
IPTEL2001 100

ECLIPSE Feature Logic Analysis
Gregory W. Bond, Franjo Ivančić, Nils Klarlund, Richard Trefler

fbond, trefler, klarlundg@research.att.com
ivancic@gradient.cis.upenn.edu

Abstract—ECLIPSE is a virtual telecommunications network based on
IP. It is the result of an ongoing research project at AT&T Labs – Re-
search that is investigating next-generation telecom service architectures.
The ECLIPSE Statecharts language was developed to simplify feature (ser-
vice) development, for example call waiting, by supporting a smooth transi-
tion from design to implementation and by supporting automated semantic
analysis. The modular nature of ECLIPSE features necessitates that they
utilize well-defined protocols for communicating with one another. If an in-
dividual feature fails to obey the protocol then it is likely that subscribers to
the feature will be unable to complete calls. This paper describes a tool that
uses the Mocha model checking tool to analyze ECLIPSE feature modules
to ensure that they satisfy the specified protocols.

Keywords— DFC, Distributed Feature Composition, telecom services,
voice over IP, VoIP, UML Statecharts, Mocha, model checking, Java

I. INTRODUCTION

E
CLIPSE is a virtual telecommunications network based on
IP. It is the result of an ongoing research project at AT&T

Labs – Research that is investigating next-generation telecom
service architectures. The ECLIPSE network is intended to sup-
port multimedia telecommunication services involving voice,
video, and text in seamless composition. The ECLIPSE network
is designed to be device-independent to accommodate today’s
range of soft and hard devices such as cable phones, Microsoft
NetmeetingTM, AOL Instant MessengerTM, as well as multiple
external networks such as the public switched telephone net-
work (PSTN). ECLIPSE provides a framework for rapid devel-
opment and deployment of telecom services. It also provides
a framework for managing “feature interaction,” a problem that
has hampered customization and rapid innovation of services in
traditional telephony. ECLIPSE is an instance of Jackson and
Zave’s Distributed Feature Composition (DFC) virtual architec-
ture [1]. DFC provides a framework for exposing and managing
feature (service) interactions in multi-party, multi-feature (ser-
vice) and multi-media “calls” in telecom networks. ECLIPSE
implements DFC in an IP setting.

The ECLIPSE Statecharts language, hereafter referred to as
“ECLIPSE Statecharts”, was developed to meet the needs of
ECLIPSE feature developers. Before ECLIPSE Statecharts was
developed, ECLIPSE features were implemented using a gen-
eral programming language (Java). It became clear early on that
using a general programming language was inadequate for this
purpose since it was easy to introduce faults into the feature
logic, even for the simplest of features. For example, devel-
opers would forget to account for possible feature states, they
would neglect to account for messages that might be received
from the feature’s environment, and they would respond incor-
rectly to messages received from the environment. For a more
complicated feature like call waiting, which involves multiple

G.W. Bond, N. Klarlund and R. Trefler are located at AT&T Labs – Research,
Florham Park, NJ, USA; F. Ivančić is located at University of Pennsylvania,
Philadelphia, PA, USA

parties, the problems were worse since the number of states and
possible interleavings of messages exchanged with the environ-
ment were much greater. ECLIPSE Statecharts was designed to
address these problems.

ECLIPSE Statecharts is a customized version of the Unified
Modeling Language (UML) Statecharts behavioral description
language [2], [3]. The UML Statecharts language, hereafter
referred to as “UML Statecharts”, is a graphical language for
describing hierarchically structured state machines. Since it is
a graphical language based on state machines it is well suited
for describing the high level behavior of system structures. The
language supports hierarchically structured state machines so it
is possible to describe complex behavior with simple diagrams.
The language also supports a number of concepts that are useful
for describing timed, reactive systems, for example concurrent
state machines, timed transitions, and a number of inter-object
and inter-state machine communication mechanisms. In addi-
tion to being a powerful behavioral description language, UML
Statecharts is part of the Object Modeling Group’s UML stan-
dard for object-oriented system modeling. For this reason, a
growing number of tools are available or in development to sup-
port the language.

As a design language UML Statecharts might have sufficed
for describing the high level behavior of ECLIPSE features.
However, by incorporating a number of ECLIPSE concepts into
the language, it is possible to formally translate an ECLIPSE
feature design to an implementation. Indeed, experience has
shown that a feature described with ECLIPSE Statecharts needs
very few additional implementation details.

