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T he increasing popularity of multimedia streaming applications,
such as RealNetworks’ RealPlayer and Microsoft’s NetMeeting and
Windows Media Player, pose challenges to the Internet infrastruc-

ture, particularly in providing secure firewall traversal for video and audio
streams. Static packet filtering, the approach used by firewalls today, can-
not adequately support the security needs of these applications for sever-
al reasons. First, common packet-filtering policies block almost all incom-
ing user datagram protocol (UDP) traffic except for a few services such
as the domain name service (DNS), network time protocol (NTP), and
Archie.1 Many multimedia streaming applications, however, employ UDP
for data transport because for multimedia streaming, minimal delay and
delay jitter is more important than total reliability. Second, the problem
with UDP unicast also applies to IP multicast, which supports UDP only.
IP multicast, nevertheless, is essential to a scalable solution for Internet-
wide multimedia streaming. Finally, in multimedia streaming the UDP
ports on the client and server sides are usually dynamically assigned
through the application protocol, which is further complicated by the net-
work address translation (NAT) performed by firewalls. As a result, special
configurations, such as fixing a particular UDP port for receiving multi-
media streams, are often required.2

This article investigates the suitability of SOCKS, a transport-level
proxy solution adopted by the Internet Engineering Task Force’s Authen-
ticated Firewall Traversal Working Group, for supporting multimedia
streaming applications.3 The name SOCKS came from Secure Sockets,
originally developed by David Koblas and Michelle Koblas.4 Specifically,
we identify two problems encountered by SOCKS: a mismatch of call
sequences between the SOCKS’ transport model and multimedia stream-
ing protocols’ transport models, and inadequate socket call support for
UDP binding. Failure to resolve these problems results in the firewall’s
blocking of the multimedia streams. We use the real-time streaming pro-
tocol (RTSP), an IETF-proposed standard, to illustrate the problems, and
we propose an enhanced SOCKS to provide complete support for UDP-
based applications, particularly multimedia streaming applications.
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Although we consider only RTSP here, the
enhanced SOCKS can be applied to other multi-
media applications, such as Microsoft’s NetShow,
because it adopts a transport model similar to RTSP.
Moreover, although our focus is the unicast deliv-
ery of multimedia streams, SOCKS also supports
multicasting.

APPROACHES TO SECURE
SERVICE
Special configurations are, as mentioned, one way
to offset the inadequacy of static packet filtering in
providing secure firewall traversal service. Another
approach employs application-level proxies. Such
proxies are indeed essential for application proto-
cols such as HTTP and FTP; however, these pro-
tocols require additional processing overhead.
Future enhancements and modifications to the
application protocols also mandate a correspond-
ing update on the proxy. Moreover, additional cod-
ing must be implemented to make the applications
aware of the proxy server. Managing separate prox-
ies for different applications is also problematic. 

Yet another approach employs a stateful inspec-
tion engine to filter incoming packets. The engine
extracts relevant state information from incoming
packets and maintains it in dynamic state tables for
evaluating subsequent connection attempts.

Transport-level proxies provide an approach
midway between static packet filtering and appli-
cation-level proxies. Unlike the stateful inspection
approach, transport-level proxies do not require
sophisticated configuration and management. A
transport-level proxy, because it is situated between
the application and transport layers, provides a
generic transport proxy service to handle all TCP
and UDP applications. The generic proxy inter-
cepts socket-call procedures invoked by an appli-
cation and sets up a proxy connection based on the
application’s transport requirement. 

An application-independent transport-level
proxy, providing user-level authentication and data
encryption, can offer secure, scalable firewall tra-
versal service for many multimedia streaming appli-
cations. SOCKS, the IETF’s proposed transport-
level proxy solution, is a prime example of such
proxies, as we explain.

