Scaling of Internet Routing and Addressing:
past view, present reality, and possible futures

Vince Fuller, Cisco Systems

http://www.vaf.net/~vaf/iepg.pdf
Acknowledgements

This is not original work and credit is due:

• Noel Chiappa for his extensive writings over the years on ID/Locator split
• Mike O’Dell for developing GSE/8+8
• Geoff Huston for his ongoing global routing system analysis work (CIDR report, BGP report, etc.)
• Jason Schiller and Sven Maduschke for the growth projection section (and Jason for tag-teaming to present this at NANOG)
• Tony Li for the information on hardware scaling
• Marshall Eubanks for finding and projecting the number of businesses (potential multi-homers) in the U.S. and the world
Agenda

• Look at the growth of routing and addressing on the Internet
• Review the history of attempts to accommodate growth
• Examine current trends, scaling constraints imposed by hardware/cost limitations, and how the future might look if nothing changes
• Explore an alternative approach that might better serve the Internet community
Problem statement

• There are reasons to believe that current trends in the growth of routing and addressing state on the global Internet may not be scalable in the long term.

• An Internet-wide replacement of IPv4 with ipv6 represents a one-in-a-generation opportunity to either continue current trends or to deploy something truly innovative and sustainable.

• As currently specified, routing and addressing with ipv6 doesn’t really differ from IPv4 – it shares many of the same properties and scaling characteristics.
A view of routing state growth: 1988 to now

From bgp.potaroo.net/cidr/
A brief history of Internet time

- Recognition of exponential growth – late 1980s
- CLNS as IP replacement – December, 1990 IETF
- ROAD group and the “three trucks” – 1991-1992
 - Running out of “class-B” network numbers
 - Explosive growth of the “default-free” routing table
 - Eventual exhaustion of 32-bit address space
 - Two efforts – short-term vs. long-term
 - More at “The Long and Winding ROAD” http://rms46.vlsm.org/1/42.html
- Supernetting and CIDR – described and proposed in 1992-1993, deployed starting in 1994

From bgp.potaroo.net/cidr/
A brief history of Internet time (cont’d)

• IETF “ipng” solicitation – RFC1550, Dec 1993
• Direction and technical criteria for ipng choice – RFC1719 and RFC1726, Dec 1994
• Proliferation of proposals:
 • TUBA – RFC1347, June 1992
 • PIP – RFC1621, RFC1622, May 1994
 • CATNIP – RFC1707, October 1994
 • SIP – RFC1710, October 1994
 • NIMROD – RFC1753, December 1994
 • ENCAPS – RFC1955, June 1996
A brief history of Internet time (cont’d)

• Choice came down to politics, not technical merit
 • Hard issues deferred in favor of packet header design

• Things lost in shuffle…err compromise included:
 • Variable-length addresses
 • De-coupling of transport and network-layer addresses and clear separation of endpoint-id/locator (more later)
 • Routing aggregation/abstraction
 • Transparent and easy renumbering

• In fairness, these were (and still are) hard problems… but without solving them, long-term scalability is problematic
Why doesn’t ipv6 (or IPv4) routing scale?

- It’s all about the schizophrenic nature of addresses
 - They need to be “locators” for routing information
 - But also serve as “endpoint id’s” for the transport layer
- For routing to scale, locators need to be assigned according to topology and change as topology changes (“Addressing can follow topology or topology can follow addressing; choose one” – Y. Rekhter)
- But as identifiers, assignment is along organizational hierarchy and stability is needed – users and applications don’t want renumbering when network attachment points change
- A single numbering space cannot serve both of these needs in a scalable way (more on how to change this later)
- The really scary thing is that the scaling problem won’t become obvious until (and if) ipv6 becomes widely-deployed
Internet boom: 1996 - 2001

From bgp.potaroo.net/cidr/
Post-boom to present: 2001 - 2006

From bgp.potaroo.net/cidr/
View of the present: Geoff’s IPv4 BGP report

- How bad are the growth trends? Geoff’s BGP reports show:
 - Prefixes: 130K to 170K (+30%) in 2005 (200K/+17% thru 10/2006)
 - projected increase to ~370K within 5 years
 - global routes only – each SP has additional internal routes
 - Churn: 0.7M/0.4M updates/withdrawals per day
 - projected increase to 2.8M/1.6M within 5 years
 - CPU use: 30% at 1.5Ghz (average) today
 - projected increase to 120% within 5 years
- These are guesses based on a limited view of the routing system and on low-confidence projections (cloudy crystal ball); the truth could be worse, especially for peak demands
- No attempt to consider higher overhead (i.e. SBGP/SoBGP)
- These kinda look exponential or quadratic; this is bad… and it’s not just about adding more cheap memory to systems
What if we do nothing? Assume & project