Since ECLIPSE Statecharts are based on finite state machines
they are suitable for automated analysis. The ability to analyze
ECLIPSE feature logic is desirable for a number of reasons. A
consequence of the underlying architecture of ECLIPSE is that
the failure of any feature module involved in a call (“feature
box” in DFC) can cause the entire call to fail. Moreover, since
the ECLIPSE architecture is open we expect third-parties to de-
velop features for use in ECLIPSE networks. For these reasons
it is important to ensure that each feature module deployed in an
ECLIPSE network satisfy certain minimal integrity constraints.

One way to ensure that these constraints are met is to use run-
time monitoring of individual features. This approach, which is
still used in parts of the current ECLIPSE network, imposes run-
time overhead which we would prefer to avoid. A complemen-
tary approach is to analyze feature logic prior to its deployment
in the ECLIPSE network. Using this approach, features that sat-
isfy the constraints no longer require run-time monitoring.

In the current ECLIPSE system, ECLIPSE Statecharts exist
as a set of Java classes (i.e. state classes, transition classes and
an interpreter class). The Java compiler is used to perform syn-
tax checking and type checking. However, the compiler cannot

mailto:bond,trefler,klarlund@research.att.com
mailto:ivancic@gradient.cis.upenn.edu

IPTEL2001 101

ports

FB

DFC Network

feature box

trunk interfaceline interface

PSTNFB TILI

Router

Fig. 1

A DFC NETWORK.

router

feature layer

caller callee caller callee

router layer

1. setup

2. setup

3. upack

4. setup

5. setup

6. upack

router router

Fig. 2

CONSTRUCTING A USAGE IN DFC.

detect domain-specific semantic errors. To do this we have de-
veloped a tool to perform simple static analysis functions similar
to the C language’s lint tool, as well as to perform more complex
model checking tasks on the code to ensure that a feature inter-
acts correctly with its environment. The actual model checking
task is performed using the Mocha model checking tool [4], [5].

II. DFC

The DFC architecture is an instance of the “pipes and fil-
ters” architectural design pattern. As shown in Figure 1, a DFC
network consists of instances of a small number of component
classes: Line Interface (LI) boxes which connect a single device
to a DFC network, for example, a black phone; Trunk Interface
(TI) boxes which connect another network to a DFC network
e.g. the PSTN; Feature boxes which implement feature logic
e.g. call waiting.

When a call is initiated from an LI or TI box, the router finds
the destination LI or TI and then finds the feature boxes that are
to be inserted based on user subscription data and precedence
rules. Figure 2 shows how boxes establish connections between
each other by exchanging DFC messages between peer ports ac-
cording to a protocol defined as part of DFC. The overall graph
of boxes that is constructed over the course of a call is called a
usage.

III. INTER-PORT MESSAGING

In ECLIPSE, the behavior of an individual feature box is de-
fined using an ECLIPSE Statechart. A feature box can com-
municate with its environment only via its ports which are con-
nected to ports on peer boxes. A box’s Statechart defines how
the box reacts to messages it receives on its ports. The actions
performed by a box in response to a message may include send-
ing messages out its ports. Message exchange between peer
ports is asynchronous and each port has its own message queue
for incoming messages. This form of messaging is a refinement
of one form of messaging specified by UML Statecharts.

In ECLIPSE Statecharts, as in UML Statecharts, transitions
have labels of the form: event[guard]=action, where each la-
bel component is optional. Events are message receive opera-
tions on a port, guards are arbitrary boolean expressions, and
actions are arbitrary expressions, which often include send op-
erations on ports. A transition is enabled (fireable) if there is
a message available in the specified port’s queue and the guard
evaluates to true. In ECLIPSE Statecharts we use the following
notational short forms (borrowed from the CSP language[6]):
port!message to send, and port?message to receive.

For the reader familiar with UML Statecharts, you should
note that, unlike UML Statecharts where each object possesses
a single queue for incoming asynchronous messages, ECLIPSE
feature boxes potentially possess multiple queues: one for each
port associated with the box.

IV. PORT PROTOCOLS

In order to support feature logic modularity in the context of a
pipes and filters architecture, DFC requires that box ports obey
well-defined protocols. These protocols ensure that a box can
insert itself into a usage as it is being constructed, and remove
itself from a usage when the usage is torn down. Once a box
is inserted into a usage, a box is able to effect changes on the
signaling and media associated with the “call” via its port con-
nections.

There are four classes of box ports defined by DFC: router
ports, which receive messages from a router, caller ports, which
are only able to initiate connections to peer boxes; callee ports,
which are only able to receive connections from peer boxes; and
dual ports, which can behave as either a caller or callee port for
the lifetime of a connection with a peer box.