SOCKS AND RTSP OVERVIEW
SOCKS employs numerous mechanisms to secure
traffic flowing through a SOCKS-enabled firewall.
A proxy server provides relay services for UDP and
TCP traffic with network address and port transla-

tion, which hides the true client’s identity from out-
side the firewall. Like most proxies, SOCKS is
designed for situations where the client is inside of
the firewall and the server is outside. The proxy
server, therefore, only allows TCP connection and
UDP datagram transmissions initiated from inside
the firewall, filtering all other unauthorized incom-
ing traffic. That is, the client (via the proxy client),
through the SOCKS protocol, notifies the proxy
server of the source and destination socket address
pair for the permitted TCP or UDP traffic. In
responding to the request, the proxy server “drills
a hole” in the firewall for the incoming traffic with
the socket address pair.

In this article, proxy refers to the SOCKS proxy;
thus, proxy server and proxy client refer to the
SOCKS server and the SOCKS client, respectively.
The unqualified terms clients and servers refer to appli-
cation clients and application servers, respectively. 

SOCKS refers to SOCKS5 specified in RFC 1928
with Chouinard’s proposed UDP extension.5,6 This
extension introduced an enhanced UDP mode on
top of the SOCKS5 protocol in order to support
incoming UDP traffic, such as multimedia streams.
The enhanced UDP mode is assumed wherever we
discuss proxy support for UDP. However, as will be
seen later, this enhanced UDP mode alone (without
our enhanced SOCKS) still cannot provide secure
firewall traversal service for incoming multimedia
streams. Another Internet draft, proposing a similar
UDP extension to SOCKS5, is not discussed here
except to note that our enhanced SOCKS can also
be implemented with this extension.7

Socksified Clients
A client must be “socksified” to use the proxy ser-
vice. Socksification creates a thin SOCKS layer
between the application and transport layers. A
proxy client resides in that layer to communicate
with a proxy server.

There are two ways to socksify a client.8 The first
method requires recompiling and relinking the
applications. The existing SOCKS protocol library
provides wrapper programs to interface with the
client program. Wrapper programs take control of
the standard socket library calls for TCP and UDP;
for example, the UDP bind() socket call will be
replaced by the corresponding lsUdpBind() call for
SOCKS. The wrapper program then exchanges
SOCKS protocol messages with the proxy server;
therefore, the wrapper program can be viewed as
the proxy client in the SOCKS protocol model.
The second method is to perform dynamic library
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linking, which makes the socksification process
transparent to the applications.

When a socksified client executes a TCP connect()
socket call for TCP-based applications or a UDP
bind() socket call for UDP-based applications, the
proxy client intercepts the call. If the local policy
determines to redirect the call to the proxy server,
the proxy client first establishes a TCP connec-
tion to the proxy server at port 1080. The TCP
connection serves as a control channel for nego-
tiating authentication methods and encryption
options, and for client authentication. After that,
the proxy client formulates a corresponding
SOCKS command: a SOCKS connect command
for TCP connect(), and a SOCKS Enhanced UDP
Bind command for UDP bind() (the correspond-
ing command, per RFC 1928, in SOCKS5 UDP
binding is UDP associate), and sends it to the
proxy server through the control channel.

SOCKS for TCP-Based Applications
Within TCP-based applications, the TCP control
channel is also used for TCP data relay—an in-
band model—after the SOCKS connect command
is successful. On the left-hand side of Figure 1, the
client’s TCP data is redirected to the proxy server’s
internal relay socket, which is on the same side as
the local client’s. 

The proxy server relays the data to the intended
remote socket using an external relay socket, which
is on the same side as the remote server. The remote
socket and local socket are associated with the remote
server and local client, respectively. The proxy server
actually creates a new TCP connection to the remote
socket for relaying TCP data between the local client
and the remote server. Thus, the client is unaware of
SOCKS’ presence, and the remote server thinks that
the proxy server is the final destination.

SOCKS for UDP-Based Applications
SOCKS uses an out-of-band transport model for
UDP-based applications—the TCP connection
between the proxy server’s internal socket and proxy
client is used only for SOCKS control messages, not
for data transfer. Specifically, the following messages
are exchanged between the proxy client and proxy
server in the TCP control channel:

■ The proxy client sends a SOCKS Enhanced
UDP Bind command to the proxy server. The
command is accompanied by a local socket
address from which the proxy client will send
UDP datagrams for this UDP association, and

by a remote socket address that the proxy client
wishes to send to or receive from.

