

TD <>

DTS/TIPHON-03004 V1.2.0 (1998-06)

Telecommunications and Internet Protocol Harmonization Over Network (TIPHON);

Inter-domain pricing, authorisation, and usage exchange

�

Reference

DTS/TIPHON-03004

Keywords

Voice over IP, Gateway, Interoperability

ETSI Secretariat

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

X.400

c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr

http://www.etsi.fr

Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.�The copyright and the foregoing restrictions extend to reproduction in all media.

© European Telecommunications Standards Institute 1998.

All rights reserved.

�
Contents

� TOC \o �Intellectual Property Rights	� PAGEREF _Toc422793503 \h ��6�

Foreword	� PAGEREF _Toc422793504 \h ��6�

Introduction	� PAGEREF _Toc422793505 \h ��6�

1	Scope	� PAGEREF _Toc422793506 \h ��7�

2	References	� PAGEREF _Toc422793507 \h ��7�

2.1	Normative references	� PAGEREF _Toc422793508 \h ��7�

2.2	Informative references	� PAGEREF _Toc422793509 \h ��8�

3	Definitions, symbols and abbreviations	� PAGEREF _Toc422793510 \h ��8�

3.1	Definitions	� PAGEREF _Toc422793511 \h ��8�

3.2	Symbols	� PAGEREF _Toc422793512 \h ��8�

3.3	Abbreviations	� PAGEREF _Toc422793513 \h ��8�

4	Protocol Architecture	� PAGEREF _Toc422793514 \h ��9�

4.1.	Communication Protocols	� PAGEREF _Toc422793515 \h ��9�

4.1.1.	Secure Sockets Layer / Transport Layer Security	� PAGEREF _Toc422793516 \h ��9�

4.1.2.	Hypertext Transfer Protocol	� PAGEREF _Toc422793517 \h ��10�

4.2.	Message Format	� PAGEREF _Toc422793518 \h ��10�

4.2.1.	Multipurpose Internet Mail Extensions	� PAGEREF _Toc422793519 \h ��10�

4.2.2.	Extended Markup Language	� PAGEREF _Toc422793520 \h ��11�

4.2.3.	Secure MIME	� PAGEREF _Toc422793521 \h ��11�

5	Protocol Profiles	� PAGEREF _Toc422793522 \h ��11�

5.1.	Secure Sockets Layer / Transport Layer Security	� PAGEREF _Toc422793523 \h ��11�

5.1.1.	Protocol Version	� PAGEREF _Toc422793524 \h ��11�

5.1.2.	Client/Server Roles	� PAGEREF _Toc422793525 \h ��11�

5.1.3.	Client Authentication	� PAGEREF _Toc422793526 \h ��11�

5.1.4.	CipherSuites	� PAGEREF _Toc422793527 \h ��12�

5.2.	Hypertext Transfer Protocol	� PAGEREF _Toc422793528 \h ��12�

5.2.1.	Protocol Version	� PAGEREF _Toc422793529 \h ��12�

5.2.2.	Client/Server Roles	� PAGEREF _Toc422793530 \h ��12�

5.2.3.	TCP Port	� PAGEREF _Toc422793531 \h ��12�

5.2.4.	HTTP Methods	� PAGEREF _Toc422793532 \h ��12�

5.2.5.	Uniform Resource Identifier	� PAGEREF _Toc422793533 \h ��12�

5.2.6.	HTTP Headers	� PAGEREF _Toc422793534 \h ��12�

5.2.7.	HTTP Entity Body	� PAGEREF _Toc422793535 \h ��12�

6	XML Content	� PAGEREF _Toc422793536 \h ��13�

6.1.	Document Structure	� PAGEREF _Toc422793537 \h ��13�

6.1.1.	Multipurpose Internet Mail Extensions Conformance	� PAGEREF _Toc422793538 \h ��13�

6.1.1.1.	Content-Type	� PAGEREF _Toc422793539 \h ��13�

6.1.1.2.	Content-Length	� PAGEREF _Toc422793540 \h ��13�

6.1.1.3.	Transfer Encoding	� PAGEREF _Toc422793541 \h ��13�

6.1.2.	XML Conformance	� PAGEREF _Toc422793542 \h ��13�

6.1.2.1.	XML Version	� PAGEREF _Toc422793543 \h ��13�

6.1.2.2.	Well-Formed Constraint	� PAGEREF _Toc422793544 \h ��13�

6.1.2.3.	Character Encoding	� PAGEREF _Toc422793545 \h ��14�

6.1.3.	XML Framework	� PAGEREF _Toc422793546 \h ��14�

6.1.3.1.	Root Entity	� PAGEREF _Toc422793547 \h ��14�

6.1.3.2.	Identifier Attribute	� PAGEREF _Toc422793548 \h ��14�

6.1.3.3.	Critical Attribute	� PAGEREF _Toc422793549 \h ��14�

6.1.3.4.	Extensions	� PAGEREF _Toc422793550 \h ��15�

6.2.	Components	� PAGEREF _Toc422793551 \h ��15�

6.2.1.	PricingIndication	� PAGEREF _Toc422793552 \h ��15�

6.2.2.	PricingConfirmation	� PAGEREF _Toc422793553 \h ��16�

6.2.3.	AuthorisationRequest	� PAGEREF _Toc422793554 \h ��16�

6.2.4.	AuthorisationResponse	� PAGEREF _Toc422793555 \h ��16�

6.2.5.	AuthorisationIndication	� PAGEREF _Toc422793556 \h ��17�

6.2.6.	AuthorisationConfirmation	� PAGEREF _Toc422793557 \h ��17�

6.2.7.	UsageIndication	� PAGEREF _Toc422793558 \h ��17�

6.2.8.	UsageConfirmation	� PAGEREF _Toc422793559 \h ��17�

6.2.10.	ReauthorisationRequest	� PAGEREF _Toc422793560 \h ��17�

6.2.9.	ReauthorisationResponse	� PAGEREF _Toc422793561 \h ��18�

6.3.	Elements	� PAGEREF _Toc422793562 \h ��18�

6.3.1.	Amount	� PAGEREF _Toc422793563 \h ��18�

6.3.2.	AuthorityURL	� PAGEREF _Toc422793564 \h ��18�

6.3.3.	CallId	� PAGEREF _Toc422793565 \h ��18�

6.3.4.	Code	� PAGEREF _Toc422793566 \h ��19�

6.3.5.	Currency	� PAGEREF _Toc422793567 \h ��19�

6.3.6.	Description	� PAGEREF _Toc422793568 \h ��20�

6.3.7.	Destination	� PAGEREF _Toc422793569 \h ��20�

6.3.8.	DestinationAlternate	� PAGEREF _Toc422793570 \h ��20�

6.3.9.	DestinationInfo	� PAGEREF _Toc422793571 \h ��20�

6.3.10.	DestinationSignalAddress	� PAGEREF _Toc422793572 \h ��21�

6.3.11.	Increment	� PAGEREF _Toc422793573 \h ��21�

6.3.12.	MaximumDestinations	� PAGEREF _Toc422793574 \h ��21�

6.3.13.	Service	� PAGEREF _Toc422793575 \h ��21�

6.3.14.	SourceAlternate	� PAGEREF _Toc422793576 \h ��21�

6.3.15.	SourceInfo	� PAGEREF _Toc422793577 \h ��22�

6.3.16.	SourceSignalAddress	� PAGEREF _Toc422793578 \h ��22�

6.3.17.	Status	� PAGEREF _Toc422793579 \h ��22�

6.3.18.	Timestamp	� PAGEREF _Toc422793580 \h ��22�

6.3.19.	Token	� PAGEREF _Toc422793581 \h ��23�

6.3.20.	TransactionId	� PAGEREF _Toc422793582 \h ��23�

6.3.21.	Unit	� PAGEREF _Toc422793583 \h ��23�

6.3.22.	UsageDetail	� PAGEREF _Toc422793584 \h ��23�

6.3.23.	ValidAfter	� PAGEREF _Toc422793585 \h ��24�

6.3.24.	ValidUntil	� PAGEREF _Toc422793586 \h ��24�

7	Signature Format	� PAGEREF _Toc422793587 \h ��24�

7.1.	Canonical Form	� PAGEREF _Toc422793588 \h ��24�

7.2.	Signature Algorithms	� PAGEREF _Toc422793589 \h ��25�

7.3.	Transfer Encoding	� PAGEREF _Toc422793590 \h ��25�

8	Protocol Behaviour	� PAGEREF _Toc422793591 \h ��25�

8.1.	Message Sequencing	� PAGEREF _Toc422793592 \h ��25�

8.2.	Exception Handling	� PAGEREF _Toc422793593 \h ��26�

8.2.1.	Transmission Control Protocol	� PAGEREF _Toc422793594 \h ��26�

8.3.2.	Secure Socket Layer / Transport Layer Security	� PAGEREF _Toc422793595 \h ��26�

8.3.3.	Hypertext Transfer Protocol	� PAGEREF _Toc422793596 \h ��26�

8.3.4.	Status Element	� PAGEREF _Toc422793597 \h ��26�

Annex A (normative): Document Type Definition	� PAGEREF _Toc422793598 \h ��27�

Annex B (normative): Cryptographic Algorithms	� PAGEREF _Toc422793599 \h ��28�

B.1.	SSL/TLS CipherSuites	� PAGEREF _Toc422793600 \h ��28�

B.2.	S/MIME Signatures	� PAGEREF _Toc422793601 \h ��28�

B.3.	Tokens	� PAGEREF _Toc422793602 \h ��28�

Annex C (normative): Enhanced Usage Reports	� PAGEREF _Toc422793603 \h ��29�

Annex D (informative): Token Formats	� PAGEREF _Toc422793604 \h ��30�

D.1.	Cryptographic Encoding	� PAGEREF _Toc422793605 \h ��30�

D.2.	Token Content	� PAGEREF _Toc422793606 \h ��30�

D.3.	Token Carriage	� PAGEREF _Toc422793607 \h ��31�

Annex E (informative): Example Messages	� PAGEREF _Toc422793608 \h ��32�

E.1.	Pricing Exchange	� PAGEREF _Toc422793609 \h ��32�

E.2.	Authorisation Exchange	� PAGEREF _Toc422793610 \h ��34�

E.3.	Usage Exchange	� PAGEREF _Toc422793611 \h ��36�

�

�
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETR 314: Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards, which is available free of charge from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.fr/ipr).

