
Implementation of an Internet Session Invitation

Protocol

by

Stefan Ho�mann

Studienarbeit

Berlin, 28. October 1997

Technische Universit�at Berlin
Institut f�ur Nachrichtentechnik und Theoretische Elektrotechnik

Fachgebiet Telekommunikationsnetze

Prof. Dr. Adam Wolisz
Supervisors:

Dr. Henning Schulzrinne (Columbia University, New York)
Dorgham Sisalem (GMD FOKUS, Berlin)

Contents

1 Introduction 1

1.1 Structure of this Work : 2

2 The Session Initiation Protocol 5

2.1 Motivation : 5

2.2 Overview : 6

2.3 Addressing : 6

2.4 Call Setup : 6

2.5 Locating a User : 7

2.6 SIP Messages : 7

2.6.1 Header Fields : 8

2.6.2 SIP Request : 8

2.6.3 SIP Response : 9

2.7 Server Modes : 11

2.7.1 Redirect Mode : 11

2.7.2 Proxy Mode : 12

2.8 Reliability : 13

2.9 Problems when Using Email Addresses : : : : : : : : : : : : : : : : : : : 13

2.9.1 Scenario : 13

2.9.2 SIP Modi�cation : 13

3 The Session Description Protocol 15

3.1 Motivation : 15

3.2 Overview : 15

3.3 SDP Speci�cation : 16

3.4 SDP Example : 17

I

II CONTENTS

4 Software Architecture 19

4.1 General Design : 19

5 The Session Invitation Daemon 23

5.1 Overview : 23

5.2 Processing of Incoming Calls : 24

5.3 Interface between sipd and isc : 26

5.4 Forwarding Requests to isc : 26

5.5 Processing of Incoming Responses : 27

5.6 Implementation : 27

5.6.1 Concepts : 27

5.6.2 Global Variables : 28

5.6.3 Structures : 28

5.6.4 Timers : 28

5.6.5 Procedures : 31

5.6.6 Scripts : 31

6 Location Service 33

6.1 Overview : 33

6.2 The Location Server lswhod : 33

7 The Integrated Session Controller 35

7.1 Overview : 35

7.2 Local Conference Control Architecture : : : : : : : : : : : : : : : : : : : 36

7.3 SIP Client Enhancements : 37

7.3.1 Initiating of SIP Requests : 37

7.3.2 Receiving SIP Responses : 39

7.4 SIP Server Enhancements : 40

7.5 Additional Enhancements : 42

7.5.1 The SIP Phonebook : 42

7.5.2 The SIP Handler Editor : 42

7.6 Variables : 43

7.6.1 The invite Array : 43

7.6.2 The request and response Array : : : : : : : : : : : : : : : : : 44

7.7 Procedures : 45

7.7.1 The rtp avp.tcl File : 45

CONTENTS III

7.7.2 The sip media list.tcl File : 46

7.7.3 The invite.tcl File : 47

7.7.4 The std invite.tcl File : 48

7.7.5 The adv invite.tcl File : 50

7.7.6 The sip.tcl File : 51

7.7.7 The sip request.tcl File : 52

7.7.8 The sip response.tcl File : 54

7.7.9 The sip �le.tcl File : 56

7.7.10 The sip handler.tcl File : 57

7.7.11 The sip phonebook.tcl File : 58

8 Summary and Future Work 61

8.1 Current Status : 62

8.2 Future Work : 62

Bibliography 63

A Procedures of sipd 65

A.1 The notify.c �le : 65

A.1.1 The notify set input func() Function : : : : : : : : : : : : : : : : 65

A.1.2 The notify start() Function : 66

A.1.3 The notify stop() Function : 66

A.2 The multimer.c �le : 67

A.2.1 The timer set() Function : 67

A.3 The servers.c File : 68

A.3.1 The servers() Function : 68

A.4 The misc.c File : 69

A.4.1 The str tolower() Function : 69

A.4.2 The str search() Function : 70

A.4.3 The str cmp() Function : 71

A.4.4 The skip white spaces() Function : : : : : : : : : : : : : : : : : : 71

A.4.5 The get �eld() Function : 72

A.4.6 The get line() Function : 73

A.4.7 The search SIP header() Function : : : : : : : : : : : : : : : : : 74

A.4.8 The delete SIP line() Function : : : : : : : : : : : : : : : : : : : 75

A.4.9 The insert SIP line() Function : : : : : : : : : : : : : : : : : : : 75

IV CONTENTS

A.5 The list.c File : 76

A.5.1 The inv list search() Function : 76

A.5.2 The loc list search() Function : 77

A.5.3 The inv list add() Function : 78

A.5.4 The loc list add() Function : 79

A.5.5 The inv list remove() Function : : : : : : : : : : : : : : : : : : : 79

A.6 The udp.c File : 80

A.6.1 The UDP connect() Function : 80

A.6.2 The UDP send() Function : 81

A.6.3 The UDP read() Function : 82

A.7 The tcp.c File : 83

A.7.1 The alarm handler() Function : 83

A.7.2 The TCP read() Function : 84

A.7.3 The TCP send() Function : 85

A.7.4 The TCP connect() Function : 86

A.8 The event.c File : 87

A.8.1 The socket event() Function : 87

A.9 The request.c File : 89

A.9.1 The locate user() Function : 89

A.9.2 The automatic reply() Function : : : : : : : : : : : : : : : : : : : 91

A.9.3 The expand user name() Function : : : : : : : : : : : : : : : : : 93

A.9.4 The process request() Function : : : : : : : : : : : : : : : : : : : 94

A.10 The proxy.c File : 96

A.10.1 The get via header no() Function : : : : : : : : : : : : : : : : : : 96

A.10.2 The forward request() Function : : : : : : : : : : : : : : : : : : : 97

A.10.3 The proxy() Function : 100

A.11 The response.c File : 102

A.11.1 The get response priority() Function : : : : : : : : : : : : : : : : 102

A.11.2 The reply() Function : 103

A.11.3 The check response priority() Function : : : : : : : : : : : : : : : 104

A.11.4 The forward to alternative loc() Function : : : : : : : : : : : : : 106

A.11.5 The process response() Function : : : : : : : : : : : : : : : : : : 107

A.12 The isc.c File : 109

A.12.1 The isc socket event() Function : : : : : : : : : : : : : : : : : : : 109

A.12.2 The send to isc() Function : 111

CONTENTS V

A.12.3 The start isc() Function : 112

A.13 The timer.c File : 113

A.13.1 The close isc socket() Function : : : : : : : : : : : : : : : : : : : 113

A.13.2 The request timeout() Function : : : : : : : : : : : : : : : : : : : 113

A.13.3 The isc request timeout() Function : : : : : : : : : : : : : : : : : 114

A.13.4 The start isc timeout() Function : : : : : : : : : : : : : : : : : : 115

A.13.5 The isc timeout() Function : 115

A.13.6 The retransmit timeout() Function : : : : : : : : : : : : : : : : : 116

A.13.7 The close invitation() Function : : : : : : : : : : : : : : : : : : : 117

A.13.8 The close event handlers() Function : : : : : : : : : : : : : : : : 117

A.14 The sipd.c File : 118

A.14.1 The Exit() Function : 118

A.14.2 The create server socket() Function : : : : : : : : : : : : : : : : 119

A.14.3 The server main loop() Function : : : : : : : : : : : : : : : : : : 119

A.14.4 The main() Function : 120

B Instruction Manual 121

B.1 The Session Invitation Terminal : 121

B.1.1 Introduction : 121

B.1.2 Installation : 122

B.1.3 Usage : 122

B.2 The Integrated Session Controller : 123

B.2.1 Introduction : 123

B.2.2 Installation : 123

B.2.3 Usage : 123

C Source Code 131

VI CONTENTS

Chapter 1

Introduction

In recent years, the Internet, which was initially designed as a research network has
grown up to a globally available information and communication network. Nearly every
user who has a computer has the ability to join the Internet.

In the same time, lots of di�erent Internet services has been developed. Currently,
multimedia services like transmission of audio and video data become more and more
popular and nearly every new PC or workstation is equipped with multimedia capabil-
ities.

One feature which combines a workstation's multimedia capability and its Internet
connectivity are so-called multimedia conferences. Within such a conference, multimedia
data like audio or video is transmitted in several media streams, called sessions, between
the participating users. Unicast sessions perform point-to-point transmissions between
two Internet hosts, but multicast sessions can be used to exchange data between several
workstations simultaneously. Thereby a sender transmits data to a multicast group
(speci�ed by a multicast address and time-to-live (ttl) value) which will be received by
each application which is a member of the group.

To perform the transmission of multimedia streams, special protocols like the Real-
Time Transport Protocol (RTP) [14] have been developed. Based on these protocols,
applications like vat or NeVoT [15] for audio data and vic [10] or NeViT [21] for video
data have been implemented. Moreover, the integrated session controller isc combines
di�erent media agents to a modular, exible Internet conference tool. Thereby, isc o�ers
the graphical user interface to control and con�gure the di�erent media streams.

The applications mentioned above only deal with mechanisms to join, leave and
process media streams. To take part in a multimedia session, the session parameters
must be known by all users who want to participate. These parameters consist of the
address of the multicast group and the ttl value for multicast sessions or the destination
host address for unicast streams, the port numbers and encodings of the media streams,
etc.

One of the problems of joining multimedia sessions is how potential session members
can get information about the session parameters. Currently, two basic approaches are
used:

1

2 CHAPTER 1. INTRODUCTION

� Users obtain a session advertisement via multicast or a web page which contains
the session parameters;

� Users are explicitly invited to multimedia sessions by another user.

To use the former (session advertisement), di�erent tools like sd or sdr exist. Moreover,
inviting of session members seems to be useful to initiate multimedia sessions sponta-
neously. This also �ts the problem, that it can't be guaranteed that any user who should
reach the session has seen the session advertisement.

Users could be invited explicitly via email, but the delay in delivery and reading
makes telephony-like spontaneous or private conferences di�cult [20]. Using the ordi-
nary telephone service to call-up each prospect user seems to be cumbersome and could
additionally become expensive.

The goal of this work is to implement a mechanism to perform session invitation over
the Internet. Thereby, the implementation should ful�ll the following requirements:

� The speci�cation of the session parameters within the application should be easy
to allow users who don't know much about multimedia sessions to use the applica-
tion. Indeed, an expert user should also have the possibility to specify the session
parameters in a exible way.

� The caller should have the possibility to invite users to new and to existing sessions.

� The inviting user should have the possibility to specify the invitee's address in an
easy way.

� After performing an invitation successfully, the multimedia sessions should be
created automatically.

� The invited user should have a possibility to handle invitations automatically.

To perform session invitation, a globally standardized mechanism should be used.
The Session Initiation Protocol (SIP) [7] which is currently under discussion within
the IETF MMUSIC working group seems to be the best choice. Since it is still under
development, one additional task of this work is to �nd problems within the speci�cation
during the implementation.

1.1 Structure of this Work

Chapter 2 deals with a description of the Session Initiation Protocol (SIP) [7] which
speci�es the invitation mechanism;

Chapter 3 gives a short overview of the Session Description Protocol (SDP) [6] which
is used to describe the parameters of sessions within a SIP message;

Chapter 4 presents the software architecture of the implemented and enhanced tools;

Chapter 5 describes the Session Invitation Daemon (sipd) which is used to receive
invitation requests;

1.1. STRUCTURE OF THIS WORK 3

Chapter 6 describes the location service mechanisms which are used to �nd the invited
user;

Chapter 7 describes the enhancements to the Integrated Session Controller (isc);
isc is the user interface to perform session invitation;

Chapter 8 o�ers a summary to this work.

Appendix A describes the functions of the Session Invitation Daemon (sipd);

Appendix B o�ers an instruction manual for the components sipd and isc;

Appendix C o�ers the source code of the software on a oppy disk.

4 CHAPTER 1. INTRODUCTION

Chapter 2

The Session Initiation Protocol

2.1 Motivation

In recent years, multimedia sessions over the Internet have become more and more
popular. They are designed to allow users to exchange di�erent kinds of data like audio
and video streams in a comfortable way. To join such a session, the session parameters
like session name, session multicast address or ports of the participating applications
must be known by all users.

Session members can get these pieces of information in two di�erent ways:

� The session and its parameters are advertised and users who see the advertisement
can join the session;

� Users are explicitly invited to a session.

To initiate a multimedia session with many users spontaneously, session advertise-
ment is not useful because it can`t be guaranteed that every prospect participant will
see the session advertisement.

Session invitation can be done di�erently: Users can be invited by performing tele-
phone calls or by sending emails. Indeed, both types of invitations have disadvantages:
A telephone call to many participants would be expensive and intricately; when send-
ing emails it can't be guaranteed that each user receives this invitation during a short
interval of time.

This chapter presents the Session Initiation Protocol (SIP) [7] developed by M.
Handley, H. Schulzrinne and E. Schooler, which was designed to allow session invitation
over the Internet in a comfortable way. Please note that this work is based on the
SIP draft \draft-ietf-mmusic-sip-02" [7] which is currently replaced by a newer version
(\draft-ietf-mmusic-sip-03") [8].

5

6 CHAPTER 2. THE SESSION INITIATION PROTOCOL

2.2 Overview

The Session Initiation Protocol, which is based on the client-server model, is designed to
invite users or services like video servers to multimedia sessions. In general, an inviter at
the client side speci�es a user to be invited to a multimedia session and the appropriate
session parameters. The SIP client creates a SIP request message, tries to locate the
invitee and sends the request to the called user's SIP server. The server noti�es the
invitee who can decide whether to participate in the session or to reject the call. Finally
an appropriate SIP response message is send back to the initiating client.

To perform the functionality described above, SIP states how client and server com-
municate with each other, how users can be addressed and de�nes the messages which
are transmitted. Description of the session parameters is not part of SIP. Indeed, the
Session Description Protocol (SDP) [6], described in Chapter 3, could be used to de-
scribe multimedia session parameters within a SIP message.

2.3 Addressing

To invite a user to a multimedia session, a globally unique identi�er like a personal
telephone number must exist to address the receiver of the session invitation. In the
computer realm, the equivalent to that telephone number combines the user's login id
with a machine host name or numeric network address:

� sho@rockmaster.fokus.gmd.de

� sho@193.175.132.225

Indeed such a user address is di�cult to memorize or becomes invalid if the user is
logged in at another host. Thus a well-known, relatively location-independent address
should be used to address a user.

Almost every Internet user has his own email address which consists of a user and
a domain part, e.g. hoffmann@fokus.gmd.de.

The domain part is relatively location-independent and the email address should be
well-known, thus both requirements mentioned above are ful�lled. On the other hand,
getting the actual location of the user in the domain requires an additional feature, a
location service.

SIP allows both forms of addressing to be used, with the latter requiring a location
server to locate the user.

2.4 Call Setup

Calling a user is a multi-phase procedure. First, the initiating client tries to determine
the address of the called user's SIP server. The local client checks if the user address
consists of a numeric network address. If so, then that is the address used for the remote
user agent. If not, the requesting client looks up the domain part of the user address in

2.5. LOCATING A USER 7

the DNS. Therefore the client initiates a DNS query. If a new service (SRV [4]) resource
record is returned, this is the address of the domain's SIP server which will be contacted
next. If neither a resource nor an A but a MX record is returned, then the mail host is
the address to contact next.

Presuming an address for the invitee's SIP server is found, the second and subse-
quent phases implement a request-response protocol. A SIP request including a session
description (typically using SDP format) is sent to the appropriate SIP server which
tries to locate the called user in his domain and handles appropriately.

SIP requests and responses may be sent over a TCP connection or via UDP to a
well-known SIP port. A reply must be sent by the same mechanism the request was
sent by. Hence if a request was sent by TCP, the SIP server must reply via TCP, too.

2.5 Locating a User

When a SIP server receives a request, it has to locate the requested user or service in
his domain. Since it can't be expected that a user is always logged in at the same host,
a location service is required which registers the users and their locations dynamically.
If user location fails an appropriate response is send to the client, otherwise the SIP
server has two di�erent possibilities to handle the request:

Proxy mode: The server forwards the request directly to the location(s) returned by
the location server

Redirect mode: The server sends a SIP response including the location(s), returned
by the location server, to the client to allow him to send a new request to the new
user address(es)

Whether to forward or redirect the request is up to the server itself. On �rewall machines
or if a multicast address is given by the location service, the former (forwarding) should
be preferred.

2.6 SIP Messages

Before describing the functionality of SIP in a more detailed way, this chapter deals with
the message format used by SIP. Two di�erent types of messages are supported: SIP
requests which are sent from client to server and SIP responses which are transmitted
in the opposite direction. In general, all messages are text based with a close alignment
to HTTP/1.1 [3]. Requests and responses consist of a start line (which characterizes
the type of the message), one or more header �elds, an empty line which indicates the
end of the header section and optionally a message body.

Each header �eld, which can be distinguished in general-header (valid for all kind of
massages), request-header and response-header, consist of a name followed by a colon
and the �eld value. Like the start line, all headers are terminated by a carriage-return
line-feed (CRLF) sequence.

8 CHAPTER 2. THE SESSION INITIATION PROTOCOL

The presence of a message body depends on the kind of message and is indicated
by a \Content-Length" header �eld which speci�es the length of the body in bytes and
a \Content-Type" header indicating the format of the message body. If the payload
has undergone any encoding then it must be indicated by a \Content-Encoding" header
�eld.

2.6.1 Header Fields

SIP header �elds are used to specify inviting and called user, the path the request has
traversed so far, the kind and length of the message body, reasons to allow negotiation
and other options needed to enable a successful SIP communication. Content-Length,
Content-Type, To and From header �elds are compulsory, other �elds may be added as
required. Ordering of the header �elds is not of importance except of Via �elds (see
2.7.2), reordering is not allowed.

Table 2.1 gives a short overview of existing header �elds. For a complete and more
detailed list see [7].

Header Description

Accept-Language indicates to the server in which language the client would
prefer to receive reason phrases

Contact-Host speci�es the host the user was located on

Content-Encoding speci�es encoding of the message body

Content-Length speci�es the message body length in bytes

Content-Type speci�es the format of the message body

From indicates the invitation initiator

Retry-After indicates when the called party may be available again

Reason speci�es reasons why a session description cannot be
supported

To indicates the invited user

Via indicates the path the request has traversed

Location IP address of a callee's location

Table 2.1: SIP header �elds

2.6.2 SIP Request

Requests are characterized by the �rst line beginning with a method token, followed by a
unique request identi�er (request-URI) and the SIP protocol version, each separated by

2.6. SIP MESSAGES 9

space characters. Currently two kinds of requests are supported which are distinguished
by their method token:

INVITE: This method is used to invite a user or service to participate in the session
and must be supported by all SIP servers.

OPTIONS: This method is used to query the users or services as to its capabilities.
Support of this method is optional.

The second �led in the �rst request line, the request-URI, should be a string that
can be guaranteed to be globally unique for the duration of the request to identify
requests and responses which belong together. Using the initiator's IP-address, process
id and instance (if more than one request is being made simultaneously) satis�es this
requirement.

After the header section, the message body of an INVITE request deals with the
description of the session to which the user or service should be invited to. Session
description is not part of the SIP speci�cation, using the Session Description Protocol
(SDP) [6] is recommended.

Figure 2.1 deals with a typical SIP request.

INVITE 130.149.92.31/3546/1 SIP/2.0

Via: SIP/2.0/UDP 130.149.92.31

From: fim@lion.tu-berlin.de

To: sho@fokus.gmd.de

Content-Type: application/sdp

Content-Length: 187

v=0

o=user1 53655765 2353687637 IN IP4 128.2.3.4

s=Mbone Audio

i=Discussion of Mbone Engineering Issues

e=mbone@somewhere.com

c=IN IP4 224.2.0.1/127

t=0 0

m=audio 3456 RTP/AVP 0

SIP request from �m@lion.tu-

berlin.de to mailhub.fokus.gmd.de:

The �rst line states that it's a call

to join a session (method INVITE).

The request id is a combination of

IP address, process id and a se-

quence number. To indicate the

path the invitation has gone so far

a Via �eld is present indicating the

initiating client at lion.tu-berlin.de

(IP address 130.149.92.31). Caller

and callee are characterized by the

From and To headers.