■ In response to the SOCKS Enhanced UDP Bind
command, the proxy server provides an internal
and an external relay socket address it will use for
this UDP association. The internal relay socket
lets the proxy client relay UDP datagrams to the
proxy server. The external relay socket lets the
proxy server send or receive on behalf of the
proxy client for this UDP association.

If the SOCKS Enhanced UDP Bind command is
successful, the proxy server will have set up an inter-
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Figure 1. The SOCKS transport model. SOCKS uses a single TCP
channel for both SOCKS control messages and data transfer for
TCP-based applications. However, SOCKS uses a TCP channel only
for SOCKS control messages for UDP-based applications. UDP
datagrams are transported separately with SOCKS encapsulation.
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nal UDP data relay connection between its internal
relay socket and the proxy client. The proxy server
then uses an external relay socket to relay the UDP
data between the local client and the remote server.
The original UDP association between the local and
remote sockets now consists of a UDP association
between the local and the internal relay sockets, and
a UDP association between the external relay and
the remote sockets. As a result, the proxy server
hides the true client from the remote server, and the
proxy client hides the proxy server from the client.

RTSP’s Transport Model
A common model for delivering multimedia
streams generally involves a TCP connection and
one or more UDP associations. The TCP connec-
tion serves as a control channel between a client and
a server, and the server’s TCP port is well known.
The UDP associations are used for delivering mul-
timedia streams from a streaming server to the
client. The UDP ports on both sides are usually
dynamically assigned (perhaps within a predefined
or configurable range in an actual implementation,
such as the RealPlayer application9), and the
assigned addresses are communicated through the
TCP control channel between client and server.

The IETF’s Multiparty Multimedia Session Con-
trol Working Group developed RTSP to serve as a
common platform for managing and controlling
multimedia streams.10 RTSP’s transport model
adopts the common approach just described.11 An
RTSP client first establishes a TCP connection to an
RTSP server at port 554. (The connection could be,
but seldom is, implemented as UDP instead of
TCP.) The message exchange sequence between
client and server in this control channel is as follows:

1. An RTSP client sends a setup request to an
RTSP server. The request specifies the URL of
the requested stream and the destination socket
address for receiving the stream, which is
associated with the RTSP client in the absence
of a proxy service.

2. The RTSP server responds with the source
socket address of the streaming server that will
deliver the requested stream. This socket
address may or may not be associated with the
RTSP server.

3. The RTSP client sends a play request for the
requested stream, and the streaming server with
the source socket address then starts sending
the requested UDP stream to the destination
socket address.

The data packet used for the multimedia streams can
be based on the real-time protocol (RTP) or other
proprietary protocol, such as RealNetworks’ real data
transport (RDT). Data packets are sent using uni-
cast UDP, multicast UDP, or inline TCP (via the
TCP control channel). Moreover, when RTP is used
for the data transport, another UDP channel is set
up between the RTSP client and RTSP server for the
real-time control protocol (RTCP). An application-
level proxy for RTSP is described elsewhere.9

PROBLEMS RECEIVING
MULTIMEDIA STREAMS
Figure 2 shows RTSP’s transport model via SOCKS.
SOCKS establishes two TCP connections—one for
internal and the other for external—for RTSP’s con-
trol channel, and establishes another internal TCP
connection plus UDP associations for receiving
multimedia streams. SOCKS can relay the RTSP’s
control channel between a local RTSP client and a
remote RTSP server through the SOCKS’ TCP
connections. After the internal TCP connection is
set up and the local client is authenticated, the local
client can send different RTSP methods to the
remote server through RTSP’s control channel.