A box programmer is responsible for ensuring that these pro-
tocols are correctly implemented for each port employed by a
box. Typically a box uses a number of ports. For example, the
ECLIPSE Statechart defining the feature logic for the call wait-
ing feature, shown in Figure 3, employs 4 ports: a router port
(labeled ‘box’), two dual ports (labeled ‘dual1’ and ‘dual2’) and
a callee port (labeled ‘callee’). This Statechart utilizes the UML
Statecharts notions of nested state machines and history pseu-
dostate, as well as semantic refinements to UML Statecharts in-
volving transition priority based on message class and nesting
level, and port aliases. Port aliases permit indirectly specifying
the identity of a port, analagous to how a pointer indirectly spec-
ifies the identity of a variable. Three port aliases are used in the
call waiting feature: ‘sub’, ‘conn’, and ‘wait’. These aliases are
used to refer to the roles that actual ports play at any time dur-
ing the feature’s execution. For example, the roles of the ports
representing the connected participant (‘conn’) and the waiting
participant (‘wait’) are exchanged when the subscriber (‘sub’)
signals the feature with a flash-hook.

V. FEATURE LOGIC ANALYSIS

Feature logic analysis addresses the following two questions:
� Did the programmer of the feature box consider all possible
input messages that the environment—the peers associated with
the feature box—can send to the feature box?
� Does the feature box output only those messages to its envi-
ronmental peers that are expected by those peers?

IPTEL2001 102

START

LINK_DUAL2
entry /
dual1!Upack;
dual2!setup1.continue()

box?Setup [src zone] /
setup1 = Setup;
sub = dual1;
conn = dual2

box?Setup [tgt zone] /
setup1 = Setup;
sub = dual2;
conn = dual1

TRANSPARENT
include /
TransparentFSM(sub, conn)

dual2?Upack /
wait = callee

END
include /
DualTeardownFSM(dual1);
DualTeardownFSM(dual2);
CalleeTeardownFSM(callee)

dual2?Upnack

sub?Teardown conn?Teardown
HPARTICIPANT_WAITING

include /
WaitingParticipantFSM(sub, conn, setup2)

box?Setup /
setup2 = Setup;
wait!Upack;
sub!CallWaiting

[@SUBSCRIBER_RECONNECTED] /
temp = conn;
conn = wait;
wait = temp

wait?Teardown
[@TRANSPARENT] /
wait.teardown()

[@PARTICIPANT_DISCONNECTED_FLASH] /
temp = conn;
conn = wait;
wait = temp

[@SUBSCRIBER_DISCONNECTED] wait?Teardown

wait?Status

[@PARTICIPANT_CONNECTED_FLASH]
temp = conn;
conn = wait;
wait = temp

box?Setup /
box!Upnack

Fig. 3

THE CALL WAITING FEATURE LOGIC

Performing this analysis is a two-step process. The first step
consists of translating the feature logic expressed as ECLIPSE
Statecharts code into a model suitable for use by the Mocha
model checking tool. The analysis of the model using Mocha
is performed in the second step.

Model checking ECLIPSE feature code takes place in a test
environment set up by ECLIPSE2Mocha within the modeling
language framework of Mocha, called Reactive Modules (RM).
That is, given a feature box B, ECLIPSE2Mocha translates B
into RM and combines B with the RM versions of the standard-
ized environmental peer entities with which B expects to com-
municate. Finally, ECLIPSE2Mocha adds a distinguished bad
state to the RM model of B and its peers. The RM test environ-
ment behaves exactly like B combined with its peers except in
the case when either B sends a message to a peer which the peer
cannot accept or a peer sends a message to B which B cannot
accept. In either case the test environment transits to the bad
state.

Model-checking then consists of checking whether there is an
execution of the test environment from the initial state of B to
the bad state. This check can be easily embedded in the tempo-
ral logic which Mocha uses to evaluate RM models.

VI. TRANSLATION

The translation of ECLIPSE Statecharts feature logic code to
a RM model consists of the series of steps shown in Figure 4.