Figure 2.1: SIP Request

2.6.3 SIP Response

Responses are messages which indicate the actual status of a SIP server or the success
or failure of SIP requests. They are sent from the server to the client. Like SIP requests,
responses are characterized by the �rst line. The status line consists of the SIP protocol
version followed by a numeric status code, the request-URI of the corresponding request

10 CHAPTER 2. THE SESSION INITIATION PROTOCOL

and a textual phrase associated with the status code, each element separated by space
characters.

Like in HTTP or FTP, the status code is a 3-digit integer result code which speci�es
success of failure to understand and satisfy the request by the server. It is intended for
use by the client automata, while the reason phrase is intended for the human user. SIP
responses are subdivided into 6 classes, which are de�ned by the �rst digit of the status
code (Table 2.2).

Status code Response class

1xx Informational

2xx Success

3xx Redirection

4xx Client Error

5xx Server Error

6xx Search Response

Table 2.2: SIP Response Classes

An example of a SIP response is given in Figure 2.2.

SIP/2.0 200 130.149.92.31/3546/1 OK

Via: SIP/2.0/UDP 193.175.132.209

Via: SIP/2.0/UDP 130.149.92.31

From: fim@lion.tu-berlin.de

To: sho@fokus.gmd.de

Contact-host: 193.175.132.184

SIP response from lu-

pus.fokus.gmd.de to mail-

hub.fokus.gmd.de:

The �rst line states that it's a

response to a successful invitation

(Response code 200). The id

is taken from the request. The

response is sent to 193.175.132.209

(lupus.fokus.gmd.de), indicated

by the �rst Via header, where

the SIP server will remove this

header and forward the response to

130.149.92.31 (lion.tu-berlin.de).

The Contact-host header indicates

the host where the invited user was

found.

Figure 2.2: SIP Response

2.7. SERVER MODES 11

2.7 Server Modes

As mentioned above, a SIP server has two di�erent possibilities to handle an incoming
call after locating the invited user. To explain the di�erent modes, a typical SIP request-
response scenario is given below.

Figure 2.3 shows an example con�guration of user �m, currently logged in at host
lion.tu-berlin.de, who wants to invite user sho, identi�ed by his email address (sho@
fokus.gmd.de). The SIP client at lion.tu-berlin.de makes a DNS query to fokus.gmd.de
which results in a MX record giving the mailserver of domain fokus.gmd.de (mail-
hub.fokus.gmd.de). The client generates a request packet and sends it to the well-known
SIP port at mailhub (1). The SIP server at mailhub.fokus.gmd.de receives the call and
asks his location server for the locations of the invited user sho (2). The search results
in host lupus (3) which is the actual location of the called user.

Behavior of steps (1) to (3) is equal to both server modes, following activities will
be described in the respective sections.

2.7.1 Redirect Mode

?

⑥

location server

fokus.gmd.de

lupus.fokus.
⑦OK

tu-berlin.de

lion.tu-berlin

sho@fokus.gmd.de
INVITE①

④301 lupus.fokus.gmd.de

sho@fokus.gmd.de

mailhub.fokus.gmd.de

sh
o

②

lu
pu

s

③

INVITE
sho@lupus.fokus⑤

fim@tu-berlin

SIP Request
SIP Response

Figure 2.3: SIP Server in Redirect Mode

As shown in Figure 2.3 the SIP server at mailhub.fokus.gmd.de acts in redirect mode
after receiving a request and locating the invited user (described above). It creates an
appropriate redirect response which indicates the actual location of the invitee sho, and
sends it to the calling SIP client (4). The client itself can extract the given host out
of the response packet and is able to create a new request which is addressed directly
to the called user's host (sho@lupus.gmd.de) (5). After receiving the invitation at host

12 CHAPTER 2. THE SESSION INITIATION PROTOCOL

lupus the invited user is noti�ed (6) and can decide whether to accept or reject the call.
In Figure 2.3, the invitation is accepted, indicated by a 200 OK response (7).

2.7.2 Proxy Mode

In contrast to the redirect mode, a server acting in proxy mode doesn't send a redirect
response to the requesting client but forwards the SIP request to the location of the
called user which is returned by the location server.

⑦

?
⑤

⑥
lupus.fokus.

location server

④

OK

fokus.gmd.de

tu-berlin.de

fim@tu-berlin sho@fokus

sho@lupus
INVITE

INVITE①

mailhub.fokus.gmd.de

sho@fokus.gmd.de

②

sh
o

lu
pu

s

③ OK

lion.tu-berlin

SIP Request
SIP Response

Figure 2.4: SIP Server in Proxy Mode

As Figure 2.4 shows, the SIP proxy server at mailhub.fokus.gmd.de locates user sho
(2), (3) and creates a request addressed to sho@lupus.fokus.gmd.de (4). The server
running on lupus noti�es the user and creates a response packet according to the user's
choice (200 OK). This response packet is sent back to the initiating client on exactly
the same way it was received (6), (7).

To enable responses take the same path as requests, each proxy server adds a new
Via header �eld with his own IP address to a request packet before forwarding it. Since
ordering of Via headers is of importance, each new Via �eld is added before existing
Via headers. When a proxy receives a response message (which travels from server to
client), it removes its own Via header �eld and sends the response to the server given
in the �rst Via header in the response. Another positive e�ect of using Via headers is
that looping can be avoided, because forwarding to other hosts is only permitted, if the
location isn't indicated by a given Via �eld.

Assuming the location server extracts several locations for the same user, the server
can forward the request to these locations by using UDP transport to speed up the
request. However, request implosion could result if the request is often forwarded to
several locations. Thus servers that are not �rst hop servers in a chain of servers should
not make multiple parallel requests (\parallel search"), but send a redirection response
with multiple alternatives.

2.8. RELIABILITY 13

2.8 Reliability

Since SIP supports both TCP and UDP transport, the protocol must guarantee that the
exchange of UDP packets becomes reliable. To perform this task, SIP uses a retransmit
mechanism when using UDP transport. UDP requests are retransmitted until a de�nite
response� was received or a maximum number of retransmissions is exceeded.

This also takes into account when the transport protocol changes at a proxy server.
Assuming a SIP request was received via TCP and should be forwarded via UDP, the
TCP!UDP server must retransmit the forwarded request until it receives a de�nite
response.

2.9 Problems when Using Email Addresses

As mentioned in Section 2.3, SIP allows email addresses to specify called users. The
user's email address could consist of the user's login id, indeed the local mailserver could
also support an alias which is better rememberable like the real user's name. However,
it is necessary to extract the user login to locate and notify him. If mapping of alias
(e.g. ho�mann) to login (e.g. sho) could only be done by the local mail server, this will
cause problems when redirecting or forwarding SIP requests.

2.9.1 Scenario

Assuming a scenario where user sho should be invited to a multimedia session. The
caller doesn't know the user's login but his email address ho�mann@fokus.gmd.de. After
extracting the domain's mail server to contact next, the SIP client sends the SIP request
to mailhub.fokus.gmd.de. There, the SIP server extracts the user login sho and locates
him at host 193.175.132.225 in the domain.

If the server works in redirect mode, it sends a redirect response indicating the
callee's IP-Address which was returned by the location server (Location:193.175.132.225).
The client modi�es the original request's To header �eld by changing the host part but
leaving the user part unchanged (To:ho�mann@193.175.132.225). This request reaches
the SIP server on the given host which can't extract the user's login out of the given
alias.

In proxy mode the server forwards the unmodi�ed SIP request directly to host
193.175.132.225. If aliases mapping isn't possible at this machine, location of the called
user becomes impossible.

2.9.2 SIP Modi�cation

As mentioned above, this work is based on the SIP draft \draft-ietf-mmusic-sip-02"
[7] which is currently replaced by a newer version. In the draft \draft-ietf-mmusic-sip-
03"[8], the problem described above, is solved by changing some aspects of the SIP

�de�nite responses are responses which terminate a SIP call (response code higher than 199)

14 CHAPTER 2. THE SESSION INITIATION PROTOCOL

message format.

� The �rst message line is modi�ed

The request-URI in the �rst SIP request line is replaced by a SIP-URL which
consists of a user and host part and indicates the next destination of the request.
This URL can be modi�ed by SIP servers which replace the host as well as the user
part. With regard to the example described above, the SIP server changes the SIP-
URL in the �rst request line from ho�mann@fokus.gmd.de to sho@193.175.132.225
whereby the next SIP server must not extract the login of the called user.

In SIP responses the request-ID in the �rst line is totally canceled.

� A new Call-ID header �led is de�ned

To identify requests and the belonging responses a Call-ID header is de�ned in
the \03" version of the SIP draft. Like the request-URL in the old SIP version,
the call-id must be globally unique during the duration of the request.

� The Location header doesn't specify an IP-address but a SIP-URL

A SIP server in redirect mode sends a whole SIP-URL consisting of user and host
part back to the client. If doing so, a SIP server running on the domain's mail
server is be able to extract the user login out of a given alias, locate the user and
send login@host (sho@193.175.132.225) back to the requesting client.

Chapter 3

The Session Description Protocol

3.1 Motivation

The Session Initiation Protocol (SIP) [7] is used to invite users to multimedia confer-
ences. However as it only states how communication between inviter and called user,
addressing and user location should be done, there is also need to describe a multimedia
session within a SIP request. The Session Description Protocol (SDP) [6] is designed
for this purpose.

3.2 Overview

The purpose of SDP is to describe multimedia sessions in a way to allow the recipients
of a media session description to participate in the session.

Thus SDP includes:

� Session name and purpose,

� Time(s) the session is active,

� The media comprising the session,

� Information on how to receive those media (addresses, ports, formats and so on).

Additional information may be:

� Information about the bandwidth to be used by the conference;

� Contact information for the person responsible for the session.

15

16 CHAPTER 3. THE SESSION DESCRIPTION PROTOCOL

3.3 SDP Speci�cation

SDP session descriptions are entirely textual. They consist of a number of lines in the
form
<type>=<value>.
<type> is exactly one case-signi�cant character, <value> is a structured text string
whose format depends on <type>.

A session description consist of several parts, a session-level section followed by zero
or more media-level sections. In general, session-level values are the default for all media
unless overridden by an equivalent media-level value.

To give an overview of the permitted <type> �elds see the Table 3.1 to 3.3.

Type Description

v protocol version

o owner/creator and session identi�er

s session name

i session information

u URI of description

e email address of the person responsible for the conference

p phone number of the person responsible for the conference

c connection information

b bandwidth information

z time zone adjustments

k encryption key

a session attributes

Table 3.1: SDP Session Description

Type Description

t time the session is active

r repeat times

Table 3.2: SDP Time Description

3.4. SDP EXAMPLE 17

Type Description

m media name and transport address

i media title

c connection information

b bandwidth information

k encryption key

a media attributes

Table 3.3: SDP Media Description

3.4 SDP Example

An example of a session description within an SIP request can be found in Figure 2.1
in Section 2.6.2.

18 CHAPTER 3. THE SESSION DESCRIPTION PROTOCOL

Chapter 4

Software Architecture

After describing the protocols used to enable session invitation in the previous chapters,
the following chapters deal with a description of the implemented software. First, the
general software architecture is given, followed by a detailed description of the di�erent
components.

4.1 General Design

To enable session invitation based on the Session Initiation Protocol (see Chapter 2), a
software package with di�erent components is required. At the client side, a user inter-
face is needed which allows the inviting user to specify request and session parameters.
Moreover, SIP requests should be created and sent to the appropriate SIP server. An-
other function of the SIP client is handling of incoming SIP responses. After receiving
an invitation response, the calling user has to be informed about success or failure of
the invitation.

On the other hand, receiving SIP requests requires a more complex invitation server.
After receiving the incoming SIP call, it has to locate the called user and must decide
whether to redirect or to forward the request. Additionally, a user interface is required
which noti�es the called user and lets him specify whether to accept or reject the
invitation. According to the user's choice, a SIP response must be created and sent
back to the initiating SIP client.

As described above, it seems to be useful to implement a single SIP client and a
SIP server, although another architecture, presented above, could be more reasonable.
Assuming a SIP server which runs on the domain's mail server host, this server is
queried for every invitation in which the callee is identi�ed by his email address. Most
of the time, the user will be logged in on another host, so the SIP server is only used
for redirection or forwarding. A user interface which indicates an incoming call is only
needed at the host of the called user. Furthermore, a SIP server should run all time
and therefore has to be robust. It waits for incoming UDP packets or TCP connection
requests and handles them appropriately. All these requirements are best ful�lled when
running a SIP server as a daemon. A daemon is a process that executes without an
associated terminal or login shell (\it runs in the background"), either waiting for some

19

20 CHAPTER 4. SOFTWARE ARCHITECTURE

event occur or waiting to perform some speci�ed task on a periodic basis [22]. All parts
of the software package which require user interaction are separated into another tool.
This tool should ful�ll requirements for user interaction for both, client and server side,
which seems to be useful since it is expected that a user will use one single tool to
initiate and react to SIP requests.

Location of users which is needed to perform session invitation, can be done in
several ways and is not described in the SIP speci�cation, so di�erent kinds of location
servers are conceivable. To make the SIP server daemon exible, the location server is
the third separate software component.

ISC sipd lswhod

LS-DB

sipd lswhod

ISC

mailhub.fokus.gmd.de

fokus.gmd.de

rockmaster.fokus.gmd.de

sho

sho

rockmaster

IN
V

IT
E

 s
ho

@
ro

ck
m

as
te

r

sho/rockmaster

(1)

(2)

(3)

(4)

(5)
SIP request

Interaction between
software components

rockmaster

tu-berlin.de

INVITE sho@fokus.gmd.de

fritz

Figure 4.1: Software Architecture

Figure 4.1 shows an overview of the currently implemented software architecture and
the interaction between the di�erent components during the process of a SIP request.
In detail, the three components mentioned above consist of:

1. isc

The Integrated Session Controller (isc) includes the user interface to perform ses-
sion invitations based on SIP. It is used to specify the invitation and session
parameters and to send the created request to an appropriate SIP server. When
receiving a request, it checks if the requested media is supported, informs the
called user and creates a SIP response appropriate to the invitee's selection.

4.1. GENERAL DESIGN 21

2. sipd

The Session Invitation Daemon (sipd) is the SIP server which performs user loca-
tion and call forwarding or redirection for incoming SIP requests according to the
SIP speci�cation. It has to run on each host which should be able to receive and
handle SIP requests.

3. lswhod

The location service daemon (lswhod) is used to maintain and update a location
service database (LS-DB). The data base contains information about the current
location (host) of any user in the domain. Therefore, lswhod has to run on each
host which should be registered in the location service database.

Typically, a SIP request is created by isc which sends it to the appropriate SIP
servers sipd, according to the speci�ed invitee's address (1). The Session Invitation
Daemon queries the location service data base LS-DB to extract the current location of
the invited user (2). In proxy mode (as shown in Figure 4.1), sipd forwards the call to
the next SIP server at the destination host (3). Here, sipd also asks the location service
data base for the location of the callee, which results in the local host name. This causes
sipd to forward the request to the Integrated Session Controller which informs the callee
about the incoming call.

On the reverse path, a SIP response will take exactly the same way back to the
initiating client as requested by the SIP speci�cation:

isc at rockmaster ! sipd at rockmaster ! sipd at mailhub ! isc at fritz.

22 CHAPTER 4. SOFTWARE ARCHITECTURE

Chapter 5

The Session Invitation Daemon

5.1 Overview

The Session Invitation Daemon sipd is designed to handle session invitations based
on the session initiation protocol (SIP), described in Section 2. After receiving a SIP
request, it has to locate the invited user in the local domain and forwards (either to
the next SIP server or to the local session controller isc (Figure 4.1)) or redirects the
call. An additional feature is the automatic reply function which works similar to the
./forward �le in the sendmail system. It allows the invited user to redirect or decline a
request automatically according to the request's sender or subject.

When acting in proxy mode (forwarding a request), sipd also handles incoming SIP
responses from the next SIP server.

To enable successful session invitation, the SIP server sipd has to run on each host
where users should be able to be invited. It is expected that sipd runs as a root process
because it must be able to start the session controller isc under the environment of the
called user, if it is not already running. On the other hand, if root permissions are not
available for the user who wants to install sipd, each user who wants to have the ability
of being invited has to start the daemon on his workstation. If there are several users
logged in on a single host, only the user who is logged in at the console should start sipd,
because only one process can bind to the standard SIP port number and it is expected
that only users at the console can participate via audio or video.

All hosts within a domain on which sipd runs can operate as a SIP server for the
whole domain. Typically the daemon should also run on the domain's mail gateway
host, so that callers can make use of the existing MX records to �nd the SIP server of a
domain. When addressing an invitee by using his email address, the SIP daemon at the
mail host will be queried if no SRV record was returned when the SIP client searches of
the domain's SIP server (see Chapter 2).

23

24 CHAPTER 5. THE SESSION INVITATION DAEMON

5.2 Processing of Incoming Calls

After receiving an incoming SIP call, the SIP server sipd starts a multi-phase sequence
which consists of the following steps:

1. Map the name of the callee to his local user name

Before sipd is able to process the incoming request, it has to resolve the local user
name of the called user since it is used for user location, enabling of the automatic
reply function and if the daemon has to start the session controller in the invitee's
environment.

The Session Initiation Protocol supports usage of \login@host" or the email ad-
dress to identify the called user, with the latter requiring a mechanism to resolve
the local user name since the user part of an email address can be di�erent to his
login.

To perform name mapping di�erent mechanisms are used. The best information
to resolve the local user name should be found in the same data base which is used
by the local mail server. In the current version, sipd supports databases formated
as \alias: user1, user2, ..." which is the standard format of the sendmail mail
system. This database could be typically found at /etc/mail/aliases.

If the mail aliases data base can't be read by sipd (because it isn't exported via
NFS or only root can read it and sipd was not started as a root process), name
mapping is based on the local password �le and its NIS equivalent.

In both cases, name mapping may result in exactly one or in a list of user names. If
the result is unambiguous, the daemon continues in request processing, otherwise
it should either send a redirect response returning a list of all user names or create
an \Ambiguous" reply. In the current version, sipd performs the latter because of
protection of data privacy. In later versions of sipd, this should be con�gurable.

2. Check if the invited user wants to redirect or decline the incoming call
automatically

Similar to sendmail using the $HOME/.forward �le to determine mail handling,
sipd uses the $HOME/.sip/sip handler �le to make use of SIP more comfortable
for users. It is used to decline or redirect a SIP call depending on its initiator,
identi�ed by the SIP \From" header, or the subject of the call, identi�ed by the
�rst information �eld in the request payload. (In the next version of sipd, which
will be based on the SIP draft \draft-ietf-mmusic-sip-03", the subject of a request
will be indicated by a SIP \Subject" header.)

Besides, the $HOME/.forward �le should be used to indicate that a user has moved
to another domain. This could be done by initiating a handler which replies to all
incoming calls with an \Moved Permanently" or \Moved Temporarily" response.

The format of the $HOME/.sip/sip handler �le is line-based, with each line iden-
tifying one sip handler. Each line consists of four parts which are separated by
TAB characters:

5.2. PROCESSING OF INCOMING CALLS 25

[fromjsubjectj*] TAB [source addressjsubject string] TAB [reply code]

TAB [reason phrasejdestination address]

The �rst and second argument are used to identify calls which should be handled
automatically, whereas the third and fourth argument state how to react to these
calls. Three di�erent identi�ers are de�ned for the �rst argument to indicate
whether to examine the call initiator (identi�ed by a \from" value), the call's
subject (\subject") or to handle all incoming calls (speci�ed by *"). The second
argument consists of a SIP address or a subject string according to the �rst part
of a sip handler line.

To indicate how to react to the speci�ed call, the third argument always speci�es
a SIP reply code indicating the response which will be sent to the client by sipd.
Depending on this reply code, the last argument of a handler line speci�es an
appropriate reason phrase or a SIP address if a redirect response code was given.

sipd always reacts to the �rst handler in the $HOME/.forward �le which matches
to the incoming call.

3. User location and appropriate call handling

After resolving the local user name and evaluating the automatic reply function,
the invitation daemon sipd has to determine at which workstation the called user
is currently logged in directly. In the current version, sipd uses a location service
data base which is created and updated by the location service daemon lswhod
(Section 6.2) to get the callee's location.