Even with the enhanced UDP mode, two prob-
lems prevent SOCKS from receiving multimedia
streams. The first problem results from a mismatch
of RTSP and SOCKS call sequences, as depicted in
Figure 3 (on page 62). Specifically, an RTSP client
is required to include its local socket address for
receiving the requested stream’s remote socket
address in its setup request to an RTSP server. The
local socket is associated with the RTSP client in
the absence of intermediate proxies. But with the
SOCKS proxy separating the client and server, the
local socket is referred to the proxy server’s external
relay socket for this UDP association. However,
according to the SOCKS protocol, this informa-
tion is available only after a successful SOCKS
Enhanced UDP Bind command is executed.

On the other hand, the proxy server requires the
proxy client to provide the remote socket address
along with the SOCKS Enhanced UDP Bind
command before it will reply with its external relay
socket address. But the remote socket address is
available only after the local client sends the setup
request to the RTSP server, according to the RTSP
protocol we described.

As a result, the SOCKS Enhanced UDP Bind
command and the RTSP setup request are mutu-
ally dependent on each other to provide the need-
ed information. The proposed, enhanced UDP
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mode thus only provides fields for the remote sock-
et address of the streaming source, but the actual
address information is not available by the time the
Bind command is sent to the proxy server.6 This
problem causes the firewall to reject the requested
multimedia stream because the proxy server fails to
learn the stream’s correct remote socket address.

The second problem concerns the interface
between an RTSP client and a proxy client. The
UDP bind() socket call does not have an argument
for specifying a socket address. Therefore, the
RTSP client is unable to pass the remote socket
address to the proxy client through the socket call,
even if the remote socket address were available.

We have examined the only publicly available
SOCKS source code, made available by NEC Cor-
poration.12 This implementation made several
workarounds to resolve these two problems. With-
out the remote socket address field in the UDP
bind() call and the remote socket address itself, the
implementation assumes that the remote socket’s
network address is the same as the destination net-
work address in the previous SOCKS TCP con-
nection opened by the same proxy client. That is,
the streaming server and the RTSP server are
assumed to reside in the same machine. 

This assumption is obviously not always correct;
for example, a collection of identical streaming
servers can provide a scalable multimedia service,
or the video and audio servers can reside in differ-
ent machines. In some cases, multiple streams can
even be sent concurrently to improve the applica-
tion’s performance. 

As for the UDP port of the remote socket, the
implementation simply sets it to any port; thus the
proxy server checks only the source address of the
incoming UDP datagrams. This workaround clear-
ly compromises network security because the secu-
rity check applies only to the host level. Therefore,
new solutions that solve the two problems for all
scenarios without compromising the firewall’s secu-
rity are clearly needed.

ENHANCED SOCKS FOR RTSP-
BASED APPLICATIONS
Our solutions to the above problems make no
assumptions about the remote socket address. Our
goal is to solve the problems without compromis-
ing security and to leave the application protocol
unchanged insofar as possible—the RTSP client
and server call sequences must be preserved. These
requirements, therefore, led us to extend the
SOCKS UDP association model to handle the sce-

nario in which the remote socket address is unavail-
able during a UDP association. Moreover, the
extended UDP association model should support
current UDP associations.

We classify the UDP binding types that SOCKS
must support into UDP Open, UDP Listen, and
Two-step UDP Open, as Figure 4 shows. 

All three UDP bindings are initiated by a local
client. UDP Open creates a UDP association
between a local socket and a known remote socket;
for example, a local DNS client queries a remote
DNS server. UDP Listen corresponds to the con-
nectionless server mode in which a local socket is
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Figure 2. RTSP’s transport model via SOCKS. SOCKS must handle
both the RTSP control channel and UDP-based multimedia streams.
Between proxy client and proxy server, SOCKS therefore uses a
single TCP channel for the RTSP control channel, and another TCP
channel for the UDP-based multimedia streams.
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RTSP serverRTSP client

SOCKS Enhanced UDP Bind reply

(SOCKS servers external relay socket address)

SOCKS Enhanced UDP Bind
(streaming server's remote socket address)

SOCKS client SOCKS server

RTSP setup request (SOCKS server's external relay socket address)

RTSP setup reply (streaming server's remote socket address)

Figure 3. A protocol call sequence mismatch problem: The RTSP client cannot receive the streaming
server’s remote socket address without first receiving the SOCKS server’s external relay socket
address, and the client cannot receive the SOCKS server’s external relay socket address without first
receiving the streaming server’s remote socket address.