The feature logic code – written in a subset of Java – is first
parsed. The next step identifies the Eclipse Statecharts instruc-
tions, such as addState or addTransition and produces
an abstract model of the code expressed as a hierarchical state
machine. The hierarchical state machine is flattened, and then
port aliases are instantiated. Some preliminary checks are per-
formed on the resulting model and then a model is output in
RM. These steps are explained in more detail in the following
sections.

code

RM
RM model

create

ECLIPSE

Code
Statecharts

separation
action

preliminary
semantic checks

parse

create hierarchical
FSM model

create flattened
FSM model

instantiate aliases
in FSM model

Model

Fig. 4

TRANSLATION OF ECLIPSE FEATURE LOGIC TO A MOCHA MODEL

A. Parsing and Creating the Hierarchical FSM Model

The ECLIPSE Statecharts language is implemented in Java.
To define an ECLIPSE Statechart a programmer subclasses the
main FSM class and, in this class’s constructor, creates instances
of state and transition objects and invokes methods to add them
to the FSM. The parent FSM class, the transition classes and the
state classes comprise the ECLIPSE Statecharts language and
its interpreter.

Programmers can define action methods for transition or state
instances that will be executed by the FSM interpreter when a
transition fires or when a state is entered or exited. Similarly,

IPTEL2001 103

programmers can define guard methods for transitions that will
be invoked by the FSM interpreter to determine if a transition is
enabled.

The parsing step parses the Java code that defines an
ECLIPSE Statechart. The parser grammar is customized to rec-
ognize the declarations of transitions, states, and their associated
action or guard methods, as well as declarations of ports associ-
ated with the box. The resulting parse tree contains the elements
of the Java code that are necessary for constructing the hierar-
chical FSM model.

B. Flattening

Since Mocha’s RM language does not support the notion of
hierarchical state machines, these are flattened to simplify trans-
lation to the RM model. Also, the semantics of Eclipse State-
charts are easily expressed in the flattened state machine. This is
particularly true for the transition priority rules used in Eclipse
Statecharts. Another reason for favoring a flattened state ma-
chine is that checking other properties not checked by Mocha,
like “Are all possible status messages in this state covered?”, is
much easier in a flattened state machine.

It should be noted that the flattening phase does not increase
the number of states in the state machine. On the contrary, it
may actually reduce the number of states in the state machine.
However, the flattening phase normally increases the number
of transitions. Furthermore, the number of states will increase
exponentially relative the to original program size when state
machines are hierarchically nested.

C. Instantiation

Eclipse Statecharts permit the use of port aliases—that is,
variables that range over the ports of the feature box. Mocha’s
RM does not directly support variable aliasing so the instantia-
tion step explicitly instantiates occurrences of port aliases with
their possible values. Instantiation results in adding conditions
to transition guards. In general, instantiation will also increase
the number of transitions.

D. Preliminary Semantic Checks

In this step we check certain semantic properties that are eas-
ily checked in the flattened state machine. Currently, we are
checking whether a state that accepts a specific status message
on a given port also takes care of all other possible status mes-
sages on that port. This is a nice by-product of flattening the
state machine, because certain properties can be checked easily
in a state-by-state fashion.

E. Action Separation

The RM model is not able to directly express the case of a fea-
ture box sending more than one message to the same peer during
one transition. If such behavior is detected, the sending actions
in the same transition are separated from each other by intro-
ducing a so-called micro-state �. By introducing a sequence of
micro-states, each with exactly one incoming transition and one
outgoing transition, we handle the fact of sending a sequence of
messages to the same peer. So, for example, if an action sends n
messages to the same peer, we introduce n�1 new micro-states
�i;i=1;:::;n�1.

VII. CREATING THE REACTIVE MODULES MODEL

The final translation step shown in Figure 4 creates the RM
model for the Mocha model checker. In order to understand the
mapping from the flattened FSM model to the RM model, it is
necessary to provide some background information on Mocha
and the RM language itself.

A. The Model Checker Mocha

Model checking is emerging as a practical tool for automated
debugging of embedded software. In model checking, a high-
level description of a system is compared against a logical cor-
rectness requirement to discover inconsistencies. Since model
checking is based on exhaustive state-space exploration, and the
size of the state space of a design grows exponentially with the
size of the description, scalability remains a challenge. The
model checker Mocha is based on the idea of exploiting mod-
ular design structure during model checking. Instead of manip-
ulating unstructured state-transition graphs, it supports the hier-
archical modeling framework of Reactive Modules.

The language Reactive Modules is a modeling and analy-
sis language for heterogeneous concurrent systems with syn-
chronous and asynchronous components. This is accomplished
by the notion of time rounds. As a modeling language it sup-
ports high-level, partial system descriptions, rapid prototyping,
and simulation. As an analysis language it allows the specifica-
tion of requirements either in temporal logic or as abstract mod-
ules. Finally, as a language for concurrent systems, it allows a
modular description of the interactions among the components
of a system.

