
Centralized Conferencing using SIP
Kundan Singh, Gautam Nair and Henning Schulzrinne

Columbia University
fkns10,gnair,hgsg@cs.columbia.edu

Abstract— Multiparty conferencing is an important telephony service,
provided in the PSTN by conference bridges. Internet telephony can en-
hance this basic service by video conferencing and collaborative work. The
Session Initiation Protocol (SIP) can support many different conferencing
architectures, including the centralized conferencing server model.

We describe design issues and challenges in implementing a SIP-based
centralized conferencing server and discuss the architecture and perfor-
mance of our implementation,sipconf .

Keywords— Centralized conference server; dial-in conference bridge;
SIP; RTP mixer; packet audio; packet video; Internet telephony; sipconf

I. I NTRODUCTION

The Session Initiation Protocol (SIP) [1] defines how to es-
tablish, maintain and terminate Internet sessions including mul-
timedia conferences. SIP supports various multi-party confer-
encing models [2], ranging from mixing in end systems to mul-
ticast conferences. When multicast is not available, centralized
mixing, transcoding and filtering of media can be used to create
multiparty conferences. In centralized mixing, a server receives
media streams from all the participants in a conference, mixes
or filters these based on pre-defined policy and distributes the
streams to the participants. Different types of media streams
need to be handled differently, for example, audio streams are
typically summed, while video streams are selected, e.g., to
present only the active speaker.

The main functions of a conference server is the mixing
and redistribution of media streams. Typically, Internet audio
streams are added (“mixed”), while video streams and other me-
dia are simply replicated. However, a video mixer can also cre-
ate a new composite video image [3]. For audio, the server needs
to ensure that a participant does not receive a copy of his own
media in the mixed stream. RTP [4] allows a sender to indicate
which sources have been combined in a single media packet.
When summing, the server should absorb the jitter in packet ar-
rival times while introducing minimum delay (“playout buffer”).

For replication, the server should not need to be aware of the
media formats. The RTP SSRC indication [5] ensures that the
receiver can distinguish different sources addressed to the same
network destination.

For either summing or replication, it is desirable if each par-
ticipant can use different media types and packetization inter-
vals, to accommodate heterogeneity of end systems and access
bandwidths. Implementations need to scale to large numbers of
conferences as well as large numbers of participants per confer-
ence.

A media mixing module with a SIP interface can act as a con-
ferencing server component in the distributed application server
(AS) component architecture [6]. Advanced system can bundle
this functionality with other services, such as interactive voice
response (IVR) and a web-based user interface.

This paper explores the centralized conference server design
issues in detail and describes challenges in implementing such a
system. We also explore advanced usage scenarios of the confer-
encing system in a real-world Internet telephony environment.
We are currently collecting performance data on our implemen-
tation of the SIP based conference server,sipconf1, and present
some initial results of our experiments.

A. Outline of the rest of the paper

Section II explains the role of SIP in centralized conferencing
systems. Section III discusses and compares different confer-
encing models. Design issues are described in Section IV. We
provide an overview of our implementation and performance
figures in Section V. The usage scenarios in various Internet
telephony and multimedia communication applications are dis-
cussed in Section VI. Section VII lists some of the related work.
Finally, we summarize and point to future work in Section VIII.

II. BACKGROUND

Many PSTN carriers offer conference bridges which allow
users to take part in a voice conference by dialing a telephone
number and possibly access code. We can use the same con-
cept for Internet-based conferencing: The conference can be
identified by a destination address, and participants can join
the conference by making a call to that address, thus requir-
ing no modifications in end systems. There are currently two
Internet telephony signaling protocols, IETF’s SIP and ITU-T’s
H.323 [7]. SIP identifies the destination via a SIP URI of the
form sip:user@domain, while H.323 usesAliasAddress data
structures, which can assume many forms, including URLs.