Two-step UDP Open:
1. SOCKS client sends remote socket
    address as 0.0.0.0:0.
2. SOCKS server responds with its
    external relay socket address.
3. SOCKS server does not confirm the
    binding.

UDP  Open:
1. SOCKS client sends remote
    socket address.
2. SOCKS server responds with its
    external relay socket address.

UDP Listen:
1. SOCKS client sends remote
    socket address as 0.0.0.0:0.
2. SOCKS server responds with its
    external relay socket address.

Two-step UDP Open:
1. SOCKS client sends remote socket
    address.
2. SOCKS server confirms the binding.

No UDP
bind association

UDP bind
half completed

UDP
bind completed

Figure 4. A state diagram for three types of UDP binding that the enhanced SOCKS provides—UDP Open, UDP Listen,
and Two-step UDP Open. UDP Open supports, for example, a local DNS client querying a remote DNS server. UDP Lis-
ten supports, for example, a local DNS server waiting for requests from remote DNS clients. Two-step UDP Open sup-
ports, for example, a local RTSP client receiving multimedia streams from a remote streaming server.
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open to any remote sockets and so does not have an
explicit one-to-one UDP association: for example, a
local DNS server waits for requests from remote
DNS clients. SOCKS5, as detailed in RFC 1928,
supports only UDP Open.

Additionally, we introduce a new, Two-step UDP
Open to solve the mismatch problem stated earlier.
The final result of the Two-step UDP Open is the

same as that of UDP Open, but the two steps under
UDP Open are performed separately in Two-step
UDP Open. As a result, the first step in Two-step
UDP Open is the same as UDP Listen, because the
proxy client cannot learn the actual remote socket
address in this step. Although the proxy server
returns its external relay socket address at the com-
pletion of this step, the proxy server does not con-

Set up SOCKS TCP control channel

Set up reply from SOCKS server

Set up reply

Set up RTSP control channel

RTSP setup reply from RTSP server (remote socket address)

RTSP setup request (SOCKS server's external relay socket address)

Reply to close SOCKS UDP association

Close SOCKS UDP association

UDP bind()
+ UDP getsockname()

wrapper program
for SOCKS

UDP connect()
wrapper program

for SOCKS

UDP recv()
wrapper program

for SOCKS

SOCKS server RTSP and streaming server
RTSP client

and SOCKS client

UDP data from the streaming server

Time

RTSP play stream reply

RTSP play stream request

SOCKS Enhanced UDP Bind (local socket
address and remote socket

address as 0.0.0.0.:0)

SOCKS Enhanced UDP Bind
(remote socket address)

Same SOCKS Enhanced Bind reply

SOCKS Enhanced UDP Bind reply
(internal and external relay socket addresses)

Figure 5. A call sequence for an RTSP session via the enhanced SOCKS. This figure depicts three types of protocol interaction:
(1) Between RTSP client and RTSP server (via RTSP), (2) between RTSP client and proxy client (via system socket calls), and (3)
between proxy client and proxy server (via enhanced SOCKS protocol). The diagram does not explicitly show interaction
between proxy server and RTSP server.
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firm the binding until it obtains the intended
remote socket address from the proxy client in the
second step. With the proxy server’s external relay
socket address, the RTSP client can obtain the
streaming server’s remote socket address through
RTSP’s control channel. The proxy client subse-
quently sends the remote socket address to the proxy
server; thus, the UDP binding is confirmed in the
second step and the mismatch problem is solved.

Next, the interface between an RTSP client and
a proxy client must be modified to support the
Two-step UDP Open. The modified socket inter-
face procedure consists of two socket calls: UDP
bind() and UDP connect(), which correspond to the
two steps in the Two-step UDP Open, respectively.
The UDP bind() socket call triggers the first
SOCKS protocol exchange sequence, in which the
proxy server replies with its external relay socket
address. The UDP connect() call, on the other hand,
triggers the second SOCKS protocol exchange

sequence to confirm the UDP
binding.