The behavior (executions) of a reactive system can be visual-
ized in a message sequence charts (MSC) like fashion by using
the simulator. To run the simulator, the user selects a module
and the submodules/variables to be traced. For each selected
variable, a vertical line shows its evolution in time. The value of
a variable is displayed only when it changes. The same format
is used to display the counter-examples generated by the model
checkers during failed verification attempts. The simulator can
be used either in automatic or in manual mode.

Mocha allows the specification of requirements in a rich tem-
poral logic called alternating temporal logic (ATL). By far the
most common requirements are invariants, and thus it is of ut-
most importance to implement invariant checking efficiently.
With this in mind, Mocha provides both fine-tuned enumerative
and symbolic state search routines for invariant checking.

B. The RM Model

The flattened state machine is translated into a single RM
module. The environmental peers are instances of predefined
RM modules. The combination of these RM modules consti-
tutes the RM model that is used for model checking.

The operational semantics of the state machine are explic-
itly translated into the RM model. The communication between
a box’s Statechart and its environmental peers is accomplished
using the following sub-round structure of one RM time round:

1. First a peer is chosen to send at most one message and update
its internal state.

IPTEL2001 104

2. The feature box model will receive either no message or ex-
actly one message from one of its peers. If it does not receive a
message, it will not do anything. If it receives a message, it will
update its internal state, and it might also send messages to its
peers. Note that the use of micro-states constrains a feature box
model to send at most one message to any peer.
3. The peers will receive the messages from the feature box. If
a peer receives a message from the feature box, it updates its
internal state.

Whenever a peer receives a message that it does not have an
explicit transition for, the peer model fires an implicit transition
into a special “bad state”, that indicates the feature box is incor-
rect. Similarly, whenever the box model receives a message that
it does not have a transition for, the box model fires an implicit
transition into a bad state.

The approach to modeling we have adopted avoids explicitly
modeling the queues between the feature box and its environ-
ment. Therefore, a message that is sent from a peer (and po-
tentially changes the internal state of the peer) has to be han-
dled immediately by the feature box model. In reality a feature
box might actually enqueue a peer message for a while before it
looks at it. So to avoid flagging an error in the feature box be-
cause it received a message that it was not expecting at this point
(the programmer merely decided not to bother with this peer in
this particular state), we have to ensure that the peer does not
send this message in the first place. Therefore, we have intro-
duced enabling flags that signal a peer whether the feature box
model is ready to accept any message the peer might want to
send at a given time.

We can avoid modeling the queues involved in the real system
by modeling them implicitly in the environment of the feature
box. The peers are allowed to skip a round where they are sup-
posed to send a message, which basically models the fact that
the previous message has not arrived at the peer yet. The possi-
bility to skip a message can also be interpreted as a delay of the
message from the peer to the feature box. After careful consid-
eration of the environmental models it is clear that all possible
message sequences that the environment in the original setting
might send can be sent in the RM model.

The last step of our translation is the output of a RM model
of the feature box. The peers have predefined models that are
based on the state machines shown in Figures 5, 6, 7, and 8. If
a feature box sends out instances of status message subclasses,
rather than just instances of the parent status message class, it is
necessary to add transitions into the peer models. Consider the
case that a feature box sends out the status messages subclass
m1; : : : ;mn to its peers. For each transition in the peer model
that is labeled with “?status”, we will include a transition for
each message mi;i=1;:::;n with the label “?mi”.

As mentioned before, we translate the flattened state machine
as one RM module. The RM model maintains a variable called
currentState that ranges over all states, and keeps track of
the state that the flattened state machine is in. Each transition
is translated to one update rule in the model. An additional rule
covers the case that no message arrives from the environment
in a time round. This rule ensures that the state of the state
machine does not change. If a message arrives, but no update
rule is applicable, then we will enter a “dead state” and flag

Idle

Linked

?upack

?status !status

PortMajor

?teardown

PeerMajor

!teardown

!downack

!status

PortAndPeer

!teardown

?downack

?status

?teardown

PeerMinor

!downack

PortMinor

?downack

?downack !downack

Fig. 5

DFC CALLEE PORT PEER PROTOCOL

Idle

Requesting

?setup !upnack

Linked

!upack

?status !status

PortMajor

?teardown

PeerMajor

!teardown

!downack

!status

PortAndPeer

!teardown

?downack

?status

?teardown

PeerMinor

!downack

PortMinor

?downack

?downack !downack

Fig. 6

DFC CALLER PORT PEER PROTOCOL

IPTEL2001 105

Idle

Requesting

?setup

Linked

?upack

!upnack

!upack

?status !status

PortMajor

?teardown

PeerMajor

!teardown

!downack

!status

PortAndPeer

!teardown

?downack

?status

?teardown

PeerMinor

!downack

PortMinor

?downack

?downack !downack

Fig. 7

DFC DUAL PORT PEER PROTOCOL

Start !setup

Fig. 8

DFC ROUTER PORT PEER PROTOCOL

an error. This covers one of the problems we are looking for,
because it basically means that the programmer of the feature
box has forgotten to take account for this particular message.

