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Abstract

I describe a framework for virtualising network addresses, reasoning that virtualisation requires reversing the usual

the network-�rst, resource-second addressing order. A hierarchical name space is constructed for representing the

shared resources by a homogenised form of URLs, a logical end-to-end route is constructed by combining the bind

and connect requests over this name space, and used instead of end-to-end addresses for setting up virtual paths.

Direct interpretation of the homogenised URLs ensures logical routing performance comparable to IP routing, and

the logical route provides geographical trimming of the search in the transation to virtual paths. Resulting features

include a simple, uniform API for both point-to-point and multipoint connectivity, host security by invisibility, etc.,

which can be availed by privately deploying the framework over the existing networks.

1 Overview

Described below is a framework for virtualising network
addresses, which is operable over existing networks and
promises novel features at adequate performance. The
virtualisation fundamentally solves the address space
bounds that exist in current networking technologies,
including the Internet Protocol (IP) and Asynchronous
Mode Transfer (ATM). It is an internetworking solution
in that it enables applications to connect across any
combination of networks, which di�ers from the virtual
network approach of IP [1], in that IP addresses identify
physical hosts and are therefore real. Virtual network
addressing means that the applications should not have
to, or be able to, identify physical destinations at all,
which evidently cannot be achieved by any scheme of
address translations alone. Clearly, the very need for
destination addressing at the application layer needs to
be overcome, and the question is, is this at all possible,
and at a reasonable cost?

Our answer is yes, and it involves inverting the roles
of network and local resource addresses, as follows. In
discussions of networking, it is natural to represent the
network by a graph �, and to number its vertices for
reference, say ni; i = 1:::N ; the index i, which identi�es
the node, is then its real address. A virtual address
space would seem to be obtained by a mapping V (�),
� � fnig, but this is insuÆcient if the V (ni) continue

to identify physical hosts, as is the case with IP, which
is such a mapping. Our solution involves supporting
a multitude of coexisting mappings Vj(�); � = fnig,
each Vj being one-to-one. If we were to associate one
Vj at each node nj in the network, we would arrive at
\source-dependent addresses", of which ATM virtual
path indices and UUCP are well known examples, and
we have already learnt from the latter that source-
dependent addressing cannot lead to an application or
user-friendly solution, which is why we have end-to-
end addressing in ATM. In both native ATM and IP
networks, however, an application typically has to �rst
look up a Domain Name Service (DNS) for an address
to the destination host bearing the desired resource,
and we know from ATM that translating addresses to
routes is an NP complete problem [2], unless we could
directly interpret the address, as in IP routing.

We accordingly route-interpret the resource locator
itself, instead of dereferencing it in the DNS for an
address, thus identifying the mappings Vj with shared
resources instead of hosts, so that the total address
space ���, � � fVjg, becomes inherently unbounded,
Vj(�) being interpreted as connections to that resource.
We use a DNS-like service to represent resources, and
interpret modi�ed universal resource locators (URLs)
over it to obtain end-to-end logical routes, and use the
logical routes to set up virtual paths, avoiding end-to-
end addressing at all levels.



I explain my purpose and motivation in the next
section, followed by the basic scheme of the framework
and its principle of operation in x3, and discuss its
expected performance in x4. ACS availability, route
discovery and incremental translation are considered
in x5, and the security aspects of virtualisation in x6.
Lastly, I describe the prototype system calls API in
x7, which illustrates the inverted form of the virtual
addressing mentioned above, and the current status of
implementation, in x8.

2 Motivation and scope

Our concern is partly academic, as a cross-check on
the fundamental assumptions that would be otherwise
taken for granted. Our result shows that our current
embracement of IP is not as well thought out as it
should be, and its original principles are in any case
being gradually eroded, prompting a reconsideration:
in routing, by multi-network label-switching (MNLS)
and the use of network address translation (NAT)
for virtual private networks (VPNs); and the current
usage of the Internet, where URLs have emerged as
the de facto form of addresses, questioning the very
need for the visibility of IP addresses. Both issues are
exploited in our solution, as we no longer depend on
the eroded end-to-end signi�cance of IP addresses, and
apply IP's route-interpretation principle directly to the
URLs albeit in a slightly altered syntax.

