

University of Pisa-TlcNetGroup

The 2nd IP-Telephony Workshop

Strategies in a WPQ+ Schedulers Network A Simulation Analysis of Aggregation

Authors: R.G. Garroppo, S. Giordang S. Niccolinj F. Russo

Topics and summary

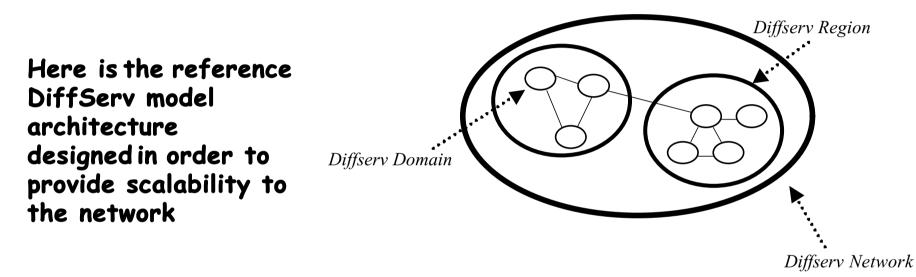
The main topics of this presentation wilbe:

- DiffServ Architecture
- Aggregation Strategies in a DiffServ Environment
- WF²Q+ Schedulers Network
- QoS parameters for Voice over IP

This presentation wilkhow how we:

- Implemented a real DiffServ scenario (usin@pnet Modeler 6.0)
- Set scheduler parameters
- \cdot Analyze and test different aggregation strategies in a DiffServ environment in order to provide the desired QoS to voice traffic

Finally we will show:


- \cdot The simulation results
- \cdot Our conclusion

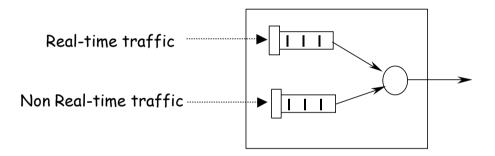
DiffServ Architecture

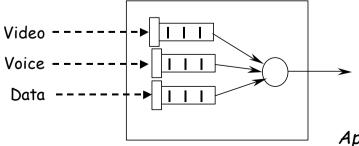
 \cdot The DiffServ are still a matter of research because they are not completely standardized

The IETF has standardized three service classes ith different characteristic

- Expedited Forwarding(EF)
- Assured Forwarding(AF)
- Best Effort Forwarding(BE)

but the application to be forwarded n them are not specified

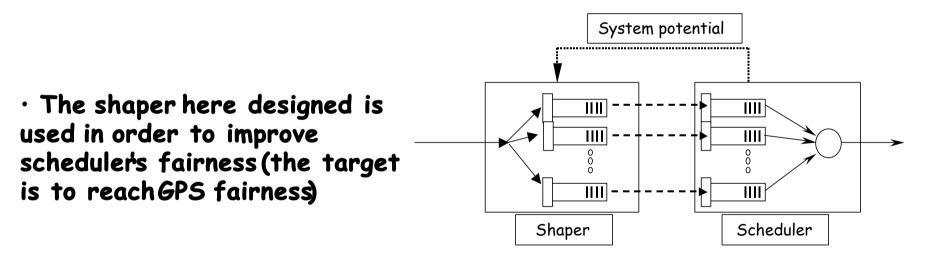




 \cdot In order to provide somewhat relevant we focused investigating the aggregation issueto follow in DiffServ environment

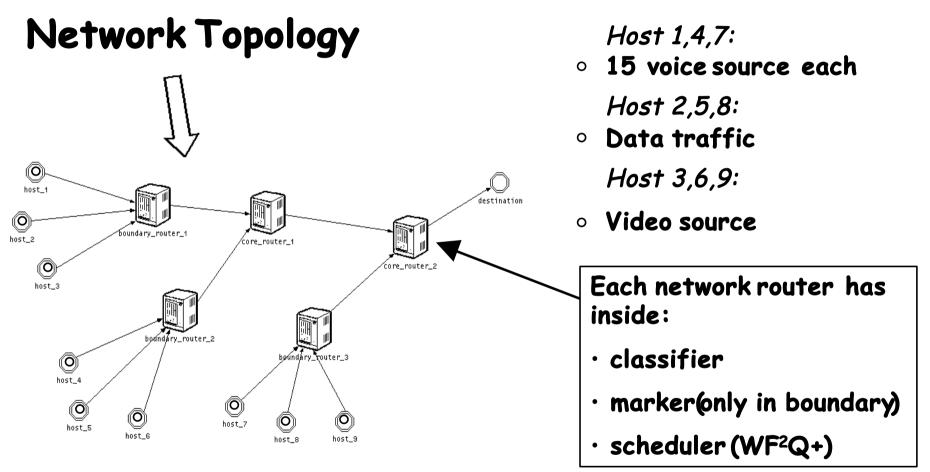
 \cdot It is clearthat is necessary to divide the networktraffic into two type of traffic (real-time and non real-time); this comesout considering the loss, delay and jittercharacteristics of the two types of flows