There are two different aspects of Internet based conferenc-
ing, signaling and media. Either SIP or H.323 can be used as a
signaling protocol for taking part in a conference. Both SIP and
H.323 use the Real-time Transport Protocol (RTP [5]) for car-
rying real-time media traffic, such as audio and video. H.323
defines a multi-point control unit (MCU) for handling multi-
party conferences. An MCU consists of a multi-point controller
(MC), which can also be part of a terminal, to handle signaling
and control exchanges with every participant in the conference.
An optional component, the multi-point processor (MP), han-
dles mixing and filtering of different media streams. SIP does
not define any conferencing entity as such, as these entities are
easily modeled as SIP user agents. The core SIP specification
supports a variety of conferencing models [2]. In the server-
based models, RTP media streams are mixed or filtered by the
server and distributed to the participants. There is a standard
point-to-point signaling relationship between each participant
and the conferencing server.

1More information at http://www.cs.columbia.edu/k̃ns10/software/sipconf

The conference is identified by the SIP URI, e.g.,
sip:discuss@server.com . The standard user location
and routing mechanisms in SIP forward all calls to the appro-
priate conference server atserver.com without requiring any
extension to the protocol. The SIP message routing entities (SIP
proxies) need not be aware that the request URI corresponds to
a conference and not to an individual person.

The Session Description Protocol (SDP [8]) is used to in-
dicate media capabilities and media transport addresses. The
participant sends the information about his media capabilities
(PCMU) and the transport address where he wishes to receive
RTP packets. In the message body of the 200 success response,
the server sends the transport address to which the participant
should send his PCMU RTP packets. More advanced scenarios
can be accomplished using the SIPREFER method. For ex-
ample, an existing participant can invite another user to join the
conference. These conferencing models can be found in [2].

SIP-based authentication can be used to prevent unautho-
rized participants to join a conference. The server can sup-
port both pre-arranged conferences as well as ad-hoc con-
ferences by assigning special meaning to the user field in
the request URI. For example, participants who wish to
join sip:ietf.arranged@office.com will need to set
up the conference before hand, while those who wish to
join sip:library-discuss.adhoc@office.com do
not need to setup the conference in advance. The conference
state is maintained as long as at least one participant is part of
the conference. Participants find out about the conference URL
via external means, such as email or a web page.

III. C ONFERENCING MODELS

Conference models can be distinguished based on the topol-
ogy of signaling and media relationships. Conferences with a
central server are easier to handle for end systems and simplify
keeping track of the conference participants. On the other hand,
network-layer multicast is more scalable for large-scale media
distribution and allows a “loose” model of conference member-
ship [9], where each member has only an approximate view of
the group roster.

Table I summarizes the different types ofmedia distribu-
tion modelsin multimedia conferencing. The table compares
the scaling properties, depending on the the number of active
senders,M , and the total number of participants,N . Given that
M is almost always one for typical audio conferences, most of
these models scale similarly in terms of processing and band-
width requirements. Note that the centralized model performs
better with higherM if inputs are summed.

Centralized: In the centralized model, a server receives me-
dia streams from all participants, mixes them if needed, and
redistributes the appropriate media stream back to the par-
ticipants (See Fig. 1). Since senders would have difficulty
subtracting out their own contribution, the server needs to
create a customized stream for each of the currently ac-
tiveM senders and a common stream for allN �M lis-
teners, assuming that they can all support the same media
format. The server needs to decode audio streams before
mixing, as mixing can only be performed on uncompressed

A B

C

D

E D A+B+C+E

(a) Centralized Server

A

B C

D

B
B

B

A

D

C

(b) Full mesh

A B

C

D

B+D+C
A+D+C

A+B+D

(c) End system mixing

M

A

B

C

M D

E

3

2

2

2 4

3 2

2

(d) Unicast receive and multicast send
(Example network: link bandwidth
requirements are multiple of codec
bandwidth.)

Fig. 1. Types of media distribution model

audio. DecodingM and encodingM+1 streams limits the
amount of active sources or conferences, while the number
of participants limits the total conference membership to
the available outbound network bandwidth.
The central server model has the advantage that clients do
not need to be modified and do not have to perform media
summing. In addition, it is relatively easy to support het-
erogeneous media clients, with the server performing the
transcoding. For example, this allows a conference consist-
ing of participants connected through high-bandwidth net-
works and modems, each receiving the best possible qual-
ity. At the cost of increased inbound bandwidth, silence
detection can be delegated from clients to the server. This
is helpful as many current IP telephones do not support si-
lence suppression.
Also, the server can enforce floor control policies and can
control the distribution of video based on audio activity.
Compared to a distributed model, a central server can read-
ily provide a consistent view of the complete conference
membership.