We also have a parallel in the operating system
(OS) world, where lesser OS's that ran applications
with real memory addressing, were adequate for
popular consumption until quite recently, when the
sophistication of the Internet caught up. It leaves us
no reason to believe that a similar switch to virtual
addressing in the networking �eld would be for ever
unnecessary. It is also currently overlooked that the
consumption of addressing resources is not linear but
exponential, and there is no reason for the 128-bit space
of IPv6 to last more decades than the original 32-bit
IPv4 space, unless we hold back for some reason.

Several clari�cations appear to be in order. First of
all, our framework does not force us to advocate ripping
out the existing IP infrastructure, although it could be
operated as eÆciently without IP. Rather, IP, like other
existing technologies including Asynchronous Transfer
Mode (ATM), would be readily availed of as transport,
as demonstrated in our prototype (see x7). Moreover,
some form of real addressing would be necessary for
con�guring the framework, and IP, if available, would

be simply more convenient in the local administrative
zones. This does not diminish the role of the framework
as IP would not be used in its original, end-to-end role.

It does, however, obviate the need for the Internet
per se to migrate to IPv6 after all, which would impact
the addressing of Web sites, for example, and would
allow emerging wireless networks to avoid needing a
share of the IP space, the demand being doubled by
the Mobile IP protocol (RFC 2002) which requires two
addresses for each mobile device. Furthermore, wireless
devices should not need IP, and ATM networks,
both wired or wireless, IP or Local Area Network
(LAN) emulation, merely for connectivity with the
rest of internetworked world, which is the case at
present. There is also potential for simpli�cation in
the administration of address blocks, where dynamic
allocation is inappropriate.

We employ virtual paths because the technique
already incorporates NAT at the switching granularity,
so that an individual virtual path can extend across
an inde�nite number of IP spaces. Note that this does
not contradict our previous observation that a product
of translations alone cannot provide virtualisation, as
the path indices are obtained only as a result of the
virtual-to-real translation of the logical route by the
ACS. The translation may be viewed as a distributed
form of on-demand compilation of the application-
supplied pathnames, the objects compiled being the
virtual paths. The network con�guration data used
for the translation is correspondingly representable
as an attribute grammar, the attributes representing
traÆc, quality of service and possibly authentication
parameters, and an analogous case exists for one-time
interpretation, which would avoid the virtual path
translation and signalling, as described in x3.

Third, there appears to be some degree of overlap in
functionality with existing networks. Our distributed
name service, which we call Addressless Connection
Service (ACS) because it does not return addresses and
is itself responsible for logical routing, as mentioned,
seems to overlap the DNS in applications enabled with
our application programming interface (API), but this
is super�cial, as the DNS would have been used to
con�gure the framework. Overlap seems to exist also
with respect to signalling, when used over ATM, for
example, which itself provides virtual paths, but as the
particular form of broadside-on signalling we need is
not generally available to us, we would treat the ATM
fabric as an opaque cloud, also avoiding having to deal
with routing within the fabric in the process.



Fourth, although the ACS looks a lot like the DNS,
our pathnames represent application contexts, not the
hosts from which they were de�ned. In the Universal
Resource Locators (URLs) used on the Web, di�erences
between the DNS and the �le system conventions make
the network address and the host resource parts readily
distinguishable, but would be inappropriate in our
context, hence we prefer a homogenised form of the
URLs, or HURLs, which we literally interpret against
the ACS hierarchy like a �le system pathname. This
keeps the logical routing complexity linear, like IP
routing, which interprets addresses similarly, and the
burden of search lies wholly in the translation to virtual
paths. Since this is partitioned along the logical routes,
the ACS servers are intermediate between DNS servers,
which do not do routing, and the ATM switches, which
are individually responsible for end-to-end routing. In
some envisaged applications, like providing business-to-
business (B2B) services across private LANs (x6), we
can hope for a linear routing cost because the search
would be limited to a narrow corridor along the logical
route for switches located at the gateways, which we
shall refer to as the geographic principle. Note that the
principle actually holds better for wide area networks
(WANs) than to local area networks (LANs) because
WANs have fewer interconnections, i.e. less geographic
freedom in network terms.

Our method has the advantage of using a priori
end-to-end directivity over both source and hop-by-
hop routing methods, in so far as best e�ort routing
is concerned; we would be much slower if backtracking
were involved because of the distributed nature of the
virtual path translation. Since our primary purpose
is virtualisation and not networking per se, we would
be satis�ed with obtaining this at reasonable cost over
existing infrastructure and with independent, private
deployment as needed. An incremental strategy is also
described in x4 to exploit the geographic trimming for
dynamic path repair, and might compare favourably
with rehealing methods known in ATM [3] [4].