- ipv6 widely deployed in parallel with IPv4
 - Need to carry global state for both indefinitely
- Multihoming trends continue unchanged (valid?)
- ipv6 does IPv4-like multihoming/traffic engineering
 - “PI” prefixes, no significant uptake of shim6
- Infer ipv6 table size from existing IPv4 deployment
 - One ipv6 prefix per ASN
 - One ipv6 more-specific per observed IPv4 more-specific
- Project historic growth trends forward
- Caveat: lots of scenarios for additional growth
Current IPv4 Route Classification

- Three basic types of IPv4 routes
 - Aggregates
 - De-aggregates from growth and assignment of a non-contiguous block
 - De-aggregates to perform traffic engineering

- Tony Bates CIDR report shows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Prefixes</th>
<th>CIDR Agg</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-11-06</td>
<td>199,107</td>
<td>129,664</td>
</tr>
</tbody>
</table>

- Can assume that 69K intentional de-aggregates
Estimated IPv4+ipv6 Routing Table (Jason, 11/06)

Assume that tomorrow everyone does dual stack...

Current IPv4 Internet routing table: 199K routes
New ipv6 routes (based on 1 prefix per AS): + 23K routes
Intentional de-aggregates for IPv4-style TE: + 69K routes
Internal IPv4 customer de-aggregates + 50K to 150K routes
Internal ipv6 customer de-aggregates + 40K to 120K routes
(projected from number IPv4 of customers)
Total size of tier-1 ISP routing table 381K to 561K routes

These numbers exceed the FIB limits of a lot of currently-deployed equipment
Trend: Internet CIDR Information
Total Routes and Intentional de-aggregates
Trend: Internet CIDR Information
Active ASes
Future Projection of IPv6 Internet Growth (IPv4 Intentional De-aggregates + Active ASes)
Future Projection of Combined IPv4 and IPv6 Internet Growth

![Graph showing the projected growth of IPv4 and IPv6 internet routes over time.](image)
Future Projection Of Tier 1 Service Provider

IPv4 and IPv6 Routing Table
Summary of scary numbers

<table>
<thead>
<tr>
<th>Route type</th>
<th>11/01/06</th>
<th>5 years</th>
<th>7 years</th>
<th>10 Years</th>
<th>14 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Internet routes</td>
<td>199,107</td>
<td>285,064</td>
<td>338,567</td>
<td>427,300</td>
<td>492,269</td>
</tr>
<tr>
<td>IPv4 CIDR Aggregates</td>
<td>129,664</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv4 intentional de-aggregates</td>
<td>69,443</td>
<td>144,253</td>
<td>195,176</td>
<td>288,554</td>
<td>362,304</td>
</tr>
<tr>
<td>Active Ases</td>
<td>23,439</td>
<td>31,752</td>
<td>36,161</td>
<td>42,766</td>
<td>47,176</td>
</tr>
<tr>
<td>Projected ipv6 Internet routes</td>
<td>92,882</td>
<td>179,481</td>
<td>237,195</td>
<td>341,852</td>
<td>423,871</td>
</tr>
<tr>
<td>Total IPv4/ipv6 Internet routes</td>
<td>291,989</td>
<td>464,545</td>
<td>575,762</td>
<td>769,152</td>
<td>916,140</td>
</tr>
<tr>
<td>Internal IPv4 (low est)</td>
<td>48,845</td>
<td>101,390</td>
<td>131,532</td>
<td>190,245</td>
<td>238,494</td>
</tr>
<tr>
<td>Internal IPv4 (high est)</td>
<td>150,109</td>
<td>311,588</td>
<td>404,221</td>
<td>584,655</td>
<td>732,933</td>
</tr>
<tr>
<td>Projected internal ipv6 (low est)</td>
<td>39,076</td>
<td>88,853</td>
<td>117,296</td>
<td>173,422</td>
<td>219,916</td>
</tr>
<tr>
<td>Projected internal ipv6 (high est)</td>
<td>120,087</td>
<td>273,061</td>
<td>360,471</td>
<td>532,955</td>
<td>675,840</td>
</tr>
<tr>
<td>Total IPv4/ipv6 routes (low est)</td>
<td>381,989</td>
<td>654,788</td>
<td>824,590</td>
<td>1,132,819</td>
<td>1,374,550</td>
</tr>
<tr>
<td>Total IPv4/ipv6 routes (high est)</td>
<td>561,989</td>
<td>1,049,194</td>
<td>1,340,453</td>
<td>1,886,762</td>
<td>2,324,913</td>
</tr>
</tbody>
</table>
“it could be worse” - what this interpolation doesn’t try to consider