Figure 9 shows a sample transition in the flattened state ma-
chine. Its source state is A, and its destination is state B. It is
enabled if the guard alias = p ^ g is true, and if the message m
from the peer of port p arrives at the feature box. If this transi-
tion is taken, then the actions p1!m1 , p2!m2 , alias = p3, are
executed.

We translate this transition into RM in the following manner:
currentState = A & signalFromP? &

messageFromP’ = m & alias = p & g ->

signalToP1! ; messageToP1’ := m1 ;

signalToP2! ; messageToP2’ := m2 ;

alias’ := p3 ;

currentState’ := B ;

When we send a message to a peer, we update the correspond-
ing value, but we also have to make sure that it is realized that we

B
p?m [alias = p & g] / p1!m1 , p2!m2 , alias := p3

A

Fig. 9

TRANSITION FROMA TOB IN THE FLATTENED STATE MACHINE

updated the value. We therefore issue a Mocha event by saying
signalToP1!. To check whether there has been a message
send from P in this round, we check the corresponding event by
signalFromP?. To receive the message that was sent in this
round, we have to ask for messageFromP’ instead of mes-
sageFromP, which holds the value of the previous time round.

VIII. MODEL-CHECKING ECLIPSE STATECHARTS

In Figure 10, we give an example of an ECLIPSE Statecharts
feature box we have analyzed. This feature behaves like a buffer
after it has been set up between a left and right neighboring box.
Upon proper initialization according to the DFC protocol, the
box is in state ’linked’, where it reads messages from its right
hand neighbor on the calleePort and sends them to its left hand
neighbor on it callerPort and vice versa. The states ’linked’,
’transparent1’ and ’transparent2’ explain this behavior. Here,
we have assumed that the messages are atomic; in reality, the
messages contain values that are temporarily stored in the fea-
ture box. The remaining states are necessitated by the DFC pro-
tocol.

If Mocha does determine that the state bad is reachable from
the initial state, a debugging mechanism in Mocha is available
to reconstruct the sequence of events leading to the bad state.
In Figure 11 we show a screen shot of Mocha displaying such a
trace. The error was generated by altering the program in Fig-
ure 10 so that the feature box sends two consecutive teardown
messages: we changed the ’unlink5’ to ’unlink6’ transition so
that a teardown message is placed on the callerPort instead of a
downack. The trace, which is shown only partially, reflects that
error by taking a path in the protocol that produces two teardown
messages.

During the programming in Java of this trivial feature box, we
introduced several little errors as typically happens, mostly due
to misspellings. All but one were caught by the parser of the
ECLIPSE2Mocha tool. (Some would also have been caught by
the Java compiler.) The one that was not caught was discovered
through model checking. The model checker approved of the
Java code, but even a positive answer must be taken with a grain
of salt. For example, in our setting the model checker does not
check for liveness properties like “does the feature box always
eventually acknowledge a teardown request?”. Thus, it is a rea-
sonable sanity check to willfully introduce errors in the feature
box program that is purported to be correct. When we did this,
we discovered that the program sometimes, unexpectedly, still
was passed by the model checker. As a result, we discovered a
misspelling of a method name that issues a message to a port.
This Java error would not have been caught by a compiler since
the erroneous name appeared in the initializer for an object of
an anonymous, inner class.

When we originally programmed the call waiting box in Fig-
ure 3, we struggled with three insidious programming errors, all
of which we later presented to our tool. They were all correctly
identified through error traces.