3 Addressless principle

The principle underlying the present framework is the
observation that a combination of bind and connect

operations is both necessary and suÆcient for logical
connectivity between any pair of processes: necessary
because the two processes must actively cooperate, and
suÆcient because at least one of these operations can
stretch across the network, as we know from the socket
API. The problem has been that since bind was de�ned

to be local, the connect had to be stretched all the
way to the binding host, requiring the latter to bear
an address visible end-to-end and preferably advertised
over a name service like the DNS.

The only way to avoid end-to-end addressing, then,
is to redistribute some of the work over to the bind

operation, making both processes reach out part of the
way and make the logical connection in the middle. We
would then have traced out an end-to-end logical route,
and since this is already end-to-end, we should not need
end-to-end addressing for transferring short messages,
or for setting up end-to-end data streams, the latter
depending on the geographic principle for eÆciency.

A sample ACS con�guration is illustrated in Fig. 1,
comprising a hierarchy of connection servers A...J , to
serve application processes running on hosts a, b and
c via the switches p, q, r and s. The logical hierarchy
is represented by solid arrows; servers B and F are
shown linked both ways, to illustrate the likely scenario
where the root of the hierarchy is conceptual and not
embodied as a server, as in the Andrews File System
(AFS). Each connection server is typically linked with
one or more switches, as shown by the broken two-way
arrows, for signalling, and the virtual paths are set up
over the transport links, shown as bold lines, between
the switches and the hosts. Note that the connection
servers and the service links linking them to the hosts
and the switches are both conceptual, and could be
physically embodied in various ways. Our illustrative
example will be a client-server application, wherein the
application client is a process v executing on host b that
seeks connection to the application server process u on
host a.

We shall designate the application service context
by a HURL //F/G/I/x. By the foregoing principles,
process u must �rst advertise its service by invoking
bind("//F/G/I/x"), and the client process v then
makes a request connect("//F/G/I/x"), i.e. using
the same HURL, which would have been bound to a
name x on the connection server I , regardless of the
caller's location in the network. Its interpretation in
the ACS is straightforward: connection server A, on
receiving the bind request from process u on host a,
�nds that //F is not on its direct line of descent from
the root, and passes the HURL intact to its parent,
B, which, knowing that it has no parent, looks for a
peer server named F . The request then descends from
F through G to I , and since x is the last component
identi�er in the HURL, I binds it locally to a newly
allocated context, in which it conceptually stores the
partial logical route xIGFBAau, which is the reverse



of the route traversed by u's request.

When the connect request from process v reaches
I , it will have similarly traced out the partial logical
route vbEFGIx, assuming that the request went to
server E, and not H . I then concatenates the two
partial routes to obtain the end-to-end logical path
vbEFGIxIGFBAau, and optimises it by discarding
the repeated segment FGIx, to obtain the shorter
path vbEFBAau, which is then used for signalling
the virtual path, as will be soon explained.

We �rst consider the case where the client requests
sending of a one-time message to the server process u,
for example in a paging system. All that I needs to do
is to pass it onward to u backward along the previously
registered path xIGFBAau. There is no need to store
the second partial route vbEFGIx unless a reply is
expected, and it can be discarded after forwarding the
reply. The reverse route IGFBAau is also conceptual,
for we could just as easily compute the reverse HURL
//B/A/u/a to bind with the name x at server I , which
is more likely in the typical implementation because
the HURL representation is compact and can be as
eÆciently interpreted as its UUCP-like path expansion
xIGFBAau. We also have an obvious opportunity for
optimising the paging path by eliminating the repeated
segment FGIx, which requires the context information
to be percolated upward to server F . Since the latter
is higher in the hierarchy, it is important not to load it
unnecessarily, for which a caching strategy seems to be
most appropriate.

The complete logical path vbEFBAau is involved
in constructing a separate virtual path, say uapqsbv
or uapqrsbv, for subsequent data. Fig. 2 illustrates
the suspension-bridge relation between the logical and
virtual paths, together with the switch path table
entries comprising the latter. Each entry is shown as a
tuple h� ��i, where � identi�es outgoing next-hop link,
� is onward path index; both are expected to be small
integers in practice. Also shown are the outgoing �le
table entries within the operating systems on the two
end hosts; the incoming paths presumably lead to the
same entries, because the same �le structure is typically
used for traÆc in both directions.