• A single AS that currently has multiple non-contiguous assignments that would still advertise the same number of prefixes to the Internet routing table if it had a single contiguous assignment

• All of the ASes that announce only a single /24 to the Internet routing table, but would announce more specifics if they were generally accepted (assume these customers get a /48 and up to /64 is generally accepted)

• All of the networks that hide behind multiple NAT addresses from multiple providers who change the NAT address for TE. With IPv6 and the removal of NAT, they may need a different TE mechanism.

• All of the new IPv6 only networks that may pop up: China, Cell phones, coffee makers, toasters, RFIDs, etc.
Are these numbers insane?

- Marshall Eubanks did some analysis during discussion on the ARIN policy mailing list (PPML):
- How many multi-homed sites could there really be? Consider as an upper-bound the number of small-to-medium businesses worldwide
- 1,237,198 U.S. companies with >= 10 employees
 - (from http://www.sba.gov/advo/research/us_03ss.pdf)
- U.S. is approximately 1/5 of global economy
- Suggests up to 6 million businesses that might want to multi-home someday… would be 6 million routes if multi-homing is done with “provider independent” address space
- Of course, this is just a WAG… and doesn’t consider other factors that may or may not increase/decrease a demand for multi-homing (mobility? individuals’ personal networks, …?)
Router Scalability & Moore’s “Law”

So, how do these growth trends compare to those for hardware size and speed? Won’t “Moore’s Law” just take care of that for us?

Definition:

Moore's Law is the empirical observation that the transistor density of integrated circuits, with respect to minimum component cost, doubles every 24 months. (Wikipedia)

It isn’t a law it’s an observation that has nicely fit semiconductor growth trends since the 1960s.
Moore’s “Law” – assumptions and constraints

- Applicable to high volume components - think PC’s, main (DRAM) memories, and disk drives
- Low volume applications can ride technology curve, not cost curve
- Critical router components don’t fit this model
- Yes, DRAM capacity grows 4x/3.3yrs (2.4x/2yrs)
- …speed increases only about 10%/yr (1.2x/2yrs)
- …and BGP convergence degrades at table growth rate/speed improvement
Off-chip SRAM

- Requires high-speed, high-capacity parts
- Driver was PC cache, now on-chip
- Most of market is cell-phones, for low-power small-capacity parts
- Big fast SRAMs, which are critical in forwarding path of certain big routers, are not volume parts; off the cost curve
- Similar story for TCAMs – specialized, low-volume components in some routing/switching systems
Forwarding engines

- Forwarding engines most sophisticated ASICs being built, second only to CPUs
- Currently one generation behind CPUs
- Already past knee on price/performance
- High performance requires bandwidth; favors on-chip SRAM
- Gains so far have leveraged technology; little gain to be had
- Technological leadership will be expensive
Chip costs

- Tapeout costs rising about 1.5x/2yrs ([Wikipedia](https://en.wikipedia.org/wiki/Tapeout))
- Chip development costs rising similarly
- Net per-chip costs rising about 1.5x/2yrs
- Progress faster than 1.3x/2yrs will require non-linear cost
- Does not include CapEx, OpEx from continual upgrades
Moore’s “Law” - Summary

• Constant convergence growth rate is about 1.2x/2yrs
• Constant cost growth rate is about 1.3x/2yrs
• Current growth is from 1.3x/2yrs – >2x/2yrs
• Without architectural or policy constraints, costs are potentially unbounded
• Even with constraints, SPs are doomed to continual upgrades, passed along to consumers
Hardware growth vs. routing state growth
So, what’s driving this problematic growth?