Pursuant to the ETSI Interim IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETR 314 (or the updates on http://www.etsi.fr/ipr) which are, or may become, essential to the present document.

This clause is always the first unnumbered clause.

If you have received any information concerning an essential IPR related to this document please indicate the details here.

Foreword

The contents of this document are the result of contributions and discussions in Working Group 3. The structure of the document and overall principles of the standard were agreed upon, but the details described in the text should be seen as a draft version for further study. The complete text is not yet approved.

This clause is always the second unnumbered clause.

To be drafted by the ETSI secretariat.

Introduction

This clause is optional. If it exists, it is always the third unnumbered clause.

�
1	Scope

Should start:

This document specifies a set of protocols and associated profiles to permit the exchange of inter-domain pricing, authorisation, and settlement information between internet telephony operators. The protocols specified fulfil the essential requirements of such services, by providing appropriate functionality between multiple administrative domains in a secure manner. The specification also provides for non-standard extensions that permit co-operating parties to augment or replace the basic functionality.

The specification relies on the Hypertext Transfer Protocol (HTTP) to convey information between the parties, as that protocol is readily available and widely supported by network devices, including firewalls and proxy servers. As security is essential for this application, the specification requires use of the Transport Layer Security (TLS) or Secure Sockets Layer (SSL) protocols for authentication and/or privacy. Messages themselves conform to the Multipurpose Internet Mail Extensions (MIME) format and contain an Extended Markup Language (XML) document and a digital signature.

The following sections describe the protocol architecture and profiles and then detail the message structure, XML content, and digital signature format. The document also includes three informative annexes. The first shows example messages, and the second contains a formal document type definition (DTD) for the XML content, and the third documents token formats.

This document specifies a set of protocols and associated profiles to permit the exchange of inter-domain pricing, authorisation, and settlement information between internet telephony operators. The protocols specified fulfil the essential requirements of such services, by providing appropriate functionality between multiple administrative domains in a secure manner. The specification also provides for non-standard extensions that permit co-operating parties to augment or replace the basic functionality.

The Scope shall not contain requirements.

2	References

2.1	Normative references

[� SEQ ref * MERGEFORMAT �1�]	American National Standards Institute. Accredited Standards Committee X9 Working Draft: American National Standard X9.42-1993: Public Key Cryptography for the Financial Services Industry: Management of Symmetric Algorithm Keys Using Diffie-Hellman. American Bankers Association, September 21, 1994.

[� SEQ ref * MERGEFORMAT �2�]	Berners Lee, T., R. Fielding, and H. Frystyk. Hypertext Transfer Protocol — HTTP/1.0 [RFC 1945]. May 1996.

[� SEQ ref * MERGEFORMAT �3�]	Bray, Tim, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language (XML) 1.0. World Wide Web Consortium (W3C): 10 February 1998. [http://www.w3.org/TR/REC-xml].

[� SEQ ref * MERGEFORMAT �4�]	Fielding, R., J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1 [RFC 2068]. January 1997.

[� SEQ ref * MERGEFORMAT �5�]	Freed, N. and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies [RFC 2045]. November 1996.

[� SEQ ref * MERGEFORMAT �6�]	Freier, Alan O., Philip Karlton, and Paul C. Kocher. The SSL Protocol Version 3.0 [http://www.netscape.com/eng/ssl3/ssl-toc.html]. Netscape Communications Corporation: March 1996. As amended by SSL 3.0 Errata of August 26, 1996 [http://www.netscape.com/eng/ssl3/ssl-errata.html].

[� SEQ ref * MERGEFORMAT �7�]	International Organisation for Standardisation. Codes for the representation of currencies and funds. ISO 4217:1995.

[� SEQ ref * MERGEFORMAT �8�]	International Organisation for Standardisation. Data elements and interchange formats — Information interchange — Representation of dates and times. ISO 8601:1988.

[� SEQ ref * MERGEFORMAT �9�]	International Telecommunication Union. Call Signaling Protocols and Media Stream Packetization for Packet Based Multimedia Communications Systems. ITU-T Recommendation H.225.0-1998.

[� SEQ ref * MERGEFORMAT �10�]	International Telecommunication Union. Control Protocol For Multimedia Communication. ITU-T Recommendation H.245-1998.

[� SEQ ref * MERGEFORMAT �11�]	International Telecommunications Union. Information technology - ASN.1 encoding rules: Specification of Packed Encoding Rules (PER) [Recommendation X.691]. April 1995.

[� SEQ ref * MERGEFORMAT �12�]	International Telecommunication Union. Packet Based Multimedia Communications Systems. ITU-T Recommendation H.323-1998.

[� SEQ ref * MERGEFORMAT �13�]	International Telecommunication Union. Security and Encryption for H Series (H.323 and other H.245 based) Multimedia Terminals. ITU-T Recommendation H.235-1998.

[� SEQ ref * MERGEFORMAT �14�]	National Institute of Standards and Technology, U.S. Department of Commerce. Data Encryption Standard [NIST FIPS PUB 46-1]. January 1988.

[� SEQ ref * MERGEFORMAT �15�]	National Institute of Standards and Technology, U.S. Department of Commerce. Digital Signature Standard [NIST FIPS PUB 186]. 18 May 1994.

[� SEQ ref * MERGEFORMAT �16�]	National Institute of Standards and Technology, U.S. Department of Commerce. Secure Hash Standard [NIST FIPS PUB 180-1]. 31 May 1994.

[� SEQ ref * MERGEFORMAT �17�]	Dusse, S., P. Hoffman, B. Ramsdell, L. Lundblade, and L. Repka. S/MIME Version 2 Message Specification [RFC 2311]. March 1998.

[� SEQ ref * MERGEFORMAT �18�]	Rivest, R.. A Description of the RC2® Encryption Algorithm [RFC 2268]. March 1998.

[� SEQ ref * MERGEFORMAT �19�]	Rivest, R.. The MD5 Message-Digest Algorithm [RFC 1321]. April 1992.

[� SEQ ref * MERGEFORMAT �20�]	RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

[� SEQ ref * MERGEFORMAT �21�]	RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993.

[� SEQ ref * MERGEFORMAT �22�]	The Unicode Consortium. The Unicode Standard. Version 2.0.

2.2	Informative references

[� SEQ ref * MERGEFORMAT �23�]	Dierks, Tim and Christopher Allen. The TLS Protocol Version 1.0. Work in progress.

[� SEQ ref * MERGEFORMAT �24�]	International Telecommunication Union. Numbering Plan for the ISDN Era. [ITU-T Recommendation E.164].

[� SEQ ref * MERGEFORMAT �25�]	The Open Trading Protocol Consortium. Internet Open Trading Protocol Part 2: Specification. Version 0.9, 12 January 1998.

The above heading is optional - if a need to sub-divide the references clause is felt to be appropriate.

3	Definitions, symbols and abbreviations

Delete from the above heading those words which are not applicable.

3.1	Definitions

Clause numbering depends on applicability. Defined terms should be ordered alphabetically.

For the purposes of the present document, the following definitions apply:

3.2	Symbols

Clause numbering depends on applicability. Symbols should be ordered alphabetically.

For the purposes of the present document, the following symbols apply:

3.3	Abbreviations

Clause numbering depends on applicability. Abbreviations should be ordered alphabetically.

For the purposes of the present document, the following abbreviations apply:

DER	Distinguished Encoding Rules

DES	Data Encryption Standard

DH	Diffie-Hellman (key exchange)

DSA	Digital Signature Algorithm

DTD	Document Type Definition

HTML	Hypertext Markup Language

HTTP	Hypertext Transfer Protocol

IETF	Internet Engineering Task Force

IP	Internet Protocol

IPSEC	Internet Protocol Security

MD5	Message Digest 5

MIME	Multipurpose Internet Mail Extensions

PIN	Personal Identification Number (e.g. for automated teller machines)

PKCS	Public Key Cryptography Standard

RAS	Registration Admission and Status

RC4	Rivest Cipher 4

RSA	Rivest Shamir Aldeman

SHA	Secure Hash Algorithm

S/MIME	Secure Multipurpose Internet Mail Extensions

SSL	Secure Socket Layer

TCP	Transmission Control Protocol

TLS	Transport Layer Security

URL	Uniform Resource Locator

UTC	Co-ordinated Universal Time

UTF	Universal Text Format

XML	Extended Markup Language

4	Protocol Architecture

This section introduces the protocol architecture for this specification. It identifies the major protocols used by communicating parties, and it outlines their relationship to each other. The section also describes the overall format of messages exchanged by the protocols. The intent of this section is to outline the framework for the standard’s protocols and message formats; later sections detail specific profiles for these protocols and the specific message content.