The virtual path is obtained as follows. As shown
in Fig. 1, host s is linked to two servers, E and H , by
con�guration. It �rst sets up a tentative �le table entry,
reachable by return index �2, and requests server E,
as assumed above, by invoking connect("//F/G/I/x",
�2). Server E �rst translates the HURL to the triple
FEb by reference to the ACS. The switch information is

conceptually con�gured as context-sensitive translation
rules of the form

F � E � b 7! F � s � b # Note: hosts � switches

treating the current (middle) server id as nonterminal
and the switch ids as terminals in the production. Our
sample rule says that switch s may be applied to paths
between F and b. The idea lends itself to generalisation
with attributes to represent cost, bandwidth, latency,
etc., and accommodation of several such rules at each
server for each pair of its neighbours, accepting similar
parameters with the the bind and connect requests in
order to pick the best match for each connection.

Assuming the switch selected is s, E then signals
s to allocate two entries in its path table, supplying
the return index �2 and the requestor's identity b as
the return destination as arguments. Note that the
identity of b needs to be unique only with respect to
the immediate switch s, and is expected not to be a
universal address. In practice, E could be con�gured
to transform b to a link identi�er with respect to s,
using con�gured information once again, or pass its
own link identi�er for b and depend on s to perform
the corresponding translation. In any case, s enters
these arguments into the �rst of the allocated entries
and returns indices to both, �1 and Æ2, to E. E now
passes the request onward to the identi�ed next server
on the logical route, F , together with the HURL and
the new return index Æ2. F does a similar translation
and signalling to the next switch r, except that the
return destination is now switch s instead of server
E, for obvious reasons. The sequence continues until
the request reaches host a bearing the return index
�2, where process u would be typically sleeping on an
accept operation. If it honours the request, a new �le
table entry is created within the OS on host a, bearing
the return index �2 and destination p, and a new index
�1, leading to this �le table entry, is returned in the
response from a to the last server A in the logical path.

A now signals to switch p once again, telling it the
forward index �1 and destination a to complete its
previously allocated second entry, and in turn passes
back to server B the value �1, previously returned by
switch p, as the forward index, along with the forward
destination identity p, to pass to its switch q. This
return sequence continues until E receives the forward
index Æ1 and destination r from F , which it promptly
passes to s once again, before returning the forward
index �1 and destination identity s to host b, to be
entered into its previously allocated �le table entry as
shown. The complete sequence is summarised below,



showing the intermediate logical path fragments and
the sample state information held at server E:

1. b! E: makepath(hb � �2i, FBAau).
[E:: b:�2]

2. E ! s: makelink(hb � �2i);
[E:: b:�2 s]

s! E: return newlink(�1, Æ2);
[E:: b:�2 s:�1,Æ2]

E ! F : makepath(hs � Æ2i, BAau).
[E:: b:�2 s:�1,Æ2 F ]

3. F ! r: makelink(hs � Æ2i);

r ! F : return newlink(Æ1, 
2);

F ! B: makepath(hr � 
2i, Aau).

4. B ! q: makelink(hr � 
2i);

q ! B: return newlink(
1, �2);

B ! A: makepath(hq ��2i, au).

5. A! p: makelink(hq ��2i);

p! A: return newlink(�1, �2);

A! a: makepath(hp ��2i, u).

6. a! A: return linkage(ha ��1i);

A! p: setlink(�1, ha ��1i).

7. A! B: return linkage(hp ��1i);

B ! q: setlink(
1, hp ��1i).

8. B ! F : return linkage(hq � 
1i);

F ! r: setlink(Æ1, hq � 
1i).

9. F ! E: return linkage(hr � Æ1i);
[E:: b:�2 s:�1,Æ2 F:r,Æ1 ]

E ! s: setlink(�1, hr � Æ1i).

10. E ! b: return linkage(hs � �1i).

The above example illustrates the setting up of a two-
way connection, and shows that each switch is signalled
to twice, once for each direction. The same procedure
would be executed for a one-way connection, except
that the switches would be signalled to only once, in
the desired direction.