Depending on the number of the extracted locations, sipd handles the request
di�erently:

� The callee is logged in at exactly one host

If the query of the location service data base results in only one single host
which is not the name of the local host, the call will be forwarded to the SIP
server at this remote machine. This will be done by using the same kind of
transport the request was received from sipd (i.e. requests, incoming via TCP
are forwarded by using TCP; requests, incoming via UDP are forwarded by
using UDP).

On the other hand, if user location results in the host at which the request is
currently handled by sipd, the call has reached the destination machine and
the called user has to be informed. Therefore, sipd forwards the request to
the local session controller isc which will notify the callee (see Figure 4.1).

� The invited user is located at several hosts

If the called user is logged in at several hosts, and sipd is the �rst proxy within
a chain of proxies (indicated by the number of via headers), the request will
be forwarded to all given locations (including forwarding to isc if one location
is the local host). This \parallel search" is done by using UDP as mentioned
in the SIP speci�cation.

The SIP speci�cation doesn't allow parallel searches for a SIP server which
is not the �rst server. So, sipd sends a redirect response which indicates
all possible locations of the invited user to the SIP client. To avoid that a

26 CHAPTER 5. THE SESSION INVITATION DAEMON

redirect response is sent if the user is logged in at the local host, sipd checks
if it is one of the extracted locations. If so, it will send the call to isc to notify
the callee. When receiving a de�nite response from isc, this response is sent to
the SIP client; call forwarding to other locations is not necessary. Otherwise,
if no de�nite or �nal response was received from isc during a speci�ed interval
of time, a redirect response will be sent to the calling client.

5.3 Interface between sipd and isc

As described in Section 5.2, sipd forwards a received SIP call to isc if the location
service returns the local host as a possible location of the invitee. Afterwards, it awaits
a response which belongs to the request.

Since the Integrated Session Controller (isc) uses the pattern-matching multicast
mechanism (pmm) [17] to communicate with its local media agents (7), the same mech-
anism is chosen to enable communication between sipd and isc.

In the pattern-matching multicast mechanism, all participating applications use the
same local multicast group to communicate with each other. Since all agents receive all
messages which are sent to the common multicast group, a mechanism is developed to
indicate the destination of a message. This is is done by using a so called \pmm header"
which consists of identi�ers for the conference, the media agent and media instance. For
example:

\C/audio/3" speci�es the third audio session within the conference C.

The message introduced by the given pmm header is only handled by the audio
agent which handles the appropriate session.

To use the pmm format, the pmm header is simply modi�ed for SIP messages be-
tween sipd and isc. The media agent identi�er for SIP messages is \sip" and the con-
ference identi�er is replaced by the SIP call-id. An instance identi�er isn't needed to
transmit SIP messages, since the call-is is globally unique. To maintain the de�ned
pmm header format the instance identi�er is set to zero:

\call-id/sip/0"

To avoid conicts with the pmm header format all slash characters (\/") in the
call-id are replaced by underline characters (\ ").

5.4 Forwarding Requests to isc

When forwarding a request to isc, sipd creates a pmm header and sends the received
request to the local pmm multicast group. Since it can't be sure that isc is already
running, a mechanism is required which starts the session controller.

After sending the call to the pmm group, sipd starts a timer. If isc runs and receives
the request, it replies with a \Trying" response via the local multicast bus which lets
sipd cancel the timer. If the timer expires (no response is received by sipd), it is expected
that isc has to be started which is initiated by the invitation daemon. Afterwards the

5.5. PROCESSING OF INCOMING RESPONSES 27

SIP request is retransmitted to the multicast group.

5.5 Processing of Incoming Responses

When acting in proxy mode, sipd waits for responses belonging to the forwarded request
and sends the reply to the calling SIP client.

If a request was forwarded to several locations (\parallel search"), sipd receives
responses from each server the request was forwarded to, but the client which queries
sipd only awaits one de�nite or �nal response. Therefore, sipd supports an internal
priority mechanism which allows to classify all incoming responses by their response
code due to the SIP speci�cation. So, the daemon stores the response with the highest
internal priority for each forwarded invitation. This response is sent to the client if
a de�nite response was received form all locations or sipd receives a �nal reply which
terminates the parallel search.

5.6 Implementation

5.6.1 Concepts

The Session Invitation Daemon is event driven, two di�erent kinds of events can occur:

socket (�le descriptor) events: Socket events are used to react to incoming mes-
sages. Each used socket is bound to an event handler which invokes an appropriate
function if the socket becomes readable. Theses sockets are the TCP and UDP
server socket, the socket to the local pmm multicast group and socket which are
created if a request was forwarded to a remote SIP server via TCP.

timer events: Timer events are used to avoid deadlocks in sipd. They invoke timeout
functions which will handle the processing request appropriately.

To allow sipd to handle several requests concurrently, the daemon supports a invi-
tation list which stores all active invitations and their parameters which are used for a
successful processing. The format of the list entries is given in Section 5.6.3.

Functions like name mapping, automatic reply and user location are separated into
Tcl scripts so that the appropriate functions can be easily modi�ed.

28 CHAPTER 5. THE SESSION INVITATION DAEMON

5.6.2 Global Variables

sipd uses global variables which are listed in Table 5.1.

Variable Description

char myAddr[17] IP address in dotted decimal notation of the local host where
sipd if running

int
tcp server socket,
udp server socket

server sockets for incoming SIP messages

int isc socket local multicast socket to isc (pmm)

int isc connections counter for \connections" between isc amd sipd

int sip port standard SIP port

inv list t
*invitation list

pointer to the invitation list which stores settings of cur-
rently active invitations

Table 5.1: Global Variables

5.6.3 Structures

To store the settings and parameters of incoming SIP requests and responses and to
store extracted locations, two structures are de�ned in sipd. The inv list t structure,
shown in Table 5.2 stores the incoming request, parameters which are used to process
the invitation successfully and incoming responses which belong to the request.

Location information of invited users is stored in the loc list t structure, shown
in Table 5.3. It is used, to manage call forwarding or redirection correctly.

sipd creates an invitation list consisting of inv list t structures to store the settings
of all requests which are currently in process. Each structure handles one SIP call. If a
new request is received, a new inv list t structure is added to the invitation list and
is removed if processing of the request is �nished.

To store new locations for an invited user when performing user location or if "Al-
ternative Address" responses are received, each inv list t structure points to a list
of loc list t structures. If a new location was extracted an appropriate loc list t

structure is added to the location list of the appropriate invitation list entry.

Identi�cation of special list entries within the invitation list or the location list, the
inv->call id and loc->addr �elds are used.

Figure 5.1 shows the structure of the invitation list.

5.6.4 Timers

To avoid deadlocks during the processing of requests, several timer mechanisms are
provided. Table 5.4 gives an overview of the used times and their values.

5.6. IMPLEMENTATION 29

Variable Description

char *call id call id of the stored request; identi�er of the structure

char *user user speci�ed in the �rst SIP request line

struct passwd
*userEntry

pointer to invited user's passwd structure, needed to start
the session controller in the invitee's environment

char *request incoming SIP request

char *response SIP response created by sipd; SIP response received from
next server or isc with highest priority

int response priority priority of the SIP response stored in response

char addr of client IP address of the client from which a request was received if
it was received via UDP

int socket to client socket to the client from which a request was received (TCP)

int port to client port of the client from which a request was received (UDP)

int
transport to client

transport protocol the request was received
(SOCK STREAM or SOCK DGRAM)

int socket to server socket to the next SIP server when acting as TCP proxy

int
transport to server

transport protocol to the next SIP server (SOCK STREAM)

int state current state of the request

int locations number of possible locations of the invitee; count of locations
from which no de�nite response has been received

loc list *location list pointer to the invitation's location list

struct inv list t
*next

pointer to the next invitation list entry

Table 5.2: inv list t structure

Variable Description

char *addr IP address in dotted decimal notation of the location

char *hostname hostname of the location

char *user user part of the SIP location (user@host)

int retransmissions counter of transmissions of the request to the location when
forwarding via UDP

int
response received

ag to indicate if a de�nitive response was received from this
location; when ag is set (=1) incoming responses from this
location are ignored

struct loc list t
*next

pointer to next location entry

struct inv list t
*inv parent

pointer to inv list entry belonging to this location

Table 5.3: loc list t structure

30 CHAPTER 5. THE SESSION INVITATION DAEMON

location_list

next

inv_list_t

loc_list_t

next

loc_list_t

next

loc_list_t

next

location_list

next

inv_list_t

location_list

next

inv_list_t

loc_list_t

next

loc_list_t

next

loc_list_t

nextNULL NULL

NULL

NULL

invitation_list

Figure 5.1: Structure of the invitation list

Timer Value Description

T request 3 min - N*10 sec Timer for the total processing time of an request
forwarded to the next SIP server. N equals the
number of proxies the request has reached so far.
Calls request timeout() if expires.

T retransmit 10 sec Retransmit timer used if a request is forwarded
via UDP to the next SIP server. Periodically
reinvoked until a de�nite response is received
from the SIP server or a maximum number of
retransmissions is reached.

T isc req 1 min Timer for receiving a de�nite response from the
session controller if a request was forwarded to
isc. Invokes isc request timeout() if expires.

T isc 2 sec Timer to receive a "Trying" response from isc
which indicates that the session controller is
running.

T start isc 20 sec Timer to wait until isc is started. Calls
start isc timeout() if expires.

T close inv 1 min Timer to free the invitation settings in the invi-
tation list.

Table 5.4: Timers

5.6. IMPLEMENTATION 31

5.6.5 Procedures

The procedures implemented for sipd are listed in the Appendix A. Ordering is based
on the procedure's appearance in the appropriate �les. First, �les containing support
functions are listed (Table 5.5), whereas SIP functionality (Table 5.6) starts within the
event.c �le.

File Description

notify.c sets up event handlers

multimer.c establishes timers

servers.c expands a domain name in a list of SIP servers

misc.c manipulates strings in SIP messages

list.c maintains the invitation and location list

udp.c UDP communication

tcp.c TCP communication

Table 5.5: sipd �les implementing support functions

File Description

event.c Event handler invoked if a server socket becomes readable,
start of an invitation process

request.c Functions which handle new SIP requests

proxy.c Functions to perform call forwarding

response.c Functions which handle all kinds of responses

isc.c Function used to communicate with isc

timer.c Event handlers invoked by timeouts

sipd.c sipd main routine and initialization functions

Table 5.6: sipd �les implementing SIP functionality

After installing event handlers for the server sockets udp server socket and
udp server socket(�le sipd.c), processing will start with the socket event() function
(event.c) if one of the server sockets becomes readable.

Incoming SIP requests are handled by the process request() function (request.c),
whereas process response() (response.c) is invoked if a SIP response arrives.

The isc socket event() function (isc.c) builds the event handler for a readable
isc socket.

5.6.6 Scripts

As mentioned in 5.6.1, functions which should be easy to modify are extracted to Tcl
or shell scripts. This section deals with a short description of the functions used to
perform name mapping, check call acceptance and locate a user.

32 CHAPTER 5. THE SESSION INVITATION DAEMON

5.6.6.1 The expand script

The expand Tcl script is used to map the name of the called user, given in the �rst
line of a SIP request, into the local user name. It is invoked by the expand user name()
function (�le request.c) with the name of the callee as argument.

First, expand invokes the aliases application which performs name mapping based
on the local alias data base which is also used by the local mail system. Therefore,
expand invokes aliases with the given user name. To specify the data base which should
be queried by aliases, the command line option \-a" followed by the path to the data
base can be used. If no data base is speci�ed, /etc/aliases is queried. If the user name
can be found in the data base, the expand script returns the local user names to stdout
and exits.

To enable name mapping if the aliases application can't match the invitee's name
to the local user name, expand tries to get the local user id by using the namemapper
application. namemapper searches in the system password �les for user names that
match the command line argument which speci�es the name of the called user.

If name mapping was successful, namemapper returns one or more strings of the
format:

� UjLjF user name name, e.g.: U sho Stefan Ho�mann

The �rst letter (U, L, F) designates if the match was on the user name (\namemapper
sho"), last name (\namemapper ho�mann") , or �rst name (\namemapper stefan").

expand returns the strings extracted by namemapper .

5.6.6.2 The auto reply Script

The auto reply script is invoked by the automatic reply() function to check if an invitee
wants to decline or redirect the incoming SIP call automatically. Therefore the script
is invoked with the request's sender (From header) and subject, and checks if the they
match to a line in the $HOME/.sip/sip handler �le. If so, auto reply returns the appro-
priate handler string (response code and reason phrase or redirect location) to specify
the SIP response which is sent to the calling SIP client automatically.

5.6.6.3 The locate Script

The locate script is invoked by the locate user() function and searches in the location
service data base, created and updated by lswhod (Section 6.2), for hosts where the
called user might be logged on. The script returns the list of the extracted hosts.

Chapter 6

Location Service

6.1 Overview

One feature which di�erentiates between a session invitation tool based on SIP and
other existing invitation tools like showme, is the ability to automatically locate invitees
within a domain. To perform this task, a user location mechanism is required. Since
SIP doesn't specify how user location should be done, di�erent methods are thinkable
and should be supported. Several location service mechanisms are listed by Schulzrinne
in [19]:

� File system registration: For example, users create or remove a .location.$HOST
�le when loggin on or leaving a worstation. This should automatically be done by
the .login and .logout �le;

� lswhod: Location service based on the who (utmp) data base on each host;

� tracker: Location service program based on the �nger protocol;

� Multicast location: SIP requests are multicast to a local address, either a global
address for all users or a user-speci�c address;

� Service location protocol: It might be possible to employ the service location
protocol [23] to �nd people.

To enable an easy way of changing the location service mechanism, the Session
Invitation Daemon (sipd) uses a Tcl script as its interface to the location server. This
script is described in Section 5.6.6.

In the currently implemented version, the lswhod location server is used. It is de-
scribed in the following section.

6.2 The Location Server lswhod

To perform location service, the location service daemon lswhod, written by Schulzrinne
and loosely based on [25], adds location information for all users logged in at the local

33

34 CHAPTER 6. LOCATION SERVICE

host to a location service data base. To get information about the users who are logged
in on a host, the local who database (typically /etc/utmp) is used by lswhod. So, the
location service daemon has to run on each host on which users should be found and
session invitation should be possible. lswhod periodically checks who is currently logged
in and updates the location service data base accordingly.

To make modi�cation of the data base easy, it is located in a common directory d in
the NFS which is readable and writable by all users in a domain via NFS. So, an update
and also a query of the database only require a single NFS transfer. If a user U is logged
in at the host H, lswhod creates a �le d/U/H, where d is the data base directory. If the
user is only logged in locally (typically on the console), the �le is empty. Otherwise, the
�le consists of a list of hosts the user is logged in from. If a user is logged in remotely
and locally on one workstation, the local host name and the remote hosts are listed in
the �le.

Figure 6.1 shows an example scenario of a location service database (LS DB) main-
tained by lswhod .

lswhod

console login

remote login

lswhod lswhod

/pie/tao

daisy

/pie/daisy

daisy
tao

/fim/daisy

tao

LS-DB

/sho/rockmaster
/fim/tao
/fim/daisy
/pie/daisy
/pie/tao

daisy

rockmaster tao

pie

sho fim

pie

fim

from daisy

from tao

from taopie

Figure 6.1: Location Service Database updated by lswhod

Chapter 7

The Integrated Session Controller

7.1 Overview

The Integrated Session Controller (isc) is designed to perform multimedia conferences
over the Internet. Therefore, it can be combined with several media agents (e.g., NeVoT
for audio, NeViT for video) which are used to transmit and receive media streams. isc
controls the media agents and o�ers the graphical user interface to the di�erent applica-
tions. The Integrated Session Controller is used to handle a single conference, consisting
of several multimedia sessions, by creating and terminating multimedia sessions and by
con�guring the session parameters. Messages between the session controller and the
media agents are exchanged via so-called pmm messages which are transmitted over a
local multicast "bus".

Several enhancements are required to enlarge isc with a session invitation feature
based on the Session Initiation Protocol combined with the Session Description Protocol.
These enhancements can be separated into client behavior features, needed to initiate
SIP calls and server behavior features to handle incoming invitations.

� SIP client behavior

isc internet sipd
TCP TCP

SIP client first SIP server
Caller

Figure 7.1: isc as SIP client

First of all, isc has to o�er a graphical user interface to the caller which allows to
declare invitation parameters like the names of users who should be invited and
the description of the session. Afterwards, the session controller must create the
SIP request message and has to �nd an appropriate SIP server to contact. After
sending the call, isc waits for incoming responses and processes the response code
returned. Success or failure of the invitation is announced to the calling user. To
make session invitation with isc comfortable, sessions are created automatically
after receiving a reply indicating success.

35

36 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

� SIP server behavior

iscinternet sipd
PMM

Callee

destination SIP server

TCP/UDP

Figure 7.2: isc as SIP server

The Integrated Session Controller deals with SIP server behavior in conjunction
with the Session Invitation Daemon (sipd). As described in Chapter 5, the Session
Invitation Daemon performs user location, call forwarding or redirection of incom-
ing SIP calls but doesn't o�er an interface to the called user which noti�es him
about an invitation or lets him specify whether to accept or decline a call. The
user interaction to incoming session invitations is totally task of the Integrated
Session Controller isc. So, isc receives a SIP request from sipd if the daemon has
located the called user at the local host. Now, the session controller checks if the
media, demanded in the request payload, are supported by isc and an appropriate
media agent. If so, the called user is noti�ed and has the ability to decline or
accept the call. If he wants to process the invited session, it is created by isc
automatically. SIP server behavior ends with sending a SIP response due to the
callee's choice to the calling SIP client.

Two additional features are added to the Integrated Session Controller which are
used to make session invitation and automatic call handling more comfortable. Firstly,
the \phonebook" function enables the user to store aliases for users who are invited
frequently. Secondly, isc o�ers a simple editor to modify the $HOME/.sip/sip handler
�le which is used to decline or redirect incoming SIP calls automatically with regard to
their initiator or subject (see Section 5.2).

7.2 Local Conference Control Architecture

As mentioned above, isc is one component of a multimedia conferencing application
which consists of controllers and media agents. Figure 7.3 shows an overview of the
given architecture.

The Integrated Session Controller controlls the media agents which handle the media
streams of the conference. Communication between session controller and the media
agents is managed by the so called pattern-matching multicast mechanism [16]: All
components of the multimedia conference application are members of the same local
multicast group. This multicast group is called \local" because all messages to this
multicast address and port are sent with a time-to-live value of zero which guarantees
that no pmm message leaves the local host. To indicate the destination and session to
which a pmm message belongs, each message contains a pmm header which consists
of the name of the conference C, an identi�er of the session's media type and a media
instance identi�er:

\C/audio/3" speci�es a message belonging to the third audio session within the

7.3. SIP CLIENT ENHANCEMENTS 37

NeVoT

isc sipd

internet

NeViT

PMM
conference

bus

media agents

media stream

SIP communication

Figure 7.3: Local Conference Control Architecture

conference C

The pmm speci�cation also deals with a short protocol wich de�nes messages for
creation, opening, leaving or other actions for mutimedia sessions.

Since the pmm mechanism is used to exchange messages between di�erent applica-
tions on the same host, it can also be used to transmit messages between the Session
Invitation Daemon (sipd) and isc as required if the local sipd has located an invited user
at the local host (Section 5.4). Therefore, an appropriate pmm header must lead the
exchanged SIP requests and responses. It consists of the call-id of the SIP message and a
\sip" identi�er. The instance identi�er is not needed because of the globally uniqueness
of the call-id, but it is set to zero to avoid conicts with the pmm header format:

\call-id/sip/0"

7.3 SIP Client Enhancements

7.3.1 Initiating of SIP Requests

The SIP client enhancements in isc are used to invite other users to multimedia sessions.
Figure 7.4 shows the steps which are performed to initiate a session invitation.