4.1.	Communication Protocols

As Figure 1 shows, conforming systems use a combination of the Hypertext Transfer Protocol (HTTP), and either the Secure Sockets Layer (SSL) or Transport Layer Security (TLS) to transfer pricing, authorisation, and usage information. As the figure indicates, these protocols are layered on top of the Transmission Control Protocol (TCP) for communication across Internet Protocol (IP) networks.

�EMBED MSDraw.Drawing.8.1���

Figure 1 Protocol Architecture for Pricing, Authorisation, and Usage Exchange.

4.1.1.	Secure Sockets Layer / Transport Layer Security

The Secure Sockets Layer and Transport Layer Security protocols add authentication and privacy to TCP connections. SSL is the standard protocol for securing web browsing. As such, it is widely deployed on the Internet and is distinguished by considerable operational experience. SSL also enjoys near universal support from firewalls and proxy servers. TLS is an updated version of SSL currently being developed within the Internet Engineering Task Force (IETF). TLS is heavily based on SSL and, although it is not strictly backwards compatible with SSL, systems supporting both TLS and SSL can automatically recognise either protocol and adapt as required to ensure interoperability.

Note:	As other industry standard mechanisms for IP-based security (for example, IPSEC) reach maturity, later revisions to this specification may incorporate support for those mechanisms in addition to SSL/TLS. Such revisions to the security mechanisms may also permit the use of an unreliable transport such as UDP.

4.1.2.	Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is the standard protocol for web-based communications. HTTP has been adopted for a wide variety of purposes including proxy services, bi-directional content delivery, database access, network management, and metering information. HTTP is by far the most widely used application protocol on the Internet, and is supported by all significant firewalls and proxy servers.

4.2.	Message Format

To illustrate the overall format of this standard’s messages, Figure 2 shows an example message. As the figure indicates, the content within the HTTP message is formatted according to the standard for Multipurpose Internet Mail Extensions (MIME). The individual components of the message are a document conforming to the Extended Markup Language (XML) specification and a Secure MIME (S/MIME) digital signature.

HTTP Header�
POST scripts/settlements HTTP/1.0

content-type: multipart/signed;

 protocol="application/pkcs7-signature";

 micalg=sha1;

 boundary=bar

content-length: 844

�
�
Message Content�
---bar

Content-Type: text/plain

Content-Length: 524

<?XML version=1.0?>

<Message messageId="123454321">

 <AuthorisationRequest componentId="9876567890">

 <Timestamp>

 1998-04-24T17:03:00Z

 </Timestamp>

 <CallId>

 1234432198766789

 </CallId>

 <SourceInfo type="e164">

 81458811202

 </SourceInfo>

 <DestinationInfo type="e164">

 4766841360

 </DestinationInfo>

 <Service/>

 <MaximumDestinations>

 5

 </MaximumDestinations>

 </AuthorisationRequest>

</Message>

�
�
Digital Signature�
--bar

Content-Type: application/pkcs7-signature

Content-Length: 191

GhyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIG

fHfYT64VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756t

bB9HGTrfvbnjn8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfH

fYT6ghyHhHUujpfyF47GhIGfHfYT64VQbnj756

--bar--�
�
Figure 2 Example Message Showing Overall Format.

4.2.1.	Multipurpose Internet Mail Extensions

All messages exchanged as part of this standard conform to the Multipurpose Internet Mail Extensions (MIME) specification. The MIME specification defines mechanisms to combine individual components of arbitrary format (e.g. text, graphics, audio information, binary data, etc.) into a single message. Originally designed for electronic mail, the MIME specification has been adapted for a variety of communication applications, including web browsing. MIME format is widely supported by existing firewalls and proxy servers.

4.2.2.	Extended Markup Language

The first part of each MIME message is a document conforming to the Extended Markup Language (XML) standard. As an extension of the widely deployed Hypertext Markup Language (HTML), XML can be readily parsed by firewalls and proxy servers. Unlike HTML, though, XML is readily extensible and can easily support rich, structured data such as pricing and usage information.

4.2.3.	Secure MIME

The second part of each MIME message is a digital signature conforming to the Secure Multipurpose Internet Mail Extensions (S/MIME). S/MIME format includes support for multiple digest and signing algorithms and for variable cryptographic strength (e.g. key lengths). S/MIME format is also self-identifying with respect to these parameters, so that a recipient can derive the necessary information for verifying the signature from the signature data. Note: this does not imply that the recipient is guaranteed to be able to verify the signature, only that the recipient can tell what it needs to perform the verification. (So that, for example, the recipient may identify a signing algorithm that it does not support.)

5	Protocol Profiles

This section specifies the profiles for the protocols required by this standard. It identifies the normative references to those protocols, as well as the specific versions, options, and extensions that this standard requires. The specific protocols described in this section are the Secure Sockets Layer (SSL) and Transport Layer (TLS) protocols and the Hypertext Transfer Protocol (HTTP). The section concludes by specifying the overall format of the messages conveyed through these protocols. The following sections describe the message content in detail.

5.1.	Secure Sockets Layer / Transport Layer Security

If secure authentication of the server is desired, or if confidentiality of the information exchanged between client and server is desired, the communication between the devices shall be secured using the Secure Sockets Layer (SSL) or Transport Layer Security (TLS) as described in this section.

5.1.1.	Protocol Version

Conforming systems shall use version 3.0 of the Secure Sockets Layer protocol [� SEQ ref ref_SSL * MERGEFORMAT �6�] to secure their communications. Systems may optionally use version 1.0 of the Transport Layer Security protocol [� SEQ ref ref_TLS * MERGEFORMAT �23�] or later versions, provided those versions are capable of automatic recognition and fallback to SSL version 3.0, and provided the system supports that operation.

5.1.2.	Client/Server Roles

When initiating a communication as part of this standard, the initiating system shall act as an SSL/TLS client while the responding system shall act as an SSL/TLS server.

5.1.3.	Client Authentication

As SSL/TLS client authentication is ineffective in a network environment in which the communicating parties are separated by proxy servers, and since the S/MIME digital signature can provide client authentication, implementations conforming to this standard should not use SSL/TLS client authentication.

5.1.4.	CipherSuites

Annex B documents the cryptographic algorithms required and recommended by this specification, including SSL/TLS ciphersuites.

5.2.	Hypertext Transfer Protocol

5.2.1.	Protocol Version

Conforming systems shall use version 1.0 of the Hypertext Transfer Protocol [� SEQ ref ref_HTTP * MERGEFORMAT �2�] as the base transfer protocol for their messages. Systems may optionally use HTTP version 1.1 [� SEQ ref ref_HTTP11 * MERGEFORMAT �4�], but shall be capable of automatic fallback to version 1.0 operation should their peer indicate support for version 1.0 only.

5.2.2.	Client/Server Roles

When initiating a communication as part of this standard, the initiating system shall act as an HTTP client, while the responding system shall act as an HTTP server.

5.2.3.	TCP Port

In the absence of a prior agreement between communicating parties, clients should send their requests to TCP port 443 if SSL or TLS is being used, and to TCP port 80 otherwise. Communicating parties may agree to communicate via other TCP ports.

5.2.4.	HTTP Methods

Requests from clients to a server shall be in the form of HTTP request messages using the POST method. Responses from a server shall consist of valid HTTP response messages.

5.2.5.	Uniform Resource Identifier

The uniform resource identifier included in the POST request is not specified in this standard, but rather is subject to prior agreement between the communicating parties.

5.2.6.	HTTP Headers

The HTTP header of the POST method shall minimally consist of the request-line. All request-header and general-header fields are optional. If present, they shall conform to the HTTP standard [� SEQ ref ref_HTTP * MERGEFORMAT �2�]. The status-line for the HTTP responses shall be present in those responses, and it shall conform to the HTTP standard, including status-code and reason-phrase values. All response-header and general-header fields are optional. If present, they shall conform to the HTTP standard.

5.2.7.	HTTP Entity Body

Each message (i.e. HTTP entity body) conveyed as part of this specification shall conform to the Multipurpose Internet Mail Extensions standard [� seq ref ref_MIME * MERGEFORMAT �5�], and shall consist of exactly two parts, an Extended Markup Language document and a Secure Multipurpose Internet Mail Extensions digital signature, as specified in the following two sections. The highest level structure for each message shall conform to the multipart/signed syntax defined in S/MIME [� seq ref ref_SMIME * MERGEFORMAT �17�]. The message’s media type shall be "multipart/signed" with appropriate parameters (e.g. protocol of "application/pkcs7-signature" and micalg of "sha1.") The entity shall indicate the correct content-length value, as defined in the HTTP standard [� seq ref ref_HTTP * MERGEFORMAT �2�].

6	XML Content

This section specifies the actual message format used to exchange pricing, authentication and authorisation, and usage information. It outlines the overall XML document structure, lists the individual XML elements, and describes how those elements are combined into exchanges.

6.1.	Document Structure

6.1.1.	Multipurpose Internet Mail Extensions Conformance

As the first part of a Multipurpose Internet Mail Extensions (MIME) message, each message content shall conform to the MIME standard [� seq ref ref_MIME * MERGEFORMAT �5�] as indicated below.

6.1.1.1.	Content-Type

The message’s content-type shall be designated text/plain.

Note:	It is anticipated that the Internet Engineering Task Force (IETF) will eventually define a MIME content-type for XML documents (e.g. text/xml). When such a definition is available, subsequent revisions of this standard may specify the use of that content-type instead of text/plain.

6.1.1.2.	Content-Length

All messages shall indicate the correct content-length value as defined in the MIME standard.