Full mesh: In a full mesh, each active participant sends a
copy of its media stream to all participants via unicast,
without a central server. End systems sum the incoming
audio streams; since most of the time, only one speaker
will be active, the CPU overhead is modest as long as si-
lence suppression is implemented everywhere, but it fails
if the access bandwidth of some participants is just large
enough for a single stream. For video, full mesh does not
scale unless, for example, only currently active speakers
send video. In a full mesh, each pair of participants must
share a common codec.

Properties centralized full mesh multicast unicast rx, multicast tx end mixing
Topology Star full mesh m-cast tree star and m-cast tree ad-hoc
Server processing O(M+N) n/a n/a O(M+N) n/a
Endpoint processing O(1) O(M) O(M) O(1) variable
Server bandwidth O(M+N) n/a n/a O(M) based on m-cast tree n/a
Endpoint bandwidth O(1) O(M) O(1) O(1) variable
Scaling medium medium large large medium
Heterogeneous endpoints yes yes no no yes (partially)
Get back your media no no no yes no

TABLE I

TYPES OF CONFERENCES;M IS THE NUMBER OF ACTIVE SENDERS ANDN THE TOTAL NUMBER OF PARTICIPANTS

Multicast: Network-layer multicast is ideally suited for
large-scale conferences. A multicast address is allocated
for each media stream, and every participant sends to that
address. As in the full mesh, participants receive packets
on the same address from all other participants, and need
to sum or select streams. While the incoming bandwidth
is the same as in a full mesh, each system only needs to
generate one copy of the media stream.
Unfortunately, native multicast is not widely available out-
side network testbeds such as Internet2. Also, all receivers
must share a common set of codecs.

Unicast receive and multicast send:This scheme combines
some of the benefits of the server and multicast models.
Participants send their media stream using unicast to the
conferencing server, which sums them and sends them out
on a pre-established multicast address. Thus, unlike pure
multicast, end systems do not have to filter or mix me-
dia streams. Every participant receives the mixed stream,
which includes his own stream. Unless a sender maintain
a buffer of the data sent and there is a means of aligning
time scales, it will have difficulty removing its own audio
content from the mixed stream. The gain in bandwidth ef-
ficiency is largest if the number of simultaneous senders
is small compared to the total group size. This approach
lends itself well to single-source multicast [10], [11].

Endpoint mixing: Instead of in a server, mixing can take
place in one of the participating end systems. For exam-
ple, if A andB are in a call,A can also inviteC. A sends
the sum ofA andB toC, and the sum ofA andC toB. B
andC do not need to be aware of the service performed by
A, but can in turn mix other participants.
Cascading mixers increases the delay on some of the media
paths. Another problem is that the conference dissolves
when the participant who is acting as a mixer leaves the
conference. This model is likely to be suitable only for
small conferences of three or four parties.

Besides these, one can imagine a replication model, where
the server sends a copy of each incoming media stream to all the
participants using unicast. The mixing is done at each end sys-
tem. This might be useful for media path authentication as every
end system exchanges media packets only with the server’s IP
address. The CPU overhead is modest as long as silence sup-

pression is implemented. The server however is less loaded than
in the case of the centralized conference since it is now freed
from the task of mixing audio streams. This is the model used
in the case of video and text based conferences, since there is
inherently no mixing required.

Media and signaling can use different models in the same con-
ference. For example, one could combine centralized signaling
with multicast media distribution, where the server maintains a
one-to-one signaling relationship with each of the participants.
Unfortunately, this requires cooperation from the end system.
The server can indicate a multicast address in its SIP success re-
sponse, causing the end system to send media streams via mul-
ticast, but the end system will still expect to receive media via
unicast. More sophisticated session description formats may ad-
dress this issue.

Also, different media streams can use different models. For
example, audio could be mixed by a central server and redis-
tributed, while video can be sent point-to-point between every
pair of participants as in full mesh.

Thus, as long as multicast is not widely available, server-
based conferences will continue to be the only viable model for
mid-size conferences of tens to hundreds of participants.