 \cdot We decided to makea deeper investigation and we carried out a simulation scenario where we divided network traffic into three classes(video, voice and data)


April 2001 - New York - 2nd IP Telephony Workshop

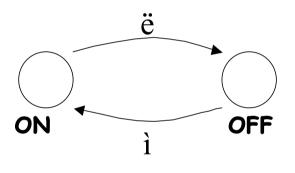
• WF²Q+ (Worst Case Fair Weighted Fair Queueing) is a GPS (Generalized Processor Sharing) approximating servicediscipline with high fairness properties and relatively low implementation complexity

• WF²Q+ uses a system potential function in order to schedulethe packet trasmission(it belongs to LatencyRate servers class)



 \cdot Every queue has associated weight (ϕ_i) which indicates the portion of the available bandwidth used by that queue

Simulation Scenario


The simulation scenario is implemented usingOPNET Modeler vers6.0 CAMAD (ComputerAided ModelingAnd Design)tool

We adopted a model only for the voice sources (for other kindsof traffic we have considered actual traffidata)

Voice Model "On-Off" (typical behaviorof a voice source with Voice Activity Detection)

Mean values (exponential distributio):

mean_time_on = 1/ë = 0.35 sec

mean_time_off = 1/i = 0.65 sec

R = 64 kbit/sec (during active period);

Video Sources: output of a MPEG1 encoder loaded with different sequences of movies (Goldfinger, Asterix, Simpsons)

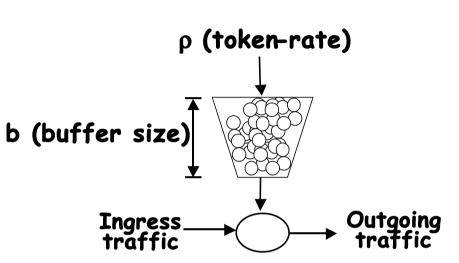
Video flow	Mean_rate (Mbps)	Peak_rate (Mbps)
GOLDFINGER	0.584	5.87
ASTERIX	0.537	3.54
SIMPSONS	0.446	5.77

Data Sources: traffic exchanges by the Univerity of Pisa with the external world (recorded data traces)

 $D_{\max} \leq \frac{b_i}{\rho_i} + \Theta_i$

"Token-bucket"

• The traffic produced by a single source is upper bounded by the relation:

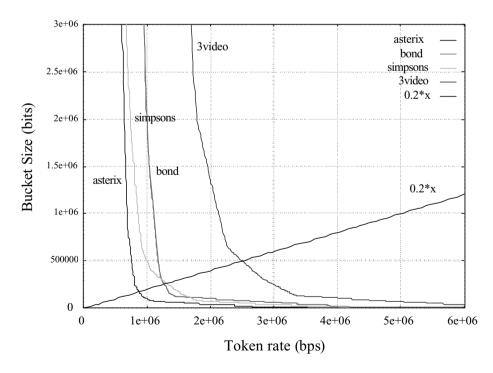

$$A\left(T\right) \leq \rho T + b \ , \forall T$$

Upper bound for the end-to-end delay when passingthrough a Latency Rate Scheduler

Extending the analysis to a network of KWF²Q+ schedulers $D_i \leq \frac{b_i}{\rho_i} + \sum_{j=1}^k \Theta_j^j$

LBAP traffic characterization isonservative with respectof the statistical model approaches so: $D_i \leq \frac{b_i}{\rho_i}$

April 2001 - New York - 2nd IP Telephony Workshop


where Θ_i is the latency termof the i-th flow

• Starting from the previous presented results $D_i \leq \frac{b_i}{\rho_i}$

• We characterize the sources setting a maximum delay bound D_i and finding where the LBAP curve intersect the straight line: $b_i = \rho_i D_i$

Here it is the characterization we obtained

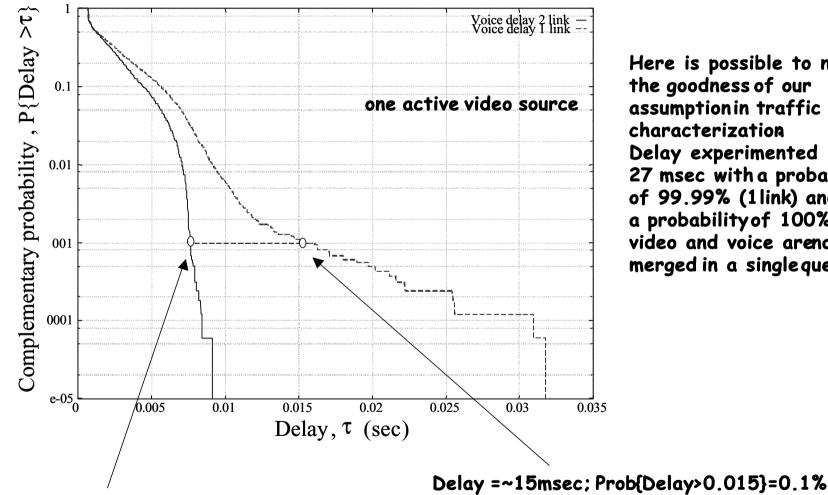
Traffic flow	Rate (p) (Mbps)	Buffer (Kbit)	Dmax (msec)
GOLDFINGER	1.25	250	200
ASTERIX	0.83	160	193
SIMPSONS	1.27	260	205
15 VOICE sources	1.10	30	27
Data	0.40	400	1000