6.1.1.3.	Transfer Encoding

As XML documents can be carried within the HTTP protocol in their native format, no transfer encoding (e.g. quoted-printable or base-64) shall be used. Note: Since XML content is carried in its native encoding, that encoding will not conform to the recommendations for the text/plain content-type. In particular, the XML encoding specifies the use of a single line-feed character (#xA) to indicate line ending rather than the return/line-feed pair. Although not the default encoding for text/plain, such an encoding does not violate the MIME standard.

6.1.2.	XML Conformance

The actual message content itself shall conform to the XML standard [� SEQ ref ref_XML * MERGEFORMAT �3�]. As part of that conformance, systems shall follow the well-formedness and character encoding requirements as follows.

6.1.2.1.	XML Version

Message content shall conform to version 1.0 of the XML standard, and shall indicate that version with the required XML prologue of <?XML version="1.0">.

6.1.2.2.	Well-Formed Constraint

All messages shall be well-formed XML documents, as defined in the [� SEQ ref ref_XML * MERGEFORMAT �3�] standard. Messages may be valid XML documents as well, by referencing the appropriate XML document type definitions (DTDs). Strict validity (as defined by [� seq ref ref_XML * MERGEFORMAT �3�]) is not required, however.

Note:	The terms "well-formed" and "valid" have specific meanings with the XML standard, and are used to indicate specific degrees of conformance to the standard.

6.1.2.3.	Character Encoding

Messages may use any character set permitted by the XML standard. As specified in that standard, however, all implementations shall be capable of generating and interpreting UTF-8 and UTF-16 encodings. In the absence of explicit knowledge that the receiving system can support other character encodings, sends shall use UTF-8 or UTF-16 encoding [� seq ref ref_UTF * MERGEFORMAT �22�].

6.1.3.	XML Framework

All messages shall conform to the overall framework illustrated in Figure 3. As the figure shows, messages consist of a single root entity, which contains one or more components, each of which consists in turn of one or more elements. These elements may include XML attributes.

�

Figure 3 Overall XML Framework.

6.1.3.1.	Root Entity

<!DOCTYPE Message [

<!ELEMENT Message ((PricingIndication | PricingConfirmation | AuthorisationRequest |

 AuthorisationResponse | AuthorisationIndication | AuthorisationConfirmation | UsageIndication |

 UsageConfirmation | ReauthorisationRequest | ReauthorisationResponse)+) >

<!ATTLIST Message messageId #REQUIRED >

...

]>

The root entity for each message shall be a Message element. It shall contain the components documented above, as well as a unique identifier attribute.

6.1.3.2.	Identifier Attribute

Each message and each component within a message shall include a unique identifier for that element. The system that initiates communication (through either a request or an indication) shall ensure that the identifier is unique. The system that replies (through either a response or a confirmation) shall use the identifier value to associate messages and components in its response or confirmation with the corresponding elements in the request or indication. The identifier attribute consists of an arbitrary character string, and is indicated by the attribute names messageId or componentId, as appropriate.

6.1.3.3.	Critical Attribute

All XML elements shall include a special attribute with the name critical that takes values of "True" or "False". This attribute indicates whether or not processing of the message can safely proceed if the particular element is not supported by the receiver.

If a system receives a message containing a critical element that it does not support, that system shall not accept or process the message.

 If the critical attribute is omitted from an element (and its parents), that element shall be treated as if the critical attribute was present with the value "True".

The value of the critical attribute (whether explicit or implied) for an element shall apply to all subelements of the element unless a subelement explicitly indicates otherwise.

6.1.3.4.	Extensions

Organisations may define additional elements components beyond those documented in this standard. To ensure that no two organisations use the same named element, all private extensions shall have, as a prefix to their name, an officially registered Internet domain name belonging to the defining party. That domain name may be separated from the element name by a colon. If, for example, the organisation that owns the Internet domain name acme.com wishes to add an element named PrivateOption, the tags delineating that element will be <acme.com:PrivateOption> and </acme.com:PrivateOption>. As noted above, the critical attribute may be used to indicate to a recipient whether or not it can safely ignore a private extension that it does not understand or support.

6.2.	Components

Components are the main elements within the each message. The <Message> element shall contain at least one and may contain more than one component. The components defined in this revision of the standard include pairs to effect pricing exchange (PricingIndication and PricingConfirmation), obtain authorisation (AuthorisationRequest and AuthorisationResponse), verify authorisation (AuthorisationIndication and AuthorisationConfirmation), refresh authorisation (ReauthorisationRequest and ReauthorisationResponse) and report usage (UsageIndication and UsageConfirmation).

6.2.1.	PricingIndication

<!ELEMENT PricingIndication (Timestamp, SourceInfo, DestinationInfo, Currency, Amount, Increment,

 Unit, Service, ValidAfter, ValidUntil) >

<!ATTLIST PricingIndication componentId #REQUIRED >

A PricingIndication component identifies the price for a particular service. It is composed of several elements, as indicated above.

For example, the following XML content states that the cost of basic telephone calls from the United States (country code 1) to France (country code 33) is US$ 0.50 per minute, effective immediately and indefinitely.

	<PricingIndication componentId="1234567890">

	 <Timestamp>

 	 1997-05-02T19:03:00Z

	 </Timestamp>

 	<SourceInfo type="e164prefix">

 	1

	 </SourceInfo>

 	<DestinationInfo type="e164prefix">

 	33

	 </DestinationInfo>

 	<Currency>

 	USD

	 </Currency>

 	<Amount>

 	0.5

	 </Amount>

 	<Increment>

 	60

	 </Increment>

 	<Unit>

 	s

	 </Unit>

 	<Service/>

	 <ValidAfter/>

 	<ValidUntil/>

	</PricingIndication>

6.2.2.	PricingConfirmation

<!ELEMENT PricingConfirmation (Timestamp, Status) >

<!ATTLIST PricingConfirmation componentId #REQUIRED >

A PricingConfirmation component indicates acceptance or rejection of the corresponding PricingIndication. The componentId attribute associates the confirmation with the indication. The only elements within the PricingConfirmation are the Timestamp and Status elements.

6.2.3.	AuthorisationRequest

<!ELEMENT AuthorisationRequest (Timestamp, CallId*, SourceInfo, SourceAlternate*,

 DestinationInfo, DestinationAlternate*, Service, MaximumDestinations) >

<!ATTLIST AuthorisationRequest componentId #REQUIRED >

An AuthorisationRequest asks for authorisation to use resources. In the context of basic Internet telephony service, it asks for authorisation to complete a phone call. The call, for example, may be identified by E.164 numbers [� seq ref ref_E164 * MERGEFORMAT �24�] in the SourceInfo and DestinationInfo elements. The requesting system may leave the choice of peer endpoints up to the authorising server, or it may specify the peer endpoint itself in a DestinationAlternate element.

The client may provide one or more CallId elements in the request. A single CallId element implies that the client wishes to use that call identifier for all possible destinations returned in the AuthorisationResponse. Multiple CallId elements imply that the client wishes each potential destination to have its own call identifier. If the client wishes to specify multiple call identifiers, the number of CallId elements shall be equal to the value of the MaximumDestinations element.

Note 1:	Although the elements of the AuthorisationRequest are similar to information elements within H.323 [� SEQ ref ref_H323 * MERGEFORMAT �12�] Registration Admission and Status (RAS) messages, this specification is not intended as a replacement for RAS. Instead, it is to be used where RAS is inappropriate, such as, for example, the bulk transfer of a month’s worth of authorisation tokens.

Note 2: 	This standard permits either party in an authorisation exchange to determine the call routing information (e.g. identifying the peer endpoint for the call). If the client wishes to explicitly specify call routing, it does so by including one or more DestinationAlternate elements (e.g. of type "transport" containing the IP address and port number of the peer endpoint) in the AuthorisationRequest. If the server is performing call routing, it returns the information in the AuthorisationResponse. The DestinationAlternate elements are advisory during the request. The server should attempt to use one of the endpoints specified, but it is free to substitute a different set of endpoints if it is unable to settle the call using those specified.

Note 3:	There are actually three separate authentication/authorisation processes that are involved in the authorisation exchange. As a point of clarification, the three processes rely on the following mechanisms:

The client authenticates the authorisation server as part of the SSL/TLS handshake.

The authorisation server authenticates the client by validating the digital signature of the request.

The authorisation server may provide, as part of the AuthorisationResponse, a token which will authorise the client to a peer endpoint or gatekeeper.

6.2.4.	AuthorisationResponse

<!ELEMENT AuthorisationResponse (Timestamp, Status, TransactionId, Destination*) >

<!ATTLIST AuthorisationResponse componentId #REQUIRED >

An AuthorisationResponse component returns authorisation information corresponding to an AuthorisationRequest. It includes a Timestamp, a Status element, a TransactionId, and zero or more Destination elements. The response includes a componentId attribute to associate it with the appropriate AuthorisationRequest.

Note:	If a client has expressed its own call routing preferences in the AuthorisationResponse (e.g. with DestinationAlternate elements of type transport), then the server should make every attempt to honour those preferences by returning appropriate Destination elements. The server may also include alternative destinations in its response.

6.2.5.	AuthorisationIndication

<!ELEMENT AuthorisationIndication (Timestamp, CallId, SourceInfo, SourceAlternate*,

 DestinationInfo, DestinationAlternate*, Service, Token*) >

<!ATTLIST AuthorisationIndication componentId #REQUIRED >

An AuthorisationIndication asks for verification of previously issued authorisation, typically by asking for verification of an authorisation token. Because tokens may be opaque to the terminating endpoint, that endpoint may not be able to determine the originator of a particular token. It is therefore acceptable to pass an entire sequence of tokens from a setup message in this component, and it is acceptable to send simultaneous AuthorisationIndication messages to multiple servers. The server must be capable of recognising authorisation tokens in addition to validating them.