4 Performance

The cost of computing the virtual path is distributed
over the logical path but is clearly cumulative in terms
of delay. We also incur a signalling delay proportional
to 2n + 4m, where n and m denote the number of
hops in the logical and the virtual paths, respectively.
This reduces to 2n + 2m for one-way paths, 2n for
paging with reply, and to just n for paging without
reply. The last case corresponds to datagram routing,
and we have a slight advantage over IP in avoiding the
DNS lookup. In general, however, these delays make
the framework slower to respond to changes than IP,
but recall that our method is particularly intended for
crossing IP's address boundaries, where the additional
delay would be acceptable. For instance, the SOCKS
protocol requires a signalling TCP connection to be
�rst made with the gateway; in our method, the service
links would have been already set up, avoiding the per-
connection delay. Both n and m are also expected to
be small numbers in such applications.

Our translation complexity also compares favourably
against that of source routing, which is prescribed by
the ATM private network-to-network interface (PNNI)
speci�cation [5,x3.7], and involves an expanding search
from the requesting host, the search space growing as
bm, where b denotes the mean branching factor and m,
the number of hops from the source. The complexity
is reduced by the hierarchical clustering, but the result
would be no match for direct interpretation, like IP
routing, if it were available. Our method reduces the
search space to nb2, making it comparable to hop-
by-hop routing, which is not preferred because of the
likelihood of loops. We are immune to looping because
each incremental translation is pinned at either end
to the logical path, and not open-ended as in hop-by-
hop routing. In our example above, server E begins
with the triple FEb, and seeks to replace itself therein
with a suitable switch. In hop-by-hop routing, host b
would have supplied a's address, from which E cannot
a priori determine a next logical point F to direct the
hop, so that the search diverges from the source b and
can easily loop back.

These estimates are purely theoretical, and for the
best case scenario. The worst case is when multiple
paths are possible and the most optimal, according to
some criterion, is to be found, involving backtracking
over the search space. Although the total search space
is bounded in our framework by the logical path, any
backtracking along it would incur additional signalling
delays. We are thus more strongly limited to �rst



�t and best e�ort routing, and are dependent on the
geographic principle for eÆciency.

It should be observed that relaxing the geographic
principle allows for more optimal routes and the vice
versa, so that the geographic freedom determines the
tradeo� between \compile-time" or path set up latency
and the \run-time" optimality of the virtual paths.

5 Recovery and incremental routing

There is scope in the framework for route discovery, for
example, server F could cache the subpath FGIx, on
recognising repetition of references to //F/G/I/x, and
use it to forward paging messages directly from E to
B instead of via G and I , reducing the load on itself.
More important would be the discovery of switches, to
be re
ected to the translation rulebase at the nearby
connection servers, in accordance with the geographic
principle. Multiswitch and multiserver rules are easily
accomodated in approach, e.g.

B � F �E 7! B � q � s �E

B � F � E � b 7! B � r � b

which could be applied in various ways, for instance,
nondeterministically, by priority based selection, etc.
These generalisations are still being investigated.

In general, however, route discovery is meaningful
only within a given network, as having an automaton
transcend gateways and �rewalls on its own would be
quite undesirable. It is only within the individual hops,
therefore, that we would expect discovery to be useful,
but at this level, it would be already performed within
the underlying transport network in our envisaged
deployment over existing networks. The only reason
for having multiple hops within an IP network would
be security, as described in x6.

In the context of recovery, it should be noted that
the reliability and availability the connection servers
can be readily assured by setting up multiple servers
at each node in the ACS tree, using known techniques,
for instance those used in high end web servers, for
caching and load balancing. The burden of state on our
connection servers thus does not seem to be a critical
problem, but more study is needed to determine how
long the state is best retained, and whether it would
be optimal to have timeouts or cache-like replacement,
because the state would be useful as sca�olding for
rerouting virtual paths when a link fails. This would,
of course, require the switches to signal back to the
connection servers.

Alternatively, the state can be stored at the switches,
thereby freeing the connection servers, as the state data
would be of the same order of size as the path table
entry. This is because it would be distributed among
the servers or switches along the respective paths. The
burden thus does not appear to be substantial and the
choice of location would depend more on convenience.

