk(struct Qdisc *sch, struct qdisc_walker *arg)

{

struct cbq_sched_data *q = (struct cbq_sched_data *)sch->data;

unsigned h;

.

.

for (h = 0; h < 16; h++) {

struct cbq_class *cl;

for (cl = q->classes[h]; cl; cl = cl->next) {

if (arg->count < arg->skip) {

arg->count++;

continue;

}

23

if (arg->fn(sch, (unsigned long)cl, arg) {

arg->stop = 1;

break;

}

.

.

}

This portion of the code shows that the walk command iterates over all the

classes of a speci�ed queuing discipline and invokes a callback function. The

walk function is called from the tc dump tclass function in net/sched/sch api.c,

which is invoked when a dump request is made on the class. The portion of

the code in tc dump tclass that does this shown below:

static int tc_dump_tclass(struct sk_buff *skb, struct netlink_callback *cb)

{

struct device *dev;

struct Qdisc *q;

.

.

.

for (q=dev->qdisc_list, t=0; q; q = q->next, t++) {

.

arg.w.fn = qdisc_class_dump;

.

q->ops->cl_ops->walk(q, &arg.w);

.

.

}

}

The callback function maps to the qdisc class dump function in the same

�le. In qdisc class dump, the tc �ll tclass function is invoked, which calls the

dump function on all the classes. The dump function on a class, which is

discussed later is used to dump statistical information about the class.

24

3.5.7 Tcf chain

The tcf chain function on a class is used to return the anchor to the list of

�lters that are associated to a class. Each class is associated with a �lter list

which contains the list of �lters that are used to identify the packets that

belong to a particular class. As already mentioned, packets with di�erent

properties may map to the same class. For example, packets from two di�er-

ent sources may map to the same class. As a result, there may be multiple

�lters associated to a class. Filters are discussed in more detail in the next

section. The cbq �nd tcf function in net/sched/sch cbq.c is shown below as

an example:

static struct tcf_proto **cbq_find_tcf(struct Qdisc *sch, unsigned long arg)

{

struct cbq_sched_data *q = (struct cbq_sched_data *)sch->data;

struct cbq_class *cl = (struct cbq_class *)arg;

if (cl == NULL)

cl = &q->link;

return &cl->filter_list;

}

The cbq �nd tcf function returns the pointer to the list of �lters. Filters

are maintained in a structure named tcf proto in include/net/pkt cls.h. The

tcf chain function is invoked in the tc ctl t�lter function in net/sched/cls api.c.

This function is called when an attempt is made to create/modify/delete/get

a �lter node.

3.5.8 Bind tcf

The bind tcf function is used to attach an instance of a �lter to a class. The

cbq bind �lter function in net/sched/sch cbq.c is an example for the bind tcf

function on a class.

static unsigned long cbq_bind_filter(struct Qdisc *sch, u32 classid)

{

struct cbq_sched_data *q = (struct cbq_sched_data *)sch->data;

struct cbq_class *cl = cbq_class_lookup(q, classid);

25

if (cl) {

cl->filters++;

return (unsigned long)cl;

}

return 0;

}

As shown in this function, when the cbq bind �lter function is called, the

�lter count for the class is incremented. This function is almost similar to

the get function on a class. The di�erence is that a class that is pointed to

by �lters cannot be deleted without deleting the �lters. That is, the queuing

discipline explicitly refuses requests to delete a class if the class is in use.

This can be seen from the following portion of the code from the cbq delete

function in net/sched/sch cbq.c

static int cbq_delete(struct Qdisc *sch, unsigned long arg)

{

.

.

if (cl->filters || cl->children || cl == &q->link)

return -EBUSY;

.

.

.

}

However, there is a bug in the dsmark queuing discipline implementation.

In this case, the get and bind tcf functions map to the dsmark get function,

which is incorrect. Thus a class being pointed to by a �lter may be deleted,

which is not the desired behavior.

3.5.9 Unbind tcf

The unbind tcf function is used to remove an instance of a �lter attached to

a class. The cbq unbind �lter function in net/sched/sch cbq.c is an example

for the unbind tcf function on a class.

static void cbq_unbind_filter(struct Qdisc *sch, unsigned long arg)

{

26

struct cbq_class *cl = (struct cbq_class*)arg;

cl->filters--;

}

This portion of the code clearly indicates that the unbind tcf function is

similar to the put function on a class. The count of the number of �lters

attached to the class is decremented. For a class to be deleted, this count

must be zero.

3.5.10 Dump class

The dump class function on a class is used to dump diagnostic data about

the class. There is a lot of data that is maintained about the classes and the

dump function is used to observe these values. There is nothing more that

needs to be elaborated on the dump class function.

When the enqueue function of a queuing discipline is invoked, the tc classify

function in include/net/pkt cls.h is called to determine the class to which the

packet belongs. The simplest form of classi�cation possible is the speci�ca-

tion of the skb->priority �eld (in struct sk bu� in include/linux/skbu�.h).

If skb->priority is speci�ed, then no other classi�cation is attempted. skb-

>priority is set to sk->priority (in include/net/sock.h) when the packet is

created. The value of sk->priority can be speci�ed with the help of the set-

sockopt call. The SO PRIORITY option in the setsockopt call needs to be

used for this purpose. However till linux kernel version 2.2.3, the value of sk-

>priority is limited between 0 and 7. Therefore this way of classifying packets

does not work. It is worth mentioning at this point that skb->priority may

contain other values like the TOS byte in the IP header. All these values are

less than 65536, which is the smallest valid class number (as the minimum

possible value for the major number of a class is 1). On selecting the class,

the enqueue function of the queuing discipline owned by this class is invoked.

In the next section, we will look into the details involved in the imple-

mentation of �lters.

3.6 Filters

Filters are used to classify packets based on certain properties of the packet,

e.g., TOS byte in the IP header, IP addresses, port numbers etc. It is in-

27

voked when the enqueue function of a queuing discipline is invoked. Queuing

disciplines use �lters to assign the incoming packets to one of its classes.