Note: 	Even though this specification defines messages for validating authorisation tokens, it does not require their use. In particular, some tokens may be constructed so that they can be completely verified in the peer system (e.g. through the use of digital signatures).

6.2.6.	AuthorisationConfirmation

<!ELEMENT AuthorisationConfirmation (Timestamp, Status, ValidAfter, ValidUntil) >

<!ATTLIST AuthorisationConfirmation componentId #REQUIRED >

An AuthorisationConfirmation component indicates whether or not an authorisation is valid. It includes a Timestamp, a Status element and validation time limits. The confirmation also includes a componentId attribute to associate it with the appropriate AuthorisationIndication.

6.2.7.	UsageIndication

<!ELEMENT UsageIndication (Timestamp, TransactionId, CallId, SourceInfo, SourceAlternate*,� DestinationInfo, DestinationAlternate*, UsageDetail*) >

<!ATTLIST UsageIndication componentId #REQUIRED >

The UsageIndication component reports resource usage. In the context of basic Internet telephony service, this is typically call duration.

6.2.8.	UsageConfirmation

<!ELEMENT UsageConfirmation (Timestamp, Status) >

<!ATTLIST UsageConfirmation componentId #REQUIRED >

A UsageConfirmation component indicates acceptance or rejection of the corresponding UsageIndication. The componentId attribute associates the confirmation with the indication. The only elements within the UsageConfirmation are the Timestamp and Status elements.

6.2.10.	ReauthorisationRequest

<!ELEMENT ReauthorisationRequest (Timestamp, CallId, SourceInfo?, SourceAlternate*,

 DestinationInfo?, DestinationAlternate*, TransactionId, UsageDetail*, Token*) >

<!ATTLIST ReauthorisationRequest componentId #REQUIRED >

A ReauthorisationRequest component requests a reauthorisation of a previously authorised service. A client may use this message, for example, if a previous authorisation has expired.

6.2.9.	ReauthorisationResponse

<!ELEMENT ReauthorisationResponse (Timestamp, Status, TransactionId, Destination*) >

<!ATTLIST ReauthorisationResponse componentId #REQUIRED >

A ReauthorisationResponse component indicates acceptance or rejection of the corresponding ReauthorisationRequest. The componentId attribute associates the response with the request.

6.3.	Elements

This subsection defines the individual elements that make up each message component.

6.3.1.	Amount

<!ELEMENT Amount (#PCDATA)>

<!ATTLIST Amount critical (True | False) "True">

The Amount element identifies a numeric value and is often associated with the Increment and Unit elements, as well as the Currency element. Amounts are expressed using the period (.) as a decimal separator and with no punctuation as the thousands separator. The following excerpt, for example, expresses a rate of 50 cents (U.S.) per minute.

	<Currency>

 	USD

	</Currency>

	<Amount>

 	0.5

	</Amount>

	<Increment>

 	60

	</Increment>

	<Unit>

 	s

	</Unit>

6.3.2.	AuthorityURL

<!ELEMENT AuthorityURL (#PCDATA)>

<!ATTLIST AuthorityURL (True | False) "True">

The AuthorityURL element identifies a uniform resource locator (URL) by which authorisation may be verified or refreshed.

6.3.3.	CallId

<!ELEMENT CallId (#PCDATA)>

<!ATTLIST CallId encoding (cdata | base64) "cdata"

 critical (True | False) "True">

The CallId element contains a call’s H.323 CallId value, and is thus used to uniquely identify individual calls. To convey its binary value, a call identifier may either be encoded using XML CDATA format and appropriate escape sequences, or it may be encoded with base64 encoding as per the [� seq ref ref_MIME * MERGEFORMAT �5�] standard. An encoding attribute indicates the method selected, and the default value for that attribute is XML CDATA.

6.3.4.	Code

<!ELEMENT Code (#PCDATA)>

<!ATTLIST Code critical (True | False) "True">

The Code element contains the numeric value that uniquely and unambiguously indicates the sender’s response to a request or indication. It is usually paired with a Description element within a Status element. The Code content consists of three numeric digits in the form NNN. The first (most significant) digit indicates the success or failure of the operation, subsequent digits provide greater detail. Values defined by this standard include the following.

Note: 	Subsequent revisions to this standard may add other code values, but will always preserve the meaning of a most significant 2 as success, and any other most significant digit as failure.

2xx = operation successful

200 = success (no other information)

201 = information created (no previous values)

210 = updated information accepted (previous values replaced)

4xx = client error

400 = bad request (generic problem interpreting message)

401 = unauthorised

410 = character encoding not supported

411 = parsing unsuccessful

412 = critical element not supported

420 = generic security problem (no other information available)

421 = signature invalid

422 = cryptographic algorithm not supported

423 = certificate invalid

424 = certificate revoked

425 = encryption required

5xx = server error

500 = internal server error

501 = not implemented

503 = service not available

510 = transient problem in server

520 = long term problem in server

530 = time problem

531 = valid time too soon

532 = time interval too small

999 = generic failure (no other information available)

6.3.5.	Currency

<!ELEMENT Currency (#PCDATA)>

<!ATTLIST Currency critical (True | False) "True">

The Currency element defines the financial currency in use for the parent element. It is represented according to the notation of [� seq ref ref_ISO4217 * MERGEFORMAT �7�]. In addition, the following two definitions not included in [] may be used:

ECU	European Currency Unit

SDR	Special Drawing Rights

6.3.6.	Description

<!ELEMENT Description (#PCDATA)>

<!ATTLIST Description critical (True | False) "False">

The Description element provides a textual description for a response, and is typically paired with a Code element as part of a Status parent element. The Description element is for informational purposes only, as the Code element defines the behaviour. Suggested values for the Description element are the descriptions given above for each Code value.

6.3.7.	Destination

<!ELEMENT Destination (DestinationInfo?, DestinationAlternate*, DestinationSignalAddress, Token*,

 ValidAfter?, ValidUntil?, UsageDetail*, AuthorityURL*, CallId)>

<!ATTLIST Destination critical (True | False) "True">

The Destination element is the parent element for routing information, conveyed either in a RoutingResponse or in an AuthorisationResponse. As the above definition shows, as many as nine different types of subelements may comprise a Destination element.

6.3.8.	DestinationAlternate

<!ELEMENT DestinationAlternate (#PCDATA)>

<!ATTLIST DestinationAlternate type (e164 | h323 | url | email | transport |

 international | national | network |

 subscriber | abbreviated | e164prefix) #REQUIRED

 critical (True | False) "True" >

The DestinationAlternate element contains secondary identification of the destination. This information provides an alternative to the DestinationInfo element. DestinationAlternate uses the same notation as DestinationInfo.

6.3.9.	DestinationInfo

<!ELEMENT DestinationInfo (#PCDATA)>

<!ATTLIST DestinationInfo type (e164 | h323 | url | email | transport |

 international | national | network |

 subscriber | abbreviated | e164prefix) #REQUIRED

 critical (True | False) "True" >

The DestinationInfo element gives the primary identification of the destination, or called party, for a call. The element includes a type attribute, and can take one of several forms depending on the value of that attribute.

The following list indicates the contents of the element, given each possible attribute type.

e164	full E.164 telephone number [� seq ref ref_E164 * MERGEFORMAT �24�] containing numeric digits only (i.e. no punctuation)

h323	H.323 identifier

url	Uniform Resource Locator [� seq ref ref_H323 * MERGEFORMAT �12�]

email	electronic mail address [� seq ref ref_H323 * MERGEFORMAT �12�]

transport	transport address is the form of name:nn where name is the domain name (or IP address enclosed in square brackets) and :nn is an (optional) TCP or UDP port number, (e.g. [172.16.1.1]:112)

international	international party number [� seq ref ref_H323 * MERGEFORMAT �12�]

national	national party number [� seq ref ref_H323 * MERGEFORMAT �12�]

network	network specific party number [� seq ref ref_H323 * MERGEFORMAT �12�]

subscriber	subscriber party number [� seq ref ref_H323 * MERGEFORMAT �12�]

abbreviated	abbreviated party number [� seq ref ref_H323 * MERGEFORMAT �12�]

e164prefix	initial (most significant) digits of an E.164 number [� seq ref ref_E164 * MERGEFORMAT �24�] with no punctuation

6.3.10.	DestinationSignalAddress

<!ELEMENT DestinationSignalAddress (#PCDATA)>

<!ATTLIST DestinationSignalAddress critical (True | False) "True">

The DestinationSignalAddress element identifies the call signalling address for the destination. It is represented as name:nn, where name is a domain name or an IP address enclosed in square brackets. The :nn is optional and indicates a TCP port number. For example, call signalling to device gateway.operator.com at TCP port number 112 is represented as follows.

	<DestinationSignalAddress>

 	gateway.operator.com:112

	</DestinationSignalAddress>

6.3.11.	Increment

<!ELEMENT Increment (#PCDATA)>

<!ATTLIST Increment critical (True | False) "True">

The Increment element indicates the number of units being accounted. It is typically used in combination with the Amount and Unit elements. The following excerpt, for example, expresses a duration of 5½ minutes.

	<Amount>

 	5.5

	</Amount>

	<Increment>

 	60

	</Increment>

	<Unit>

 	s

	</Unit>

6.3.12.	MaximumDestinations

<!ELEMENT MaximumDestinations (#PCDATA)>

<!ATTLIST MaximumDestinations critical (True | False) "True">

The MaximumDestinations element appears in the AuthorisationRequest component to indicate the maximum number of potential destinations the client wishes to receive in the response.