IV. D ESIGN OF A CONFERENCE SERVER

A conferencing server consists of a signaling and a media
mixing module. The signaling module receives SIP or H.323
requests to join and leave conferences, while the media mixing
module receives and sends RTP media streams from and to par-
ticipants. Replicating video packets is straightforward; below
we describe the operations needed for mixing audio.

A. Audio mixing

Fig. 2 shows how an audio mixing module can be imple-
mented. ParticipantA support G.711,B DVI ADPCM andC
both GSM and G.711. Participants list the codecs they support
in their INVITE requests. The server selects an intersection of
the algorithms supported by the participant as well as by the
server. This selection is returned in the signaling success re-
sponse to the participant. These algorithms are listed in order of
preference in the SDP of theINVITE or its response.

The mixing algorithm follows adecode-mix-encodese-
quence. When an audio packet arrives at the mixing module,
it is decoded into 16-bit linear samples and appended to the per-

D

D

D

E

X = A+B+C

X−A

X−B

X−C
E

E

= B+C

G.711 Mu

DVI

GSM

B

C

A

Linear

Linear

Linear

Mixed Linear Stream

G.711 Mu

DVI

G.711 Mu

Send to A

Send to B

Send to C

= Audio Encoder = Audio DecoderE D

Play−out delay
Periodic timer interrupt

Fig. 2. Audio mixing

participant audio buffer queue. Each buffer is labeled with the
corresponding RTP timestamp. The jitter in packet arrivals is
absorbed by a play-out delay algorithm. Every outbound pack-
etization interval, a timer triggers a routine that mixes a range
of the samples from one of more input buffers from each ac-
tive participant into a combined packets by simple addition of
the sample values. The timer intervals are shortened and length-
ened to account for earlier slight variations in timer invocation
times and processing delay. (A simple operating system timer
that fires after a delay would yield an output rate that is typi-
cally slightly below the desired rate.)

To allow input and output packets to have different packeti-
zation intervals, the mixer routine can grab samples from one or
more input buffers. (Using a chained list of buffers saves mem-
ory compared to a circular buffer and makes it easier to detect
when a particular source is silent.) Then, for each of the partic-
ipants, the linear sample values from the per-participant queue
(e.g.,A) is subtracted from the mixed data (X) and the resulting
data (X � A) is encoded using the preferred audio compres-
sion algorithm. The encoded data is packetized and sent to the
participant. If there areM participants, then both mixing and
redistribution will takeM additions andM subtractions. Note
that the receive and transmit audio algorithms need not be same
for each participant.

While thedecode-mix-encodesequence is the most straight-
forward approach to implementing an audio mixer, there are al-
ternative approaches. For instance, one can build an addition or
subtraction table for G.711 samples, so that conversion to linear
is not required to do mixing. This only works for G.711, not
for codecs with cross-sample dependencies such as G.723.1 or
GSM.

Also, instead of subtraction, one could createM +1 different
streams directly, one for each talker and one for the listeners.

However, that requiresM2 additions.

B. Playout delay algorithm

Playout delay algorithms help absorb the jitter in network
packet arrival due to network congestion. Adaptive playout
delay further allows an application to adapt to changes in the
amount of jitter, thus giving minimum delay in the audio stream.
Playout delay compensation takes place before mixing, stretch-
ing or shrinking silence periods between talkspurts to adjust the
time between arrival and mixing [12], [13]. (In the absence of si-
lence periods, time stretching or companding can be used, albeit
at much greater computational cost.) We have used Algorithm
1 from [12], with � = 0:95, for our implementation. The al-
gorithm is basically a linear recursive filter. The adapted delay
at any instant depends on the measured delay (using RTP times-
tamps) plus the previous adapted delay, with a weighting factor
�. The playout delay depends on both the adapted delay and the
variation in the adapted delay.

V. I MPLEMENTATION

We have implemented a simple SIP conference server based
on the above design. It can support some of the common audio
algorithms, including G.711 A and�-law, DVI ADPCM, and
GSM. The Columbia SIP C++ library is used for all the SIP and
SDP related functionality in the conference server. When a SIP
user agent connects to the server the signaling is managed by
the routines in this library. The mixer module forms the core of
the conference server. We use Columbia RTP Library for imple-
menting the RTP functionality. It sets up and manages the audio
transport with the participants. There is a thread for receiving
packets from every participant. Another thread (per conference)
takes care of sending the mixed stream to the participants.