Filters can be maintained per class or per queuing discipline based on

the design of the queuing discipline. As already mentioned in the previous

section, �lters are maintained in �lter lists. The �lter list is speci�ed as a

struct tcf proto, in include/net/pkt cls.h.

struct tcf_proto

{

/* Fast access part */

struct tcf_proto *next;

void *root;

int (*classify)(struct sk_buff*, struct tcf_proto*,

struct tcf_result *);

u32 protocol;

/* All the rest */

u32 prio;

u32 classid;

struct Qdisc *q;

void *data;

struct tcf_proto_ops *ops;

};

This structure is used to represent �lter lists and is maintained by the

classes and queuing disciplines. As an example, the cbq class structure in

net/sched/sch cbq.c maintains the �lter list by using the tcf proto structure.

The tcf chain function on classes, described in the previous section, is used

to return the anchor to a �lter list, which can be used to traverse the �lter

list. Filter lists are ordered by priority, in ascending order. Also, the entries

are keyed by the protocol for which they apply, e.g., IP, UDP etc. Filters for

the same protocol on the same �lter list must have di�erent priority values.

The protocol numbers are used in skb->protocol and they are de�ned in

include/linux/if ether.h.

Filters may also have an internal structure: it may control internal ele-

ments, which are referenced by a handle. These handles are 32-bit long, but

are not divided into major and minor numbers like class IDs. Handle 0 refers

to the �lter itself. Like classes, �lters also have an internal ID, which can

28

be obtained with the help of a get function. The basic structure of �lters is

shown in Figure 4.

Filter Prio 1 Filter Prio 2

Queuing Discipline/ Classes

Element Handle = X

Element Handle = Y

Figure 4: Structure of Filters

When the enqueue function of a queuing discipline is invoked, the tc classify

function in include/net/pkt cls.h is invoked to classify the packet.

extern __inline__ int tc_classify(struct sk_buff *skb, struct tcf_proto *tp,

struct tcf_result *res)

{

int err = 0;

u32 protocol = skb->protocol;

for (; tp; tp = tp->next) {

if ((tp->protocol == protocol ||

tp->protocol == __constant_htons(ETH_P_ALL))

&& (err = tp->classify(skb, tp, res)) >= >0)

return err;

}

return -1;

}

As seen above in this function, the protocol to which the packet belongs to

is determined from skb->protocol. Once this is obtained, the �lters corre-

sponding to this protocol are all applied in the order of priority. Within

each �lter all the internal elements are traversed in an attempt to classify

29

the packet. Once the packet is classi�ed, as already mentioned, the enqueue

function of the queuing discipline owned by the class is invoked. This process

of obtaining a match for the packet is shown in Figure 5.

FILTER FILTER

ELEMENT A

ELEMENT B

ELEMENT X

ELEMENT Y

OK

UNSPEC

NO MATCH

MATCH

Figure 5: Matching a �lter

Let us now discuss the functions that can be performed on the �lters. The

functions are de�ned in the tc proto ops structure in include/net/pkt cls.h.

3.6.1 Classify

The classify function on a �lter is used to match a packet to a class based on

certain properties of the packet. The result of any classi�cation can be one of

four return values from the policing function tcf police in net/sched/police.c,

namely TC POLICE UNSPEC, TC POLICE OK, TC POLICE RECLASSIFY

or TC POLICE SHOT. The policer is discussed in more detail in the next

section. At this point, it is enough to understand that the tc classify func-

tion returns TC POLICE UNSPEC when no matching �lter is found for

the packet. If not, the classi�er �lls in the tcf result structure (de�ned

in include/net/pkt cls.h) and returns it. The tcf result structure contains

the internal ID as well as the class ID of the class to which the packet

belongs. As an example, let us look into the route classify function in

net/sched/cls route.c.

30

static int route_classify(struct sk_buff *skb, struct tcf_proto *tp,

struct tcf_result *res)

{

struct dst_entry *dst = skb->dst;

if (dst) {

u32 clid = dst->tclassid;

if (clid && (TC_H_MAJ(clid) == 0 ||

!(TC_H_MAJ(clid^tp->q->handle)))) {

res->classid = clid;

res->class = 0;

return 0;

}

}

return -1;

}

The route classi�er classi�es packets based on the destination IP address.

In the route classify function, the destination is associated with a dst entry

structure (in include/net/dst.h). The class ID of the class is stored in the

tclassid �eld of the dst entry structure. If the destination to which the packet

needs to be sent is determined, the corresponding class ID is returned in the

tcf result structure. In general, the �lters are also associated with policers,

to determine if a ow is in pro�le. Having discussed the classify function, let

us now discuss the init function of a �lter.

3.6.2 Init

The init function on a �lter is used to initialize the parameters for a �lter. As

an example, let us take a look at the tcindex init function in net/sched/cls tcindex.c,

which is used to initialize the parameters for a tcindex classi�er.

static int tcindex_init(struct tcf_proto *tp)

{

struct tcindex_data *p;

p = kmalloc(sizeof(struct tcindex_data),GFP_KERNEL);

if (!p) {

31

return -ENOMEM;

}

tp->root = p;

memset(p->h,0,sizeof(p->h));

p->mask = 0xffff;

p->shift = 0;

p->fall_through = 1;

return 0;

}

The tcindex data structure, the de�nition of which is available in the same

�le, is initialized in the tcindex init function. The mask and the shift, which

are used in combination to determine a handle are set to 0x�� and 0 re-

spectively. The details of the tcindex classi�er are discussed in more de-

tail later. The init function is invoked from the tc ctl t�lter function in

net/sched/cls api.c, which is called whenever a �lter is added, deleted or

changed.