A. Correctness of analysis

To give a complete account of what the correctness of our
analysis is would be a huge task. For example, we would need
a formal description of the semantics of ECLIPSE Statecharts,

IPTEL2001 106

boxPort?setup

callerPort!setup

calleePort!upack

transparent1

 unlink2 unlink7

calleePort!downack

calleePort!upnack

Init

callerPort?upnack

linking2

linking1

linking 3 unlink1

linked transparent2

unlink8
calleePort?status

unlink3

unlink9 unlink10unlink5unlink4

end unlink6 end unlink11

callerPort?upack

calleePort?status

callerPort!status

callerPort?status

calleePort!status

calleePort?teardown callerPort?teardown

callerPort?status

callerPort?downack
callerPort?teardown

calleePort?downack calleePort?teardown

calleePort!downack callerPort!downack
callerPort!downack

callerPort?downack calleePort?downack

callerPort!teardown calleePort!teardown

Fig. 10

TRANSPARENT FEATURE BOX

the semantics of the translation, and the semantics of the Mocha
language. Also, we would need to carefully explain the abstrac-
tions that are inherent to our analysis. Instead, we will give an
informal statement that reflects our belief that we have correctly
implemented the ECLIPSE Statecharts semantics through the
translation to Mocha. Thus, we will have to relate errors found
during runtime to errors discovered by our tool. Our concept of
error is that of the Section V: an error occurs if either the envi-
ronment or the feature box is unable to process a message. We
say that there is an error in the ECLIPSE Statecharts feature if
there exists an environment that follows the peer protocols and
for which the composite system may enter a situation where a
port is unable to process a message. Note that such a situation is
characterized by a trace (history) of communication events. In
general, traces involve buffering of messages—something that
our Mocha model does not accommodate. Therefore, we say
that a trace is synchronous if the event following a send message
is the accept of the message. Moreover, we assume that the only

Fig. 11

MOCHA ERROR TRACE

communication events that involve the feature box are those that
are recognized as such by the ECLIPSE Statecharts parser (thus,
communication events invoked through auxiliary method defini-
tions are not allowed). Also, we assume that all Boolean guards
on message transitions are true. Then, we believe the following
to be true.
� (Soundness) Any error found in the ECLIPSE test envi-
ronment by the model checking procedure is an error in the
ECLIPSE Statecharts feature.
� (Completeness under synchronization assumption) Assume
that an ECLIPSE Statecharts feature exhibits an error in a syn-
chronous trace. Then, the ECLIPSE Statecharts will not pass the
model checking procedure.
In a more advanced tool, it would sometimes be relatively
straightforward to analyze Boolean guards if they involve lo-
cal variables. The issue of analyzing queued system is generally
undecidable, since queues tend to resemble tapes of Turing ma-
chines.

IX. RELATED WORK

Research is currently very active and diverse in the area of
model checking Statecharts. Space does not permit us to provide
a comprehensive overview of this activity. Instead, we will ad-
dress the current work most closely related to our own. Similar
to our own work, [7], [8], [9], [10] have developed approaches
to model checking properties of systems defined in various Stat-
echart dialects. Only one of these approaches ([9]) addresses
queued, asynchronous messaging between Statechart objects—
similar to the way that an ECLIPSE feature box interacts with
its environmental peers. However, in their approach they as-
sume bounded queues between the environment and an object.

IPTEL2001 107

Instead of arbitrarily bounding queue length, our approach ab-
stracts away the queues by exploiting properties of the environ-
mental peer protocols and the semantics of the Mocha RM mod-
eling language. Although the approach we use is not general
enough to be applied to all possible environmental behavior, it
is suitable for the environmental behavior defined by the DFC
architecture.

In practice, the customized parser that we built for Java pro-
grams turned out to be very useful by itself for writing ECLIPSE
Statecharts. The parsing step has revealed domain-specific se-
mantic errors in finite state machines that the Java compiler
deems to be error-free. Moreover, our experience with this tool
validates the use of statically-checked constraints that formal-
izes software architectures. Several general tools for expressing
such architectural constraints on code have been proposed; see
[11] for references and the description of CoffeeStrainer, a tool
for checking Java programs.

X. CONCLUSIONS AND FUTURE WORK

We have built a tool, ECLIPSE2Mocha, for analyzing the
communication behavior of an ECLIPSE feature and its im-
mediate environment. ECLIPSE2Mocha is capable of detect-
ing subtle semantic errors of ECLIPSE feature code and using
the Mocha reporting features ECLIPSE2Mocha is well suited
as a debugging aide for ECLIPSE features. Our translation of
ECLIPSE feature code to RM code relies on a crucial abstrac-
tion – namely, the modeling of asynchronous communication
via unbounded queues by synchronous communication. How-
ever, because we restrict the types of properties analyzed, errors
detected by ECLIPSE2Mocha can be translated into errors of
the ECLIPSE feature code.

For the future we see several interesting directions to take this
work. Firstly, we see a need for an intermediate language be-
tween the Java code of ECLIPSE Statecharts and RM. Such
an intermediate language would make the use of other anal-
ysis tools far easier and remove the need for a direct map-
ping between ECLIPSE Statecharts and RM. Secondly, we
would like to explore the use of model checkers of hierarchi-
cal models [12] to avoid the flattening phase currently used by
ECLIPSE2Mocha. Thirdly, we are interested in incorporating
ECLIPSE2Mocha and the use of Mocha directly within a do-
main specific compiler for ECLIPSE Statecharts.

Finally, we would like to enhance the class of properties
checked. This can be done by enlarging the type of environ-
mental entities used in the analysis and by more faithfully mod-
eling the unbounded queues and asynchronous communication
of ECLIPSE. These enhancements would allow us to check sig-
nificantly more feature interaction properties.

ACKNOWLEDGMENTS

The authors would like to thank the other members of the
ECLIPSE project at AT&T Labs – Research for their feedback
during the development of ECLIPSE Statecharts and the anal-
ysis tool: Eric Cheung, Andrew Forrest, Michael Jackson, Hal
Purdy, Chris Ramming, Xiaotao Wu (Columbia University) and
Pamela Zave.

REFERENCES

[1] Michael Jackson and Pamela Zave, “Distributed feature composition: a
virtual architecture for telecommunications services,” IEEE Transactions
on Software Engineering, vol. 24, no. 10, pp. 831–847, Oct. 1998.

[2] David Harel and Eran Gery, “Executable object modelling with State-
charts,” IEEE Computer, July 1997.

[3] Object Management Group, OMG Unified Modeling Language Specifi-
cation, version 1.3, Object Management Group, June 1999, Available at
ftp://ftp.omg.org/pub/docs/ad/99-06-08.pdf.

[4] Rajeev Alur, Thomas A. Henzinger, F.Y.C. Mang, Shaz Qadeer, Sriram K.
Rajamani, and Serdar Tasiran, “Mocha: Modularity in model checking,”
in Proceedings of the Tenth International Conference on Computer-aided
Verification (CAV). 1998, number 1427 in Lecture Notes in Computer Sci-
ence, pp. 521–525, Springer-Verlag.

[5] L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Ma-
jumdar, F. Mang, C. Meyer-Kirsch, and B.Y. Wang, Mocha: Ex-
ploiting Modularity in Model Checking, August 2000, Available at
http://www-cad.eecs.berkeley.edu/˜mocha.

[6] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
[7] S. Gnesi, D. Latella, and M. Massink, “Model checking UML Statechart

diagrams using JACK,” in Proceedingsof the 4th IEEE International Sym-
posium on High-Assurance Systems Engineering, 1999, pp. 46–55.

[8] E. Mikk, Y. Lakhnech, M. Siegel, and G.J. Holzmann, “Implementing
Statecharts in PROMELA/SPIN,” in Proceedings of the 2nd IEEE Work-
shop on Industrial Strength Formal Specification Techniques, 1998, pp.
90–101.

[9] J. Lilius and I.P. Paltor, “vUML: a tool for verifying UML models,” in Pro-
ceedings of the 14th IEEE International Conference on Automated Soft-
ware Engineering, 1999, pp. 255–258.

[10] Chonlawit Banphawatthanarakand Bruce H. Krogh, “Verification of state-
flow diagrams using SMV: sf2smv 2.0,” Tech. Rep., Dept. of Electri-
cal and Computer Engineering, Carnegie Mellon University, June 2000,
Available at http://www.ece.cmu.edu/˜krogh.

[11] B. Bokowski, “Statically-checked constraints on the definition and use of
types in Java,” in Proceedings of ESEC/FSE’99, 1999, vol. 1687 of LNCS,
pp. 355–375.

[12] R. Alur and M. Yannakakis, “Model checking of hierarchical state ma-
chines,” in Proceedings of the Sixth ACM Symposium on the Foun-
dations of Software Engineering, 1998, pp. 175–188, Available at
http://www.cis.upenn.edu/˜alur.

ftp://ftp.omg.org/pub/docs/ad/99-06-08.pdf
http://www-cad.eecs.berkeley.edu/~mocha
http://www.ece.cmu.edu/~krogh
http://www.cis.upenn.edu/~alur

	Introduction
	DFC
	Inter-Port Messaging
	Port Protocols
	Feature Logic Analysis
	Translation
	Parsing and Creating the Hierarchical FSM Model
	Flattening
	Instantiation
	Preliminary Semantic Checks
	Action Separation

	Creating the Reactive Modules Model
	The Model Checker Mocha
	The RM Model

	Model-Checking ECLIPSE Statecharts
	Correctness of analysis

	Related Work
	Conclusions and Future Work