For instance, in our example system, switches q and s
would have no diÆculty rerouting paths via each other
if link (rs) failed, if discovery were enabled between
switches. Instead, consider how we could do the same
using our framework incrementally without discovery.
Recall that in the original signalling sequence, servers
B, F and E would have performed the translations
ABF 7! AqF , BFE 7! BrE and FEb 7! Fsb,
respectively, which is how we would have got our path
through r in the �rst place (Fig. 1). When r or one of
its links fails, it is as if r were suddenly missing from the
path, and the incremental translation should ideally
produce the same result as if r were never present. F
would have been unable to replace itself in the logical
path with r, and instead, we would have had larger
logical segments ABFE and BFEb to translate at B
and E, respectively.

We would have had to map s, identi�ed by E, as the
next hop to q, which is signalled to by B, using F as
intermediary in the translation, and similarly for q as
the next hop for s in the signalling by E. There are only
two ways to achieve this translation without breaking
the premise of end-to-end addressless: introduce a link
id tuple hq0 � s0i in the con�guration supplied to F say,
so that id s0 as known to q and id q0 as set up at s,
both refer lead to the link (qs), or de�ne a local address
space for just the three switches q, r and s, such that
the signalled ids will be interpreted by these switches as
addresses in this special address space. In either case,
when the breakage is detected, switches q and s need
to notify their respective servers F and E. In order
to rekindle the incremental computations, the original
triples ABF , BFE and FEb, would have to be either
saved and available within the servers, or copied to
and saved by the switches for this purpose. We expect
this incremental translation to perform better than an
adoption of rehealing techniques from ATM, for the
reasons explained in x4 for end-to-end routing.

6 Firewalls and security

An obvious feature in our framework is the \security
by anonymity" resulting from the concealment of host



identities even from the connecting processes, because
the HURLs bear no correspondence whatsoever to the
hosts of the application servers advertising them on the
ACS. A client can extract route table entry within its
OS corresponding to a connection in our framework,
but the address contained therein can only lead to the
�rst switch on the virtual path. There is no incentive
for the client to mount a denial of service attack on that
address, because that would only cost the client's own
connectivity to the network beyond the switch, and
the attack cannot be initiated from a di�erent location
in the network because the virtual path indices are
source-dependent. To compare, SYN attacks have been
mounted in IP precisely because the victim is exposed
by its address and can be attacked from other locations
on the Internet so that the attacker does not get cuto�
by choking of routers in its own neighbourhood.

In our framework, the victim is exposed only within
its local IP space, and it is easy to see that the
isolation is proportional to the number of hops in the
virtual path between it and the attacker, assuming
that the attacker is able to acquire a connection in
the �rst place. This is similar to the protection in the
Onion Routing (see http://www.onion-router.net)
for data. The invisibility of host addresses is at �rst
daunting, as it would seem to block administrators
just as surely as adversaries. Legitimate administrative
access is not really blocked, however, as local network
addressing, including IP, remains available under the
framework, and even remote administrative access
could be supported, where needed, by advertising an
SNMP-like service over the ACS, although this would
inevitably diminish the security to some extent. What
distinguishes our framework is primarily that it is not
promiscuous and access of any kind must be set up
actively, including those compromising security.

Our connection servers would be similarly protected
by sel�shness, as it were, because an attack on the ACS
would choke the very server used by the attacking host;
again, a given connection server would be vulnerable
within its own IP network, and the protection increases
with more levels in the hierarchy. This is of concern
because unlike the DNS, the ACS is not a directory
service, but instead controls access to data and services.

The separation between HURLs and their originating
hosts permits an even stronger form of protection, by
authenticating connect requests within the ACS and
away from the application server hosts. This could also
be applied to bind requests, to restrict advertisements
from foreign hosts on private connection servers,
for business-to-business services in the private space,

which in turn could use connect-time authentication
to ensure licensed usage. These ideas are illustrated
in our example by the three �rewalls X , Y and Z,
shown by thick broken lines in Fig. 1. Z lies behind
Y and hides host c and servers G, I and J from host
b and server E, which are themselves hidden behind Y

from servers B and C. The notion of �rewalls makes
sense only in terms of the local network address spaces
to which these nodes belong. Thus, r and c cannot
share a common IP address space, and the links from
c and G to F would have pass through a SOCKS or
NAT gateway. Our capability for remote advertisement
allows the application process u on the foreign host a,
protected behind its own �rewall X , to advertise on I

behind two layers of protection, provided it has been
given the HURL to use, //F/G/I/x, and the keys to
authenticate itself to the servers F , G or I that may
challenge it.