6.3.13.	Service

<!ELEMENT Service EMPTY>

<!ATTLIST Service critical (True | False) "True">

The Service element indicates a type of service being priced, authorised, or reported. An empty Service element indicates basic Internet telephony service, which is the only service type defined by this version of this specification.

Note: 	Later revisions of this standard are expected to specify more enhanced service definitions to represent quality of service, availability, payment methods, etc..

6.3.14.	SourceAlternate

<!ELEMENT SourceAlternate >

<!ATTLIST SourceAlternate type (e164 | h323 | url | email | transport |

 international | national | network |

 subscriber | abbreviated | e164prefix) #REQUIRED

 critical (True | False) "True" >

The SourceAlternate element contains secondary identification of the source of a call. It conforms to the same notation as the DestinationInfo element.

6.3.15.	SourceInfo

<!ELEMENT SourceInfo >

<!ATTLIST SourceInfo type (e164 | h323 | url | email | transport |

 international | national | network | subscriber |

 abbreviated | e164prefix) #REQUIRED

 critical (True | False) "True" >

The SourceInfo element contains the primary identification of the source of a call. It uses the same notation as the DestinationInfo element.

6.3.16.	SourceSignalAddress

<!ELEMENT SourceSignalAddress (#PCDATA)>

<!ATTLIST SourceSignalAddress critical (True | False) "True">

The SourceSignalAddress element identifies the call signalling address of the source of a call. It uses the same notation as the DestinationSignalAddress element.

6.3.17.	Status

<!ELEMENT Status (Code, Description?) >

<!ATTLIST Status critical (True | False) "True">

The Status element reports the results of a response or confirmation. It is composed of a Code element and an optional Description element.

For example, the following excerpt indicates a successful response or confirmation.

	<Status>

 	<Code>

 	000

	 </Code>

 	<Description>

 	success (no other information)

	 </Description>

	</Status>

6.3.18.	Timestamp

<!ELEMENT Timestamp (#PCDATA)>

<!ATTLIST Timestamp critical (True | False) "True">

The Timestamp element indicates the time at which the component was generated. It is represented by a restricted form of [� seq ref ref_ISO8601 * MERGEFORMAT �8�] format. In particular, time is always represented in co-ordinated universal time (UTC) using the notation YYYY-MM-DDThh:mm:ssZ where

YYYY = four-digit year (for example, 1998)

MM = two-digit month (01=January, etc.)

DD = two-digit day of month (01 through 31)

T = indicates division between date and time

hh = two-digit hour (00 through 23)

mm = two-digit minute (00 through 59)

ss = two-digit second (00 through 59)

Z = indicates co-ordinated universal time

For example, exactly 3:03 P.M. on May 2, 1997, Eastern Daylight Time in the United States, is represented as

	<Timestamp>

 	1997-05-02T19:03:00Z

	</Timestamp>

6.3.19.	Token

<!ELEMENT Token (#PCDATA)>

<!ATTLIST Token encoding (cdata | base64) "cdata"

 critical (True | False) "True" >

The Token element conveys an H.235 security token. To convey its binary value, a token may either be encoded using XML CDATA format and appropriate escape sequences, or it may be encoded with base64 encoding as per the [� seq ref ref_MIME * MERGEFORMAT �5�] standard. An encoding attribute indicates the method selected, and the default value for that attribute is XML CDATA.

6.3.20.	TransactionId

<!ELEMENT TransactionId (#PCDATA)>

<!ATTLIST TransactionId critical (True | False) "True">

The TransactionId element contains an integer, decimal valued identifier assigned to a specific authorised transaction. It is represented without any punctuation (e.g. no thousands separator).

6.3.21.	Unit

<!ELEMENT Unit (#PCDATA)>

<!ATTLIST Unit critical (True | False) "True">

The Unit element indicates the units by which pricing is measured or usage recorded. It may contain the following text.

s	seconds

pkt	packets (datagrams)

byte	bytes

6.3.22.	UsageDetail

<!ELEMENT UsageDetail (Service, Amount, Increment, Unit) >

<!ATTLIST UsageDetail critical (True | False) "True">

The UsageDetail element collects information describing the usage of a service. Individual transactions may combine multiple UsageDetail elements as part of their usage report. This capability supports both parallel services (e.g. audio and video streams during a video conference) and serial services (e.g. low bit-rate codec switching to a higher quality codec as network conditions deteriorate).

The UsageDetail element may also be present in either an AuthorisationResponse or a ReauthorisationResponse. In that case, it indicates a limit to the authorisation. For example, an AuthorisationResponse that includes a UsageDetail of (amount=3, increment=60, unit=s) indicates that the authorisation is valid for no more than 3 minutes of service.

6.3.23.	ValidAfter

<!ELEMENT ValidAfter (#PCDATA)>

<!ATTLIST ValidAfter critical (True | False) "True">

The ValidAfter element identifies the time and date after which the component’s information shall be effective or valid. It is encoded using the same notation as the Timestamp element. If this element is empty, component information is assumed to be valid as soon as it is received.

6.3.24.	ValidUntil

<!ELEMENT ValidUntil (#PCDATA)>

<!ATTLIST ValidUntil critical (True | False) "True">

The ValidUntil element identifies the time and date after which the component’s information is no longer effective or valid. It is encoded using the same notation as the Timestamp element. If this element is empty, component information is assumed to be effective indefinitely, or until it is explicitly modified with new information.

7	Signature Format

The digital signature shall conform to the application/pkcs7-signature format specified in the Secure Multipurpose Internet Mail Extensions (S/MIME) standard [� seq ref ref_SMIME * MERGEFORMAT �17�]. This section specifies how that signature is created, including the canonicalization procedure, signature algorithm, and transfer encoding.

7.1.	Canonical Form

Each signed entity must be converted to a canonical form that is uniquely and unambiguously representable in the environment where the signature is created and the environment where the signature will be verified. Message content (i.e. XML documents) specified by this standard shall be canonicalized according to the following procedure. (The procedure borrows heavily from the Internet Open Trading Protocol (IOTP) specification [� seq ref ref_OTP * MERGEFORMAT �25�].)

1.	Isolate the element to be signed. For this standard, that entity consists of the entire XML document, beginning with the leftmost "<" of the XML declaration and ending with (and including) the rightmost ">" of the end tag of the root XML entity.

2.	Convert all characters in the element to canonical form for the character encoding.

3.	Apply all external XML entities and all character and entity references in the element so that they are completely resolved.

4.	Exclude comments and processing instructions.

5.	Reduce all attributes to their canonical form using the attribute type in the Document Type Definition (DTD). Replace all single and double quotes present in attributes with ' and " respectively so that attributes can be enclosed in double quotes.

6.	Create attributes, using their default value, which are not present in the original but have default values in the DTD.

7.	Sort the original and generated attributes in ascending attribute name order according to character encoding of the attribute name.

8.	For whitespace inside markup but not inside attribute values, generate it as minimally as possible. Specifically, (1) remove non-essential whitespace, and (2) represent required whitespace by a single space character.

9.	Generate the content of all start tags using only the element name and the attributes as described above. If the element is an empty element, then generate it using the single empty tag format (i.e. a trailing slash). Generate end tags using only element name with no added whitespace.

10.	Remove all whitespace in the element content.

11.	Assemble start tags, end tags, empty tags, CDATA sections, and text sections in the same order as the original document.

Note: 	The above procedure results in a canonicalized XML document rather than a canonicalized MIME text part. In particular, the line ending is encoded as a single line-feed character (#xA) rather than the S/MIME convention of a return/line-feed pair.

7.2.	Signature Algorithms

Annex B provides a complete list of cryptographic algorithms required and recommended by this specification, including S/MIME signature algorithms.

7.3.	Transfer Encoding

Unlike some electronic mail protocols, HTTP is capable of transferring raw binary data. Consequently, no transfer encoding (e.g. quoted-printable or base-64) shall be used for the signature.

8	Protocol Behaviour

This section specifies the relationship between the message components. It defines message sequencing, interdependence of messages, and exception handling.

8.1.	Message Sequencing

This standard specifies a simple client/server protocol. All protocol exchanges shall be initiated by clients, who send one or more of the five client components in a single message. The server shall reply with its own single message, which contains one server component for each client component. Figure 4 shows the five different component pairs.

�

Figure 4. Component Pairs.

When multiple components are combined in a single message, each component shall be treated independently of all others in the message. Logically, this treatment shall have the same effect as if each component is carried in its own message.

In addition, each component exchange shall be considered independent of all others; there shall be no dependence between message exchanges. This is true even of Authorisation exchanges. Specifically, both AuthorisationIndication / Confirmation and ReauthorisationRequest / Response exchanges may refer to authorisation previously obtained through means other than an AuthorisationRequest and AuthorisationResponse.

8.2.	Exception Handling

Systems conforming to this standard should use all levels of error handling available in this specification.

8.2.1.	Transmission Control Protocol

If TCP indicates that communication cannot be established, or that communication has failed during a transmission, the communicating parties should not assume the delivery of any partial information.

8.3.2.	Secure Socket Layer / Transport Layer Security

If SSL or TLS indicates that compatible encryption parameters cannot be established, the communicating parties should not assume the delivery of any partial information. In addition, if SSL/TLS is unable to successfully authenticate the server, the client should not proceed with the transfer of any information.

8.3.3.	Hypertext Transfer Protocol

Communicating parties should treat HTTP status codes as defined in [� SEQ ref ref_HTTP * MERGEFORMAT �2�]. In particular, unless the status code is in the range 200-299, the client should not assume delivery of any information.