Figure 5 shows the combined
call sequences for RTSP and
SOCKS, plus the corresponding
socket calls. To simplify the figure,
we show the RTSP’s control chan-
nel between client and server as a
logical TCP connection, similar-
ly for the play request and reply
and for the UDP data transfer.

Enhanced SOCKS for
Complete 
UDP Support
The Two-step UDP Open com-
plicates the UDP binding process.
One problem is the need to dif-
ferentiate the SOCKS Enhanced
UDP Bind command for the first
step of the Two-step UDP Open
from that for UDP Listen because
the respective SOCKS messages
are identical. One solution is to
create a different SOCKS
Enhanced UDP Bind command
for UDP Listen, but this would
complicate the SOCKS com-
mand set. Our alternative is to
split UDP Open and UDP Listen
into two steps. This results in an
extended SOCKS UDP binding
model that provides a consistent

framework for different types of UDP binding.
Figure 6 is a state diagram for the extended

SOCKS UDP binding. In the first step, a UDP
bind() socket call triggers the SOCKS Enhanced
UDP Bind command with 0.0.0.0:0 as the remote
socket address. The second step for UDP Open,
appropriately labeled UDP Open, combines the
UDP Open and Two-step UDP Open in Figure 4.
The second step for the UDP Listen, on the other
hand, goes through a similar state transition as in
Figure 4.

A proxy server can distinguish the two steps in
the extended SOCKS UDP binding, based on a
Transaction ID (TID) used in the enhanced UDP
mode and the remote socket address. The TID is
assumed to be the same for the first and second steps
of a given UDP binding. When a proxy server
receives a SOCKS Enhanced UDP Bind command,
it first checks if it received the TID in the previous
command. A new TID implies the first step; a used

UDP Open/UDP Listen
Initiated by a UDP bind() socket call:
1. SOCKS client sends remote
    socket address as 0.0.0.0:0.
2. SOCKS server responds with its
    external relay socket address.
3. SOCKS server does not confirm
    the binding.

UDP  Open:
Initiated by a UDP sendto()* call
or UDP connect() call:
1. SOCKS client sends specific

remote socket address.
2. SOCKS server confirms
   the binding.
* the sendto() is only for the

original one-step UDP Open.

UDP  Listen:
Initiated by a UDP 
recv() socket call:
1. SOCKS client sends remote
    socket address as 0.0.0.0:0.
2. SOCKS server confirms
    the binding.

No UDP
bind association

UDP Open/UDP Listen
UDP bind

half completed

UDP
bind completed

Figure 6. A state diagram for the Extended SOCKS UDP Binding. Unlike the state
diagram in Figure 4, this Extended SOCKS UDP Binding goes through a two-step
binding for all three types of UDP binding. The advantage of this approach is to pro-
vide a consistent framework for different types of UDP binding while leaving SOCKS
command set unchanged.
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TID, the second. Moreover, the original one-step
binding can be distinguished from two-step bind-
ing by means of a specific, remote socket address in
the bind command. As a result, the original one-
step UDP Open can be supported concurrently
with the extended UDP binding. The extended
binding process is summarized below:

■ A bind command with a remote socket address
equal to 0.0.0.0:0 and an unused TID implies the
first step of the new extended binding process.

■ A bind command with a remote socket address
equal to 0.0.0.0:0 and a used TID implies the
second step of the new extended binding process.
This binding corresponds to UDP Listen.

■ A bind command with a remote socket address
not equal to 0.0.0.0:0 and a used TID implies the
second step of the new extended binding process.
This binding corresponds to UDP Open.

■ A bind command with a remote socket address
not equal to 0.0.0.0:0 and an unused TID
implies the original one-step UDP Open.

Another important, related issue is the interface
between an RTSP client with a proxy client. For
UDP Listen, a client may invoke a UDP recv()
socket call; for UDP Open, a UDP sendto() call or
a UDP connect() call, because both have arguments
for specifying a remote socket address. As for the
Two-step UDP Open, we propose that the client
invoke a UDP connect() socket call because a con-
nect() socket call simply associates a UDP port with
a fixed, remote socket address. This association
matches very well with the concept of a multime-
dia stream, which is specified by a fixed pair of
UDP socket addresses. Moreover, the connect()
socket call will not affect RTSP’s operation because
each multimedia stream uses a distinct UDP port.

RTSP Requirements
As we’ve said, an important criterion in the
enhanced SOCKS design is leaving the application
protocol unchanged. The enhanced SOCKS
requires no changes in RTSP other than enforcing
certain requirements that should have been stated
explicitly in the specification and an additional
UDP connect() socket call after the UDP bind()
socket call. These new requirements do not affect
RTSP’s transport establishment procedure for
direct connectivity without intermediate proxies.

The first requirement is to stipulate that both
the RTSP server and client use the fields of source
socket address and destination socket address in the

RTSP setup request and reply messages. The use of
these fields is not currently mandatory. For exam-
ple, the RTSP specification states that the stream-
ing server’s source address can be specified if dif-
ferent from the RTSP server’s. The specification
describes one example where the source socket
address was not specified in the transport header. 

In another specification example, both the source
and destination address were ignored in the trans-
port header because they were assumed identical to
those for RTSP’s control channel. The missing infor-
mation in the transport header for both cases can be
derived from other available information in the
absence of firewalls. However, the derived addresses
might become invalid if the RTSP session goes
through SOCKS. To conclude, an RTSP client must
supply a destination socket address in the setup
request message to receive the requested stream. Sim-
ilarly, an RTSP server must supply a source socket
address in the setup reply message to identify explic-
itly the source of the requested stream.

The second requirement concerns the corre-
sponding UDP socket calls for an RTSP client to
properly interface with a proxy client. The current
RTSP specification does not specify any socket call
requirements, and the current RTSP implementation
invokes only a bind() socket call to set up a multimedia
stream. In the extended SOCKS UDP binding, a con-
nect() socket call must be invoked once the remote
socket address is obtained. In fact, it is good practice to
add the additional connect() socket call after the bind()
socket call for RTSP-based applications. The reason
is that the UDP port for a multimedia stream is always
bound to a single UDP port in a streaming server.
Therefore, it is a one-to-one UDP binding, instead of
a one-to-many UDP binding.

These two requirements must be tied tightly with
the RTSP request and RTSP reply sequence, so that
information exchange is correctly sequenced between
an RTSP client and a proxy client. The UDP bind(),
UDP connect(), and UDP recv() socket calls must be
executed in the right sequence between the RTSP
request and RTSP reply, as indicated in Figure 5. The
UDP bind() and the UDP getsockname() socket calls
must be executed before the RTSP setup request. The
UDP connect() socket call must be executed after
receiving the RTSP setup reply but before sending
the RTSP play request. The UDP recv() socket call
must be executed after receiving the RTSP play reply.

PROTOTYPE
We implemented a prototype for the enhanced
SOCKS, including the necessary changes in the
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RTSP client and server. We based our implemen-
tation on the NEC-released source code for
SOCKS5 with additional enhancements for
UDP.12 We modified the source code to implement
the enhanced UDP mode proposed by Chouinard
and the enhanced UDP binding model that we
propose.6 We modified or added about 800 lines of
code for the enhanced SOCKS. We based the
source code for RTSP, however, on the RTSP ref-
erence implementation provided by RealNetworks,
with fewer than 200 lines of code modified or
added.13 Altogether, we analyzed roughly 8,000
lines of code.

We tested the prototype in a LAN environment,
as Figure 7 shows. The RTSP client, RTSP server,
SOCKS client, and SOCKS server were all running
Sun Microsystems’ Solaris 2.6. The RTSP client
and SOCKS client ran on the same Sun Solaris
machine (hostname u1x-175 in Figure 7) while the
SOCKS server ran on another Solaris machine
(hostname u1x-173), acting as a firewall. All the
TCP and UDP traffic between the RTSP client and
server went through the SOCKS server. The RTSP
server ran on another Solaris machine (hostname
u1x-170).

We based the test on the event sequence depict-
ed in Figure 5. The RTSP client initiated the RTSP
TCP control connection to the RTSP server via the
SOCKS server. A get rtsp.wav command issued
from the command line interface to the client trig-
gered RTSP setup and play requests. In the RTSP
setup request, the RTSP client set up the UDP

transport for the stream file
rtsp.wav, and the two-step
SOCKS UDP binding was per-
formed. In the RTSP play
request, the RTSP client initiat-
ed a play request and the RTSP
server delivered the audio stream
rtsp.wav to the RTSP client. The
RTSP client application then
closed. Detailed traces of the tests
are described elsewhere.14

The two-step SOCKS UDP
binding was successful, judging
by the screen captures we
obtained from the RTSP server,
SOCKS server, and RTSP client.
Each step mapped correctly to
the corresponding wrapper sock-
et call program. The UDP port
binding at the SOCKS server was
communicated from the SOCKS

layer to the RTSP client. The source address and
source port for the UDP stream were communicat-
ed from the RTSP client to the SOCKS layer.

On the RTSP side, the external address binding
at the SOCKS server was communicated from the
RTSP client to the RTSP server. The RTSP server
sent the UDP stream’s source address and source
port to the RTSP client. Although there is an addi-
tional step in the extended UDP binding process,
performance did not noticeably degrade. Even in a
more involved network environment, we do not
expect significant performance degradation as a
result of the additional binding step.

MULTICAST-ENABLED SOCKS
IP multicasting is an efficient way to send a multi-
media stream to a number of receivers. The Internet
draft that put forward the enhanced UDP mode also
proposed two approaches to extend SOCKS for sup-
porting IP multicasting— multicast-to-unicast mode
and multicast-to-multicast mode.6 The former mode
provides a more secure control by devolving multi-
cast packets into unicast packets delivered to each
receiver in the group. The latter mode, on the other
hand, provides less control but is more scalable and
efficient. The extended UDP binding model we pro-
pose does not affect the two multicast support modes.

CONCLUSIONS
The firewall-segmented Internet today inevitably
poses challenges to designing correct transport-level
proxies and application protocols. We have learned

Ethernet

RTSP client and SOCKS client
(hostname: u1x-175)

SOCKS server
(hostname: u1x-173)

RTSP server
(hostname: u1x-170)

TCP and UDP traffic is
redirected via SOCKS

SOCKS server sends
and receives TCP
and UDP traffic

on behalf
of the RTSP client

Figure 7. Testbed setup for the enhanced SOCKS.
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important lessons regarding these designs in this
work, and we believe that our experience can be
extended to form sound protocol design principles.

First, application protocols are generally
designed without firewalls, or with respective
application proxies, in mind. With a transport-
level proxy, like SOCKS, this assumption no
longer holds. As a result, some missing applica-
tion protocol information, which is not manda-
tory in the specification, may cause the firewall to
reject incoming traffic. We have illustrated this
point using RTSP in this article. 

Application protocol designers and imple-
menters, therefore, should take into consideration
the transport-level security requirement. Specifi-
cally, the client and server should exchange the
source and destination socket address at the appli-
cation level and provide them to the transport layer.
One way to achieve this is to standardize the func-
tion call library such that the source and destina-
tion socket address must be provided before data
transfer is allowed. A prime example of this
approach is to create an RTP function call library
that enforces such a standard.

Second, application protocols are becoming
very complex, and they may involve multiple
TCP connections and UDP associations for a sin-
gle application session. Moreover, TCP and UDP
ports may be assigned dynamically through the
application protocols. RTSP-based multimedia
streaming considered in this article, the emerg-
ing voice-over-IP standard, and multimedia con-
ferencing are notable examples. A transport-level
proxy must handle such complex interactions.
We expect that our half-binding approach can
resolve similar mismatch problems with other
application protocols. ■
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