First, isc checks if any multimedia sessions are currently in process. If so, the called
get active session parameters procedure extracts the session parameters and stores the
settings in the globally available invite array. The parameters of the active sessions are
extracted to allow the caller to invite to these sessions without specifying the param-
eters manually. Depending on the number of active sessions, the standard (procedure
std invite) or advanced (adv invite) invitation window appears. It is expected that a
user mostly only uses one audio and/or one video session within a conference. There-
fore, the standard invitation window handles these two sessions and makes it easy to

38 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

get parameters
of active sessions

more
than 1 audio and
1 vidoe session

act.?

open standard
invitation window

open advanced
invitation window

look up invitees
in phonebook

create call-id and
SIP request

standard_invite

process_invitation

get_actice_session_parameters

invite

advanced_invite

create_sip_request

process_invitation

for the new socket
establish event handler

connect to
SIP server

start timer for a
definite response

find SIP server

send request

send_sip_request
servers

send_sip_request

send_sip_request

send_sip_request

send_sip_request

Figure 7.4: Initiating a Session Invitation

specify the appropriate parameters. To specify a more complex conference with a larger
number of media streams, the advanced invitation window must be used which enables
to specify an unlimited number of sessions.

After modifying the selected parameters needed to perform an invitation and press-
ing the \Send Invitation" button, the process invitation procedure handles creation and
sending of the SIP request. First, the procedure checks if an alias for any speci�ed in-
vitee exists in the SIP phonebook ($HOME/.sip/phonebook) and replaces the speci�ed
name of the callee, stored in invite(guest) by the name(s) in phonebook.

Afterwards, a SIP request has to be created for each invitee with a globally unique
call-id. Request creation is managed by the create sip request procedure. All settings of
the created invitation are stored in the request($call id,...) array where the �rst
�eld of the array speci�es the call-id of the SIP request. The settings must be stored to
allow modi�cation of the request to enable session creation after receiving a response

7.3. SIP CLIENT ENHANCEMENTS 39

which indicates the success of the invitation.

Before the request can be sent to an appropriate SIP server like sipd, isc has to extract
an appropriate SIP server host for the speci�ed invitee. Therefore, the send sip request
procedure examines the domain part of the callee's address and invokes the servers
function, o�ered by libservers, which returns a list of SIP servers. isc tries to connect
to the well known SIP port at the �rst SIP server via TCP, and sends the request. If
connection establishment or request sending failes, the next server in the list is queried.
To enable isc to receive SIP responses on the new created TCP �le descriptor, an event
handler is created which invokes the read sip response procedure if the socket to the
server becomes readable.

Finally, a timer, which invokes the sip timeout procedure if it expires is established
after sending the request to guarantee that isc doesn't wait an unlimited amount of time
for a �nal response. The timer is canceled if a �nal response is received by isc.

7.3.2 Receiving SIP Responses

As mentioned above, initiating of SIP requests is only one task of a SIP client. An
additional goal is handling of SIP responses which are caused by invitations. The process
which handles incoming SIP responses is started by the read sip response procedure. It
is invoked if the TCP socket to which the SIP request was sent becomes readable, which
indicates an incoming response from the contacted SIP server. Figure 7.5 gives an
overview of the functions initiated by in incoming SIP reply.

After reading the response (procedure read sip response), the process sip response
procedure which coordinates response handling, calls the extract sip parameters func-
tion which reads the speci�ed settings in the response and stores them in the response
($call id,...) array. The �rst �eld of the array speci�es the call-id of the SIP
message.

If the received response is a �nal response, the sip timeout timer is canceled and
the TCP socket to the server is closed because process of the invitation is �nished and
no more responses for this call-id are expected.

Since the calling user has to be informed about the response received, an appro-
priate window is created which noti�es the inviter about the information given in the
SIP reply. Depending on the response code, di�erent action are invoked next: If the
invitation was successful, the sessions the callee was invited to are created automat-
ically by the sip open sessions procedure. Otherwise, the invitation failed but some
modi�cations in the invitation could result in a successful call. This is indicated by a
redirect or \Not Accaptable" response which o�ers some alternative values for a new
modi�ed invitation. To make request modi�cation easy, the caller has the ablilty to
press the \Modify Request" button in the appropriate window which invokes the mod-
ify sip request procedure. If doing so, the original selected invitation values are ex-
tracted out of the request($call id,...) array and are stored in the invite array
(procedure get original invite settings). Afterwards, the appropriate invitation settings
are replaced by the alternative values speci�ed in the received SIP response. These
settings are stored in the response($call id,...) array. Finally, the called invite

40 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

TCP socket to
SIP server becomes

readable

extract response
parameters

definite

?
or final response

kill sip_timeout timer
close TCP socket

notify user
about response

get original settings
of the invitation

get alternative settings
of the response

open invitation
window

Redirect response (301,302,603)
"350 Alternative Service"
" 406 Not Acceptable"

read SIP response

process_sip_response

process_sip_response

create sessions

response = ..."200 OK"

sip_open_sessions

process_sip_response
sip_extract_parameters

read_sip_response

process_sip_response

get_original_invite_settings
modify_sip_request

modify_sip_request

invite

Figure 7.5: Handling of an Incoming SIP Response

procedure invokes the standard or advanced invitation window where the alternative
values are selected automatically. The calling user has now the ability the send the
modi�ed request directly or to do some further modi�cations.

7.4 SIP Server Enhancements

The SIP server enhancements of isc deal with the server's user interface component. As
mentioned in Section 5.4, the invitation daemon sipd forwards a SIP request to isc if the
invited user is located at the local host. Therefore, sipd starts the Integrated Session
Controller if isc is not already running.

The control read udp procedure which is invoked if the pmm socket becomes read-
able starts processing incoming SIP requests if a SIP message indicated by a SIP pmm

7.4. SIP SERVER ENHANCEMENTS 41

header is received. Figure 7.6 shows the typical handling of new SIP requests by isc.

Incoming
SIP request at
pmm socket

read SIP request
check invitee

extract request
parameters

requested
media encodings

supported ?

get supported
encodings

reply
"Not Accaptable"

specify
reason phrase

open requested
sessions

reply "Trying"

notify callee

reply "Ringing"

reply "Decline"reply "OK"

read_sip_request

process_sip_request

process_sip_request
send_sip_reply

sip_extract_parameters

process_sip_request
check_requested_media

sip_open_sessions

notify_calleesend_sip_reply

check_requested_media
process_sip_request

send_sip_reply

process_sip_request
send_sip_reply

notify_callee
specify_reason_phrase

YESNO

ACCEPT DECLINE

send_sip_reply

Figure 7.6: Receiving a SIP Request

Initially, the read sip request procedure reads the received SIP message and checks
the request's method and call-id. The process sip request procedure which is called next
manages the further processing of the SIP call. Therefore, the sip extract parameters
procedure extracts the speci�ed invitation and session parameters and stores them in
the request(call id,...) array. Besides, the task of this procedure is to check if
the invitation speci�es the same conference as the one which is currently handled by
isc. This must be done because the Integrated Session Controller only can handle one
single conference. If the speci�ed session name in the SDP payload is not equal to the
conf(name) variable, this invitation must be handled by another copy of isc. So, the
SIP message is ignored which will cause sipd to start a new copy of isc.

Otherwise, the process sip request procedure initiates a \Trying" response to sipd
to indicate that the request was received and is handled by isc. As mentioned in Section
5.4, the \Trying" response causes sipd to cancel its isc timeout or start isc timeout
timer.

After reading all parameters of the SIP call, isc checks if the requested media types
and their encodings are supported. The check requested media procedure searches for
the media encodings in the user's $HOME/.mailcap �le which contains a list of sup-
ported encodings. If any of the requested encoding isn't supported, an appropriate \Not
Acceptable" response is created which also deals with a list of all supported encodings

42 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

for the requested media types. Otherwise, if all encodings are accepted, the callee is
noti�ed about the incoming request and a \Ringing" response is sent to the calling
client to indicate the current status of the invitation. To avoid that the notify window
is present an unlimited amount of time if the user is not sitting in front of this work-
station, a timer is started which will invoke the notify timeout procedure if the invitee
doesn't react to the call.

In the notify window which shows the invitee the request's sender and the requested
media types, the user has the possibility to accept or decline the call. Both actions initi-
ate the belongingSIP response to the client. If the call is accepted, the open sip sessions
procedure starts the invited sessions automatically.

7.5 Additional Enhancements

This section deals with a short description of additional enhancements which are not
required to enable SIP and SDP functionality, but makes the usage of session invitation
more comfortable.

7.5.1 The SIP Phonebook

To invite other users to multimedia sessions, the inviter has to address each callee by
his SIP address which was described in detail in Section 2.3. Since it is expected that
a caller invites several users frequently, it should be possible to store short aliases for
these often called users. This should make the usage of isc easier because the caller only
has to type the known alias to specify the invitee and not the whole SIP address.

Additionally, aliases could be used to store groups of users, identi�ed by their SIP
address, which makes sense when a caller wants to invite several users to the same
miltimedia session(s). The inviter only has to specity the name of the group alias and
isc sends a SIP request to each participant of the group.

To store the aliases, isc uses the $HOME/.sip/phonebook �le which lines are for-
mated as \aliases: address1 address2 address3 ...". Before creating and sending a SIP
request, isc looks up if the speci�ed invitee(s) could be found in the phonebook �le. If
so, the invitee's alias is replaced by the list of addresses given in the �le.

Since it seems not convenient to edit the phonebook �le manually, isc o�ers a simple
phonebook editor. It could be used to add, remove and modify aliases for invitees.
Usage of the phonebook editor is given in the instruction manual in Appendix B.2.3.4.

7.5.2 The SIP Handler Editor

As described in Section 5.2, the Session Invitation Daemon (sipd) supports a mechanism
to reply to incoming SIP calls automatically with respect to the call's subject or sender.
To specify the appropriate SIP handlers, sipd uses the $HOME/.sip/sip handler �le.
As for the phonebook �le, a comfortable way to modify the stored handlers is needed.
Therefore, isc deals with a simple SIP handler editor which could be used to install or

7.6. VARIABLES 43

remove handlers. Thereby, the editor gives the user the possibility to install handlers
which react to each incoming request or to specify handlers which only react to request's
which consist of a speci�ed subject or sender header. To response to the request, the
user can choose between redirect and decline responses.

7.6 Variables

isc uses three arrays to store the invitation settings and session description parameters
of SIP requests and responses. This section gives an overview of the invite, request
and response array and the �elds used in the arays.

7.6.1 The invite Array

The invite array is used to store the settings speci�ed in the standard and advanced
invitation window. Table 7.1 shows a list of the most important �elds in the array.

Variable Description

guest space separated list of invitees

information subject of the conference

session addr unicast or multicast IP address of the conference

ttl time to live value for the multicast group speci�ed by
session addr

media list list of the media descriptions of the conference (see 7.6.1.2)

audiojvideo ag which indicates whether the \audio" or \video" check-
button in the standard invitation window is selected

lpcjgsmjdvi4j... ag which indicates whether the beloging encoding check-
button in the media con�gure or advanced invitation win-
dow is selected

audiojvideo,
information

information of the media stream

audiojvideo,
session addr

unicast or multicast IP address of the belonging media
stream

audiojvideo,port port of the belonging media stream

audiojvideo,ttl time-to-live value for the multicast group speci�ed by
audio|video,session addr

audiojvideo,code list list of the selected encodings of the media stream (see
7.6.1.1)

audiojvideo,
pro�le list

list of the RTP audio video pro�les of the belonging
code list (see 7.6.1.1)

Table 7.1: Fields of the invite Array

44 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

7.6.1.1 The code list and profile list Field

The Session Description Protocol allows to specify di�erent alternative media encodings
within a media description whereas ordering of the encodings speci�es their priority.
So, isc has to enable the user to select several media encodings for each media stream
description in an invitation. Therefore, the con�gure windows of the appropriate media
type can be used. They allow the user to specify several encodings and also shows
the user the order of their priority. The list of the speci�ed encodings is stored in the
appropriate code list �eld of the invite array.

The profile list �eld is also a list which stores the selected encodings, but in-
stead of storing their names like code list, it consists of the media payload type as
de�ned in the RTP Audio/Video Pro�le (RTP/AVP) [13]. This information is needed
by SDP because it uses the RTP/AVP media payload type to specify the requested
media encodings in a session description.

Manipulation between encoding name and RTP/AVP payload type is done by the
get pro�le and get coding procedures.

7.6.1.2 The media list Field

The invite(media list) variable consists of a list which stores parameters of all media
streams (sessions) speci�ed for the invitation. Each element of the list is built of 6 parts
which are sperated by a colon character:

� media:port:session addr:ttl:code list:information

� e.g. audio:3456:224.2.0.1:16:pcmu lpc gsm:german audio stream

In the standard invitation window, the media list is created after pressing the
\Send invitation" button by the create media list procedure. The advanced invitation
window modi�es the media list when the inviter adds or removes media streams to
the invitation by pressing the appropriate \Add" (procedure advanced media add) or
\Remove" (procedure advanced media remove) button.

7.6.2 The request and response Array

An overview of most of the �elds used by the request and response array is given in Ta-
ble 7.2. Both arrays are used to store parameters of incoming or outgoing SIP messages.
To distinguish between di�erent invitations, the �rst �eld of the request and response

array speci�es the call-id of the SIP call. When acting as a SIP client, isc stores the
settings of outgoing requests in request(call-id,...), the response(call-id,...)
array handles incoming responses. On the other hand, parameters of incoming requests
at isc acting as server, are also stored in request(call-id,.).

7.7. PROCEDURES 45

Variable Description

via list of the SIP message's \Via" headers

from user speci�ed in the \From" header

to user speci�ed in the \To" header

length payload length

host host speci�ed in the \Contact-Host" header

location list of SIP locations speci�ed in the \Location" header

reason list of reasons speci�ed in the \Reason" header

payload payload of the received message

session addr uni- or multicast IP address of the conference

ttl time to live value for the multicast group speci�ed by
session addr

information subject of the conference

media list list of the media descriptions of the conference (see 7.6.1.2)

session name name of the conference

sessions to create list of media stream descriptions (formated as in
media list) which sould be created by isc

Table 7.2: Fields of the request and response Array

7.7 Procedures

This section deals with an overview and a short description of the procedures imple-
mented to enhance the intergrated session controller with SIP and SDP functionality.
The source code is separated into several �les to get a better overall view. Table 7.3
gives a short list of the �les.

7.7.1 The rtp avp.tcl File

7.7.1.1 The rtp avp load Procedure

The rtp avp load procedure deals with a list which enables a matching between the
name of an audio or video encoding and its RTP pro�le payload type or vice versa. Each
list entry consist of two parameters. The �rst one speci�es the name of the encoding
(followed by channel count and sample rate for audio encodings), the second one gives
the corresponding RTP pro�le payload type. The list is stored in the rtp avp list

variable.

7.7.1.2 The get code Procedure

The get code procedure tries to match a RTP pro�le payload type, given as argument to
the procedure, to the encoding name based on the rtp avp list o�ered by rtp avp load.
The procedure returns the encoding name (followed by channel count and sample rate
for audio encodings) if a match occurs.

46 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

File Description

rtp avp.tcl helping procedures to change a media encoding to the RTP
audio/video pro�le and vice versa

sip media list.tcl helping procedures which handle the media list

invite.tcl procedures to initiate a SIP call

std invite.tcl procedures which handle the standard invitation window

adv invite.tcl procedures which handle the advanced invitation window

sip.tcl procedures to create requested sessions and extract param-
eters of incoming SIP messages

sip request.tcl procedures to handle incoming SIP requests

sip response.tcl procedures to handle incoming SIP responses

sip �le.tcl procedures to handle �le operations for the sip handler and
phonebook functions

sip handler.tcl simple editor for the automatic reply function

sip phonebook.tcl simple phonebook editor

Table 7.3: isc Files Implementing SIP and SDP Functionality

7.7.1.3 The get pro�le Procedure

The get pro�le procedure tries to match an encoding name, given as argument to the
procedure, to the RTP pro�le payload type based on the rtp avp list o�ered by
rtp avp load. The procedure returns the pro�le if a match occurs.

7.7.2 The sip media list.tcl File

7.7.2.1 The media checkbutton list Procedure

The media checkbutton list procedure creates a checkbutton list which allows to select
several list items. A line, located below the checkbutton list, shows the slected items
in order of their choice. Encodings which are given to the procedure, but are not
supported due to the speci�cation in the .mailcap �le, could not be selected by users
but are disabled. The media checkbutton list is used in the media con�guration or the
advanced invitation window to select media encodings.

7.7.2.2 The update code list Procedure

The update code list procedure updates the encoding lists stored in the invite($media,
code list) and invite($media,profile list) variable with respect to the speci�ca-
tions in the appropriate media checkbutton list window. It is invoked if a media encod-
ing checkbutton is selected. The �rst argument of update code list speci�es the media
type audio, video whereas the second one gives the name of the selected encoding.

7.7. PROCEDURES 47

7.7.2.3 The media list add Procedure

The media list add procedure adds a new item to the invite(media list) variable.
The �rst and only argument of the procedure speci�es the media type for which a new
entry should be added to the list. The new list entry is composed out of the appropriate
invite settings. On failure, the procedure shows an appropriate message to the user
and returns with 1, otherwise zero is returned.

7.7.2.4 The media list2invite Procedure

The media list2invite procedure together with the media2invite procedure converts the
settings of the media descriptions stored in the invite(media list) variable to an
invite array. It is used to display the settings, stored in invite(media list) in the
invitation windows.

7.7.2.5 The media2invite Procedure

The media2invite procedure converts the settings of one media description stored in the
invite(media list) variable to an invite array.

7.7.3 The invite.tcl File

7.7.3.1 The invite Procedure

The invite procedure checks whether to call the standard or advanced invitation win-
dow with respect of the settings stored in invite(media list). Since the standard
invitation window can only handle one audio and/or one video session, the advanced in-
vitation window is invoked if more sessions are speci�ed in invite(media list). Before
invoking standard invite or advanced invite, the media list2invite procedure is called to
automatically display the appropriate settings in the invitation window.

7.7.3.2 The get active session parameters Procedure

The get active session parameters procedure is invoked if the invite button is pressed.
It checks if any sessions are currently in process by isc. If so, the appropriate session
settings are stored in invite(media list). Afterwards the invite procedure is invoked.

7.7.3.3 The process invitation Procedure

The process invitation procedure manages creation and sending of SIP requests. It is
invoked if the \Send invitation" button of an invitation window is pressed. First, it
checks if any of the speci�ed invitees in invite(guest) is speci�ed in the phonebook
�le. If so, the callee is replaced by the unaliased address(es) of the phonebook. After-
wards, process invitation creates a call-id for each invitee and calls the create sip request

48 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

procedure. The �nally invoked send sip request procedure transmits the request to the
appropriate SIP server.

7.7.3.4 The create sip request Procedure

The create sip request procedure is invoked by the process invitation procedure to gen-
erate a SIP request with respect to the invite settings. The two arguments of the pro-
cedure are the invitee and the globally unique call-id of the request. create sip request
stores all parameters of the generated request in the request($call id,...) array. If
creation of the request was successful zero, otherwise 1 is returned.

7.7.3.5 The send sip request Procedure

The send sip request procedure is invoked by the process invitation procedure to send a
SIP request to an appropriate SIP server. The only argument to send sip request speci-
�es the call-id of the request which also speci�es the belonging request($call id,...)

array.

First, the procedure invokes the servers procedure which returns a list of SIP servers
to contact. send sip request tries to establish a TCP connection to the �rst server and
tries to send the request, stored in request($call id). If connection establishment or
request sending failes, the next server in the list is queried.

To enable that isc will receive a SIP response on the connected socket, an event han-
dler is established which will invoke the read sip response procedure if the �le descriptor
becomes readable.

Finally, a timer is created which calls sip timeout if no de�nite response was received
during a timeout interval of one minute.

7.7.3.6 The sip timeout Procedure

The sip timeout procedure, with call-id as argument, is invoked if no de�nite response
for in invitation was received during a timeout interval. The procedure noti�es the
caller about the timout and terminates the active invitation, speci�ed by its call-id.

7.7.4 The std invite.tcl File

7.7.4.1 The standard invite Procedure

The standard invite procedure o�ers the inviter a graphical user interface to specify
the invitees and session parameters of the invitation. The standard invitation window
shown in Figure 7.7 lets the user invite to an audio and/or video session, since it is
expected that mostly a caller only uses these two sessions within a conference. If an
invitation for more sessions should be sent, the advanced invitation window (Figure
7.9), which is invoked if the \Advanced Session Con�guration" button is pressed, must
be used.

7.7. PROCEDURES 49

Figure 7.7: The Standard Invitation Window

Con�guration of the requested media streams and their encodings could be done
by calling the media con�guration window by pressing the appropriate \Con�gure"
button(s). If doing so, the standard media con�g procedure is invoked and opens the
audio or video con�guration window (Figure 7.8).

To create and send a SIP request message, the \Send invitation" button has to be
pressed to invoke the create media list procedure.

7.7.4.2 The standard inv display Procedure

The standard inv display procedure updates the display of the standard invitation win-
dow (Figure 7.7). It is invoked if the audio or video checkbutton in the invitation
window is pressed.

7.7.4.3 The standard media con�g Procedure

The standard media con�g procedure is invoked if one of the \Con�gure" buttons in the
standard invitation window (Figure 7.7) is pressed. It opens a media con�gure window
(shown in Figure 7.8) which lets the user to specify parameters of the appropriate media
stream.

Besides, the caller has the ability to choose the requested media encodings for the
session. The belonging list of media encoding is created by the media checkbutton list
procedure.

7.7.4.4 The create media list Procedure

The create media list procedure is invoked if the \Send invitation" button in the stan-
dard invitation window is pressed. It is used to store the speci�ed invitation settings
in the invite(media list) variable. Afterwards the process invitation procedure is
invoked to continue with creation and sending of the SIP request.

50 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

Figure 7.8: The Audio Con�guration Window

7.7.5 The adv invite.tcl File

7.7.5.1 The advanced invite Procedure

The advanced invite procedure creates the andvanced invitation window which is shown
in Figure 7.9. It is invoked by the invite procedure of if the \Advanced Session Con�g-
uration" button in the standard invitation window was pressed. It gives the caller the
ability to specify a large number of sessions within a SIP request. All settings could be
speci�ed within one single window, no additional con�gure window must be used.

Pressing the \Send invitation" button will start to create and send the SIP request
by invoking the process invitation procedure.

7.7.5.2 The andvanced inv display Procedure

The andvanced inv display procedure updates the display of the advanced invitation
window. It is invoked if one of the displayed media descriptions is selected.

7.7.5.3 The advanced media add Procedure

The advanced media add procedure adds a new media description to the invite(media
list) variable by invoking the media list add procedure and updates the displayed
media list items in the advanced invitation window. It is invoked if one of the \Add"
buttons in the advanced invitation window was pressed.

7.7.5.4 The advanced media remove Procedure

The advanced media remove procedure removes the media description, selected in the
advanced invitation window, out of the list stored in the invite(media list) variable.

7.7. PROCEDURES 51

Figure 7.9: The Advanced Invitation Window

Afterwards, it updates the displayed media list items in the advanced invitation window.

7.7.6 The sip.tcl File

7.7.6.1 The sip extract parameters Procedure

The sip extract parameters procedure is used to extract the SIP and SDP parame-
ters speci�ed in an incoming request or response message. It is invoked by the pro-
cess response or process request procedure. The extracted parameters are stored in the
request($call id,...) or response($call id,...) array.

If an incoming SIP request is examined, sip extract parameters also checks if the
requested sessions belong to the conference which is currently handled by isc. Therefore,
isc checks if the session name speci�ed in the SDP payload is equal to the name of the
active conference (stored in conf(name)). If the request deals with information about a
new conference, the sip extract parameters procedure returns with a value of one, which
lets isc ignore the SIP message. Otherwise zero is returned.

7.7.6.2 The sip open sessions Procedure

The sip open sessions procedure is invoked to create sessions requested by an incoming
and accepted SIP request or if an invitation was successful. The request(sessions to

create) variable stores a list of call-ids of received or sent invitations for which sessions

52 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

should be created. The description of the media streams are stored in the belonging
request($call id,media list) variable.

The sip open sessions procedure opens all sessions belonging to the �rst call-id in
request(sessions to create). Depending on isc acting as SIP client or server and if
a unicast or multicast address was speci�ed in the media description, isc has to handle
the speci�ed session address di�erently. If a caller wants to invite a remote user to
an unicast session, he normally speci�es his own host as session address. The session
controller at the server side opens the media stream to the speci�ed address in the SDP
payload. On the other side, isc acting as client must not create the session to his IP
address but to the address of the replying server host.

Therefore, the sip open sessions procedure checks if the session address in the appro-
priate media description is equal to the local host address. If so, isc creates the speci�ed
session not to his own IP address but to the host speci�ed by the \Contact-Host" header
of the received SIP response (stored in response($call id,host)).

If the session address is a multicast adderess, isc opens the session to this address,
independent of acting as a SIP cilent or server.

After creating the sessions for each media description stored in the request($call
id,media list) variable, the �rst call-id in the request(sessions to create) vari-
able is removed and sip open sessions checks if there are aditional call-ids in the request
(sessions to create) list. If so, the sip open sessions procedure is invoked again to
create the sessions of the next successful call.

This is method is choosen, because the session create procedure which is invoked by
sip open sessions only can process one session creation after the other since it uses the
same variables to open new media streams. Since isc is bulit on an event driven basis, a
mechanism is required which enables to receive sveral requests or responses concurrently
but also to open the speci�ed sessions one after another and not at the same time.

7.7.6.3 The sip sound Procedure

The sip sound procedure is used to play short audio �les to notify the user about
incoming SIP requests or about newly received SIP responses.

7.7.7 The sip request.tcl File

7.7.7.1 The read sip response Procedure

isc invokes the read sip response procedure is invoked if it receives a SIP response.
The procedure reads the response and extracts the reply code and reason phrase and
stores them in the appropriate response($call id,...) array. Afterwards, the pro-
cess sip response procedure is invoked which is the main procedure to handle SIP re-
sponses.

7.7. PROCEDURES 53

7.7.7.2 The process sip response Procedure

The process sip response procedure is invoked by read sip response to handle incoming
SIP responses. It �rst calls the sip extract parameters procedure to get the values
speci�ed in the response message. These values are stored in the response($call id,

...) array.

If a �nal response was received by isc, the timer started when sending the corre-
sponding SIP request is cancelled. Additionally, the TCP connection to the remote SIP
server is disconnected since the request is �nished.

The process sip response procedure noti�es the caller about the received response
and handles di�erently due to its reply code:

If the invitation was successful (indicated by a "200" reply code), the call-id is
added to the request(sessions to create) list which will indicate to open all ses-
sions speci�ed in the request($call id,media list). If the call-id is the only one
in request(sessions to create), the sip open sessions procedure is invoked. Other-
wise the sip open sessions procedure currently is creating sessions for other calls and is
reinvoked until the request(sessions to create) list is empty (see 7.7.6.2).

If the response code speci�es a redirect response or a response which indicates that
the request should be modi�ed and retransmitted, the modify sip request procedure is
invoked after pressing the \Modify Request" button in the noti�cation window.

7.7.7.3 The get original invite settings Procedure

The get original invite settings procedure is invoked by the modify sip request pro-
cedure to extract the parameters speci�ed for an invitation out of the appropriate
request($call id,...) array and stores them in the invite array. The procedure is
called if a response was received which indicates that some modi�cations to the original
SIP request are required to enable a sccessful invitation.

7.7.7.4 The modify sip request Procedure

The modify sip request procedure is invoked if the \Modify Request" button in the noti-
�cation window was pressed. It is used to extract the original invitation settings of the
sent SIP request by calling get original invite settings and to overwrite the extracted
parameters by the alternative parameters given in the received response message. After-
wards, the called invite procedures opens the standard or advanced invitation window
to let the caller modify and retransmit the invitation. The settings which are automat-
ically loaded to the invitation window are the parameters of the original sent request,
modi�ed with the values which are given in the received response message. So, the in-
viter normally only has to press the \Send invitation" button to start the new modi�ed
request which should have a better chance of being accepted by the callee. Nevertheless,
the user can make additional modi�cation if he decides to do so.

54 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

7.7.8 The sip response.tcl File

7.7.8.1 The read sip request Procedure

The read sip request procedure is invoked by the control read udp procedure if a SIP
pmm messages is received via the local pmm multicast group. The procedure checks
if the received message is a SIP request and if it is addressed to the owner of isc.
If so, it reads the request, otherwise the message is ignored. Before calling the pro-
cess sip request procedure which is the main procedure to handle incoming SIP requests,
read sip request extract the call-id of the invitation.

7.7.8.2 The process sip request Procedure

The process sip request procedure is invoked by read sip request to handle new incom-
ing SIP requests. After calling the sip extract parameters procedure which extracts the
SIP and SDP parameters of the invitation and checks if the requested sessions belong to
the active conference, the process sip request procedure initiates a \Trying" response to
the calling client. Therefore, it sets the appropriate request($call id,reply code)

and request($call id,reason phrase) variables and calls the send sip reply proce-
dure. This response noti�es sipd that the SIP request was received by isc. Afterwards
the called check requested media procedure checks, if the media and their encodings
speci�ed in the request are supported by the invitee. If so, a \Ringing" response is
sent to the inviter and the notify callee procedure is called, otherwise an appropriate
respone, which indicates a list of the supported media is sent to the SIP client.

7.7.8.3 The check requested media Procedure

The check requested media procedure is used to check if the media and their encodings,
requested in the received SIP call, are supported. Therefore, the user's .mailcap �le is
queried since it deals with a list of the supported media types and encodings used by
isc and its media agents.

If one of the media encodings or types which are speci�ed in the media description
of the SIP request are not supported by isc, a \Not Acceptable" response is initiated
by check requested media. This is done by setting the request($call id,reply code)

and request($call id,reason phrase) variables appropriately. Moreover, the request
($call id,media list) variable is modi�ed and now stores the description of the sup-
ported media types and encodings. These will be listed in the response message to
indicate the caller how to modify the invitation to make the call successful. The proce-
dure returns with one which noti�es the calling process sip request procedure that the
request can't be handled successfully.

If the media descriptions are accepted, the procedure returns with zero.

7.7. PROCEDURES 55

7.7.8.4 The ring Procedure

The ring procedure is used to notify the called user about the incoming invitation.
Therefore, it calles the sip sound procedure periodically until the callee reacts to the
request.

7.7.8.5 The notify callee Procedure

The notify callee procedure which is invoked by process sip request noti�es the callee
about an incoming invitation. This is done by opening an appropriate notify win-
dow and calling the ring procedure. In the "Incoming Call" window, shown in Figure
7.10, di�erent parameters like the sender of the invitation, the conference name and
the requested media streams are presented to the callee. The invited user has the
ability to accept or decline the call. After pressing the \Accept" button, the appro-
priate request($call id,reply code) and request($call id,reason phrase) vari-
ables are set and the send sip reply procedure is invoked which sends the response to
the SIP client and initiates the creation of the requested sessions.

Figure 7.10: The "Incoming Call" Window

The \Decline" button invokes the specify reason phrase procedure to enable the user
to specify a reason, why he wants to decline the call.

Since it is possible that a user is logged in at a workstation but is absent and can't
recognize the incoming invitation, the notify window must be deleted after a de�ned
interval of time. Therefore the notify callee procedure initiates a timer which calls the
notify timeout procedure if neither the \Accept" button nore the \Decline" button was
pressed during the timeout interval of 1 minute.

7.7.8.6 The notify timeout Procedure

The notify timeout procedure is invoked if the callee doesn't react to the call noti�cation
during a timeout interval. The procedure initiates a \Not Currently Here" reply.

56 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

7.7.8.7 The specify reason phrase Procedure

The specify reason phrase procedure is invoked if the \Decline" button in the noti�ca-
tion window was pressed. It enables the callee to specify a reason why he declines the
call. When pressing the new created \Send" button, the send sip reply procedure is
invoked and sends the response to the initiation SIP client.

7.7.8.8 The show additional info Procedure

The show additional info procedure which is invoked if the \Additional Info" button in
the noti�cation window was pressed opens a new window which displays how the callee
can get additional information about the session.

7.7.8.9 The send sip reply Procedure

The send sip reply procedure which is invoked whenever a SIP response to the calling
SIP client should be sent, creates a SIP response message due to the reply code speci�ed
in the request($call id,reply code) variable. Moreover, the procedure calls the
sip open sessions procedure if the response which should be sent indicates a successful,
accepted invitation. If the callee doesn't neither accept nor declines the incoming call,
the send sip reply procedure terminates isc, if the session controller was started by the
SIP daemon sipd.

7.7.9 The sip �le.tcl File

7.7.9.1 The save check Procedure

The save check procedure is invoked if the user has modi�ed settings in the phonebook
or sip handler window and has pressed the \Dismiss" button. The procedure creates a
window which enables the user to save or dismiss the settings.

7.7.9.2 The save �le Procedure

The save �le procedure is used to save the settings in the phonebook or sip handler �le.

7.7.9.3 The read �le Procedure

The read �le procedure reads the settings of the phonebook or sip handler �le. It returns
the list of the read lines.

7.7. PROCEDURES 57

7.7.10 The sip handler.tcl File

7.7.10.1 The sip handler Procedure

The sip handler procedure o�ers a simple editor for the $HOME/.sip/sip handler �le
which is used by sipd to reply automatically to incoming SIP calls. The format of the
�le is described in Section 5.2. The sip handler window (given in Figure 7.11) shows
the currently speci�ed handlers. To add or remove handlers the appropriate button has
to be pressed.

Figure 7.11: The sip handler Window

7.7.10.2 The all display Procedure

The all display procedure updates the display of the sip handler window. It is invoked
if one of the checkbuttons of the handlers for all incoming requests is selected.

7.7.10.3 The new handler Procedure

The new handler procedure o�ers a window (shown in Figure 7.12) to specify new
sip handlers. The user has to specify whether to create a handler which examines the
incoming call's subject or sender. Pressing the \Add" button calls the add handler
procedure.

7.7.10.4 The add handler Procedure

The add handler procedure adds a new sip handler to the sip handler list. To update
the display in the sip handler window, the insert handler procedure is invoked.

58 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

Figure 7.12: The Add sip handler Window

7.7.10.5 The remove handler Procedure

The remove handler procedure, invoked after pressing the \Remove" button in the
sip handler window, removes the selected handler out of the handler list and updates
the display.

7.7.10.6 The insert handler Procedure

The insert handler procedure invoked by add handler updates the display in the sip handler
window after adding a new handler.

7.7.10.7 The save sip handler Procedure

The save sip handler procedure is invoked if the \Save" button of the handler window
was pressed and manages the saving in the sip handler �le. Therefore it invokes the
save �le procedure.

7.7.11 The sip phonebook.tcl File

7.7.11.1 The sip phonebook Procedure

The sip phonebook procedure o�ers the user a simple editor (shown in Figure 7.13)
to modify aliases of invitees stored in the $HOME/.sip/phonebook �le. Pressing the
appropriate buttons will call the procedures to add or remove aliases and to save the
phonebook �le.

7.7.11.2 The alias selection Procedure

The alias selection procedure is invoked if one alias in the alias list is selected. It updates
the display of the addresses frame which shows the stored addresses for the selected alias.

7.7.11.3 The add alias Procedure

The add alias procedure adds a new alias to the phonebook and updates the display. It
is invoked if the \Add" button under the aliases frame was pressed.

7.7. PROCEDURES 59

Figure 7.13: The Phonebook Window

7.7.11.4 The remove alias Procedure

The remove alias procedure removes the selected alias from the phonebook. It is invoked
if the \Remove" button under the aliases frame was pressed.

7.7.11.5 The add addr Procedure

The add alias procedure adds a new address to the selected alias and updates the display.
It is invoked if the \Add" button under the addresses frame was pressed.

7.7.11.6 The remove addr Procedure

The remove alias procedure removes the selected address from the phonebook. It is
invoked if the \Remove" button under the aliases frame was pressed.

7.7.11.7 The save phonebook Procedure

The save phonebook procedure is invoked if the \Save" button of the phonebook window
was pressed and manages the saving in the phonebook �le. Therefore, it also invokes
the save �le procedure.

60 CHAPTER 7. THE INTEGRATED SESSION CONTROLLER

Chapter 8

Summary and Future Work

The goal of this work was to implement a mechanism to enable an easy way to invite
users to multimedia sessions over the internet. The Session Initiation Protocol deals
with a request-response mechanism and de�nes the message and address format used
to invite users. The features of SIP include session invitation based on the user's email
address which requires a location mechanism within the user's domain.

To describe the session parameters within a SIP message, the Session Description
Protocol was chosen.

The software implemented is separated into two di�erent parts. The Session Invi-
tation Daemon (sipd) is a per-host daemon which waits for incoming SIP requests and
handles them according to the SIP speci�cation. It performs user location by using a
location service database and redirects or forwards the SIP call. Moreover, an automatic
reply function is implemented to enable the user to redirect or decline invitations with
respect to their subject or sender.

The Integrated Session Controller (isc), which is the second part within the imple-
mentation was enhanced with the ability to send session invitations and to act as a SIP
server in combination with sipd. It o�ers a graphical interface to the user which makes
it easy to specify invitation parameters for both novice and expert users. It o�ers the
possibility to invite several users to the same existing or new session(s). Additionally, isc
was equipped with an invitation phonebook and a simple editor to specify SIP handlers
for the automatic reply feature of sipd. So, a single tool can be used to invite users to
multimedia sessions, to perform these sessions and to specify handlers which are used to
automatically react to incoming calls. The Integrated Session Controller together with
di�erent media agents becomes to an universal multimedia session tool.

During the implementation, a problem when using the email address to specify
an invitee occurs (described in Section 2.9). This results in modi�cations of the SIP
speci�cation in the current sip-03-draft [8].

The tester of isc and sipd criticized that it is impossible to terminate a sent call before
a de�nite response is received or timeout interval expires. The implemented draft of SIP
doesn't provide this feature. Indeed, the current draft of the Session Initiation Protocol
de�nes additional SIP methods which are also used to terminate sent calls.

61

62 CHAPTER 8. SUMMARY AND FUTURE WORK

8.1 Current Status

The currently implemented versions of sipd and isc are based on the SIP version 2,
draft-02 [7] including modi�cations described in Section 2.9.2. These modi�cations are
also part of the current draft-03 [8]. The OPTIONS method is not supported.

The Session Description Protocol is implemented in the draft-03 version. Time
descriptions of sessions, session attributes and payload encryption are not implemented
in the current version.

8.2 Future Work

As mentioned above, the implemented versions of sipd and isc follow a SIP draft which
is currently updated by a new one. Therefore, it seems to be useful to update the
applications according to the actual SIP draft. Moreover, testing of sipd and isc results
in additional suggestions how to improve the invitation daemon and the Integrated
Session Controller:

sipd:

� Update sipd to the current SDP and SIP drafts

� Enable to con�gure the Session Invitation Daemon by a con�guration �le
which allows to specify:

{ �le location for call logging

{ �le location for error logging

{ port on which sipd listens for incoming requests

{ supported protocols (TCP or UDP)

{ operating mode of sipd (redirect or proxy mode)

{ timeout intervals

� Ability to call sipd from inetd which makes operation more robust

isc:

� Update sipd to the current SDP and SIP drafts

� Redesign the invitation windows to the new isc design based on TIX

� Extract the SIP handler editor to a separate application and make it more
comfortable

� Add new features to the noti�cation window like call forwarding/redirection
and default decline reasons

Bibliography

[1] Douglas Comer and David L. Stevens. Internetworking with TCP/IP { Client-
Server Programming and Applications, volume 3. Prentice Hall, Englewood Cli�s,
New Jersey, 1993.

[2] Peter A. Darnell and Philip E. Margolis. C: A Software Engineering Approach.
Springer-Verlag, 1991.

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext trans-
fer protocol { HTTP/1.1. Request for Comments (Proposed Standard) RFC 2068,
Internet Engineering Task Force, January 1997.

[4] A. Gulbrandsen and P. Vixie. A DNS RR for specifying the location of services
(DNS SRV). Request for Comments (Experimental) RFC 2052, Internet Engineer-
ing Task Force, October 1996.

[5] M. Handley, J. Crowcroft, C. Bormann, and J. Ott. The internet multimedia
conferencing architecture. Internet Draft, Internet Engineering Task Force, July
1997. Work in progress.

[6] Mark Handley and Van Jacobson. SDP: Session description protocol. Internet
Draft, Internet Engineering Task Force, March 1997. Work in progress.

[7] Mark Handley, Henning Schulzrinne, and Eve Schooler. SIP: session initiation
protocol. Internet Draft, Internet Engineering Task Force, March 1997. Work in
progress.

[8] Mark Handley, Henning Schulzrinne, and Eve Schooler. SIP: Session initiation
protocol. Internet Draft, Internet Engineering Task Force, July 1997. Work in
progress.

[9] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice-Hall, Englewood Cli�s, New Jersey, 1978.

[10] Steve McCanne and Van Jacobson. vic: A exible framework for packet video. In
Proc. of ACM Multimedia '95, November 1995.

[11] Frank Oertel. Aufbau und Kon�guration lokaler Multimedia Konferenz-
Umgebungen (Set-up and con�guration of local multimedia conferencing envi-
ronments). Studienarbeit, Department of Communication Networks, TU Berlin,
Berlin, Germany, November 1995.

63

64 BIBLIOGRAPHY

[12] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[13] H. Schulzrinne. RTP pro�le for audio and video conferences with minimal control.
Request for Comments (Proposed Standard) RFC 1890, Internet Engineering Task
Force, January 1996.

[14] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a transport pro-
tocol for real-time applications. Request for Comments (Proposed Standard) RFC
1889, Internet Engineering Task Force, January 1996.

[15] Henning Schulzrinne. Voice communication across the Internet: A network voice
terminal. Technical Report TR 92-50, Dept. of Computer Science, University of
Massachusetts, Amherst, Massachusetts, July 1992.

[16] Henning Schulzrinne. Dynamic con�guration of conferencing applications using
pattern-matching multicast. In Proc. International Workshop on Network and Op-
erating System Support for Digital Audio and Video (NOSSDAV), Lecture Notes in
Computer Science (LNCS), pages 231{242, Durham, New Hampshire, April 1995.
Springer.

[17] Henning Schulzrinne. Dynamic con�guration of conferencing applications using
pattern-matching multicast. Multimedia Systems, 2, March 1996.

[18] Henning Schulzrinne. Simple conference invitation protocol. Internet Draft, Inter-
net Engineering Task Force, February 1996. Work in progress.

[19] Henning Schulzrinne. SIP server architecture. July 1997.

[20] Dorgham Sisalem and Henning Schulzrinne. The multimedia internet terminal.
In accepted for publication in the Special I issue on Multimedia of the Journal of
Telecommunication Systems, June 1997.

[21] Dorgham Sisalem, Henning Schulzrinne, and Christian Sieckmeyer. The network
video terminal. In HPDC Focus Workshop on Multimedia and Collaborative Envi-
ronments (Fifth IEEE International Symposium on High Performance Distributed
Computing), Syracuse, New York, August 1996. IEEE Computer Society.

[22] W. Richard Stevens. UNIX Network Programming. Prentice Hall, 1990.

[23] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service location protocol.
RFC 2165, Internet Engineering Task Force, June 1997.

[24] Brent Welch. Practical Programming in Tcl and Tk. Prentice Hall PTR, Upper
Saddle River, New Jersey, 1995.

[25] Christian Zahl. Entwicklung einer Internet-Multimedia-Telekommunikations-
Anlage (Development of an internet multimedia telecommunications system). Stu-
dienarbeit, Department of Communication Networks, TU Berlin, Berlin, Germany,
November 1995.

Appendix A

Procedures of sipd

A.1 The notify.c �le

Procedures in the notify.c �le (cby AT&T Bell Laboratories) are used to establish and
remove event handlers.

A.1.1 The notify set input func() Function

Notify func input notify set input func (Notify client client, Notify func input
func, int fd)

Arguments:

client: identi�er of the event handler; argument passed to func if event occurs

func: name of the procedure which is invoked if fd becomes readable

fd: �le descriptor of the event handler

Returned value:

-

Description:

The notify set input func() function establishes an event handler for the �le de-
scriptor fd. The handler function func, with client and fd as arguments, is
invoked whenever fd becomes readable. Calling notify set input func() with func
= NOTIFY FUNC NULL removes the handler.

65

66 APPENDIX A. PROCEDURES OF SIPD

A.1.2 The notify start() Function

Notify error notify start(void)

Arguments:

-

Returned value:

-

Description:

The notify start() function starts the event handler loop. It is terminated by
calling notify stop() .

A.1.3 The notify stop() Function

Notify error notify stop(void)

Arguments:

-

Returned value:

-

Description:

The notify stop() function terminates the event handler loop.

A.2. THE MULTIMER.C FILE 67

A.2 The multimer.c �le

Procedures in the multimer.c �le (cby the University of Southern California) are used
to establish or remove timer events.

A.2.1 The timer set() Function

struct timeval *timer set(struct timeval *interval, Notify func func, Notify client
client, int relative)

Arguments:

*interval: time interval

func: function to be called when time expires

client: �rst argument passed to the handler function func

relative: ag; set relative to current time

Returned value:

-

Description:

The timer set() function sets a timer event for the speci�ed client. The client
pointer is opaque to this routine but must be unique among all clients. Each client
may have only one timer pending. If the interval speci�ed is zero, the pending
timer, if any, for this client will be cancelled. Otherwise, a timer event will be
created for the requested amount of time in the future, and will be inserted in
chronological order into the queue of all clients' timers.

68 APPENDIX A. PROCEDURES OF SIPD

A.3 The servers.c File

Procedures in the servers.c �le (written by Schulzrinne) are used to expand a domain
name in a list of SIP servers.

A.3.1 The servers() Function

server t *servers(char *domain)

Arguments:

*domain: domain in which a SIP server should be found

Returned value:

list of server entries, with last entry having a host value of NULL

Description:

The servers() function expands a domain name into a list of suitable SIP servers,
in the following order:

1. SRV records

2. MX record

3. A and RR records

A.4. THE MISC.C FILE 69

A.4 The misc.c File

Procedures in the misc.c �le are helping functions to manipulate and search for strings
in SIP requests and responses. Partially based or taken from cd by Christian Zahl.

A.4.1 The str tolower() Function

char *str tolower(char *s)

Arguments:

*s: pointer to string which should be converted to lower case

Returned value:

pointer to the newly allocated lower case string

Description:

The str tolower() function converts all characters in a given string to lower case.
It returns the pointer to newly allocated lower case string.

70 APPENDIX A. PROCEDURES OF SIPD

A.4.2 The str search() Function

char *str search(char *s1, char *s2)

Arguments:

*s1: pointer to string in which s2 should be searched

*s2: pointer to string which should be searched in s1

Returned value:

� pointer to the located string in s1

� NULL if no match occurs

Description:

The str search() function locates the �rst occurrence of a string s2 in another
string s1. It returns a pointer to the located string in s2, or the null pointer
if no match occurs. The only di�erence to strstr() is, that the search is not
case sensitive. Therefore, both strings (s1 and s2) are converted to lower case
(procedure str tolower()) before strstr() is invoked.

A.4. THE MISC.C FILE 71

A.4.3 The str cmp() Function

int str cmp(char *s1, char *s2)

Arguments:

*s1: pointer to string which should be compared with s2

*s2: pointer to string which should be compared with s1

Returned value:

� int < 0, if str tolower(s1) < str tolower(s2)

� int = 0, if str tolower(s1) = str tolower(s2)

� int > 0, if str tolower(s1) > str tolower(s2)

Description:

The str cmp() function compares string s1 with string s2 not case sensitive.
Therefore, both strings are converted to lower case (procedure str tolower())
before strcmp() is invoked. If both lower case strings are equal, zero is returned.

A.4.4 The skip white spaces() Function

char *skip white spaces(char *p)

Arguments:

*p: string in which leading white spaces should be skipped

Returned value:

pointer to the �rst character in sting p which is no white spaces

Description:

The skip white spaces() function returns a pointer to the �rst character in string
p which is no white space.

72 APPENDIX A. PROCEDURES OF SIPD

A.4.5 The get �eld() Function

char *get �eld(char *p, char *str, int len)

Arguments:

*p: pointer to string in which next �eld should be extracted

*str: pointer to string in which extracted �eld will be stored, allocated by caller
of the function

len: length of string str in which extracted �eld will be stored

Returned value:

� pointer to the end of the extracted �eld in string p

� NULL on failure

Description:

The get �eld() function tries to extract the next �eld in string p and stores the
extracted string in str. Therefore, it �rst skips leading white spaces in string
p (procedure skip white spaces()) and copies characters from string p to string
str until the �led is terminated by "space", "tab", or any newline character. The
string copying is also terminated if the string terminating null character "n0"
comes up or the length of str exceeded. get �eld() returns a pointer to the end
of the extracted �eld in string p if the �eld could be extracted successfully or
NULL, if �eld extraction failed.

A.4. THE MISC.C FILE 73

A.4.6 The get line() Function

char *get line(char *p, char *str, int len)

Arguments:

*p: pointer to the bu�er from which the next line should be extracted

*str: pointer to string in which extracted line will be stored

len: length of string str in which extracted line will be stored

Returned value:

� pointer to the end of the extracted line in string p

� NULL on failure

Description:

The get line() function extracts a string terminated by an end of line character
out of given string p. It is used to extract a single line or SIP parameter out of
a SIP message. The procedure works like get �eld() except that string copying
isn't terminated by whitespace characters.

74 APPENDIX A. PROCEDURES OF SIPD

A.4.7 The search SIP header() Function

char *search SIP header (char *msg, char *header name, char *short name)

Arguments:

*msg: pointer to the SIP message in which a SIP header should be searched

*header name: name of the SIP header

*short name: short name of the SIP header

Returned value:

� pointer to the SIP header value

� NULL, if header not found

Description:

The search SIP header() function searches for a SIP header speci�ed by
header name or short name in a given SIP message (msg). It returns a pointer
to the found header value (to the end of the header identi�er speci�ed by
header name or short name). If the SIP can't be found in msg the null pointer
is returned.

A.4. THE MISC.C FILE 75

A.4.8 The delete SIP line() Function

int delete SIP line(char *s)

Arguments:

*s: pointer to a line in a SIP message header which should be deleted

Returned value:

� 0, if line was deleted successfully

� -1, if line was not removed

Description:

The delete SIP line() function removes a SIP header line, indicated by s, in a
SIP message. Therefore, s has to point to the beginning of a SIP header line
which should be deleted.

A.4.9 The insert SIP line() Function

void insert SIP line(char *p, char *s)

Arguments:

*p: pointer to the place in a SIP message where a new header line s should be
inserted

*s: pointer to the new SIP header which should be inserted in a SIP message at
place p

Returned value:

-

Description:

The insert SIP line() function inserts a new SIP header in a SIP message. The
�rst argument p speci�es a pointer to the place in the SIP message where the new
header should be added. The procedure adds the given string s and terminates
the new header by a \CRLF " sequence.

76 APPENDIX A. PROCEDURES OF SIPD

A.5 The list.c File

Procedures in the list.c �le are used to handle both, the invitation and location list.
They perform adding and removing of list entries and deal with functions to search
speci�ed list entries.

A.5.1 The inv list search() Function

inv list t *inv list search(char *call id)

Arguments:

*call id: call-id of the searched invitation list entry

Returned value:

� pointer to the found invitation list entry

� NULL, if no entry speci�ed by call id was found in the invitation list

Description:

The inv list search() function locates the inv list t structure identi�ed by
call id in the invitation list. If an appropriate list entry is found, the pointer
to this structure is returned, otherwise inv list search() returns the null pointer.

A.5. THE LIST.C FILE 77

A.5.2 The loc list search() Function

loc list t *loc list search(inv list t *inv, char *search str)

Arguments:

*inv: pointer to the invitation list entry in which a location list entry should be
searched

*addr: IP address in dotted decimal notation; identi�er of the searched location
list entry

Returned value:

� pointer to the found location list entry

� NULL, if no entry speci�ed by addr was found in the location list

Description:

The loc list search() function tries to �nd a pointer to the loc list t structure
identi�ed by addr in the location list of the invitation list entry speci�ed by inv.
If an appropriate list entry is found, the pointer to this structure is returned,
otherwise loc list search() returns the null pointer.

78 APPENDIX A. PROCEDURES OF SIPD

A.5.3 The inv list add() Function

int inv list add()

Arguments:

-

Returned value:

� 0, if a new entry was added to the invitation list

� -1, adding a new item to invitation list failed

Description:

The inv list add() function adds a new entry to the top of the invitation list.
The procedure returns 0 if a new structure was added, on failure -1 is returned.
The global variable invitation list will point to the new inserted list entry.
inv list add() is invoked after receiving a new SIP request.

A.5. THE LIST.C FILE 79

A.5.4 The loc list add() Function

int loc list add(inv list t *inv)

Arguments:

*inv: pointer to the entry in invitation list to which a new location list entry
should be added

Returned value:

� 0, if a new entry was added to the location list

� -1, adding a new item to location list failed

Description:

The loc list add() function adds a new entry to the top of the location list of an
invitation list entry speci�ed by inv. The procedure returns 0 if a new structure
was added, on failure -1 is returned. The inv->location list variable of struc-
ture inv will point to the new inserted list entry. loc list add() is invoked if a new
location was extracted by the location server or out of a received "Alternative
Address" response.

A.5.5 The inv list remove() Function

void inv list remove(char *call id))

Arguments:

*call id: identi�er of the invitation list entry which should be removed

Returned value:

-

Description:

The inv list remove() function removes an inv list t structure speci�ed by
call id out of the invitation list. The procedure is invoked if the process of
a SIP request is �nished either by sending a de�nite or �nal response to the
requesting client, or by a timeout.

80 APPENDIX A. PROCEDURES OF SIPD

A.6 The udp.c File

Procedures in the udp.c �le are used to perform communication based on UDP.

A.6.1 The UDP connect() Function

int UDP connect(char *address, int port, u int8 ttl)

Arguments:

*address: pointer to a uni- or multicast IP address in dotted decimal notation
to which the new socket should be bound

port: port number of the new socket

ttl: ttl value if a multicast group was speci�ed by address

Returned value:

� new allocated UDP socket, if socket allocation and binding was successful

� -1, if socket creation failed

Description:

The UDP connect() function allocates and binds a new socket to a given IP
address and port. The IP address can either be an uni- or a multicast address,
the latter requires speci�cation of a ttl value.

A.6. THE UDP.C FILE 81

A.6.2 The UDP send() Function

int UDP send(char *address, int port, int socket, int arg num, ...)

Arguments:

*address: destination IP address in dotted decimal notation

port: destination port

socket: socket to sent UDP packet

arg num: length of the following variable argument list; number of strings which
will build the message

... : variable argument list which consists of pointers to char, specifying the
strings which should be sent

Returned value:

number of bytes sent by UDP send()

Description:

The UDP send() function sends a message via UDP to a speci�ed destination.
To specify the destination of the UDP packet, the IP address in dotted decimal
notation and the appropriate port are given as the �rst two arguments to the
procedure. The message is compound of several strings which are speci�ed as the
last arguments of the UDP send() function. The number of strings which should
be sent must be speci�ed by the arg num variable before the variable string list.

82 APPENDIX A. PROCEDURES OF SIPD

A.6.3 The UDP read() Function

char *UDP read(int fd, int *port, char *addr)

Arguments:

fd: socket which becomes readable and from which message was received

*port: pointer to int in which the destination port of the message is stored

*addr: pointer to char in which the destination address (doted decimal notation)
of the received message is stored

Returned value:

� pointer to the read message

� NULL, if reading of the message failed

Description:

The UDP read() function reads new incoming UDP messages like SIP requests
or responses. After reading a new message it will return the pointer to this
message or the null pointer if reading failed. To read the message, the recvfrom()
function is used which can be also used to extract the source address and port of
the incoming UDP packet. To make this data available to the calling function,
UDP read() needs a pointer to int and a pointer to char as second and third
argument in which the port and the IP address (in dotted decimal notation) will
be stored. The function is invoked if an UDP socket becomes readable.

A.7. THE TCP.C FILE 83

A.7 The tcp.c File

Procedures in the tcp.c �le are used to perform communication based on TCP.

A.7.1 The alarm handler() Function

void alarm handler()

Arguments:

-

Returned value:

-

Description:

The alarm handler() function sets a timeout ag for the TCP read() function and
is invoked if TCP read() can't receive a whole TCP message during an interval
of ten seconds. It is used to avoid deadlocks in TCP read() .

84 APPENDIX A. PROCEDURES OF SIPD

A.7.2 The TCP read() Function

char TCP read(int fd, inv list t *inv)

Arguments:

fd: socket which becomes readable and from which message will be received

*inv: pointer to an entry in invitation list if the incoming message belongs to an
existing inv list t structure or NULL is a new invitation arrives

Returned value:

� pointer to the read message

� NULL, if reading of the message failed

Description:

The TCP read() function reads new incoming TCP messages like SIP requests or
responses. After reading a new message it will return the pointer to this message
or the null pointer if reading failed. The procedure is invoked if a TCP socket
becomes readable.
TCP read() reads data available at �le descriptor fd until an empty line was
received which indicates the end of a the SIP header within a SIP message.
A "Content-Length" header in the currently read message should specify the
message's payload length, which is read afterwards. If no "Content-Length" is
found, it is expected that no payload is available.
To avoid deadlocks, the alarm handler() function is called, if TCP read() doesn't
read the whole message during a timeout interval of 10 seconds. This is done by
initiating a alarm signal which will invoke alarm handler() .

A.7. THE TCP.C FILE 85

A.7.3 The TCP send() Function

int TCP send(int sock, char *msg)

Arguments:

sock: socket in connected state which speci�es the destination of the TCP mes-
sage

*msg: pointer to the string which should be sent

Returned value:

number of bytes sent by TCP send()

Description:

The TCP send() function sends a message via TCP. The destination is speci�ed
by the sock argument which has to be a TCP socket in connected state. msg is
a pointer to the string which should be sent.

86 APPENDIX A. PROCEDURES OF SIPD

A.7.4 The TCP connect() Function

int TCP connect(loc list t *loc)

Arguments:

*loc: location list entry which includes the IP address (loc->addr) to which
the connection should be established

Returned value:

� new socket to the established connection

� -1, if connection establishment failed

Description:

The TCP connect() function establishes a TCP connection to a remote SIP server
speci�ed by loc->addr. First, TCP connect() tries to allocate a new socket
which should be connected to the destination. The destination port is the stan-
dard SIP port stored in the global variable sip port. If the connection estab-
lishment is successful, the new socket to this connection is returned, otherwise -1
is given to the calling function.

A.8. THE EVENT.C FILE 87

A.8 The event.c File

A.8.1 The socket event() Function

Notify value socket event(Notify client client, int fd)

Arguments:

client: pointer to belonging entry in invitation list if the socket of an exist-
ing TCP connection becomes readable; NULL, if tcp server socket or
udp server socket becomes readable

fd: socket which becomes readable

Returned value:

-

Diagram:

new message
is a response

?

read new message

socket_event

get method
get invited user
get SIP version
get call-id

process_response

reply "Not Implementd"

retransmitted

?
request

create and fill new
invitation structure

reply "Trying"

process_request

version and
method supported

?

retransmit reply

YES

YES

NO

NO
NO

YES

Description:

The socket event() function is the event handler function in-
voked if a TCP of UDP socket becomes readable, except of the
isc socket which invokes isc socket event(). The function han-
dles new incoming SIP messages, decides if these messages are re-
quests or responses and calls the appropriate functions to go on.

!

88 APPENDIX A. PROCEDURES OF SIPD

Notify value socket event()

As the diagram shows, socket event() �rst reads the new incoming SIP mes-
sage and stores it in the variable msg. This is done by calling TCP read() or
UDP read() depending on the kind of the �le descriptor fd which is the readable
socket. If the new message is a SIP response, the process response() procedure is
called which handles it. Otherwise, the message is a request and socket event()
extracts and checks di�erent parameters speci�ed in the request.
Because UDP requests are retransmitted until a de�nite response was received
by the SIP client, it is possible that the incoming message was a retransmitted
request. Therefore, the socket event() function searches for an entry in the invita-
tion list which has the same call-id like the new message. If an appropriate entry
can be found, the incoming message was a retransmitted request which is ignored
after the last response which was sent to the calling client is retransmitted. (This
is done by invoking check response priority() .
To handle a new request, the event handler creates a new invitation list entry
(inv list add()) in which the message parameters are stored and invokes the
process request() function after sending a "Trying" response to the calling client
which indicates that the request was received.

A.9. THE REQUEST.C FILE 89

A.9 The request.c File

Procedures in the request.c �le are used to handle new incoming requests. They perform
name mapping, automatic reply or user location functions.

A.9.1 The locate user() Function

int locate user(inv list t *inv)

Arguments:

*inv: pointer to the invitation list entry which stores the parameters of the
processing SIP request

Returned value:

� number of locations where the called user is possibly located

� -1, on failure

Diagram:

read returned
locations

execute
locate script

location
in Via header

?

return number of
locations

++inv->locations

NO

YES loc_list_add

locate_user

inv->location_list
=NULL

inv->locations=0

Description:

The locate user() function searches the invited user in the lo-
cal domain. The number of hosts on which the callee
is currently logged in is returned to the calling procedure.

!

90 APPENDIX A. PROCEDURES OF SIPD

int locate user()

The only argument of locate user() is the pointer to the invitation list entry of the
SIP request which is currently in process. As the diagram shows, the locate user()
procedure �rst resets the inv->locations variable, which is a counter for the
extracted locations. Now, the Tcl script locate is executed with the local user
name of the callee (stored in inv->userEntry->pw name) as argument. The
script returns a list of hostnames at which the invitee was found. Since loop-
ing of requests is forbidden by SIP, locate user() checks if the addresses of the
extracted locations are already given in the request's via header which indicates
that the request was forwarded to this location. If so, the extracted location is
ignored. Otherwise the new location is added to inv->location list by call-
ing loc list add() and the inv->locations counter is incremented by one. The
function returns with inv->locations.

A.9. THE REQUEST.C FILE 91

A.9.2 The automatic reply() Function

int automatic reply(inv list t *inv)

Arguments:

*inv: pointer to the invitation list entry which stores the parameters of the
processing SIP request

Returned value:

� 0, if an automatic reply was sent

� 1, if no automatic reply was sent

Diagram:

get from and
subject field

execute auto_
reply script

redirect
reply code

?

location
in Via header

?

new_loc
=1
?

YES

YES

YES

NO

NO

NO

automatic_reply

get location

new_loc =1

loc_list_add

return 1 return 0

replyreply

return 0

read returned
string

Description:

The automatic reply() function checks if the invited user wants to accept
the call or if he wants to send a SIP reply automatically. If so, the func-
tion initiates the sending of the appropriate response and returns with 0.

!

92 APPENDIX A. PROCEDURES OF SIPD

int automatic reply()

As shown in the diagram, automatic reply() �rst extracts the sender of the invi-
tation (\From" header) and the call's subject out of the received request which is
stored in inv->request. The auto reply Tcl script which is executed, checks if
the invited user wants to accept the call or if a reply should be sent automatically.
This is indicated by a returned line which consists of a reply code followed by a
string. If the reply code speci�es a redirect response, the given string is inter-
preted as a list of space-separated locations, otherwise it is handled as a reason
phrase and sending of the reply is initiated by calling the reply() function.
Handling of redirect responses requires some additional action. First, auto-
matic reply() has to check if the speci�ed locations consist of a user and host
("user@host") or only a host part and handles it appropriately. Afterwards,
it checks if the locations are already queried (by examination the via headers
of the request) and appends new locations to the inv->location list (calling
loc list add()). Finally it calls the reply() function to create and send the redirect
response.
The automatic reply() function terminates with a return code of 0 if a response
was sent, otherwise the return code is 1.

A.9. THE REQUEST.C FILE 93

A.9.3 The expand user name() Function

char *expand user name(inv list t *inv)

Arguments:

*inv: pointer to the invitation list entry which stores the parameters of the
processing SIP request

Returned value:

� string which includes the expanded local user name

� NULL, if local user name can't be extracted or was ambiguous

Diagram:

execute
expand script

read returned
strings

expand_
user_name

returned
more than

one
?

reply
"Ambiguous"

return string return NULL

YES

NO

get user name

Description:

The expand user name() function tries to match the name of the invited user,
given in the �rst SIP request line, to the local user name. Therefore, it executes
the Tcl script expand with the given user name as argument which tries to map
the name to the local user name. The script returns a list of strings which include
the extracted user names. If more than one user name string is extracted by the
script, name mapping can't be done ambiguously and an appropriate response
is sent to the calling client (invoked by function reply()). The format of the
returned strings are described in Section 5.6.6.1.
expand user name() returns the string, given by expand, if an unambiguous
match was found, otherwise it sends an appropriate response to the calling client
and returns the null pointer.

94 APPENDIX A. PROCEDURES OF SIPD

A.9.4 The process request() Function

void process request(inv list t *inv)

Arguments:

*inv: pointer to the invitation list entry which stores the parameters of the
processing SIP request

Returned value:

-

Diagram:

expand_
user_name

automatic_
reply

user exp.
to "user@host"

?

reply "Server
Internal Error"

reply "Not
Currently Here"

process_request

get location

loc_list_add
++inv->locations

locate_user
forward_request return

forward_request proxy

-1 0 1 >1

1

0

YES

NO

Description:

The process request() function is invoked by socket event() after receiving a new
incoming SIP request and is the main function to handle new incoming SIP re-
quests. It manages the calling of functions to get the local user name of the
invitee (procedure expand user name()), to check if the called user wants to
accept the call (procedure automatic reply()) and to initiate user location (pro-
cedure locate user()). Depending on the returned value of locate user() , the pro-
cess request() function calls di�erent procedures to go on with handling the call.

!

A.9. THE REQUEST.C FILE 95

void process request()

An overview of the process request() function is shown in the diagram which
starts with calling the expand user name() procedure which returns a string if
name mapping can be done unambiguously. As described in Section 5.6.6.1,
the string can consist of di�erent forms. If a user name including a location
(user@location) is returned, the SIP request is forwarded to this location. There-
fore a location list entry is created and the forward request() procedure is invoked.
Otherwise, the local user name is extracted out of the returned string and request
processing continues.
Call acceptance is checked by the function automatic reply() which returns 1 if
the request was not automatically answered by the called procedure.
Depending on the returned value of the locate user() function (which is called
next), process request() sends an appropriate reply or calls the forward request()
or proxy() function. If the user is located only at one host (return value 1, the
request is forwarded to this location (= proxy mode, function forward request()
), but if the invitee was found at several locations, the proxy() function is called
which handles call forwarding or redirection with respect to the SIP speci�cation.

96 APPENDIX A. PROCEDURES OF SIPD

A.10 The proxy.c File

Procedures in the proxy.c �le are used to decide whether to forward requests (proxy-
mode) or to send redirect responses and to perform call forwarding.

A.10.1 The get via header no() Function

int get via header no(char *req)

Arguments:

*req: pointer to a SIP request

Returned value:

number of via headers in req

Description:

get via header no() function calculates and returns the number of given via head-
ers within a SIP request. It is called to check if a SIP server is the �rst one in a
chain of servers and to calculate request timeout intervals.

A.10. THE PROXY.C FILE 97

A.10.2 The forward request() Function

void forward request(loc list t *loc)

Arguments:

*loc: pointer to the location list entry which stores the destination to which a
SIP request should be forwarded

Returned value:

-

Diagram:

create new
first line

forward
to myAddr

?

forward_request

connection
to isc

?

start timer for
"Trying" reply

create and insert
new Via header

create and insert
new Via header

remove inserted
Via header

remove inserted
Via header

start timer for
receiving final reply

connection
to next server

?

start retransmit
timer

YES NO

UDP_connect

++isc_connections

YES

NO

send_to_isc

TCP_connect

TCP_send

UDP_send

YES

YESNO

NO

no parallel
search & request

received TCP
?

Description:

The forward request() function initiates SIP request forwarding to a new lo-
cation speci�ed by loc. It calls functions to send a call as well to the lo-
cal session controller isc as to other SIP servers located on remote hosts.

!

98 APPENDIX A. PROCEDURES OF SIPD

void forward request()

Before forwarding a request, the forward request() procedure creates a new �rst
request line. This is necessary because the next destination of a SIP request is
one part of the �rst request line. The new location is built of loc->user and
loc->addr. Afterwards the procedure has to check whether to send the request
to isc, or to a remote host.
To forward the request to isc, a connection to the local pmm multicast group
of isc must exist. This is indicated by the global isc connections variable
which is greater than 0 if sipd is a member of the local multicast group. Oth-
erwise the UDP connect() function establishes the appropriate connection and
the isc connections variable is incremented by one. Forwarding the request to
the local multicast group is done by calling the send to isc() procedure. If the
UDP connect() or the send to isc() function return with a value which indicates
an error condition, a "Server Internal Error" response is initiated (calling the
reply() function) or the isc request timeout() function is called, if sipd awaits re-
sponses from additional destinations (indicated by a inv->locations variable
greater than one).
After sending the call to the local multicast group, it can't be sure that isc was
already running on the local host. To make reliable that isc receives the request,
a timer is started. If a "Trying" response from isc is received by sipd, the timer
is canceled because isc was already running and has received the call. Otherwise,
the timer expires and invokes the isc timeout() function. This function starts isc
and retransmits the request to the local multicast group (see Section 5.4).
To send the request to a remote host, forward request() decides whether to send
the SIP call via TCP or UDP. The former transport protocol (TCP) is used,
if sipd received the request via TCP, and the request is not forwarded to sev-
eral destinations (parallel search). Otherwise, UDP forwarding is performed. In
both cases, the forward request() function creates a new via header which is in-
serted to the request in front of existing ones. Before sending the request via
TCP, forward request() establishes a TCP connection (TCP connect() function)
to the SIP servers at the remote workstation if both servers are not already con-
nected. Afterwards an event handler for the new socket is established which
invokes socket event() if the socket �le descriptor becomes readable (i.e. a SIP
response from the called server is received).
After sending the request to the destination host, the inserted via header is re-
moved to rebuild the original incoming SIP request. If forwarding of the request
failed, the inv->locations counter is decremented by one, since no response
is expected from the location speci�ed by loc. Moreover, forward request()
initiates an appropriate error message (reply "Server Internal Error").

!

A.10. THE PROXY.C FILE 99

void forward request

Depending on the transport protocol, di�erent timer functions are invoked to
handle retransmitting or deadlocks. If the request is sent by UDP, a retransmit
mechanism is invoked since it can't be sure that the remote server has received the
request. Therefore a timer is started which invokes the the retransmit timeout()
function after a given interval of time. This timer is canceled if a de�nite or �nal
response belonging the forwarded request is received.
Since TCP is a reliable transport protocol, no retransmit mechanism is used,
but a timer which avoids waiting an unlimited amount of time for a response
from the remote server is established. If the timer expires, the request timeout()
procedure is called. Like in UDP, a de�nite or �nal response cancels the timer.

100 APPENDIX A. PROCEDURES OF SIPD

A.10.3 The proxy() Function

void proxy(inv list t *inv)

Arguments:

*inv: pointer to the invitation list entry which stores the parameters of the
processing SIP request

Returned value:

-

Diagram:

state =
PARALLEL SEARCH

forward to all
locations

one
location=
myAddr

?

reply
"Alternative Address"

proxy

first proxy
?

forward_request

YES NO

inv->locations=0

NO YES

Description:

The proxy() function decides whether to forward or to redirect a SIP call and
calls the appropriate procedures. It is invoked, if locate user() extracts more than
one prospect location of the invited user.
As the SIP speci�cation states (see Section 2.7.2), a parallel search is only per-
mitted if a proxy server is the �rst one in a chain of proxies. To decide whether to
forward the request to several locations or send a redirect response, proxy() exam-
ines the number of via headers (procedure get via header no()) which indicates
the path, the request has taken so far.
If only one via header is found in the request, proxy() initiates a parallel
search and forwards the request to all locations stored in inv->location list.

!

A.10. THE PROXY.C FILE 101

void proxy

Otherwise, it checks if the request should be forwarded to the local session con-
troller isc (indicated by a location equal to the local host (stored in myAddr)).
If so, the request is forwarded to isc (calling forward request() with the myAddr

location). If no response is received from isc after a timeout interval, an "Al-
ternative Address" response is created to inform the calling SIP client about the
other extracted locations.
The third scenario (no parallel search and no forwarding to isc) results in an
"Alternative Address" response which is initiated by the reply() function. Before
calling reply() , the proxy() procedure sets the inv->locations variable to zero,
because no responses from other SIP servers belonging to the processing call are
expected.

102 APPENDIX A. PROCEDURES OF SIPD

A.11 The response.c File

Procedures in the request.c �le are used to create and send replies to the calling SIP
client and to handle incoming responses from called SIP servers.

A.11.1 The get response priority() Function

int get response priority(int code)

Arguments:

code: response code of a SIP response

Returned value:

priority of the response code

Description:

The get response priority() function returns a priority code appropriate to the
given response code which is used to classify the response.
The response priority is used to decide if a given response is an informational,
de�nite or �nal response. An informational response (code 1xx) only deals with
information that a request was received or a server tries to notify a callee, whereas
a de�nite response (code 5xx, 6xx) indicates that a server has �nished processing
a SIP request and no additional responses are expected from this server. A �nal
response indicates that the request was successful (code 2xx), has de�nitely failed
(4xx) or should be redirected (3xx). Final responses terminate a parallel search
regardless of outstanding responses from other locations.
Moreover, the response priority is used to order de�nite responses received from
several locations when performing a parallel search. If no �nal response but
di�erent 5xx and 6xx responses are received, the SIP speci�cation deals with a
ordered list, which states which response should be received to the client.

A.11. THE RESPONSE.C FILE 103

A.11.2 The reply() Function

void reply(inv list t *inv, int code, char *phrase)

Arguments:

*inv: pointer to the invitation list entry which stores the parameters of the
processing SIP request

code: reply code

*phrase: reason phrase

Returned value:

-

Diagram:

check_response_
priority

reply

create response

Description:

The reply() function creates a SIP response due to the speci�ed reply code
and reason phrase. It doesn't send the reply to the SIP client but calls
check response priority() which checks if the response should be sent immedi-
ately and initiates the appropriate function.
To create a SIP response, the reply() procedure �rst creates a new �rst line
with respect to the given arguments. Afterwards the SIP header of the request
(without the �rst line) is appended and modi�ed. If code speci�es a redirect
response, new location headers are added to the response.

104 APPENDIX A. PROCEDURES OF SIPD

A.11.3 The check response priority() Function

void check response priority(inv list t *inv, char *msg, int priority)

Arguments:

*inv: pointer to the invitation list entry which stores the parameters of the
appropriate SIP request

*msg: response which should be sent to the calling SIP client

priority: priority of the response stored in msg

Returned value:

-

Diagram:

Via header

?

priority >=
inv->priority

?

remove
Via header

informational
response

?

inv->
locations

<=0
?

only recvd
info responses

?

send inv->response
to client

state =
REPLY_SENT

start timer to
remove inv stucture

reply "Not
Currently Here"

send response
to client

inv->response
= msg

final
response

?

cancel timers

inv->locations=0

YES

NO

check_response_
priority

with myAddr

return

YES

NO

YES

YES

YES

NO

NO

NO

NO
YES

Description:

The check response priority() function checks if the response given by
msg should be sent immediately to the calling SIP client or cached
until a response was received from all queried locations when per-
forming a parallel search. It handles responses created by sipd
and responses which are received from other SIP servers or from isc.

!

A.11. THE RESPONSE.C FILE 105

void check response priority()

When performing a parallel search, sipd has to wait until it received a de�nite
response from every server the request was forwarded to, or until it received a
�nal response which terminates the parallel search. Moreover, it should only send
one de�nite or �nal response to the SIP client and thus has to cache the response
with the highest response priority (see Section 5.5).
After a SIP request was received or a reply was created, the
check response priority() function is invoked by process response() or re-
ply(). First the procedure checks if the new response, stored in msg, has a higher
priority than the currently cached one (inv->response) whose priority is given
in inv->response priority.
If so, msg and priority are stored in inv->response and
inv->response priority. If the new response is a �nal response, all re-
transmit and request timeout timers for the invitation speci�ed by inv are
canceled. Besides the inv->locations variable is set to zero because no
responses from other location are expected. This will terminate the parallel
search.
Now, the check response priority() function checks if the response, stored in
inv->response, should be sent to the SIP client. The inv->locations variable
counts the number of location from which a response is expected. If it is zero,
every server to which the request was forwarded has sent a de�nite response,
or one server sent a �nal response. This indicates, that the response should
be sent to the initiating client. If no de�nite of �nal responses are received by
sipd, it initiates a "Not Currently Here" reply, otherwise the response stored in
inv->response is sent to the client. After sending the response, the process
of the SIP request is �nished and the inv structure could be removed from the
invitation list. This is not done immediately because it can't be sure that the
response was received by the client when using UDP transport. So, the inv list
entry is cached for a interval of time. If the calling SIP client doesn't receive the
response, it retransmits his SIP request. sipd receives the retransmitted call and
sends the response, stored in inv->response, to the client once more.

106 APPENDIX A. PROCEDURES OF SIPD

A.11.4 The forward to alternative loc() Function

int forward to alternative loc(inv list t *inv, char *l)

Arguments:

*inv: pointer to the invitation list entry which stores the parameters of the
appropriate SIP request

*l: pointer to string which stores the new alternative SIP location

Returned value:

� 0, if the request was forwarded to the alternative location

� 1, if the request was not forwarded to the alternative location

Diagram:

location
already
queried

?

forward_to_
alternative_addr

return 1

loc_list_add

++inv->locations

forward_request
return 0

get new location

YES

NO

Description:

The forward to alternative loc() function is invoked if an "Alternative Address"
response was received. After extracting the new locations, the procedure checks if
the request was already forwarded to the given location by calling loc list search().
If no appropriate location list entry is found, the new location is added to the
location list (loc list add()), the inv->locations counter is incremented by
one and the forward request() function is called to send the request to the new
location.

A.11. THE RESPONSE.C FILE 107

A.11.5 The process response() Function

int process response(char *msg, char *addr)

Arguments:

*msg: pointer to the received response

*addr: pointer to the destination IP address of the received response

Returned value:

-

Diagram:

process_
response

recvd a
definite resp from

this loc
?

ignore msg
return

get resp code
and priority

definite
response

?

cancel request or
retransmit timer

"Alternative
Address" resp

?

get number of
locations

send resp to client
check_response_priority

locs > 1
?

state =
PARALLEL_SERACH

forward_to_
alternative_addr

ignore msg
return

state =
REPLY_SENT

?

get call-id

--inv->locations

& not first
locs>1

proxy
?

check_response_priority

check_response_priority

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

YES

Description:

The process response() function is invoked if a new SIP response was received to
handle it appropriately. First, it extracts the call-id, searches for the appropriate
invitation list entry (inv list search()) and checks if the request should be ignored.
Therefore, the function checks if the response received ag of the belonging
location list entry is set or if a de�nite or �nal response for the invitation was
already sent to the calling SIP client (indicated by inv->state= REPLY SENT).
This must be done to make sure that duplicated response packets are ignored.

!

108 APPENDIX A. PROCEDURES OF SIPD

int process response()

Afterwards, process response() extracts the response code and its priority (func-
tion get response priority()). If the response is a de�nite or �nal response the
inv->locations counter is decremented by one since a response from this lo-
cation is no longer expected. To make sure that other responses from this lo-
cation are ignored, the loc->response received ag is set. Retransmit and
request timeout timers are canceled for this location. If the reply isn't an "Alter-
native Address" response, the check response priority() function is invoked which
decides whether to send a response to the calling client or not.
An "Alternative Address" response initiates some additional functions: After
counting the number of alternative user locations given in the response, the
process response() function has to decide whether to forward the SIP request
(stored in inv->request) to the new given location(s) or to send the response
to the SIP client which initiates the call. If the response speci�es more than
one location, but sipd is not the �rst proxy within a chain of servers it calls
the check response priority() function. Otherwise inv->state is set to initi-
ate a parallel search. Invoking the forward to alternative loc() function for each
alternative location given in the response, sends the SIP request to these loca-
tions if they are not already queried. Afterwards the check response priority()
procedure is invoked with an priority of zero. This must be done to make
sure that the response is handled correctly if the request was not forwarded by
forward to alternative loc(). check response priority() won't store the "Alterna-
tive Address" response in inv->response (because of the priority of zero) but
checks if responses from all servers, the request was forwarded to, was received
(inv->locations counter). If so, the received response with the highest prior-
ity will be sent to the calling SIP client.

A.12. THE ISC.C FILE 109

A.12 The isc.c File

Procedures in the isc.c �le are used to enable communication between sipd and isc.

A.12.1 The isc socket event() Function

void isc socket event(Notify client client, int fd)

Arguments:

fd: socket which becomes readable; local multicast socket to isc

Returned value:

-

Diagram:

message is
SIP response

?

isc_socket_event

read new message

message is
SIP message

?

get call-id
skip pmm header

return

return

response
= "Trying"

?

process_response

cancel isc_timeout
cancel start_isc_timeout

set isc_request_timeout
timer

cancel timer
isc_request_timeout

--isc_connections

isc_connections
<= 0

?

close isc_socket

get response code

YES

NO

NO

YES

get pmm header

YES

YES

NO

NO

response is
final or definite

response

Description:

The isc socket event() function is invoked if the local pmm multicast
socket to the isc multicast group becomes readable. It is used to re-
ceive and handle SIP responses from the local session controller isc.

!

110 APPENDIX A. PROCEDURES OF SIPD

void isc socket event()

After reading the incoming message and extracting the pmm header,
isc socket event() checks if the received message was a SIP message which is
indicated by the "sip" identi�er in the pmm header. Afterwards the message's
call-id which is part of the pmm header is extracted and the appropriate invita-
tion list entry is searched (calling inv list search()). Since only SIP responses are
expected from isc, isc socket event() checks if the message was a reply and ex-
tracts its response code. A "Trying" response indicates that the SIP request was
received by isc and lets sipd cancel the isc timeout and start isc timeout timers.
Moreover, a new timer is started which is used to wait for a speci�ed duration of
time for a de�nite or �nal response from the session controller. Expiring of the
timer invokes the isc request timeout() function.
If the received response is a de�nite or �nal response the isc request timeout()
timer is canceled and the isc connections counter is decremented because the
SIP request is �nished. If no other invitation which needs a connection to the
local multicast group is in process (indicated by a isc connection counter of
zero), the isc socket is closed.
Finally the process response() procedure is invoked which continues with pro-
cessing the response.

A.12. THE ISC.C FILE 111

A.12.2 The send to isc() Function

int send to isc(inv list t *inv, char *msg)

Arguments:

*inv: pointer to the invitation list entry which stores the parameters of the
appropriate SIP request

*msg: message which should be sent to the local session controller isc

Returned value:

number of bytes sent to the local multicast group

Description:

The send to isc() function is used to send a SIP request to the local session
controller isc. Since isc uses a local multicast group to communicate with its
media controllers, local multicast could also be used to transmit SIP requests
between sipd and the local session controller. A pmm header must be created to
indicate the receiver of the pmm message. It is built of the request's call-id and
the identi�er "sip" : "call-id/sip/0". To avoid conicts with the pmm header
format, all slash characters (\/") in call id are replaced by underline characters
(\ "). Moreover the SIP request which should be sent to isc has to be modi�ed
because the routine of isc which receives pmm messages doesn't accept carriage
return or line feed characters in a single pmm message. Therefore all CR or LF
characters are replaced by \tab" characters which indicate the end of a SIP line.
The invoked UDP send() function sends the pmm header and the modi�ed SIP
request to the local multicast group.

112 APPENDIX A. PROCEDURES OF SIPD

A.12.3 The start isc() Function

int start isc(struct passwd *userEntry)

Arguments:

*userEntry: stores the environment of the invited user

Returned value:

� 0, if the start isc script is executed

� 1, if the start isc script can't be executed

Description:

The start isc() function is invoked to start the local session controller isc in the
invited user's environment. It is called if the isc timeout() timer expires which
indicates that isc is not running for the called user or is not able to handle the
request.
After setting the environment of the invitee and changing the user and group of
the process according to the invitee, the start isc script is executed which should
start the local session controller isc.

A.13. THE TIMER.C FILE 113

A.13 The timer.c File

Procedures in the timer.c �le are invoked if an appropriate timer expires.

A.13.1 The close isc socket() Function

Notify func close isc socket(Notify client client)

Arguments:

-

Returned value:

-

Description:

The close isc socket() function is invoked if the global isc connections counter
is set to zero. The isc socket is closed.

A.13.2 The request timeout() Function

Notify func request timeout(Notify client client)

Arguments:

client: pointer to the invitation list entry which stores the parameters of the
appropriate SIP request

Returned value:

-

Description:

The request timeout() function is invoked if no de�nite or �nal response was
received from the called SIP server during a de�ned interval of time (T request).
The inv->locations counter is decremented and the event handler for the socket
to this server (if the request was forwarded via TCP) is removed. Finally a "Not
Currently Here" response is initiated.

114 APPENDIX A. PROCEDURES OF SIPD

A.13.3 The isc request timeout() Function

Notify func isc request timeout(Notify client client)

Arguments:

client: pointer to the invitation list entry which stores the parameters of the
appropriate SIP request

Returned value:

-

Description:

The isc request timeout() function is invoked if no de�nite or �nal response was
received from isc during a de�ned interval of time (T isc req).
The isc connections and inv->locations counter are decremented. If there
are no more invitations in process which communicate with isc, the isc socket is
closed (calling close isc socket()). To avoid that sipd reacts to incoming responses
for this request from isc, the appropriate loc->response received ag is set. If
there are additional locations to query and sipd isn't performing a parallel search,
an "Alternative Address" response, otherwise a "Not Currently Here" response is
initiated.

A.13. THE TIMER.C FILE 115

A.13.4 The start isc timeout() Function

Notify func start isc timeout(Notify client client)

Arguments:

client: pointer to the invitation list entry which stores the parameters of the
appropriate SIP request

Returned value:

-

Description:

The start isc timeout() function is invoked if the local session controller isc was
started by the start isc() function, the SIP request was sent to the local multicast
group and isc doesn't send a "Trying" response after a speci�ed interval of time.
It is expected that isc can't be started or doesn't work correctly. The
isc request timeout() function is invoked which handles appropriately.

A.13.5 The isc timeout() Function

Notify func isc timeout(Notify client client)

Arguments:

client: pointer to the invitation list entry which stores the parameters of the
appropriate SIP request

Returned value:

-

Description:

The isc timeout() function is invoked if a SIP request was sent to the local mul-
ticast group of isc but no response was received until the T isc timeout interval.
It is expected that isc was not running and thus the start isc() function is called.
After waiting a short duration of time to give isc some time to start, the SIP call
is retransmitted to the local multicast group and the T start isc timer is invoked
which calls start isc timeout() if no "Trying" response was received.

116 APPENDIX A. PROCEDURES OF SIPD

A.13.6 The retransmit timeout() Function

Notify func retransmit timeout(Notify client client)

Arguments:

client: pointer to the location list entry which stores the parameters of the ap-
propriate location

Returned value:

-

Description:

The retransmit timeout() function is periodically invoked until a de�nite or �nal
response was received from the SIP server at the given location or a maximum
number of retransmissions is reached.
The retransmit mechanism is used if SIP requests are forwarded via UDP since
it can't be guaranteed that the call reaches the destination. First, the re-
transmit timeout() procedure checks if the request was forwarded too often to
the next SIP server. If so, the inv->locations counter is decremented, the
loc->response received ag is set and a "Not Currently Here" response is
initiated.
Otherwise the request is retransmitted once more and the T retransmit timer is
established again.

A.13. THE TIMER.C FILE 117

A.13.7 The close invitation() Function

Notify func close invitation(Notify client client)

Arguments:

client: pointer to the invitation list entry which stores the parameters of the
appropriate SIP request

Returned value:

-

Description:

The close invitation() function is invoked if the process of a SIP request is to-
tally �nished. The sockets stored in the invitation list entry are closed and the
inv list t structure is removed in the invitation list.

A.13.8 The close event handlers() Function

Notify func close event handlers(Notify client client)

Arguments:

client: pointer to the invitation list entry which stores the parameters of the
appropriate SIP request

Returned value:

-

Description:

The close event handlers() function is invoked if the process of a SIP request is
totally �nished. All used event handlers and timers are canceled. Finally the
close invitation() function is invoked.

118 APPENDIX A. PROCEDURES OF SIPD

A.14 The sipd.c File

Procedures in the sipd.c �le are invoked if the session invitation daemon is started.
Initialization, server socket allocation and starting of the the main server loop are pro-
cessed. The sipd main() function is also part of the sipd.c �le.

A.14.1 The Exit() Function

void Exit()

Arguments:

-

Returned value:

-

Description:

The Exit() function is invoked to terminate sipd. Exit() removes the server socket
event handlers, terminates the event loop (notify stop()) and closes the server
sockets. Finally sipd is terminated.

A.14. THE SIPD.C FILE 119

A.14.2 The create server socket() Function

int create server socket(char *protocol, int qlen)

Arguments:

*protocol: speci�es the transport protocol of the new server socket; \tcp" or
\udp"

qlen: length of the listen queue for the TCP server socket

Returned value:

new server socket

Description:

The create server socket() function allocates and binds SIP server sockets for
TCP or UDP.

A.14.3 The server main loop() Function

void server main loop()

Arguments:

-

Returned value:

-

Description:

The server main loop() function enables the daemon mode, calls cre-
ate server socket() to get a TCP and UDP server socket, installs the server socket
event handlers and starts the event loop (notify start()). Now, sipd is able to
react to incoming SIP messages.

120 APPENDIX A. PROCEDURES OF SIPD

A.14.4 The main() Function

main()

Arguments:

-

Returned value:

-

Description:

The main() function is invoked if sipd is started. First, it stores the IP address
of the host on which is is executed in myAddr. After verifying the command line
options, the server main loop() function is invoked.

Appendix B

Instruction Manual

This section deals with instructions how to install and use the Session Invitation Dae-
mon (sipd) and the Location Service Daemon (lswhod), which are part of the Session
Invitation Terminal (SIT). Moreover, user instructions of the SIP enhancements to the
Integrated Session Controller (isc) are given.

B.1 The Session Invitation Terminal

The Session Invitation Terminal (SIT) is a software package which contains the Session
Invitation Daemon (sipd) and the Location Service Daemon (lswhod). Moreover, the
namemapper and aliases applications are part of SIT.

B.1.1 Introduction

The Session Invitation Daemon (sipd) is a per-host daemon which waits for incoming
SIP requests and handles them with respect to the SIP speci�cation. It manages user
location and redirects or forwards incoming calls. If an invitee is located at the local
host, sipd forwards the SIP call to the Integrated Session Controller (isc) which builds
the user interface to the callee. So, it is necessary to install isc additionally.

The Location Service Daemon (lswhod) which is also part of SIT, maintains a loca-
tion service data base which is used by sipd to locate the invitee.

Both, the Session Invitation Daemon and the Location Service Daemon should run
on each host where session invitation should be possible. Particularly, sipd should be
installed on the domain's mail server host, since a SIP request whose callee was speci�ed
by the email address is sent to the SIP server at the mail server host.

121

122 APPENDIX B. INSTRUCTION MANUAL

B.1.2 Installation

1. Switch into the sit directory.

2. Run ./con�gure and answer the following questions:

� \Directory, where to install the sit binaries"

The directory in which the sipd, lswhod, namemapper and aliases binaries will
be installed.

� "Directory, where to install the sipd scripts"

The directory in which the Tcl scripts, used by sipd, will be installed.

� "Directory, where to put the location service data base"

The directory which will contain the location service data base.

� "Path, where to �nd the aliases data base"

The path to the �le which deals with the mail aliases (Typically /etc/mail/aliases).

� "Directory, where to �nd the binary of the Session Controller ISC"

The directory which contains the binary of the Integrated Session Controller
isc which will be started by sipd to notify the callee.

� "Directory, where to �nd the images and audio directory of the Session Con-
troller ISC"

The directory which contains the images and audio directories of the Inte-
grated Session Controller isc.

� "Directory, where to �nd the tclsh"

The directory which contains a tclsh used by the sipd Tcl scripts.

3. Type make to compile the binaries.

4. Type make install to install the components in the directories speci�ed in the
con�gure script.

B.1.3 Usage

Login as root and start sipd and lswhod on each host which should have the ability to
handle SIP calls.

B.1.3.1 Command Line Arguments

� sipd

{ -p SIP port

Port number at which sipd awaits SIP requests and to which SIP messages
are forwarded by sipd.

B.2. THE INTEGRATED SESSION CONTROLLER 123

� lswhod

{ -d directory

Directory of the location service data base

{ -D

Starts lswhod in daemon mode

{ -i interval

Update interval of the data base in minutes.

{ -v

Starts lswhod in verbose mode.

B.2 The Integrated Session Controller

This section describes the usage of the SIP enhancements to the Integrated Session
Controller (isc). It builds an expansion to the isc handbook.

B.2.1 Introduction

The SIP enhancements to the Integrated Session Controller enable isc to act as a SIP
client which allows to invite users to multimedia sessions and to act as a SIP server in
conjunction with the Session Invitation Daemon (sipd).

B.2.2 Installation

1. Switch into the isc directory and modify the Make�le according to your local
environment.

2. Type make to compile isc.

B.2.3 Usage

B.2.3.1 Command Line Options

� -s SIP port

Port number on which isc awaits SIP requests and to which SIP messages are
forwarded by sipd.

B.2.3.2 Inviting Users to New or Existing Sessions

The Integrated Session Controller o�ers the user the ability to invite remote users to
existing sessions or to initiate new multimedia conferences. To perform a session invi-
tation, the "Invite" button of isc has to be pressed.

124 APPENDIX B. INSTRUCTION MANUAL

If there are already sessions active, their session parameters are automatically loaded
to the appearing standard or advanced invitation window. This enables the user to invite
callees to these sessions or to modify the settings.

The Standard Invitation Window

The standard invitation window shown in Figure B.1 can be used to invite remote
users to one audio and/or one video session. Therefore, the caller has to select the
audio or video checkbutton. Additionally, the following parameters can be speci�ed in
the standard invitation window:

Figure B.1: Standard Invitation Window

Callee(s): A list of remote users who should be invited to the session. Each user
must be speci�ed by user@host, his email address or an alias, stored in the SIP
phonebook (see Section B.2.3.4). If a user name without a host part is speci�ed,
the local host name is appended automatically which requires that a SIP server
runs on the local host.

Users in the callee list must be separated by a single space character.

Title: Name of the conference.

Subject: Information about the conference which will be shown to the invitee.

Destination: Unicast or multicast address of the conference. (If several media streams
use di�erent addresses, these address has to be speci�ed in the appropriate con-
�guration window.)

TTL: Time-to-live value with respect to the address speci�ed in "Destination".

Port: Port of the belonging audio or video stream.

To con�gure the media streams in a more detailed way, the "Con�gure" button
opens an appropriate window which lets the user to select the requested audio or video
encodings. The "Con�gure audio parameters" window is shown in Figure B.2 which
o�ers the following parameters:

B.2. THE INTEGRATED SESSION CONTROLLER 125

Figure B.2: Audio Con�guration Window

Subject: Information about the media stream which will be shown to the invitee.

Destination: Unicast or multicast address of the media stream. Only required if the
address di�ers from the one speci�ed for the whole conference.

TTL: Time-to-live value with respect to the address speci�ed in "Destination".

Port: Port of the belonging audio or video stream.

Media encodings: The requested media encodings are speci�ed by clicking on the
belonging checkbuttons.

After specifying the invitation and session parameters, pressing the "Send invitation"
button starts session invitation.

The Advanced Invitation Window

The advanced invitation window shown in Figure B.3 occurs after pressing the "Ad-
vanced Invitation Con�guration" button in the standard invitation window or if the
"Invite" button of isc was selected and more than one audio and one video session is
active. It enables to specify a large number of media streams within a session invitation.

The window is separated into two parts. The upper part deals with the invitation
parameters as in the standard invitation window plus some additional one:

URI: URI where the invitee can get more information about the invited session.

E-mail: E-mail address where the invitee can get more information about the invited
session.

Phone number: Phone number where the invitee can get more information about the
invited session.

126 APPENDIX B. INSTRUCTION MANUAL

Figure B.3: Advanced Invitation Window

The lower part of the advanced invitation window is used to select the requested
media streams. Therefore, the user has to select the appropriate settings of a single
media stream in the left (audio) or right (video) frame. Pressing the "Add" button
appends the speci�ed parameters to the listbox in the middle. This listbox shows the
media streams to which the callee(s) will be invited to. To remove a media stream out
of the listbox, the appropriate entry has to be selected. Pressing the "Remove" button
deletes the entry.

To send the invitation, the "Send invitation" button has to be pressed �nally.

Results of Session Invitations

After sending an invitation, the call results in one or more responses which deal with
the current status, success or failure of the call. To present the caller this information,
an appropriate window occurs (Figure B.4).

If an invitation fails but may be successful with some modi�cations given in the
response packet, an appropriate window comes up (Figure B.5). Pressing the "Modify
request" button opens the standard or advanced invitation window which lets the user
to modify and retransmit the call. The alternative settings given in the response are
automatically selected in the invitation window.

B.2. THE INTEGRATED SESSION CONTROLLER 127

Figure B.4: Information Windows

Figure B.5: Information Windows

128 APPENDIX B. INSTRUCTION MANUAL

B.2.3.3 Receiving a Session Invitation

Figure B.6: "Incoming Call" Window

When receiving a session invitation, the callee is noti�ed by the so called "Incoming
Call" window which is shown in Figure B.6. The window deals with information about
the invitation's sender and the session(s) requested by the call. Pressing the "Accept"
button creates the appropriate session(s) automatically and sends a response message
to the caller.

To reject the call, pressing the "Reject" button opens a sub-window which lets the
callee specify a reason phrase why he declines the call. Pressing the "Send" button
sends the reject message to the inviter.

B.2.3.4 The SIP Phonebook

Figure B.7: SIP Phonebook

The SIP phonebook can be used to store a list of SIP addresses under a single alias.
Pressing the Phonebook button in the standard or advanced invitation window opens a

B.2. THE INTEGRATED SESSION CONTROLLER 129

simple phonebook editor shown in Figure B.7. The phonebook window consists of two
parts. On the left side, a listbox deals with the aliases, whereas the right side lists the
addresses stored for the selected alias.

Adding or Removing Aliases

To add a new alias, the name of the alias must be speci�ed in the box under the
left listbox. Please note, that no space characters are permitted within an alias. Press-
ing the "Add" button inserts the new alias. To remove an alias, select the appropriate
list entry and press the "Remove" button.

Adding or Removing Addresses to an Alias

To add a new SIP address to an alias, �rst select the appropriate alias in the left
listbox. Afterwards specify the SIP address ("user@host") under the right listbox and
press the "Add" button. To remove a SIP address, select the appropriate list entry and
press the "Remove" button.

To store the settings, made in the SIP phonebook window, press the "Save" button.

B.2.3.5 Automatic Invitation Handler

Figure B.8: Invitation Handler Window

Pressing the "Invitation Handler" button in the main isc window opens a simple editor
(Figure B.8) which can be used to specify handlers which initiate automatic replies to
incoming invitations.

130 APPENDIX B. INSTRUCTION MANUAL

Handler for all Incoming Invitations

To reply to all incoming calls independent of the inviter or subject of the invitation,
select one of the checkbuttons in the upper part of the window. If one of the redirect
buttons is selected one or several SIP address has to be speci�ed, each separated by a
single space character.

Handlers for Invitation with Respect to their Sender or Subject

To add a new handler which replies to incoming invitations with respect to their
sender or subject, pressing the "New Handler" button opens the window shown in Fig-
ure B.9. First select one of the "From" or "Subject" checkbuttons to specify whether
the handler should react to the call's sender or subject. Then �ll in the appropriate
item. To specify how to react to a call that matches the handler's criterion, select the
"Forward to" or "Reply" checkbutton and �ll in the appropriate item. Finally press the
"Add" button.

Figure B.9: "Add Invitation Handler" Window

To remove a handler, select the handler in the invitation handler window and press
the "Remove" button.

Appendix C

Source Code

131