8.3.4.	Status Element

XML Code elements within responses and confirmations should be treated appropriately according to the definitions of section 6.3.3. The associated Description element should be used solely for informational purposes.

�
Annex A (normative):�Document Type Definition

As the current document is a draft standard, a formal XML document type definition (DTD) is not yet complete. The DTD will be completed and added in this annex before the specification advances to a full standard. Until such time, the individual element and attribute definitions of section 6 should be considered the definitive specification for the XML content.

�
Annex B (normative):�Cryptographic Algorithms

For convenience and ease of reference, this annex provides the complete specification of all cryptographic algorithms referenced in the standard. Cryptographic algorithms are essential to SSL/TLS communications, S/MIME signatures, and token formats.

B.1.	SSL/TLS CipherSuites

Systems conforming to this standard may negotiate any mutually supported SSL/TLS CipherSuite using the standard SSL/TLS handshake mechanisms. To ensure maximum interoperability, all compliant systems should support the SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA CipherSuite. In environments where triple DES data encryption is not desired or is otherwise unavailable, systems should support the SSL_DHE_DSS_WITH_DES40_CBC_SHA CipherSuite. If no data encryption is desired or available, systems should use the SSL_RSA _WITH_NULL_SHA CipherSuite.

Note:	To take maximum advantage of deployed cryptographic software and services, systems should also support the SSL_RSA_WITH_RC4_128_MD5 and SSL_RSA_EXPORT_WITH_RC4_40_MD5 CipherSuites.

B.2.	S/MIME Signatures

Communicating systems may use any digest and signing algorithms defined by the S/MIME standard [� seq ref ref_SMIME * MERGEFORMAT �17�]. To ensure interoperability, all compliant systems shall support the Secure Hash Algorithm (SHA) [� seq ref ref_SHA * MERGEFORMAT �16�] for message digests, and the Digital Signature Algorithm (DSA) [� seq ref ref_DSA * MERGEFORMAT �15�] for signing.

Note: 	To take maximum advantage of deployed cryptographic software, systems should also support the Message Digest 5 (MD5) digest algorithm [� seq ref ref_MD5 * MERGEFORMAT �19�] and the Rivest Shamir Aldeman (RSA) signature algorithm [� seq ref ref_RSA * MERGEFORMAT �20�].

B.3.	Tokens

Tokens used for authorisation, call progress, and call completion may be signed and encrypted. For message digest, signing, and encryption, implementations may use any algorithm defined by the Public Key Cryptography Standard #7 (PKCS7) [� seq ref ref_PKCS7 * MERGEFORMAT �21�]. To ensure interoperability, systems should support Secure Hash Algorithm [� seq ref ref_SHA * MERGEFORMAT �16�], Diffie-Hellman key exchange [� seq ref ref_X942 * MERGEFORMAT �1�], Digital Signature Algorithm [� seq ref ref_DSA * MERGEFORMAT �15�], and the Data Encryption Standard [� seq ref ref_DES * MERGEFORMAT �14�].

Note: 	To take maximum advantage of deployed cryptographic software, systems should also support the Message Digest 5 [� seq ref ref_MD5 * MERGEFORMAT �19�], Rivest Shamir Aldeman [� seq ref ref_RSA * MERGEFORMAT �20�], and Rivest Cipher 2 [� seq ref ref_RC2 * MERGEFORMAT �18�] algorithms.

�
Annex C (normative):�Enhanced Usage Reports

For further study.

�
Annex D (informative):�Token Formats

This annex presents suggested formats for authorisation tokens passed as part of the H.323 exchange between endpoints and/or gatekeepers. These tokens may also be exchanged as part of the authorisation information defined in this standard. The annex describes suggested cryptographic encodings as well as suggested contents for these authorisation tokens, and it provides a method for carrying the tokens within H.323 messages.

D.1.	Cryptographic Encoding

Depending on the business roles and network environment, tokens may be digitally signed and/or encrypted. If digitally signed, tokens should conform to the Public Key Cryptography Standard # 7 (PKCS7) specification [� seq ref ref_PKCS7 * MERGEFORMAT �21�] for signed-data content. If encrypted, tokens should conform to the PKCS7 specification for enveloped-data content. If tokens are both signed and encrypted, they should be constructed in two phases. First, the token should be digitally signed, resulting in PKCS7 signed-data content. The resulting signed content should then be encrypted, resulting in PKCS7 enveloped-data content.

Note:	In order to provide confidentiality of the signature information, PKCS7 signed-and-enveloped content should not be used.

Annex B documents the cryptographic algorithms recommended by this specification, including digest, signing, symmetric encryption, and asymmetric encryption algorithms.

D.2.	Token Content

The actual content of the token may conform to the following ASN.1 specifications, as augmented by ASN.1 constructs from the H.323 standards [� seq ref ref_H323 * MERGEFORMAT �12�], [� seq ref ref_H2250 * MERGEFORMAT �9�], [� seq ref ref_H235 * MERGEFORMAT �13�], and [� seq ref ref_H245 * MERGEFORMAT �10�]. The tokens should be encoded using the Packed Encoding Rules (Aligned) of X.691 [� SEQ ref ref_X691 * MERGEFORMAT �11�].

	ETSI-TIPHON-TOKENS DEFINITIONS AUTOMATIC TAGS ::=

	BEGIN

	IMPORTS

 	 AliasAddress,

 	CallIdentifier,

	 ReleaseCompleteReason,

 	 TimeStamp

	 FROM H323-MESSAGES;

	ServiceDescription :: = CHOICE

	{

	 basicTelephony NULL,

	 vendorSpecific NonStandardParameter,

	 ...

	}

	MeasureUnits :: CHOICE

	{

 	seconds NULL,

	 packets NULL,

 	bytes NULL,

 	vendorSpecific NonStandardParameter,

	 ...

	}

	UsageData :: = SEQUENCE

	{

 	amount INTEGER (0..4294967295)),

	 units MeasureUnits,

 	increment INTEGER (1..4294967295),

 	vendorSpecific NonStandardParameter,

	 ...

	}

	AuthorisationToken :: = SEQUENCE

	{

	 sourceInfo SEQUENCE OF AliasAddress,

 	destinationInfo SEQUENCE OF AliasAddress,

	 callId CallIdentifier OPTIONAL,

 	validAfter TimeStamp OPTIONAL,

	 validUntil TimeStamp OPTIONAL,

 	authorityId OCTET STRING (SIZE(8)) OPTIONAL,

	 serviceAuthorised SEQUENCE OF SEQUENCE

 {

 service ServiceDescription,

 limit UsageData OPTIONAL

 } OPTIONAL,� authorityURL SEQUENCE OF IA5String (SIZE(1..512)) OPTIONAL,

 	vendorSpecific NonStandardParameter OPTIONAL,

	 ...

	}

	END		-- of ASN.1

D.3.	Token Carriage

In H.323-based communications, these tokens should be carried as a NonStandardParameter within H.235 [� SEQ ref ref_H235 * MERGEFORMAT �13�] ClearToken objects. An object identifier value for the required nonStandardIdentifier shall be assigned by ETSI and listed, in this section, before final publication of this specification.

�
Annex E (informative):�Example Messages

This annex provides complete example messages for several information exchanges. The messages included are full and complete, but subject to the following modifications for readability:

(Extra whitespace is included within the example XML documents. In actual implementations, this whitespace must be removed before the digital signature is generated (according to the constraints of section 7), and is not likely to be included in the actual transferred data.

(The digital signatures within the example messages do not represent the actual digital signature for the example content. True signatures would likely result in unprintable characters.

E.1.	Pricing Exchange

The following two messages convey pricing information between two parties. The first message provides three separate price indications. Taken together, the three indications represent prices for basic Internet telephony service (thus the empty <Service> element) of ½ DM/minute to Berlin (country code 49, national destination code 30) 1 DM/minute elsewhere in Germany (country code 49), and 2 DM/minute elsewhere in the world. In all three cases no constraints are placed on the calling party (thus the empty <SourceInfo> elements).

	POST scripts/settlements HTTP/1.0

	content-type: multipart/signed;

 	protocol="application/pkcs7-signature";

	 micalg=sha1;

 	boundary=bar

	content-length: 1968

	--bar

	Content-Type: text/plain

	Content-Length: 1647

	<?XML version=1.0?>

	<Message messageId="987654321">

 	<PricingIndication componentId="1234567890">

 	<Timestamp>

 	1998-04-20T19:03:00Z

	 </Timestamp>

 	 <SourceInfo/ type="e164prefix">

 	<DestinationInfo/ type="e164prefix">

	 <Currency>

 	 DEM

 	</Currency>

	 <Amount>

 	 2

 	</Amount>

	 <Increment>

 	 60

 	</Increment>

	 <Unit>

 	 s

 	</Unit>

	 <Service/>

 	 <ValidAfter/>

	 <ValidUntil/>

 	</PricingIndication>

	 <PricingIndication componentId="1234567891">

 	 <Timestamp>

 	 1998-04-20T19:03:02Z

	 </Timestamp>

 	 <SourceInfo/ type="e164prefix">

	 <DestinationInfo type="e164prefix">

 	 49

	 </DestinationInfo>

 	 <Currency>

 	 DEM

	 </Currency>

 	 <Amount>

	 1

 	 </Amount>

	 <Increment>

 	 60

 	</Increment>

	 <Unit>

 	 s

 	</Unit>

	 <Service/>

 	 <ValidAfter/>

	 <ValidUntil/>

	 </PricingIndication>

 	<PricingIndication componentId="1234567892">

 	<Timestamp>

	 1998-04-20T19:03:05Z

 	 </Timestamp>

 	<SourceInfo/ type="e164prefix">

	 <DestinationInfo type="e164prefix">

 	 4930

 	</DestinationInfo>

	 <Currency>

 	 DEM

 	</Currency>

	 <Amount>

 	 0.5

 	</Amount>

	 <Increment>

 	 60

 	</Increment>

	 <Unit>

 	 s

 	</Unit>

	 <Service/>

 	 <ValidAfter/>

 	<ValidUntil/>

	 </PricingIndication>

	</Message>

	--bar

	Content-Type: application/pkcs7-signature

	Content-Length: 191

	GhyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT64VQpfyF467GhIGfHfYT6jH77n8HH

	GghyHhHUujhh756tbB9HGTrfvbnjn8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

	7GhIGfHfYT64VQbnj756

	--bar--

The following example shows a confirmation in reply to the above message. In the confirmation, all pricing information is accepted.