Below, we discuss design and implementation issues and

present initial performance data.

A. Design issues

Packetization interval:Although RTP implementations are
supposed to handle a wide range of packetization intervals,
we found 20 ms to be the only one that worked across a
range of media clients such as rat [14] or Microsoft Net-
Meeting. End systems permitting, it may be useful to dy-
namically change the packetization interval for outgoing
packets, as smaller packetization intervals decrease delay,
but increase network bandwidth and computational effort.

Scaling: For large conferences, scalability is limited pri-
marily by outbound bandwidth, copying of data between
buffers and encoding. If many smaller conferences are to
be supported, scaling depends as much on inbound band-
width and decoding. While simple codecs like G.711 re-
quire very little encoding and decoding effort, they impose
a heavier burden on buffer copying and bandwidth.
To scale to very large conferences using conferencing
servers, a network of servers can be deployed (Section VI).
To scale to a large number of smaller conferences, a SIP
proxy server can act as a load-distribution system and di-
rect incoming requests for new ad-hoc conferences to dif-
ferent servers. Alternatively, the conference server itself
can redirect a request to an alternate server.
Instead of using general-purpose computers, one could also
build DSP-based customized hardware at lower per-port
cost. However, in many environments, there are enough
idle cycles on workstations and servers that can be drafted
into service for occasional large conferences.

Inactivity detection:The system should be able to detect if
a particular participant becomes inactive, e.g., due to user
agent failure. Failures can be detected by observing ICMP
errors or sudden discontinuation of RTCP reports.

B. Performance measurements

We are currently measuring performance of our software on
a range of platforms. Initial results are below. We characterize
server load by processor and memory utilization. As discussed
above, both the number of conferences and the total number of
participants affect load, assuming that the average number of
active senders per conference is one.

Table II summarizes the server load depending on how many
simultaneous participants are present in a single conference.
There was no optimization done at compilation time. There
were only one or two active speakers and all others were lis-
teners. The server was running on a Sun SPARC Ultra 10 with
256 MB RAM and a 360 MHz CPU. All participants were in the
same 100 Mb/s LAN as the server and used G.711 with a 40 ms
packetization interval from server to participant and 20 ms from
participant to server. The bandwidth includes IP, UDP and RTP
headers, and for a typical 100 Mb/s LAN, is not a limiting factor.

Load figures are obtained using the Unix commandt op.
Memory is the amount of resident memory (RES). The audio
quality was good up to 80 participants in the single conference,
tolerable with 100 participants and very poor for 120 partici-
pants.

Participants CPU memory bandwidth (Mb/s)
(%) (MB) inbound outbound

2 < 0.1 2.7 0.08 0.07
20 < 1 6.0 0.08 1.37
40 2-3 9.6 0.08 2.81
60 5 13 0.08 4.25
80 10-15 17 0.08 5.69
100 35-50 22 0.08 7.13
120 50-70 26 0.08 8.59

TABLE II

SERVER LOAD AS FUNCTION OF NUMBER OF PARTICIPANTS IN SINGLE

CONFERENCE

Table III summarizes the server behavior depending on the
number of simultaneous three-party conferences where every
participant is an active speaker. All other parameters are the
same as before. Audio quality was good up to 15 three-party
conferences, but deteriorated to poor with 18 conferences.

Confer- partici- CPU memory bandwidth (Mb/s)
ences pants (%) (MB) inbound outbound
3 9 < 0.4 4.1 0.72 0.65
6 18 < 2.0 5.7 1.44 1.30
9 27 7-13 7.3 2.16 1.94
12 36 15-20 9 2.88 2.60
15 45 25 10 3.60 3.24
18 54 30 12 4.32 3.89

TABLE III

SERVER LOAD AS FUNCTION OF NUMBER OF THREE-PARTY CONFERENCES

The memory requirement depends on the number of partici-
pants and seems to increase linearly. For instance, memory re-
quirements for 15 three-party conferences (45 participants) is
almost the same as that for 40 participants in a single confer-
ence. Secondly, the CPU utilization starts increasing drastically
at about 30-40 participants.

