
1

Simplifying Real-Time Multimedia Application Development Using Session
Descriptions

Sarom Ing, Steve Rudkin

BT Laboratories, Martlesham Heath
Ipswich IP5 3RE

England

Abstract
This paper presents a novel approach that simplifies real-time multimedia communication applications
development and service provision. Such applications are no longer required to code the creation and
management of their real-time communication needs, but are only required to declare them to our
middleware. These applications typically require media streams for audio and video, and data channels for
control purposes. Moreover they should be able to adapt to available network and host resources. This is
particularly important for multi-party applications operating in heterogeneous environments where each
party may have different resources available to them. In addition the nature of the heterogeneity may vary
over the lifetime of the session for example as network congestion varies or as the terminal resources are
shared with other applications or users. A further problem, still, is that the application developer and
service provider typically need to address security and charging requirements. The approach being
proposed in this paper allows media streams and channels, QoS, security and charging requirements to be
specified in a session description for use within the Multi-party Multimedia Middleware to invoke
appropriate communication, QoS management, charging and security procedures.

Keywords: Session Description Protocol, Real-time Multimedia Communications, and Middleware.

1. Introduction
Three developments are expected to lead to an explosive growth in commercial multimedia multi-party
applications on IP networks. Firstly multicast offers an efficient, scalable and robust means of supporting
multi-party applications. Within the next few years a large proportion of the internet is expected to support
native multicast. Secondly, the IETF's (Internet Engineering Task Force) work on differential services
promises a number of classes of service offered over one IP network. This will greatly facilitate the
transmission of real time traffic such as voice, video etc. required for multimedia services. Thirdly, the
development of generic Ecommerce services will enable new applications to be offered on a commercial
footing without the overhead of developing a service-specific ecommerce capability.

Multi-party applications include: conferencing, networked games, auctions and dealing, shared virtual
worlds, as well as broadcast-like applications such as video and audio streaming. The current
implementation process for multi-party multimedia applications is complex, lengthy and inflexible. This
paper addresses three aspects of this complexity. First, development of these applications requires teams
with skills in audio/video coding, network transport protocols, real-time programming, user interface
design and integration techniques. Our middleware offers the application developer dynamically
instantiable real-time stream components that can be simply selected by means of the session description.
Second, further complexity arises because multi-party applications must be robust enough to operate in
heterogeneous environments (with different terminal and network access capabilities). The nature of the
heterogeneity may even vary over the lifetime of the session, for example as network congestion varies or
as the terminal resources are shared with other applications or other users. Third, the application
development process is further complicated by the need to address security and charging requirements. By
including security and charging policies within the session description this complexity can be addressed by
the middleware.

The Session Description Protocol (SDP) [1] is a product of the Multiparty Multimedia Session Control
(MMUSIC) working group of the IETF. An SDP session description is intended to convey information

2

about media streams1 and channels in a multimedia session to allow recipients to participate in the session.
We are proposing to use SDP announcements for conveying communication, security and charging
requirements.

In the next section, we present an overview of SDP. We then present how SDP can be used to simplify the
development of robust and flexible real-time multimedia applications. This is followed by a discussion of
our prototype middleware design and implementation. Lastly, we contrast our system with related work,
and offer conclusions and suggestions for further work.

2. Session Description Protocol (SDP)
SDP is a session description protocol for multimedia sessions. The purpose of SDP is to convey
information about media streams in multimedia sessions to allow the recipients of a session description to
participate in the session. Normally a session directory tool such as Session Directory Rendezvous (SDR)
[5] is used to send SDP announcements. These announcements are sent by periodically multicasting an
announcement packet on a well-known multicast address and port using the Session Announcement
Protocol [6]. SDR is also able to receive announcements from the SAP multicast address and presents them
to the users.