	HTTP/1.0 200 OK

	content-type: multipart/signed;

 	protocol="application/pkcs7-signature";

	 micalg=sha1;

 	boundary=bar

	content-length: 1401

	--bar

	Content-Type: text/plain

	Content-Length: 1080

	<?XML version=1.0?>

	<Message messageId="987654321">

 	<PricingConfirmation componentId="1234567890">

 	<Timestamp>

 	1998-04-20T19:04:00Z

	 </Timestamp>

 	 <Status>

 	 <Code>

 	 201

	 </Code>

 	 <Description>

 	 new pricing created

 	</Description>

	 </Status>

 	</PricingConfirmation>

	 <PricingConfirmation componentId="1234567891">

 	 <Timestamp>

 	 1998-04-20T19:04:22Z

	 </Timestamp>

 	 <Status>

 	 <Code>

 	 210

	 </Code>

 	 <Description>

 	 revised pricing accepted

 	</Description>

	 </Status>

 	</PricingConfirmation>

	 <PricingConfirmation componentId="1234567892">

 	 <Timestamp>

 	 1998-04-20T19:04:45Z

	 </Timestamp>

 	 <Status>

 	 <Code>

 	 210

	 </Code>

 	 <Description>

 	 revised pricing accepted

 	</Description>

	 </Status>

 	</PricingConfirmation>

	</Message>

	--bar

	Content-Type: application/pkcs7-signature

	Content-Length: 191

	GhyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT64VQpfyF467GhIGfHfYT6j

	H77n8HHGghyHhHUujhJh756tbB9HGTrfvbnjn8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT

	6ghyHhHUujpfyF47GhIGfHfYT64VQbnj756

	--bar--

E.2.	Authorisation Exchange

The authorisation exchange shows one party requesting and receiving authorisation to access another party’s devices. In particular, the requestor wishes to complete a phone call in which the calling party is at +81 45 881 1202 and the called party is at +47 66 84 13 60.

	POST scripts/settlements HTTP/1.0

	content-type: multipart/signed;

 	protocol="application/pkcs7-signature";

	 micalg=sha1;

 	boundary=bar

	content-length: 920

	--bar

	Content-Type: text/plain

	Content-Length: 600

	<?XML version=1.0?>

	<Message messageId="123454321">

 	<AuthorisationRequest componentId="9876567890">

 	<Timestamp>

 	1998-04-24T17:03:00Z

	 </Timestamp>

 	 <CallId>

 	 1234432198766789

	 </CallId>

 	 <SourceInfo type="e164">

 	 81458811202

	 </SourceInfo>

 	 <DestinationInfo type="e164">

	 4766841360

 	 </DestinationInfo>

 	<Service/>

	 <MaximumDestinations>

	 5

	 </MaximumDestinations>

	 </AuthorisationRequest>

	</Message>

	--bar

	Content-Type: application/pkcs7-signature

	Content-Length: 191

	GhyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT64VQpfyF467GhIGfHfYT6j

	H77n8HHGghyHhHUujhJh756tbB9HGTrfvbnjn8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT

	6ghyHhHUujpfyF47GhIGfHfYT64VQbnj756

	--bar--

The reply to this request returns two separate authorisations, each representing a different peer system that is capable of completing the call.

	HTTP/1.0 200 OK

	content-type: multipart/signed;

 	protocol="application/pkcs7-signature";

	 micalg=sha1;

 	boundary=bar

	content-length: 2120

	--bar

	Content-Type: text/plain

	Content-Length: 1799

	<?XML version=1.0?>

	<Message messageId="123454321">

 	<AuthorisationResponse componentId="9876567890">

 	<Timestamp>

 	1998-04-24T17:03:01Z

	 </Timestamp>

 	 <Status>

 	 <Code>

 	 200

	 </Code>

 	 <Description>

 	 success

 	</Description>

	 </Status>

 	 <TransactionId>

 	 67890987

	 </TransactionId>

 	 <Destination>

 	 <DestinationSignalAddress>

 	 [172.16.1.2]:112

	 </DestinationSignalAddress>

 	 <Token encoding="base64">

 	 YT64VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756t

 	 HGTrfvbnjn8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfH

	 6ghyHhHUujpfyF47GhIGfHfYT64VQbnj

 	 </Token>

 	 <ValidAfter>

 	 1998-04-24T17:01:01Z

	 </ValidAfter>

	 <ValidUntil>

 	 1998-04-24T17:11:01Z

 	 </ValidUntil>

 	<Service/>

	 <CallId>

	 	 1234432198766789

	 </CallId>

	 </Destination>

 	 <Destination>

 	 <DestinationSignalAddress>

 	 [10.0.1.2]:112

	 </DestinationSignalAddress>

 	 <Token encoding="base64">

 	 F467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tYT64VQpfy

 	 8HHGTrfvhJhjH776tbB9HG4VQbnj756HGTrfvbnjn7GhIGfH

 	ujpfyF47GhIGfHfYT64VQbnj6ghyHhHU

	 </Token>

 	 <ValidAfter>

 	 1998-04-24T17:01:02Z

 	</ValidAfter>

	 <ValidUntil>

 	 1998-04-24T17:11:02Z

	 </ValidUntil>

 	 <Service/>

 	 <CallId>

	 	 1234432198766789

	 </CallId>

 	</Destination>

	 </AuthorisationResponse>

	</Message>

	--bar

	Content-Type: application/pkcs7-signature

	Content-Length: 191

	GhyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT64VQpfyF467GhIGfHfYT6

	jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnjn8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHf

	YT6ghyHhHUujpfyF47GhIGfHfYT64VQbnj756

	--bar--

E.3.	Usage Exchange

The final examples demonstrate the exchange of usage information. The first message reports a call duration of 10 minutes.

	POST scripts/settlements HTTP/1.0

	content-type: multipart/signed;

 	protocol="application/pkcs7-signature";

	 micalg=sha1;

 	boundary=bar

	content-length: 1246

	--bar

	Content-Type: text/plain

	Content-Length: 926

	<?XML version=1.0?>

	<Message messageId="123454321">

 	<UsageIndication componentId="13579990">

 	<Timestamp>

 	1998-04-24T22:03:00Z

	 </Timestamp>

 	 <TransactionId>

 	 67890987

	 </TransactionId>

	 <CallId>

 	 1234432198766789

 	</CallId>

	 <SourceInfo type="e164">

 	 81458811202

 	</SourceInfo>

	 <DestinationInfo type="e164">

 	 4766841360

 	</DestinationInfo>

	 <DestinationAlternate type="transport">

 	 [10.0.1.2]:112

 	</DestinationAlternate>

	 <UsageDetail>

 	 <Service/>

 	 <Amount>

 	 10

	 </Amount>

 	 <Increment>

 	 60

	 </Increment>

 	 <Unit>

 	 s

 	</Unit>

	 </UsageDetail>

 	</UsageIndication>

	</Message>

	--bar

	Content-Type: application/pkcs7-signature

	Content-Length: 191

	GhyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT64VQpfyF467GhIGfH

	fYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnjn8HHGTrfvhJhjH776tbB9HG4VQbnj756

	7GhIGfHfYT6ghyHhHUujpfyF47GhIGfHfYT64VQbnj756

	--bar--

To complete the exchange, the server responds with a UsageConfirmation.

	HTTP/1.0 200 OK

	content-type: multipart/signed;

 	protocol="application/pkcs7-signature";

	 micalg=sha1;

 	boundary=bar

	content-length: 724

	--bar

	Content-Type: text/plain

	Content-Length: 404

	<?XML version=1.0?>

	<Message messageId="123454321">

 	<UsageConfirmation componentId="13579990">

 	<Timestamp>

	 1998-04-24T22:44:00Z

 	 </Timestamp>

	 <Status>

 	 <Code>

 	 201

	 </Code>

 	 <Description>

 	 new usage information created

 	</Description>

	 </Status>

 	</UsageConfirmation>

	</Message>

	--bar

	Content-Type: application/pkcs7-signature

	Content-Length: 191

	GhyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT64VQpfyF467GhIGfHfYT6

	jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnjn8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHf

	YT6ghyHhHUujpfyF47GhIGfHfYT64VQbnj756

	--bar--

�
 History

Document history�
�
V0.0.0�
1998-05-05�
initial working draft�
�
V0.0.1�
1998-05-28�
revisions based on mailing list discussion�
�
V1.0.0�
1998-06-12�
preparation for final working group review�
�
V1.1.0�
1998-06-16�
revisions based on discussions during TIPHON8�
�
V1.2.0�
1998-06-18�
revisions based on TIPHON8 WG3 review�
�
�
�
�
�

�

European Telecommunications Standards Institute

� styleref ZA �DTS/TIPHON-03004 V1.2.0 (1998-06)�

� PAGE �5�

� styleref ZGSM �

