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Background

� Link dimensioning is in telephony/ATM domains

� Most research & results are still in this domain

� Research field is enormous (ICC - 628 papers)

� Often stated but not addressed, e.g. Diff-serv

Goals

� Choose and verify appropriate models

� Establish mathematical, simulation and practi-
cal techniques for the task

� Stimulate cooperation between theoretical and
experimental groups
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Classical dimensioning

� 1a. Want to know how many calls N can be
routed over a link L for a given loss percentage
X ?

� For a link (e.g. T1):

N IP Telephony

X

L 

� 1b. Or a portion of a link L’ (e.g. T3)

N IP Telephony

Data

X

L’

B − L’
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Buffer dimensioning

3. Want to know how large to make buffer B for N
calls and a given loss percentage X ?

N

B

X

Or

4. What properties should the sources have ?

� encoding

� packet size etc.
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Core Architecture

Only audio traffic flows into this multiplexor

If normal traffic is mixed we have to separate them
before this stage

talkspurtsilence

  buffer

server
(deterministic
service time)

drops

multiplexer

..

.
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Properties of a single source

ON OFF

�

�����
	�� ���
�� �
T T T

� All packets are the same size

� During ON periods packets are sent with the
same inter-packet spacing

� No packets are sent during an OFF period

� ON and OFF periods are exponentially distributed
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Arrival process as a Markov Process

Exponential distributed ON and OFF times means
that we can describe the ON-OFF periods as a Markov
process.

� A single source

ON

β

α

OFF

1/T packets/second

� Arrival process for N sources

N-1 N10 . . . . .

N-1 N
T T

pkts/sec pkts/sec1
T

pkts/sec

N (N-1) 2

N2 (N-1)

β β β β

αααα
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Problems

1. Determinate average arrival time hard to treat
mathematically

2. Too many states in the process which alters the
number of sources which are on

8



Solution to 1

“Determinate average arrival time hard to treat math-
ematically”

We assume we have an exponential distributed av-
erage inter-arrival times with the same average value
as the inter-arrival times for the determinate case.

ON OFF

�

�����
	�� ���
�� �
τ∼ τ∼��������������� ����������� ���

Now we have a Poisson process where one source
is on. If we add 2 Poisson processes we obtain a
new process. We can now use the mathematical
theory for Poisson processes to help us further.
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Solution to 2

“Too many states in the process which alters the
number of sources which are on”

Combine the states into a 2 state model. One state
constitutes the states where the arrivals under utilise
the link capacity and the other where the arrivals
over utilise the link capacity.

OLUL

!

!

UL

OL

λ λ
UL OL

� This constitutes a Markov Modulated Poisson
process (MMPP)
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Simulations

We have simulated the multiplexor with NS-2 with
the following parameters:

� Inter-arrival time for packets during an ON pe-
riod is set to 16 ms

� OFF periods are exponential distributed with an
average value of 650 ms

� Number of packets during a ON period are ge-
ometrically distributed with a mean of 22

� Packet size is set to 64 bytes

� The capacity of the outgoing link is 1.536 Mbit/s
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Stability conditions

There is a maximum number of sources that can be
multiplexed onto a link known as “offered load” or "

" #
$ %'&)(+*-,

. / 0

where:

$
= number of sources%1&
= Max. rate of 1 source( *2,
= Probability one source is on.

= link capacity

With our choice of parameters the maximum num-
ber of sources should not be more than 136.

Also note with peak rate allocation (i.e.
( *2, # 0 )

the maximum would be 48.
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Loss probabilities 110 and 130 sources
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Loss probabilities 90 sources (logscale)
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Laboratory experiments components

60−130 sources

Hub

dummynet
fxp1

fxp2 fxp2

fxp1

SICS net

fxp0

Traffic generator Router

queue
Sink

100Mbits/s

1.536Mbits/s

� Special traffic generator for IP telephony

� Router with constrained output link (Dummynet)

� Sink to receive and monitor original stream

� Pre-generate traffic patterns to save time (also
for reproduceability)

� Goal is to simulate multiplexed telephony flows
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Laboratory setup features

60−130 sources

Hub

dummynet
fxp1

fxp2 fxp2

fxp1

SICS net

fxp0

Traffic generator Router

queue
Sink

100Mbits/s

1.536Mbits/s

� Generator has internal ’timer’ to keep each flows
timing strict

� Drops at queue fxp2 of router monitored

� Can be verified as difference of fxp1/fxp2 at sink

� RTP used to identify of each packet (seq no)

� Possible to calculate delay as well as loss

� Use Dummynet to change queue sizes in kernel
without rebooting machine
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Lab. experiments 65 to 80 sources - 5 buffers
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Lab. experiments 65 to 80 sources - 10 buffers
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Lab Experiments 5 and 10 buffers with 65 sources
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Lab Experiments 5 and 10 buffers with 80 sources
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Related Work

� Anick/Mitra & Sondhi (82) studied infinite buffer
with stochastic fluid flow (only under heavy load

� Heffes &Lucantoni (86) 2 state Markov modu-
lated Poisson process quite successfully for in-
finite buffer multiplexor

� Tucker (88) looked at multiplexer with finite buffer
using the fluid flow model (not good for small
buffers)

� Nagarajan/Kurose and & Towsley (91) show the
above does not work in the finite buffer case

� Baiocchi (91) approximate the arrival process
with a two-state MMPP and use asymptotic match-
ing to calculate parameters
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Related Work 2

� Andersson (2000) uses above together with Baioc-
chi, Melazzi and Roveri’s method to calculate
loss probabilities
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Discussion and differences

Why do we not get an exact match ?

� Model is an approximation

� Lab always has some inaccuracies

� The constrained link is not exactly 1.536Mbits/sec
(verified with mgen and netperf)
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80 sources with 5% loss
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� Lab 17 buffer places, model 9 and sim 7

� If we chose 7% loss, all give 5 buffers
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Conclusions

� Using approximations we can break the prob-
lem into something we can analyse

� Without quality degradation we can double the
utilisation by using “statistical multiplexing” in-
stead of “peak rate allocation”

� The model we studied (MMPP/D/1/K Baiocchi,
Melazzi and Roveri ’91) seems well suited to
dimensioning links

� Verified by both good simulation and lab results

� Very useful to do more than just model and sim,
we can believe the theories work !!!
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