SDP is used extensively on the Mbone (which is the part of the internet that supports IP multicast) that
permits efficient many-to-many communication. It is used quite regularly for multimedia conferencing.
Such conferences usually have the property that tight co-ordination of conference membership is not
necessary and anyone receiving the traffic can join the session (unless the traffic is encrypted). However
SDP is meant to be general enough for use in tightly controlled sessions (e.g. multimedia conferencing)
where participants are to be invited using the Session Initiation Protocol (SIP) [7] for example.

SDP announcements are entirely textual and consist of a session-level and optionally several media-level
information. The session-level description provides such information as, the owner/creator details, session
identifier, session name, time the session is active and zero or more media description. The media-level
description contains the following information:

• Media type and transport address (e.g. audio 3456 RTP/AVP 0)
• Media title
• Connection information (e.g. IN IP4 224.2.17.12/127)
• Bandwidth information
• Encryption key
• Media attributes lines

SDR parses SDP announcements and presents sessions information to the user. When the user chooses to
join a session, it parses the media information associated with the session to determine which application(s)
to launch. For example it may launch vic [2] to handle a video stream, or vat [8] to handle an audio stream
with an RTP/ format, or wb [3] to handle a shared data channel. It is possible but not very common due to
the lack of applications to dynamically map a media format to applications that users are familiar with, for
example a video format RTP/AVP may be handled by either vic or Netshow. This dynamic mapping will
benefit end users, as it is possible to enable them to choose their favourite application. It is important to
note that once SDR has launched an application, the application needs to handle the complexity of
establishing and managing its communication channels. It would make sense to provide support for this so
that multimedia applications do not have to handle this complexity. The following section will describe
how we provide support for this.

3. Declarative Programming
Real-time multimedia communications applications are characterised by their needs to send and receive
media streams. Currently, for such applications to receive media streams, they must create suitable

1A stream is a channel for continuous data types (e.g. audio or video), whereas a channel can be used for
both discrete and continuous data types.

3

communication channels (e.g. TCP sockets), receive packets of data for those channels, and decodes the
data before rendering audio or video signals at the receivers' speakers and monitors. In addition, these
applications may have the need to maintain the quality of the audio and video signals in the face of varying
resource availability (e.g. network and hosts resources). Furthermore, in the case that there are not adequate
resources to handle all media streams, the applications may decide to prioritise these streams. Application
programmers have to deal with these issues at the network and operating systems level.

In our declarative approach, real-time communications needs are specified using simple declarative
statements. These statements define the number of media channels required, their type (e.g. audio or video),
their format (e.g. .au or H263), their connection information, and their quality of service. These statements
can also specify the relative priorities of different media channels. SDP can be used for some of the above
purposes, however we have also found it necessary to extend SDP to cope with the specification of quality
of service and priorities of media streams.

Declarative statements in the form of SDP session description can be processed by our middleware, which
is responsible for instantiating the appropriate communication systems components. The approach can also
be extended to cover security and charging issues, which may be required by real-time multimedia
communications applications. The middleware aims to simplify the development of multi-party multimedia
applications by saving the application developer from having to worry about setting up communication
channels, robustness in the face of time varying heterogeneity, or charging and security. These are
discussed in turn below.

Establishing Communication Channels
We have adopted a declarative approach to simplify the development of real-time multimedia
communication applications. Applications can thereby avoid the complexity of creating and managing real-
time communication channels. Instead they declare which channels they require, and it is the middleware
that handles their creation and management (see Figure 1).

Figure 1 Declarative Programming Model

Currently, when a session directory tool such as SDR launches an application such as vic, it passes on just
the transport address specified in a session description. Vic is a monolithic application that needs to deal
with the creation of a video streamgroup, furthermore it is statistically configured to support just a single
video streamgroup (the concept of a streamgroup will be described later). In our approach, a SDR would
pass the whole session description to our multi-party multimedia middleware (M3), which in turns parses
the session description and determines that a particular multimedia application is required (e.g. SharedTV,
see section 5). M3 then launches SharedTV and passes on a list of media streams specified in the session
description on. SharedTV can parse this list and requests M3 dynamically to create a subset or all of the
streams in the list (as described in the next section). Our approach envisages that an application can use the

Session
Description

M3Application Streams
Declaration

4

media streams specification to dynamically instantiate streams implemented as part of a generic
middleware.

The dynamic aspect of this approach offers following benefits: providing a suitable means exists for
distributing updated session descriptions during the life time of a session, the application can dynamically
create and terminate communication channels as required. The power of this simple idea is only apparent
when the full range of multiparty multimedia applications is considered. Consider for example a shared
virtual world with an audio stream, position data channel and orientation data channel for each room or
zone within the virtual world. Zones may include a variety of media sources, which can only be sensed
within a certain range. Each such source would require a separate channel or stream. Also it may be
possible to establish small or private conversations transmitted on a different audio stream from that of the
room. As a user moves around the world, the user's application would continually be changing the number
and type of communication channels that it was using.

Robustness
We are also concerned that multimedia applications can be deployed in an environment with different
network and host capabilities. Consider a multimedia conferencing application that requires an audio and a
video channel. On those hosts with adequate computing and network bandwidth, all these channels could
be established. However, on those hosts without adequate resources, one may wish to have both channels
but at a lower quality. Unfortunately, this solution may degrade both channels and may render the
application unusable, thus it may be better for the application to establish just the audio channel.

These possibilities may be handled by a middleware or be hard coded in the program. The advantages of
using a middleware to provide support for the different possibilities are: to produce a robust
implementation by reducing the program complexity, and to produce a more stable program as it does not
need to be changed because more policies are required.

We have used a Session QoS Policy to describe the previously mentioned possibilities. This policy provides
guidelines to the middleware for the creation and management of the session's media channels. The policy
comprises of a mandatory list and an ordered optional list. The mandatory list specifies those channels that
are crucial for the proper functioning of an application. The optional list is an ordered list and specifies
those channels that are not crucially required, when resources are scarce then media streams at the head of
the list is created first. Consider the previous multimedia conference, the audio channel might be essential
whereas the video and shared whiteboard data channels might be optional. In addition the shared
whiteboard data channel might be more important than the video channel so that if there is network
congestion then degrading video quality would be preferred.

Charging and Security
Service providers want to be able to offer new multimedia services without the overhead of developing a
service specific electronic commerce capability. This is leading to the growth of generic Ecommerce
services like electronic payment services [9] and trusted third parties [10]. By including charging and
security policies within the session description it becomes straightforward to invoke such services from our
middleware. The Session Directory tool automatically passes these policies to the middleware so the
application developer does not have to be concerned with the charging and security issues.

The advantages are clear. The application developer can leave the middleware to implement charging and
security procedures. The service provider simply selects appropriate charging and security procedures
through the charging and security policies. This means that the application developer and the service
provider can focus on higher level aspect of their application or service. Moreover the applications can be
used in a variety of different service contexts (e.g. internet or intranet, charged or free). The model also
would allow innovative new service providers to enter the market easily and communities of users to
establish their own sessions without a service provider in any traditional sense.

5

We have described how we intend to use SDP to facilitate the development of robust, flexible and
extensible multimedia applications. In the next section, we shall describe our prototype implementation of
the M3 system, note however that the current prototype does not yet support the charging and security
policies.

4. Multi-party Multimedia Middleware (M3) Architecture
A session directory tool will contact M3 to start a session and passes to M3 a session description. M3 parses
the description to determine which applications are required and launches them. These applications then
interact with M3 whenever it wishes to create media channels. M3 is responsible for creating and managing
the quality of service for those channels and may also contact other services such as the authentication,
accounting and payment services. In this prototype we have only dealt with media channels creation and
managing their quality of service, and these aspects will be described below.

The M3 architecture (grey area) is primarily peer to peer, that is to say that each host will communicate
directly with one another rather than going via a central server. Each host is structured as shown in Figure
2.

Figure 2 Applications Architecture

Figure 2 shows an application interacts directly with three objects: the Session Description, Stream
Declaration and the User Session. These and other key objects are described below.