- In IPv4 and ipv6 use *addresses* both as session-layer *identifiers* and as routing *locators*

- This dual usage is problematic because:
 - Assignment to organizations is painful because use as *locator* constrains it to be topological ("provider-based") for routing to scale
 - Organizations would rather have *identifiers* so that they don’t have to renumber if they change providers or become multi-homed within the network topology

- This dual-use doesn’t scale for large numbers of “provider-independent” or multi-homed sites

- Perhaps a change to explicit use of *identifiers* and *locators* would offer scaling benefits… this general concept is termed the ID/LOC split
Digression: identifiers and locators

- Think of an endpoint *identifier* as the “name” of a device or protocol stack instance that is communicating over a network.
- In the real world, this is something like “Dave Meyer” - “who” you are.
- A “domain name” can be used as a human-readable way of referring to an *identifier*.
Desirable properties of endpoint-IDs

- **Persistence**: long-term binding to the thing that they name
 - These do not change during long-lived network sessions

- **Ease of administrative assignment**
 - Assigned to and by organizations
 - Hierarchy is along these lines (like DNS)

- **Portability**
 - IDs remain the same when an organization changes provider or otherwise moves to a different point in the network topology

- **Globally unique**
Locators – “where” you are in the network

- Think of the source and destination “addresses” used in routing and forwarding
- Real-world analogy is street address like 3700 Cisco Way, San Jose, CA, US or phone number (prior to mandated number portability) such as +1 408 526 7000
- Typically there is some hierarchical structure (analogous to number, street, city, state, country or NPA/NXX)
Desirable properties of locators

• Hierarchical assignment according to network topology ("isomorphic")

• Dynamic, transparent renumbering without disrupting network sessions

• Unique when fully-specified, but may be abstracted to reduce unwanted state
 • Variable-length addresses or less-specific prefixes can abstract/group together sets of related locators
 • Real-world analogy: don’t need to know exact street address in Australia to travel toward it from San Jose

• Possibly applied to traffic without end-system knowledge (effectively, like NAT but without breaking the sacred End-to-End principle)
Why should I care about this stuff?

- The scaling problem isn’t obvious now and won’t be until (and if) ipv6 becomes widely-deployed
 - Larger ipv6 address space could result in orders of magnitude more prefixes (depending on allocation policy, provider behavior, etc.)
 - NAT is effectively implementing id/locator split today; what happens if the ipv6 proponents’ dream of a “NAT-free” Internet is realized?
 - Scale of IP network is still relatively small
 - Re-creating the “routing swamp” with ipv6 would be...bad; it isn’t clear what anyone could do to save the Internet if that happens
- Sadly, this has been mostly ignored in the IETF for 10+ years
 - ipv6 designers punt ed this problem to the RIRs by mandating that all ipv6 address-assignments would be “PA”; reality is that all RIRs are revising assignment policies to allow “PI” for all
 - …and the concepts have been known for far longer… see “additional reading” section
Can ipv6 be fixed? (and what is GSE, anyway?)

- Can we keep ipv6 packet formats but implement the identifier/locator split?
- Mike O’Dell proposed this in 1997 with 8+8/GSE
 http://ietfreport.isoc.org/idref/draft-ietf-ipngwg-gseaddr
- Basic idea: separate 16-byte address into 8-byte EID and 8-byte “routing goop” (LOC)
 - Change TCP/UDP to only care about ID (requires incompatible change to tcp6/udp6)
 - Allow routing system to modify RG as needed, including on packets “in flight”, to keep locators isomorphic to network topology
GSE benefits

• Achieves goal of ID/LOC split while keeping most of ipv6 and (hopefully) without requiring a new database for id-to-locator mapping

• Allows for scalable multi-homing by allowing separate RG for each path to an end-system; unlike shim6, does not require transport-layer complexity to deal with multiple addresses

• Renumbering can be fast and transparent to hosts (including for long-lived sessions) with no need to detect failure of usable addresses
GSE issues

- Incompatible change needed to tcp6/udp6 (specifically, to only use 64 bits of address for TCP connections)
 - in 1997, no installed base and plenty of time for transition
 - may be more difficult today (but it will only get a lot worse…)

- Purists argue violation of end-to-end principle

- Perceived security weakness of trusting “naked” EID (Steve Bellovin says this is a non-issue)

- Mapping of EID to EID+RG may add complexity to DNS, depending on how it is implemented