3.6.3 Destroy

The destroy function on a �lter is used to remove a �lter. The cbq destroy

function which was discussed previously, also results in the destroy func-

tion on the �lters being called. If the �lter or any of its elements are

registered with classes, the destroy function on a �lter calls the unbind tcf

function to de-register from these classes. The unbind tcf function was dis-

cussed in the previous section on classes. It also removes any policer that

had been attached to �lter. Let us look at the tcindex destroy function in

net/sched/cls tcindex.c as an example.

static void tcindex_destroy(struct tcf_proto *tp)

{

struct tcindex_data *p = PRIV(tp);

struct tcindex_filter *f;

int i;

for (i = 0; i < HASH_SIZE; i++)

while (p->h[i]) {

unsigned long cl;

32

f = p->h[i];

p->h[i] = f->next;

cl = xchg(&f->res.class,0);

if (cl) tp->q->ops->cl_ops->unbind_tcf(tp->q,cl);

#ifdef CONFIG_NET_CLS_POLICE

tcf_police_release(f->police);

#endif

kfree(f);

}

kfree(p);

tp->root = NULL;

}

This function shows that the destroy function on a �lter unbinds itself

from all the classes to which it was bound (using bind tcf function on the

class) and removes the policer that was attached to it. The destroy func-

tion takes the tcf proto structure as an input to determine the �lter that

needs to be deleted and to determine the classes and queues to which it is

attached. It then frees the memory that is occupied by the �lter. For more

complicated �lters like the u32, the destroy function is a lot more complicated

than this. The destroy function is invoked from the tc ctl t�lter function in

net/sched/cls api.c.

3.6.4 Get

As already mentioned, every �lter has an internal ID corresponding to the

handle. This mapping can be obtained with the help of the get function on

the �lter. This is similar to the get function on a class. The tcf result struc-

ture, which is used in the case of classes, is also used in the case of �lters. As

an example, let us look at the tcindex get function in net/sched/cls tcindex.c.

static unsigned long tcindex_get(struct tcf_proto *tp, u32 handle)

{

DPRINTK("tcindex_get(tp %p,handle 0x%08x)\n",tp,handle);

return (unsigned long) lookup(PRIV(tp),handle);

}

static struct tcindex_filter *lookup(struct tcindex_data *p,__u16 key)

33

{

struct tcindex_filter *f;

for (f = p->h[HASH(key)]; f; f = f->next)

if (f->key == key) break;

return f;

}

This tcindex get function takes as input the 32-bit handle and a pointer to

the tcf proto structure, which contains the the information about the �lter.

It then calls the lookup function, which walks through the �lter list to de-

termine the �lter with the speci�ed handle. The lookup function returns the

corresponding tcindex �lter structure, which contains the tcf result structure

as a member. The get function on a �lter is invoked from the tc ctl t�lter

function in net/sched/cls api.c. If the tc ctl t�lter function is invoked to

delete a �lter, the get function returns the internal ID, which can then be

used to call the destroy function on a �lter.

3.6.5 Put

The put function on a class is used to de-reference a �lter that was previously

referenced using the get function. But in general, the put function is never

invoked. A look at the classi�er �les (�les in net/sched/ starting with the

pre�x cls) will indicate this. Thus, this function need not be discussed any

further.

3.6.6 Change

The change function on a �lter is used to change the properties of a �lter.

This is similar to the change function on classes and queuing disciplines. The

con�guration parameters are passed using a mechanism that is similar to the

way the parameters are passed for classes and queuing disciplines. When

the change function is invoked on a �lter, if new elements are added to the

�lter, or if a new �lter is added to a class, the unbind tcf function is called to

remove the binding between the class and the �lter, which is then followed

by the bind tcf function on the class to bind the �lter with new properties to

the class. If any policer is attached to the �lter, then its properties are also

modi�ed. As an example, let us take a look at the tcindex change function

in net/sched/cls tcindex.c.

34

static int tcindex_change(struct tcf_proto *tp,u32 handle,struct rtattr **tca,

unsigned long *arg)

{

.

.

if (rtattr_parse(tb,TCA_TCINDEX_MAX,RTA_DATA(opt),RTA_PAYLOAD(opt)) < 0)

return -EINVAL;

if (tb[TCA_TCINDEX_MASK-1]) {

.

.

.

if (tb[TCA_TCINDEX_CLASSID-1]) {

unsigned long cl = xchg(&f->res.class,0);

if (cl)

tp->q->ops->cl_ops->unbind_tcf(tp->q,cl);

f->res.class = tp->q->ops->cl_ops->bind_tcf(tp->q, f->res.classid);

.

.

if (tb[TCA_TCINDEX_POLICE-1]) {

struct tcf_police *police = tcf_police_locate(tb[TCA_TCINDEX_POLICE-1]);

tcf_police_release(xchg(&f->police,police));

}

.

.

}

This function shows how a change function on a �lter is processed. First,

the properties associated with the �lter are changed. This is followed by

unbinding and binding the �lter to the classes to which it is attached. Finally,

the policer attached to the �lter is also modi�ed. The change function on a

�lter is invoked from the tc ctl t�lter function in net/sched/cls api.c.

3.6.7 Delete

The delete function on a �lter is used to delete a particular element of the

�lter. As was discussed previously, to delete the entire �lter, the destroy

35

function on the �lter is invoked. As in the case of the destroy function, the

delete function results in an unbind tcf function being called on the class to

which the element is attached. The policer attached to the element is also

removed. As an example, let us take a look at the tcindex delete function in

net/sched/cls tcindex.c.

static int tcindex_delete(struct tcf_proto *tp, unsigned long arg)

{

.

.

for (walk = p->h+HASH(f->key); *walk && *walk != f;

walk = &(*walk)->next);

if (!*walk) return -ENOENT;

*walk = f->next;

cl = xchg(&f->res.class,0);

if (cl) tp->q->ops->cl_ops->unbind_tcf(tp->q,cl);

.

tcf_police_release(f->police);

.

.

}

This function searches for the internal element in a �lter by walking

through the �lter, and after determining this, makes the class 0 (the xchg

function does this) and calls the unbind tcf function to detach itself from the

class. After this, it also releases the policer, if any, that is attached to the

element. The distinction between the delete on an element and a destroy on

a �lter is made in the tc ctl t�lter function. The following portion of code

from tc ctl t�lter will make this evident:

fh = tp->ops->get(tp, t->tcm_handle);

if (fh == 0) {

if (n->nlmsg_type == RTM_DELTFILTER && t->tcm_handle == 0) {

*back = tp->next;

tp->ops->destroy(tp);

kfree(tp);

err = 0;

goto errout;

36

}

.

.

switch (n->nlmsg_type) {

.