User Session

QoS Manager

Payment Service

Accounting
Service

Authentication
Service

Audio
Stream

Data
Channel

Video
Stream

Streams Declration

Session Description

Application

Network API

6

Session Description Object
Our session directory tool (SDTool) parses session announcements into Session Description objects. These
objects provide convenient methods to access attributes of a session (e.g. the session name, owner, start
time, a list of media streams, Session QoS Policy, and etc.), please refer to Figure 3 below. The media
streams list comprises of media media objects. These objects have convenient methods for accessing such
attributes as their identifiers, multicast address and port, quality of service mechanisms (e.g. RSVP,
layered encoding) and their associated specification (i.e. for layered encoding a list of multicast address,
port numbers and bandwidth value are specified). The Session QoS Policy object provides methods to
access media identifiers according to priority rules contained within the Session QoS Policy object.

When a user wishes to join a session, the SDTool contacts the User Session object to start that session and
passes the appropriate Session Description object on.

User Session Object
The User Session parses the given Session Description object to determine which application to launch. It
does so by inspecting stepping through the media list and inspecting the media client (e.g. sharedTV,
Netshow and etc.). If no particular media client is specified then it inspects the media format (e.g. mpeg, au,
dvi and etc.). The User Session then launches an appropriate application that can handle the particular
format.

An application such as the sharedTV application is implemented using the M3 middleware. Such an
application interacts with the middleware for the creation and management of communication channels.
The application interacts with the middleware via an API: e.g. joining and leaving a session, adding and
removing media channels to and from a session, getting membership and statistical information of a session
(see Figure 3 below).

When the application wishes to create an initial set of media channels, it sends a join session request to the
User Session. It passes as argument a Streams Declaration object that it creates after having parsed the list
of media streams given to it by the User Session object. The Streams Declaration object contains a list of
media identifiers to be created and a Session QoS Policy. The policy specifies the relative priorities of these
media. The User Session uses the list of media identifiers to generate a list of media objects. This list
together with the Session QoS policy is then passed to the QoS Manager for creation.

The application may wish to add more channels or remove existing channels. It does so by sending the
add/delete channel request respectively to the User Session.

Figure 3 Key Classes

Media

uniqueID : long
address : String
mediaTime : Time
mediaType : String
mediaFormat : String
mediaClient : String
mediaOw ner : String
mediaOw nerPhone : String
mediaOw nerEmail : String
mediaName : String
mediaQoS : MediaQoSPolicy

getUniqueID()
getAddress()
getMediaTime()
getMediaType()
getMediaForma()
getMediaClient()
getMediaOw ner()
getMediaOw nerPhone()
getMeiaOw nerEmail()
getMediaName()
getMediaQoS: MediaQoSPolicy()

SessionDescription

uniqueId : long
sessionName : String
sessionTime : Time
sessionOw ner : String
sessionOw nerPhone : String
sessionOw nerEmail : String
mediaModules : MediaList
sessionQoSPolicy : QoSPolicy
sessionSecurityPolicy : SecurityPolicy
sessionChargingPolicy : ChargingPolicy
sessionInfo : String
sessionURL : String

getID()
getName()
getTime()
getOw ner()
getOw nerPhone()
getOw nerEmail()
getMediaModules()
getQoSPolicy()
getSecurityPolicy()
getChargingPolicy: ChargingPolicy()
getInfo()
getURL()

UserSession

originalSD : SessionDescription
usId : long
usName : String
qosManager : QoS
appLauncher : Launcher
qosKey : long
usInfo : USInfo
usSubInfoList : USInfoList

UserSession()
joinUserSession()
addChannel()
delStream()
getMembers()
showMembers()
getStatistics()
showStatistics()
leaveUserSession()

7

QoS Manager Object
The QoS Manager accepts from the User Session a request to create a set of communication channels. A
list of media objects and a Session QoS Policy object are given to the QoS Manager as arguments. In our
current implementation, the Session QoS Policy comprises a mandatory list and an ordered optional list.
The mandatory list is an ordered list and specifies those channels that are not crucially required. When
resources are scarce, media streams at the head of the list are created first.

The QoS Manager will use the policy object when creating media streams: it will first verify that it has
enough resources (e.g. network bandwidth, processing power, and devices) to create all media streams in
the mandatory list. If there are not adequate resources, it will throw a No Resource Exception. It will then
check to determine whether there are enough resources to handle all the optional media streams. If there are
not enough resources for this then it will throw a Partial Resource Exception, and creates only those
channels that can be handled. If there are adequate resources to create all the optional media streams as well
as well as the mandatory streams, it will create all streams and passes references of these streams back to
the User Session.

When the QoS Manager creates the audio and video media streams, it uses the Media QoS Policy to
determine which mechanism (e.g. RSVP, or layered encoding) to use. The current implementation only
supports layered encoding and this is explained below.

Audio Media Stream
An audio media stream or sometimes called streamgroup is made up of a number layers (or RTP/RTCP
sessions). Figure 5 below illustrates an audio stream that comprises of three audio encoded layers, and each
layer in turns comprises an RTP and an RTCP session. The audio quality gets progressively better as more
layers are added to the base layer (layer 1), for more details please refer to [13].

Figure 4 Audio Stream Group Encoder

The above figure illustrates the encoding end of the audio stream (i.e. the server end). At the receiver end
the QoS manager is responsible for creating the audio streamgroup decoder (see Figure 5 below). The QoS
Manager determines the maximum number of layers, RTP/RTCP addresses and ports, and bandwidth from
the Media QoS Policy object. It will then create appropriate number of layers depending on the resource
available and the Session QoS Policy as described previously. Once the decoder is created, the QoS
Manager will monitor RTCP statistics and local host resource usage to add/remove layers appropriately.

Audio Encoder

Layer 3 (RTP/RTCP)

Audio Input

Network

8

Figure 5 Audio Stream Group Decoder

Video Media Stream and Data Channel
The Video Stream Group Encoder has the same architecture as the Audio Stream Group Encoder. The
Video Stream Decoder differs from the Audio Stream Group Decoder in that the former does not have a
mixer.

5. Example Applications

Two applications have been developed using the M3 architecture. These are the sharedTV and a virtual
world sharedTV applications. The sharedTV application enables users to come together in a conference to
watch television. That is, users are able to receive audio and video streams from a server, and they are also
able to communicate with one another via an audio channel. The video server sends out layered audio and
video streams. The sharedTV client enables users to receive these streams and manually add/remove audio
and video layers to/from the streams. Our experience in building this application demonstrates that using
the M3 middleware the application can easily create and manage media streams. In addition the application
can easily enable users to choose the quality of service of different media streams. The application also
demonstrates the flexibility of the resulting application from a service provider's point of view. The video
server can be configured to run with a low or high quality by changing the number of layers sent, this only
requiring in a change in the session description and not the application itself.

The virtual world sharedTV application provides a 3D user interface so that the television can be viewed
from different perspectives, and users will be able to see each other's representation in a 3D virtual world.
Hence this application requires the same media streams for the television channel as the previously
mentioned application, however in addition it uses the data channels to communicate the positions and
orientations of users' avatars. The additional insight gained (in terms of middleware usage) from developing
this application is that the application can easily create multiple logical data channels. It is envisaged that

Layer 3 (RTP/RTCP)

Network

Source Demultiplexor

Decoder

Audio Mixer

9

later version of this application will exploit other functionality of the middleware - such as dynamic
sessions - as it becomes available.