- Scalable TE not in original design; will differ from IPv4 TE, may involve “NAT-like” RG re-write

- Currently not being pursued (expired draft)
GSE is only one approach

- GSE isn’t the only (or perhaps easiest) way to do this but it is a straightforward retro-fit to the existing protocols
- Other approaches include:
 - Full separation of id/loc (NIMROD…see additional reading section)
 - Tunnelling (such as IP mobility and/or MPLS)
 - Associating multiple addresses with connections (SCTP)
 - Adding hash-based identifiers (HIP)
- Each has pluses and minuses and would require major changes to protocol and application implementations and/or to operational practices
- More importantly, each of these is either not well enough developed (GSE, NIMROD) or positioned as a general-purpose, application-transparent retrofit to existing ipv6 (tunnelling, SCTP, HIP, NIMROD); more work is needed
What about shim6/multi6?

- Approx 3-year-old IETF effort to retro-fit an endpoint-id/locator split into the existing ipv6 spec
- Summary: end-systems are assigned an address (locator) for each connection they have to the network topology (each provider); one address is used as the id and isn’t expected to change during session lifetimes
- A “shim” layer hides locator/id split from transport (somewhat problematic as ipv6 embeds addresses in the transport headers)
- Complexity around locator pair selection, addition, removal, testing of liveness, etc… to avoid address changes being visible to TCP…all of this in hosts rather than routers
What about shim6/multi6? (continued)

• Some perceive as an optional, “bag on the side” rather than a part of the core architecture…

• Will shim6 solve your problems and help make ipv6 both scalable and deployable in your network?

• Feedback thus far: probably not (to be polite…)
 • SP objection: doesn’t allow site-level traffic-engineering in manner of IPv4; TE may be doable but will be very different and will add greater dependency on host implementations and administration
 • Hosting provider objection: requires too many addresses and too much state in web servers
 • End-users: still don’t get “provider-independent addresses” so still face renumbering pain

• Dependencies on end-hosts (vs. border routers with NAT or GSE) have implications for deployment, management, etc.
Concerns and questions

• Can vendors plan to be at least five years ahead of the curve for the foreseeable future?

• How do operator certification and deployment plans lengthen the amount of time required to be ahead of the curve?

• Do we really want to embark on a routing table growth / hardware size escalation race for the foreseeable future? Will it be cost effective?

• Is it possible that routing table growth could be so rapid that operators will be required to start a new round of upgrades prior to finishing the current round? (remember the 1990s?)
Conclusions and recommendations

• Projected growth trends of routing state will exceed the cost-effectiveness of hardware improvements

• Big implications for service provider expense, not only in $$$ but also in space, power, cooling, and equipment refresh cycles

• More profit for vendors in short-term (remember the 1990s?) but more pain for all in the long-term

• An Internet-wide replacement of IPv4 with ipv6 represents a unique opportunity to either continue current trends or to deploy something truly innovative and sustainable

• As currently specified, routing and addressing with ipv6 is much the same as IPv4, with similar properties and scaling characteristics; perhaps a new approach, based on identifier/locator split, would be a better path forward
What’s next?

• Is there a real problem here? Or just “chicken little”?
• Should we socialize this anywhere else?
• Is the Internet operations community interested in looking at this problem and working on a solution? Where could/should the work be done?
 • Recent IAB workshop was good – problem recognized
 • NANOG/RIPE/APRICOT?
 • ITU? YFRV? Research community? Other suggestions?
• Some discussion earlier this year at:
 architecture-discuss@ietf.org
 ppml@arin.net
• More discussion at: ipmh-interest@external.cisco.com
• Stay tuned… more to come
Recommended Reading

“The Long and Winding ROAD”, a brief history of Internet routing and address evolution,
http://rms46.vlsm.org/1/42.html

“Endpoints and Endpoint names: A Proposed Enhancement to the Internet Architecture”, J. Noel Chiappa, 1999,
http://users.exis.net/~jnc/tech/endpoints.txt

“On the Naming and Binding of Network Destinations”, J. Saltzer, August, 1993, published as RFC1498,
http://www.ietf.org/rfc/rfc1498.txt?number=1498

“2005 – A BGP Year in Review”, G. Huston, APRICOT 2006,
http://www.apnic.net/meetings/21/docs/sigs/routing/routing-pr...