7 The system calls

As mentioned in x1, the virtualisation depends on a
reversal of order in the addressing of shared resources
from the usual host � resource form, common to the
Internet URLs and almost all existing APIs concerning
shared resources, including the Network File System
(NFS), the Network Information Services (NIS) and the
Distributed Inter Process Communication (DIPC), to
the inverted form resource�virtual address, meaning
that the resource itself must be addressed �rst, as
if it were mirrored on every host, with the virtual
address denoting indexing within the resource, but of
a network kind, which would be inappropriate, for
instance, to addressing within a shared memory region.
Rather, the virtual address has a natural interpretation
in a messaging context as the ordering of network
connections made in it, like the \communicators" in the
Message Passing Interface (MPI) library, each of which
constitutes an array of peer end points that could be
likened to �le descriptors.

Since we could bind multiple HURLs for a given
resource, the ordering cannot be handled by the ACS,
but must be managed by the applications themselves.
The issue is of concern only in multipoint connections,
as in a typical server application, a natural ordering is
trivially obtained by counting the client connections in
the order they were made. Accordingly, it suÆces to
have a hook within the API to allow applications to
implement their own orderings if needed, and the only
necessity is support for multiple message end points.



These considerations are the basis of our prototype
API, wherein we represent a messaging end point by
the two-dimensional address hcid � vaddri, where cid

identi�es the context and vaddr, a connection number
within that context. The cid is encapsulated in the
OS by a cnode data structure leading to a virtual
path table indexed by vaddr. Each cnode is then a
local image of a context, and as it represents a shared
resource in any case, it seemed natural to give it an
independent existence like a System V IPC id, replete
with user and group ownerships and rwx permission
mode bits, so that it could be set up and used for local
IPC even without binding a HURL.

A new system call, context(type,mode,arg), was
de�ned to create the cnode structure within the kernel,
and to return a local context id. A second system call,
cntl(cmd,arg), was de�ned in the style of ioctl for
performing various operations on the cnodes, including
their deletion, and a third, cbind(cnode,hurl,arg),
for binding a HURL to a cnode. The ACS lookup call
cget(hurl,type,mode,arg) looks more complicated
because it generally returns a new cnode on success,
in order to support multipoint usage. The existing
read/write family of system calls was reused for
messaging I/O by instantiating �le descriptors for
each local connection, the extra argument in the
POSIX readx/writex calls being used for specifying
the peer vaddr. Note that we have no room for an
equivalent of the socket send/receive system calls, as
the only extensions these make over read/write are
for destination addressing.

A �fth call, copen(cnode,oflags,arg), was de�ned
for opening local connections only, as opens on peer
hosts are expected to be transparently re
ected to the
local cnode by a synchronisation protocol in the type-
implementation code. In the switch table entry for
the sample TCP-server type, the copen �eld pointed
to the internal entry point of the socket accept call.
The corresponding redirect of copen to the socket
connect in the sample TCP-client type switch entry
would have been wasteful, however, as it would have
required client applications to call the kernel twice,
with cget and then copen. The copen hook therefore
made a noop and the cget was overloaded to also
call connect and to return the resulting �le descriptor
instead of the context id. Brief code examples are
given in Appendix A to illustrate the API. A symmetric
multipoint type was successfully implemented using
UDP and a prototype synchronisation protocol for the
vaddr ordering, primarily as a test of the system calls
and switch table design.

Very simple name servers were written in Perl and C
for exercising the prototype API code. Communication
with the name servers was managed by a user-mode cxd
demon process via a special device driver. While the
API has suÆced for studying the host implications, the
investigation was originally concerned with an elegant
design for MPI support in hardware on the IBM SP;
the above design particularly permits lazy switching of
the virtual path tables in the interface. A command
interface was also provided encapsulating calls to cntl

and ioctl, on cnodes and �le descriptors, respectively,
and a /proc �le system implementation was examined.

8 Work in progress

Many networking tools have been built to study the
issues involved in bridging �rewalls and networks in
the course of various projects. Some were included
in the IBM RTSP reference toolkit, and were used to
mirror the development server site to the Internet. One
is in active use proxying our Deep Blue game server
on the Internet, whose design was a result of these
experiments, and which uses RTSP for session control.
A special device driver interface was designed for using
ATM AAL5 virtual paths from the command line, for
eventual use in scripting the ACS con�guration, as well
as a prototype switch for deploying the framework over
IP. Prototypes of the ACS and the path translation are
still being developed. Also being examined is a very low
latency signalling protocol that builds on the present
framework, and would incorporate a notion of caching.