6. Related Work and Conclusions

The Session Directory Rendezvous (SDR) tool receives session descriptions and launches applications such
as vic, vat and wb. It passes to these applications just the technical information for concerning their media
streams or channels. It is then up to the applications to then create and manage those streams or channels.
In our approach, we pass the session description to multimedia applications and the M3 middleware. In this
way, the applications can use the description to declare their communication needs, whilst the middleware
can take care of matching those needs to the underlying implementation. In addition, the middleware can
handle other related requirements for the session, e.g. security and charging. This declarative approach to
configuring the middleware is being advocated by many researchers [11, 12]. These researchers have
invented their own particular language for this description. We have chosen to extend or modify the IETF's
SDP protocol for declaring communication needs, charging and security policies. We believe that our
approach facilitates the implementation of robust and flexible multi-party, multi-media applications. We
are encouraged by our early experience in building our sharedTV and virtual world sharedTV applications.

There are a number of possible future directions that we intend to take: we are currently looking into
extending SDP to specify security and charging policies. This in turns requires the extension of the M3
functionality to support security and charging. We also intend to explore how complex sessions2 can be
supported: that is how to specify a complex session, how to parse the session description and how the
middleware manages the existence of multiple sub-sessions. We also intend to explore how dynamic
sessions3 can be supported: that is to explore how updates to a session description can be delivered to
interested parties, and how these updates are to be handled by the middleware. Lastly but not least we are
intending to investigate how terminals can automatically adapt the number of layers being received.

7. Acknowledgements
The authors would like to thank members of the Distributed Systems Group at BT Laboratories, in
particular Ian Fairman and Mike Rizzo reviewing this paper. We would also like to thank Dave Dalby for
his help with the implementation of the audio and video streamgroup components, and Kashaf Khan for his
useful initial insights into the use of M3 for building the virtual world sharedTV application.

References

[1] M. Handley and V. Jacobson, "SDP: Session Description Protocol", IETF MMUSIC Working
Group RFC 2327, April 1998.

[2] S. McCanne and V. Jacobson, "Vic: a flexible framework for packet video", in Proceedings of the
ACM Multimedia '95, November 1995.

[3] The whiteboard wb, ftp://ftp.ee.lbl.gov/conferencing/wb

[4] S. Shenker, D. Clark, D. Estrin and S. Herzog, "Pricing in Computer Networks:
Reshaping the Research Agenda", SIGCOMM Computer Communication
Review, Volume 26, Number 2, April 1996.

2 A complex session comprises of more than one sub-session. For example, a technical conference may
comprise of multiple tracks, each of these track corresponds to a sub-session.
3 A dynamic session is one in which its description changes during its life time. For example, a secure
session, in which access to its media streams are protected by an encryption key, this key may change from
time to time.

10

[5] M. Handley, "The Session Directory Tool SDR", http://mice.ed.ac.uk/archive.srd/html.

[6] M. Handley, "SAP: Session Announcement Protocol", Internet Draft, draft-ietf-mmusic-sap-00.txt,
November 1996.

[7] J. Rosenberg, E. Schooler, H. Schulzrinne and M. Handley, "SIP: Session Initiation Protocol",
draft-ietf-mmusic-sip-08.txt, August 1998.

[8] S. Casner and S. Deering, "First IETF Internet Audiocast", Computer Communications Review,
July 1992.

[9] P. A. Putland and J. Hill, "Electronic Payment Services", BT Technical Journal, Volume 15,
Number 2, April 1997.

[10] P. J. Skevington and T. J. Hart, "Trusted Third Parties in Electronic Commerce", BT Technical
Journal, Volume 15, Number 2, April 1997.

[11] R. Balter, L. Bellissard, F. Boyer, M. Riveill, J. -Y. Vion-Dury, "Architecturing and Configuring
Distributed Application with Olan", Middleware '98, IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, July 1998.

[12] A. Zarras and Valerie Issarny, "A Framework for Systematic Synthesis of Transactional
Middleware", Middleware '98, IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing, July 1998.

[13] M. Nilsson, D. Dalby and J. O'Donnell, "Layered Audivisual Coding for Multicast Distribution on
IP Networks", submitted to IEEE Multimedia Systems'99, June 1999.