CPU load is the primary bottleneck in our test environment.
The other factors: memory and bandwidth do not seem to cause
problem for a hundred participants. Various factors contribute
to the CPU load, e.g., thread switching and list traversal. This
bottleneck can be removed by using “Multi-state conferences”
(Section VI) or by dedicated hardware for encoding and mixing,
for example.

It may be possible to optimize the mixing logic. One such
scheme is shown in Fig. 3, combining the encoding step for
the output streams that have same mixed audio data and use the
same encoding algorithm. For all the participants who did not
speak in the last timer interval and who have a common subset of
supported receive audio algorithm, we can call the encoder only
once. However, if a stream stops being active, it will receive
the general listener packet stream rather than its own version, so
that the predictor will be wrong. It is not clear how much this
would matter in practice.

Scaling may also be limited by the available number of

A

B

E

F

D

C

X=B+D
D

D

E (G.711)

E (G.711)

E (G.711)

E (GSM)

X

X−B

X−D

X

X

X−B

X

X−D

X

X

A−D support G.711; E and F support GSM.

Fig. 3. Possible optimization in decode-mix-encode sequence

threads. Our implementation allocates a thread for every confer-
ence as well as for every participant. With 1000 threads allowed
per process, the server can support 250 three party conferences
(with 750 participants), for example.

VI. CONFERENCING AS PART OF AN OVERALLVOIP
ARCHITECTURE

This section describes enhancements to the simple centralized
conference system and how it can fit into a more complex Inter-
net telephony and multimedia communication environment.

A. Multi-protocol conference server

A simple enhancement (Fig. 4) is to use a SIP-H.323 gateway
and SIP-PSTN gateway to provide a unified conferencing server
which can be contacted from any of the SIP, H.323 or PSTN
networks. To integrate PSTN users, some form of interactive
voice response (IVR) is required, e.g., to prompt for pass codes.

B. Network of conference servers

For larger conferences, it is possible to create a tree of confer-
ence servers, where each server appears as a participant in the
server at the aggregation level above it (Fig 5). In the figure, S2,
S3, and S4 act as participants for the conference server S1. Such
a tree adds packetization and playout delay, but can approximate
the bandwidth scaling benefits of network-layer multicast if par-
ticipants select the closest server. Since it is common that corpo-
rate conferences consist of a large number of participants spread
across a relatively small number of facilities, having a server in
each LAN is likely to be a common mode of operation.

C. Integration with other services

A conferencing server can be integrated with a text-to-speech
and speech recognition system to allow text-only participants
in an audio session. A conference server could also include an
RTSP client that can stream media to a recording server.

VII. R ELATED WORK

Most of the conference servers in the market today are based
on H.323. These include MeetingPoint from CUseeMe Net-
works, Sametime from Lotus and Microsoft Exchange 2000

sipconf

SIP/PSTN

SIP323

SIP

SIP

SIP

H.323 H.323

PSTN

Multi protocol Conference

Fig. 4. Multi-protocol conference server

sipconf

sipconf

sipconf sipconf

A

B
C

D

A+B+C+D

All others

Participants

Participants

S1

S2

S3

S4

Fig. 5. Multi-stage conference servers

Conferencing Server. These support T.120 for application shar-
ing and whiteboards. MeetingPoint has mechanisms to link
servers together so that conferences can be shared and load-
balancing can be done.

VideoTalks [15] by AT&T Labs is a comprehensive multi-
media conferencing system intended to provide a variety of In-
ternet services such as video conferencing and low cost video-
on-demand. It is not based on SIP.

A number of tools (e.g., RAT and NeVoT) support multi-
cast “light-weight” conferencing, without explicit signaling sup-
port [9]. Etherphone [16] is probably one of the earliest systems
supporting multimedia conferencing.

Most of these work talk about conferencing in general or a
specific implementation of a conferencing system. Here, we
compare different models and present performance numbers for
a real implementation.