 \cdot The simulation analysis is mailnly focused the evaluation of the impact of different aggregation strategies on the QoS parameters

(QoS parameters whole set of properties which characterize he netwok traffic)

FIRST TEST

Scenario 1 link: One video source and voice traffic are carried toghetherin EF class while data traffic is carried in a BE class


Scenario 21ink: One video source is carried in EF class while voice traffic is carried in AF class, data traffic is still carriedin a BE class

Simulation Results(2)

Complementary Probability of Voice Delay

Here is possible to notice the goodness of our assumption in traffic characterization Delay experimented isunder 27 msec with a probability of 99.99% (1 link) and with a probability of 100% if video and voice arenot merged in a singlequeue

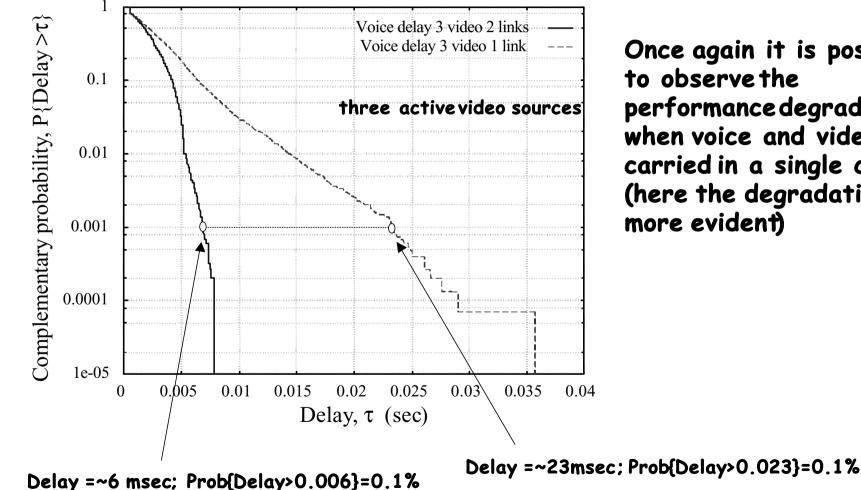
Delay =~8 msec; Prob{Delay>0.008}=0.1%

April 2001 - New York - 2nd IP Telephony Workshop

Simulation Results(3)

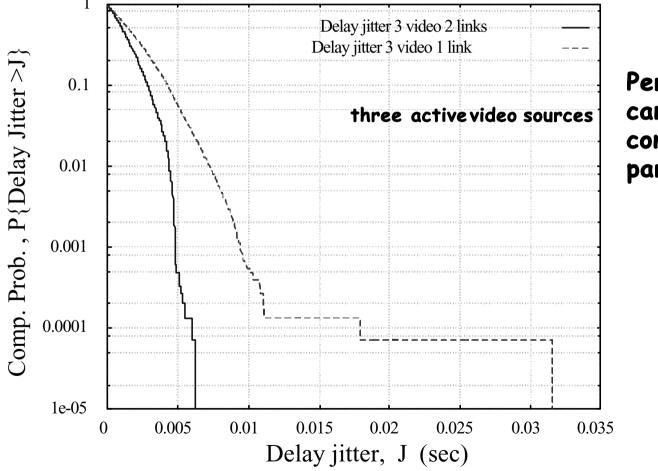
SECOND TEST

Scenario 1 link: Three video source and voice traffic are carried toghetherin EF class while data traffic is carried in a BE class


Scenario 21ink: Three video source are carried in EF class while voice traffic is carried in AF class, data traffic is still carriedin a BE class

Simulation Results(4)

Complementary Probability of Voice Delay


Once again it is possible to observe the performance degradation when voice and video are carried in a single class (here the degradation is more evident)

Simulation Results(5)

Complementary Probability of Voice Delay Jitter

Performance worsening can be observed as we consider the jitter parameter, too.

 \cdot Degradation in terms of end-to-end delay when the video flows are merged in the same queue with the voice traffic

Due to "lock-out" phenomenon? (video packets are much greater thanvoice ones) When voice traffic is carriedin a his own queuethe voice packets have not to waitbehind videoones and the delay can be reduced

 \cdot Degradation is amplified when the number of video sources is increased

 \cdot Video performancetakes benefit from aggregation(even if the rate allocated to the three video toghether is less than the sum of the three single rate charaterization).

 \cdot Performanceworsening affects not only end-to-end delay but delay jitter too.

• Wrong aggregation of traffic flows with different statistical features(such as video and voice)may lead to performanceworsening

· Achieving desiredQoS is not only matterof aggregation issue, also "fair scheduling" has to taken intoaccount

• "Right aggregation" and "fair scheduling" has to be followed by an adequate setting f sheduler parameters (as proposed)

THAT'S ALL