9 Conclusion

I have presented a notion of virtual network addressing
patterned after the per-process virtual address spaces
available for memory addresses in modern operating
systems, that would have a number of useful features,
including host security by invisibility, Web-like access
as its primary means of connection, and perhaps most
importantly, elimination of real network addresses and
address space issues from the application and user
interfaces. I have argued that it can be deployed over
existing networks and the Internet, giving reasons why
it would perform adequately for this purpose, viz that it
would essentially interpret user or application-supplied
URLs for routing, like the interpretation of addresses
in traditional IP routing, instead of divergent search
from the caller's host, as in ATM. I have also shown
that it leads to small API resembling but simpler than
the socket API, and at once more capable, in that it



would uniformly support multipoint connectivity for
distributed parallel applications.

How the framework would be used on a larger scale
has not been described, nor examined in detail. Also
missing is a better understanding of the geographic
principle, i.e. the impact on the route translation from
the end-to-end directivity available in our approach.
The B2B opportunity needs to be explored, as well as
the possibility and impact of geographical localisation
of ACS advertisements. We hope to explore these issues
once we have a full prototype working. We have not
explored application of these ideas to telephony, where
the 9-digit number space is similarly getting �lled up.
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A Programming examples

1 // --------------------------------------------------------------------

2 // a simple stateless server a la HTTP/1.0:

3 // --------------------------------------------------------------------
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Fig. 2: Signalling and transport

4 extern char inbuf[];

5

6 void serve (int fd) {

7 int inlen = read (fd, inbuf, sizeof (inbuf));

8 (void) transform (inbuf, inlen, outbuf, outlen);

9 write (fd, outbuf, outlen);

10 close (fd);

11 }

12 ...

13 // in main:

14 int cd = context (STREAM_SERVER, O_RDWR, 0);

15 if (cd < 0 || cbind (cd, argv[0], 0) < 0) {

16 perror (argv[0]); return cd;

17 }

18 while ((int fd = copen (cd, 0, 0,))) { // =accept()

19 if (! fork ()) serve (fd);

20 }

21

22 // --------------------------------------------------------------------

23 // Client using the stateless server

24 // --------------------------------------------------------------------

25 ...

26 int fd = cget (argv[0], 0); // =connect()

27 if (fd < 0) {

28 perror (argv[0]); return fd;

29 }

30 write (fd, buff, strlen (buff));

31 int len = read (fd, buff, strlen (buff));

32 ...

33

34 // --------------------------------------------------------------------

35 // A multipoint application:

36 // --------------------------------------------------------------------



37 extern int mypeer (const char* hername);

38 int cd = cget (argv[0], 0); // ~connect()

39

40 if (cd < 0) {

41 perror (argv[0]); return cd;

42 }

43

44 int fd = copen (cd, arg1, omode1); // ~connect()

45 if (fd < 0) {

46 perror ("failed connection"); return fd;

47 }

48

49 for (;;) {

50 int from, len;

51 len = readx (fd, buff, strlen (buff), &from);

52 writex (fd, buff, strlen (buff), mypeer ("signother"));

53 }

54 ...

55 // --------------------------------------------------------------------

56 // A comparable MPI program (from the MPI specification)

57 // note: 1. would be invoked with rank==virtual node# as argument

58 // 2. communicators are hard-coded numbers, not URLs

59 // --------------------------------------------------------------------

60 ...

61 char message [20]; int myrank; // rank == peer#

62 MPI_Comm mycomm = MPI_COMM_WORLD; // ==default cd

63

64 MPI_Status status;

65 MPI_Init (&argc, &argv);

66 MPI_Comm_rank (mycomm, &myrank);

67 if (myrank == 0) {

68 strcpy (message, "hello, world");

69 MPI_Send (message, strlen (message),

70 MPI_CHAR, 1, 99, mycomm);

71 // 1: the destination virtual address (peer#)

72 // 99: a tag, to allow inband multiplexing

73 }

74 else {

75 MPI_Recv (message, 20, MPI_CHAR,

76 0, 99, mycomm, &status);

77 // 0: the source virtual address (peer#)

78 printf ("received: %s\n", message);

79 }

80 MPI_Finalize ();

81 ...

82 // --------------------------------------------------------------------