.

case RTM_DELTFILTER:

err = tp->ops->delete(tp, fh);

goto errout;

}

.

.

The get function is used to obtain the internal ID for the �lter. As

mentioned earlier in this section, a �lter has a handle of zero, while the

internal elements are identi�ed by the handles. If the internal ID returned

by the get function is zero, and if the DELETE option is speci�ed, then it

can be concluded that a �lter needs to be destroyed. If the handle returned

is not zero, then it can be concluded that a particular element of the �lter

needs to be deleted.

3.6.8 Walk

The walk function on a �lter is used to iterate over all the elements of a �lter

and invokes a callback function for each of the elements. This is usually used

to obtain diagnostic data for all the elements of a �lter. For example, let us

take a look at the tcindex walk function in net/sched/cls tcindex.c.

static void tcindex_walk(struct tcf_proto *tp, struct tcf_walker *walker)

{

struct tcindex_data *p = PRIV(tp);

struct tcindex_filter *f;

int i;

37

for (i = 0; i < HASH_SIZE; i++)

for (f = p->h[i]; f; f = f->next) {

if (walker->count >= walker->skip)

if (walker->fn(tp,(unsigned long) f,walker) < 0) {

walker->stop = 1;

return;

}

walker->count++;

}

}

This portion of the code shows that the walk command iterates over all

the �lters of a speci�ed �lter and invokes a callback function. The walk

function is called from the tc dump t�lter function in net/sched/cls api.c,

which is invoked when a dump request is made on all the �lters. The portion

of the code in tc dump t�lter that does this shown below:

static int tc_dump_tfilter(struct sk_buff *skb, struct netlink_callback *cb)

{

struct tcf_proto *tp, **chain;

.

for (tp=*chain, t=0; tp; tp = tp->next, t++) {

.

.

if (tp->ops->walk == NULL) continue;

tp->ops->walk(tp, &arg.w);

}

.

.

The callback function maps to the tcf node dump function in the same

�le. In tcf node dump, the tcf �ll node function is invoked, which calls the

dump function on all the �lters. The dump function on a �lter, which is

discussed later is used to dump statistical information about the �lter.

3.6.9 Dump

The dump function on a �lter is used to dump diagnostic data about the �lter

and one or more of its elements. There is a lot of data that is maintained

38

about the �lters and the dump function is used to obtain these values. There

is nothing more that needs to be elaborated on the dump function on a �lter.

Having discussed about the various operations that can be performed on

�lters, let us now discuss the di�erent types of �lters supported. Filters can

be classi�ed into generic �lters and speci�c �lters based on the scope of the

packets their instances can classify.

Generic �lters need only one instance of the �lter per queuing discipline to

classify packets for all classes. The route classi�er is an example of a generic

classi�er. The route classify function in net/sched/cls api.c takes the class

ID from the packet, where it was stored by another entity in the protocol

stack. As far as the route classi�er is concerned, this entity is the routing

functionality in net/ipv4/route.c. The rt set nexthop function in this �le,

which is used to set the next hop for a particular destination address, also

sets the class ID for the packets sent to this destination. This can be set

from the user space using the ip tool, which will be discussed later in this

document. Generic �lters are explained in Figure 6.

skb

PACKET CONTENT

FILTER CLASSIFER

CLASS ID

CLASS

TCF_CHAIN

Q
U

E
U

IN
G

 D
IS

C
IP

L
IN

E

S
ea

rc
h

....................

X:Y

0

X:A

X:B

X:Y

X:C

CLASSES
X:0

Figure 6: Generic Filters

39

Speci�c �lters need one or more instances of a �lter or its internal elements

per class to identify packets belonging to this class. Multiple instances of a

�lter (or its elements) on the same �lter list (which may potentially map

to the same class) are distinguished based on the internal IDs. Since the

speci�c �lters have at-least one instance of the �lter per class, they can store

the internal ID of the class in the tcf proto structure, thereby ensuring a fast

lookup of the class. It is here that the speci�c �lters score over the generic

�lters. In the case of generic �lters, the tcf result is returned with the class

�eld (that is, the internal class ID) set to zero. The queuing discipline is

responsible for doing another lookup to determine the class ID (as shown in

Figure 6). Speci�c �lters are described in Figure 7.

FILTER CLASSIFER

CLASS ID

CLASS

Q
U

E
U

IN
G

 D
IS

C
IP

L
IN

E

....................

X:Y

X:A

X:B

X:Y

X:C

PACKET CONTENT

FILTER CAN USE ALL THE PACKET INFORMATION

F
IL

T
E

R
S

TCF_RESULT

X:0

skb

CLASSES

S
E

A
R

C
H

Figure 7: Speci�c Filters

This concludes the details involved in the implementation of �lters. Be-

fore discussing the user level tools available to make use of the kernel features,

let us take a brief look at the interface between the kernel and the user space.

40

3.7 Interface between the kernel and user space

The interface between the kernel and the user space is achieved using netlink

sockets. Netlink sockets are described in more detail in later sections. For

now, let us look at the sequence of steps involved in executing a command

given in the user space.

The interfaces between the kernel tra�c elements and the user space pro-

grams are de�ned in include/linux/pkt cls.h and include/linux/pkt sched.h.

The pkt sched.h �le will specify the parameters that are of signi�cance in each

type of queue. rtnetlink is used to exchange tra�c control objects between

the user level and the kernel level. This is speci�ed in the net/core/rtnetlink.c

and linux/include/rtnetlink.h. rtnetlink is based on netlink. The netlink

socket uses the sockaddr nl address structure. This is the structure that is

used by the user level code to communicate with the kernel. The code for

the netlink is in net/netlink/.

struct sockaddr_nl

{

sa_family_t nl_family; /* AF_NETLINK */

unsigned short nl_pad; /* zero */

__u32 nl_pid; /* process pid */

__u32 nl_groups; /* multicast groups mask */

};

struct nlmsghdr

{

__u32 nlmsg_len; /* Length of message including header

*/

__u16 nlmsg_type; /* Message content */

__u16 nlmsg_flags; /* Additional flags */

__u32 nlmsg_seq; /* Sequence number */

__u32 nlmsg_pid; /* Sending process PID */

};

The message format used to transmit tra�c control messages to the kernel

is shown in Figure 8. The messages are stored at byte boundaries. The length

of the message includes the message header as well.

If tra�c control is enabled in the linux kernel, at boot time, the initfunc

function in net/core/dev.c is called. This in turn invokes the pktsched init

41

REQUEST STRUCTURE

nlmsghdr (in linux/netlink.h)
Message header

16 16

Message Length
FlagsMessage Type

Sequence Number
Process ID

Family Padding Padding
Interface Index

Parent

Information

Handle
tcmsg in linux/rtnetlink.h

Traffic Control Message

Attributes

TypeLength

Attribute Parameters

Figure 8: tc to kernel - Message formats

function in net/sched/sch api.c. This function initiates various declarations

and bindings. One of the most important initializations that is done here is

shown below:

struct rtnetlink_link *link_p;

if (link_p) {

link_p[RTM_NEWQDISC-RTM_BASE].doit = tc_ctl_qdisc;

link_p[RTM_DELQDISC-RTM_BASE].doit = tc_ctl_qdisc;

link_p[RTM_GETQDISC-RTM_BASE].doit = tc_ctl_qdisc;

link_p[RTM_GETQDISC-RTM_BASE].dumpit = tc_dump_qdisc;

link_p[RTM_NEWTCLASS-RTM_BASE].doit = tc_ctl_tclass;

link_p[RTM_DELTCLASS-RTM_BASE].doit = tc_ctl_tclass;

link_p[RTM_GETTCLASS-RTM_BASE].doit = tc_ctl_tclass;

link_p[RTM_GETTCLASS-RTM_BASE].dumpit = tc_dump_tclass;

}

This �lls in the pointers to the various functions that need to be called

based on actions (i.e., add, delete, change etc) and entities (i.e., queuing

disciplines, classes and �lters) speci�ed at the user level. This function also

42

registers the various queuing disciplines that are supported during the kernel

con�guration.

A netlink socket is created from the user level application to the kernel, in

order to send con�guration messages, which will be interpreted and executed

by the kernel. When the user issues a speci�c action on a speci�c entity,

a sendto is done on the netlink socket. This results in the netlink sendmsg

function in net/netlink/af netlink.c being invoked. The rtnetlink rcv msg

function in net/core/rtnetlink.c receives the messages sent from the user

space. In this function, the message header is examined (nlmsghdr) to deter-

mine the type of the message. The message type could be RTM NEWQDISC,

RTM DELQDISC etc. Based on the message type, the corresponding func-

tion in rtnetlink link is invoked (either doit or dumpit, which point to appro-

priate function). These are the steps involved in executing a command that

is speci�ed at the user level.

3.8 Usage - tc

'tc' (tra�c controller) is the user level program that can be used to create

and associate queues with the output devices. It is used to set up various

kinds of queues and associate classes with each of those queues. It can also

be used to set up �lters based on the routing table, u32 classi�ers, tcindex

classi�ers and RSVP classi�ers. As already mentioned, it uses netlink sockets

as a mechanism to communicate with the kernel networking functions.

The usage for tc is :

tc [OPTIONS] OBJECT { COMMAND | help }

where OBJECT := { qdisc | class | filter }

OPTIONS := { -s[statistics] | -d[details] | -r[raw] }

The Object could be a queuing discipline, class or a �lter. Let us discuss

the general usage of queuing disciplines,classes and �lters.

3.9 Queuing Disciplines

The syntax for creating a queuing discipline is:

tc qdisc [add | del | replace | change | get] dev STRING

[handle QHANDLE] [root | parent CLASSID]

[estimator INTERVAL TIME_CONSTANT]

43

[[QDISC_KIND] [help | OPTIONS]]

tc qdisc show [dev STRING]

Where:

QDISC_KIND := { [p|b]fifo | tbf | prio | cbq | red | etc. }

The interpretation for the �elds:

� handle represents the unique handle that is assigned by the user to

the queuing discipline. No two queuing disciplines can have the same

handle.

� root indicates that the queue is at the root of a link sharing hierarchy.

� parent represents the handle of the parent queuing discipline.

� estimator is used to determine if the requirements of the queue have

been satis�ed. The INTERVAL and the TIME CONSTANT are two

parameters that are of very high signi�cance to the estimator. The way

these parameters are set is described in [3].

3.10 Classes

The syntax for creating a class is shown below:

tc class [add | del | change | get] dev STRING

[classid CLASSID] [root | parent CLASSID]

[[QDISC_KIND] [help | OPTIONS]]

tc class show [dev STRING] [root | parent CLASSID]

Where:

QDISC_KIND := { prio | cbq | etc. }

The QDISC KIND can be one of the queuing disciplines that support

classes. The interpretation of the �elds:

� classid represents the handle that is assigned to the class by the user.

It consists of a major number and a minor number, which have been

discussed already.

44

� root indicates that the class represents the root class in the link sharing

hierarchy.

� parent indicates the handle of the parent of the queuing discipline.

3.11 Filters

The syntax for creating a �lter is shown below:

tc filter [add | del | change | get] dev STRING

[prio PRIO] [protocol PROTO]

[root | classid CLASSID] [handle FILTERID]

[[FILTER_TYPE] [help | OPTIONS]]

tc filter show [dev STRING] [root | parent CLASSID]

Where:

FILTER_TYPE := { rsvp | u32 | fw | route | etc. }

FILTERID := ... format depends on classifier

The interpretation of the �elds:

� prio represents the priority that is assigned to the �lter.

� protocol is used by the �lter to identify packets belonging only to that

protocol. As already mentioned, no two �lters can have the same pri-

ority and protocol �eld.

� root indicates that the �lter is at the root of the link sharing hierarchy.

� classid represents the handle of the class to which the �lter is applied.

� handle represents the handle by which the �lter is identi�ed uniquely.

The format of the �lter is di�erent for di�erent classi�ers.

Having discussed the general syntax for creating, deleting and changing

queuing discipline, classes and �lters, let us now take a look at the various

queuing disciplines that currently supported in linux.

45

3.12 Class Based Queue

This section discusses Class Based Queues in detail. The terms commonly

used in the CBQ context and the user-level syntax to set up these queues

are discussed in this section.

Let us �rst de�ne some basic terms in CBQ. In CBQ, every class has

variables idle and avgidle and parameter maxidle used in computing the

limit status for the class, and the parameter o�time used in determining how

long to restrict throughput for overlimit classes.

1. Idle: The variable idle is the di�erence between the desired time and

the measured actual time between the most recent packet transmissions

for the last two packets sent from this class. When the connection is

sending more than its allocated bandwidth, then idle is negative. When

the connection is sending perfectly at its alloted rate, then idle is zero.

2. avgidle: The variable avgidle is the average of idle, and it computed us-

ing an exponential weigted moving average (EWMA). When the avgidle

is zero or lower, then the class is overlimit (the class has been exceeding

its allocated bandwidth in a recent short time interval).

3. maxidle: The parameter maxidle gives an upper bound for avgidle.

Thus maxidle limits the credit given to a class that has recently been

under its allocation.

4. o�time: The parameter o�time gives the time interval that a overlimit

must wait before sending another packet. This parameter determines

the steady-state burst size for a class when the class is running over its

limit.

5. minidle: The minidle parameter gives a (negative) lower bound for

avgidle. Thus, a negative minidle lets the scheduler remember that a

class has recently used more than its allocated bandwidth.

There are three types of classes, namely leaf classes (such as a video class)

that have directly assigned connections; nonleaf classes used for link-sharing;

and the root class that represents the entire output link.

The syntax to create a CBQ is shown below:

tc qdisc [add | del | replace | change | get] dev STRING \

cbq bandwidth BPS [avpkt BYTES] [mpu BYTES] [cell BYTES] [ewma LOG]

46

The interpretation of the �elds:

� bandwidth represents the maximum bandwidth available to the device

to which the queue is attached.

� avpkt represents the average packet size. This is used in determining

the transmission time which is given as

TransmissionT imet =
averagepacketsize

LinkBandwidth

� mpu represents the minimum number of bytes that will be sent in a

packet. Packets that are of size lesser than mpu are set to mpu. This

is done because for ethernet-like interfaces, the minimum packet size is

64. This value is usually set to 64.

� cell represents the boundaries of the bytes in the packets that are trans-

mitted. It is used to index into an rtab table, that maintains the packet

transmission times for various packet sizes.

For e.g.

tc qdisc add dev eth0 root handle 1: cbq bandwidth 10Mbit allot 1514 cell 8

avpkt 1000 mpu 64

In the above example, a class based queue is created and attached to de-

vice eth0. The handle for the queue is 1: (that is, 1:0), where 1 represents the

major number and 0 represents the minor number. The bandwidth available

on the outgoing link is 10 Mbit. allot is a parameter that is used by the link

sharing scheduler. A cell value of 8 indicates that the packet transmission

time will be measured in terms of 8 bytes.

Let us now discuss the syntax for creating a class for a CBQ.

tc qdisc [add | del | replace | change] cbq bandwidth BPS rate BPS maxburst PKTS \

[avpkt BYTES] [minburst PKTS] [bounded] [isolated] [allot BYTES] \

[mpu BYTES] [weight RATE] [prio NUMBER] [cell BYTES] [ewma LOG] \

[estimator INTERVAL TIME_CONSTANT] [split CLASSID] [defmap MASK/CHANGE]

The interpretation of the �elds:

� bandwidth represents the maximum bandwidth that is available to the

queuing discipline owned by this class.

47

� rate represents the bandwidth that is allocated to this class. The kernel

does not use this directly. It uses pre-calculated rate translation tables.

� maxburst represents the number of bytes that will be sent in the longest

possible burst.

� avpkt represents the average number of bytes in a packet belonging to

this class.

� minburst represents the number of bytes that will be sent in the shortest

possible burst.

� bounded indicates that the class cannot borrow unused bandwidth from

its ancestors. If this is not speci�ed, then the class can borrow unused

bandwidth from the parent.

� isolated indicates that the class will not share bandwidth with any of

non-descendant classes

� allot, cell, mpu, estimator and ewma have already been explained.

� weight should be made proportional to the rate.

� The spilt �eld is used for fast access. This is normally the root of the

CBQ tree. It can be set to any node in the hierarchy thereby enabling

the use of a simple and fast classi�er, which is con�gured only for a

limited set of keys to point to this node. Only classes with split node

set to this node will be matched. The type of service (TOS in the IP

header) and sk->priority is not used for this purpose.

� prio represents the priority that is assigned to this class.

� This again, is concerned with classi�cation. It is intended to make

fallback classi�cation. When a packet does not match any classi�er,

this fallback classi�cation is used. This is done in the following manner.

The TOS byte in the incoming packets or the SO PRIORITY in the

locally generated packets is used as a logical priority. If a class is

ready to serve a logical priority, the defmap option is used. If a packet

matches a classi�er, this logical priority is not used.

48

For e.g.

tc class add dev eth1 parent 1:1 classid 1:2 cbq bandwidth 10Mbit rate 1Mbit

allot 1514 cell 8 weight 100Kbit prio 3 maxburst 20 avpkt 1000 split 1:0

defmap c0

In this example, a CBQ class with handle 1:2 is created. Its parent is

identi�ed by the handle 1:1. The priority assigned to it is 3, the average

packet size is 1000 bytes. The split node is 1:0, which represents the root of

the link sharing structure. The defmap is c0, that is, packets with this TOS

(for incoming packets) or SO PRIORITY (for locally generated packets) that

DO NOT classify under any class are considered to belong to the class with

handle 1:2.

3.12.1 Route Classi�ers

Route classi�ers classify the packets based on the the routing table. This

involves the use of another tool, namely the IP tool (IPT). This has been

described comprehensively in [2]. The syntax for creating a route classi�er:

tc filter [add | del | change | get] dev STRING

[parent PARENTID] [protocol PROTO]

[prio PRIORITY] route

Where:

PROTO = {ip | icmp | etc.}

All the �elds above have already been explained. The keyword route

indicates that it is a route classi�er. All the packets at the speci�ed device

will be classi�ed based on the routing table. A set of rules are speci�ed that

indicate how the packets need to be treated. This is discussed in [2].

For e.g.

To install a route classi�er:

tc �lter add dev eth0 parent 1:0 protocol ip prio 100 route

In the above example, a route classi�er is attached to the root of a CBQ

tree. The classi�er will classify IP packets (as indicated by the protocol �eld)

and the priority assigned to it 100.

To specify rules to the �lter:

ip route add 129.237.125.150 via 129.237.125.146 dev eth0 ow 1:2

49

In this example, a route is added to 129.237.125.150 via 129.237.125.146

and all such tra�c will be considered as belonging to the class whose handle

is 1:2.

3.12.2 u32 Classi�ers

To classify based on individual application requirements, a more powerful

classi�cation scheme (than route classi�cation) is needed. u32 classi�ers are

used to do this. Classi�cation can be done based on the destination IP

address, destination TCP/UDP port, source IP address, source TCP/UDP

port, TOS byte and protocol. A more detailed description of this classi�er

will be done soon.

4 Example - 1 : CBQ with route classi�ers

Let us consider a very simple scenario. Lets set up a CBQ for an ethernet

device on testbed14 (129.237.125.149). Lets assume that the average packet

size is 1000, a cell value of 8 bytes and a maximum burst size of 20 bytes.

Lets have two types of classes, one for tra�c to the machine 129.237.125.146

(testbed11) and for the tra�c to machine 129.237.125.148 (testbed13). The

tra�c to testbed11 is given a higher priority over the tra�c to testbed 13.

However, testbed11 requires a bandwidth of only 3 Mbps while testbed13

requires a bandwidth of 7 Mbps.

This example explains classi�cation based on the routing table. The

environment set up is shown in Figure 9.

To set up this environment in testbed14.

Attaching the Qdisc to the eth0 device. The maximum available bandwidth is

10Mbit.

tc qdisc add dev eth0 root handle 1: cbq bandwidth 10Mbit cell 8 avpkt 1000 \

mpu 64

Adding the root class to the queuing discipline. The root has 10 Mbit

completely.

tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth 10Mbit rate 10Mbit \

allot 1514 cell 8 weight 1Mbit prio 8 maxburst 20 avpkt 1000

Traffic to testbed11. The priority is 3 and the allocation is 3 Mbit.

50

TESTBED 11 TESTBED13

BAND = 3Mbit
PRIO = 3

BAND= 7Mbit

TESTBED14

PRIO=7

eth0 (prio = 8, band=10Mbit)

Figure 9: Linux QoS Support - Example 1

tc class add dev eth0 parent 1:1 classid 1:2 cbq bandwidth 10Mbit rate 3Mbit \

allot 1514 cell 8 weight 100Kbit prio 3 maxburst 20 avpkt 1000 split 1:0

Traffic to testbed13. The priority is 7 and the allocation is 7 Mbit.

tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth 10Mbit rate 8Mbit \

allot 1514 cell 8 weight 800Kbit prio 7 maxburst 20 avpkt 1000 split 1:0

Installing the route classifier on the root of the tree.

tc filter add dev eth0 parent 1:0 protocol ip prio 100 route

Assigning the route and the rules for testbed11

ip route add 129.237.125.146 via 129.237.125.149 flow 1:2

Assigning the route and the rules for testbed13

ip route add 129.237.125.148 via 129.237.125.149 flow 1:3

Note that none of the classes are speci�ed as bounded which means that

the classes can borrow bandwidth from the parent.

5 Example - 2 : CBQ with u32 classi�er

Let us now consider a slightly more complicated scenario. Lets set up a CBQ

for an ethernet device on testbed14 (129.237.125.149). Lets again assume

that the average packet size is 1000, a cell value of 8 bytes and a maximum

51

burst size of 20 bytes. Let us again have two types of classes, one for tra�c

to the machine 129.237.125.146 (testbed11) and the other for the tra�c to

machine 129.237.125.148 (testbed13). testbed11 requires a bandwidth of 3

Mbps and a priority of 3 while testbed13 requires a bandwidth of 7 Mbps

and a priority of 7.

Now let us assume that the two classes in turn have two more classes

each. The class setup for tra�c to testbed11 is in turn classi�ed into two

classes, one with a priority of 1, a bandwidth of 2 Mbits and using port 6010

in testbed11, and the other with a priority of 2 and a bandwidth of 1 Mbit

and using port 6011 on testbed11.

Similarly, the tra�c to testbed13 is classi�ed into two classes, one with a

priority 1, a bandwidth of 2 Mbits and using port 6021 in testbed13, and the

other with a priority of 2 and a bandwidth of 1 Mbit and using port 6031 on

testbed13.

Also, let us assume that the testbed14 enforces the bandwidth sharing

in a very strict sense. That is, none of the children are allowed to borrow

unused bandwidth.

This example explains classi�cation based on u32 classi�ers. The set up

is show in Figure 10.

TESTBED11 TESTBED13

A(6010) B(6011) C(6021) D(6031)

BAND = 2 Mbit BAND = 1 Mbit BAND = 1 Mbit BAND = 2 Mbit
PRIO = 1PRIO = 2PRIO = 1 PRIO = 2

PRIO = 3

BAND = 7 Mbit
PRIO = 7

TESTBED14

eth0 (prio = 8, band = 10 Mbits)

BAND = 3 Mbits

Figure 10: Linux QoS Support - Example 2

To set up this environment in testbed14

Attaching the Qdisc to the eth0 device. The maximum available bandwidth is

10Mbit.

tc qdisc add dev eth0 root handle 1: cbq bandwidth 10Mbit allot 1514 cell 8

52

avpkt 1000 mpu 64

Adding the root class to the queuing discipline. The root has 10 Mbit

completely.

tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth 10Mbit rate

10Mbit allot 1514 cell 8 weight 1Mbit prio 8 maxburst 20 avpkt 1000

Traffic to testbed11. The priority is 3 and the allocation is 3 Mbit. Note

that it is set to bounded because of the strict link sharing rules.

tc class add dev eth0 parent 1:1 classid 1:2 cbq bandwidth 10Mbit rate 3Mbit

allot 1514 cell 8 weight 300Kbit prio 3 maxburst 20 avpkt 1000 bounded

Traffic to testbed13. The priority is 7 and the allocation is 7 Mbit. Note

that it is set to bounded because of the strict link sharing rules.

tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth 10Mbit rate 7Mbit

allot 1514 cell 8 weight 700Kbit prio 7 maxburst 20 avpkt 1000 bounded

Attaching another CBQ to the traffic to testbed11. This is meant for further

classification.

tc qdisc add dev eth0 parent 1:2 handle 2: cbq bandwidth 3Mbit allot 1514

cell 8 avpkt 1000 mpu 64

Attaching another CBQ to the traffic to testbed13. This is meant for further

classification.

tc qdisc add dev eth0 parent 1:3 handle 3: cbq bandwidth 7Mbit allot 1514

cell 8 avpkt 1000 mpu 64

Setting up the classes for the traffic to testbed11 appropriately.

tc class add dev eth0 parent 2:0 classid 2:1 cbq bandwidth 3Mbit rate 3Mbit

allot 1514 cell 8 weight 300Kbit prio 3 maxburst 20 avpkt 1000

tc class add dev eth0 parent 2:1 classid 2:2 cbq bandwidth 3Mbit rate 2Mbit

allot 1514 cell 8 weight 200Kbit prio 1 maxburst 20 avpkt 1000

tc class add dev eth0 parent 2:1 classid 2:3 cbq bandwidth 3Mbit rate 1Mbit

allot 1514 cell 8 weight 100Kbit prio 2 maxburst 20 avpkt 1000

Setting up the classes for the traffic to testbed13 appropriately.

tc class add dev eth0 parent 3:0 classid 3:1 cbq bandwidth 7Mbit rate 7Mbit

53

allot 1514 cell 8 weight 700Kbit prio 7 maxburst 20 avpkt 1000

tc class add dev eth0 parent 3:1 classid 3:2 cbq bandwidth 7Mbit rate 5Mbit

allot 1514 cell 8 weight 500Kbit prio 1 maxburst 20 avpkt 1000

tc class add dev eth0 parent 3:1 classid 3:3 cbq bandwidth 7Mbit rate 2Mbit

allot 1514 cell 8 weight 200Kbit prio 2 maxburst 20 avpkt 1000

Installing a route classifier on device eth0.

tc filter add dev eth0 parent 1:0 protocol ip prio 100 route

Setting up the routes to testbed11 and testbed13 and the rules for this

traffic.

ip route add 129.237.125.146 via 129.237.125.149 flow 1:2

ip route add 129.237.125.148 via 129.237.125.149 flow 1:3

Installing a u32 classifier for the traffic to testbed11

tc filter add dev eth0 parent 2:0 prio 3 protocol ip u32

Creating hash tables for classification of the packets to testbed11

tc filter add dev eth0 parent 2:0 prio 3 handle 1: u32 divisor 256

tc filter add dev eth0 parent 2:0 prio 3 handle 2: u32 divisor 256

Configuring the 6th slot of the hash table 1 to select packets with

destination set to testbed11 and the port set to 6010 (0x177a) and direct

these to class 2:2 (which was just set up).

tc filter add dev eth0 parent 2:0 prio 3 u32 ht 1:6: match ip dst

129.237.125.146 match tcp dst 0x177a 0xffff flowid 2:2

Configuring the 6th slot of the hash table 2 to select packets with

destination set to testbed11 and the port set to 6011 (0x177b) and direct

these to class 2:3 (which was just set up).

tc filter add dev eth0 parent 2:0 prio 3 u32 ht 2:6: match ip dst

129.237.125.146 match tcp dst 0x177b 0xffff flowid 2:3

Lookup hash table and it it is not fragmented, use the protocol as the hash

key.

tc filter add dev eth0 parent 2:0 prio 3 handle ::1 u32 ht 800:: match ip

nofrag offset mask 0x0F00 shift 6 hashkey mask 0x00ff0000 at 8 link 1:

54

tc filter add dev eth0 parent 2:0 prio 3 handle ::1 u32 ht 800:: match ip

nofrag offset mask 0x0F00 shift 6 hashkey mask 0x00ff0000 at 8 link 2:

Installing a u32 classfier for the traffic to testbed13

tc filter add dev eth0 parent 3:0 prio 7 protocol ip u32

Creating hash tables for classification of the packets to testbed13

tc filter add dev eth0 parent 3:0 prio 7 handle 3: u32 divisor 256

tc filter add dev eth0 parent 3:0 prio 7 handle 4: u32 divisor 256

Configuring the 6th slot of the hash table 3 to select packets with

destination set to testbed13 and the port set to 6021 (0x1785) and direct

these to class 3:2 (which was just set up).

tc filter add dev eth0 parent 3:0 prio 7 u32 ht 3:6: match ip dst

129.237.125.148 match tcp dst 0x1785 0xffff flowid 3:2

Configuring the 6th slot of the hash table 4 to select packets with

destination set to testbed13 and the port set to 6031 (0x178f) and direct

these to class 3:3 (which was just set up).

tc filter add dev eth0 parent 3:0 prio 7 u32 ht 4:6: match ip dst

129.237.125.148 match tcp dst 0x178f 0xffff flowid 3:3

Lookup hash table and it it is not fragmented, use the protocol as the hash

key.

tc filter add dev eth0 parent 3:0 prio 7 handle ::1 u32 ht 800:: match ip

nofrag offset mask 0x0F00 shift 6 hashkey mask 0x00ff0000 at 8 link 3:

tc filter add dev eth0 parent 3:0 prio 7 handle ::1 u32 ht 800:: match ip

nofrag offset mask 0x0F00 shift 6 hashkey mask 0x00ff0000 at 8 link 4:

6 References

1. RFC 1633, Integrated Services

2. RFC 2475, Di�erentiated Services

3. Linux Tra�c Control, Werner Almesberger

55

4. IP tool README, Alexey Kuznetsov, Jason Keimig

56