VIII. C ONCLUSION AND FUTURE WORK

Based on our implementation, SIP provides a suitable multi-
media conferencing platform that allows advanced scenarios and
services without requiring that end systems are conferencing-
aware. It is possible to build medium scale conferencing servers
in software. Our implementation supports up to 100 participants
in a single conference using G.711 audio and only one active
speaker on a Sun Sparc Ultra-10 platform. It can also support up
to 15 three party conferences where all participants are speaking
simultaneously. Scalability can be improved by ensuring that the
clients support silence suppression at their end.

In addition to audio and video conferences, various other ser-
vices can be provided at the conference server such as white-
board applications and multi-user games. This may lead to a
distributed conferencing server architecture with different com-
ponents handling different services. Participants can also join
conferences from the PSTN if they use SIP to PSTN gateways.
SIP-H.323 gateways [17] exist that can permit the participation
of H.323 clients in the conference.

We plan to enhance our prototype in a number of ways:

� We need to gather performance data for different codecs
in a heterogeneous conferencing environment, on different
computing platforms, including those with multiple pro-
cessors. We also plan to measure the delay and jitter at the
client side as the server load increases.

� Video support will be added to the server. This involves
defining policies on which video stream to distribute and
possibly merging streams into screen quadrants. (With
windows-based end systems, this is not required as the end
system can arrange multiple video windows.)

� We plan to add additional codecs, beyond the G.711�-law,
G.711 A-law, GSM and DVI ADPCM currently supported.

� Additional SIP features such as dial-out and authentication
can be added to the server. This allows the server to in-
vite participants to the conference and keep unauthorized
participants out. Conferences could also be bounded in du-
ration; however, since the resource consumption of inac-
tive conferences is very small as long as media streams are
muted, it is quite feasible to set up permanent conferences
in work groups, for hoot-and-holler applications. The tran-
sition from centralized conferences to full-mesh and mul-
ticast conferences, as well as hybrid solutions, need to be
supported.

IX. A CKNOWLEDGMENTS

We would like to thank Jonathan Rosenberg and Weibin Zhao
for their valuable and insightful comments.

REFERENCES

[1] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: ses-
sion initiation protocol,” Request for Comments 2543, Internet Engineer-
ing Task Force, Mar. 1999.

[2] J. Rosenberg and H. Schulzrinne, “Models for multi party conferencing in
SIP,” Internet Draft, Internet Engineering Task Force, Nov. 2000. Work in
progress.

[3] Z.-Y. Shae and M.-S. Chen, “Mixing and playback of JPEG compressed
packet videos,” inProceedings of the IEEE Conference on Global Com-
munications (GLOBECOM), (Orlando, Florida), pp. 245–249 (08B.03),
IEEE, Dec. 1992.

[4] H. Schulzrinne, “RTP profile for audio and video conferences with min-
imal control,” Request for Comments 1890, Internet Engineering Task
Force, Jan. 1996.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a trans-
port protocol for real-time applications,” Request for Comments 1889, In-
ternet Engineering Task Force, Jan. 1996.

[6] J. Rosenberg, P. Mataga, and H. Schulzrinne, “An application server com-
ponent architecture for SIP,” Internet Draft, Internet Engineering Task
Force, Nov. 2000. Work in progress.

[7] International Telecommunication Union, “Packet based multimedia com-
munication systems,” Recommendation H.323, Telecommunication Stan-
dardization Sector of ITU, Geneva, Switzerland, Feb. 1998.

[8] M. Handley and V. Jacobson, “SDP: session description protocol,” Request
for Comments 2327, Internet Engineering Task Force, Apr. 1998.

[9] M. Handley, J. Crowcroft, C. Bormann, and J. Ott, “The internet multime-
dia conferencing architecture,” Internet Draft, Internet Engineering Task
Force, July 2000. Work in progress.

[10] S. Bhattacharyyaet al., “A framework for source-specific IP multicast de-
ployment,” Internet Draft, Internet Engineering Task Force, July 2000.
Work in progress.

[11] H. W. Holbrook and D. R. Cheriton, “Ip multicast channels: EXPRESS
support for large-scale single-source applications,” inSIGCOMM Sympo-
sium on Communications Architectures and Protocols, (Cambridge, Mas-
sachusetts), August/September 1999.

[12] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive playout
mechanisms for packetized audio applications in wide-area networks,” in
Proceedings of the Conference on Computer Communications (IEEE In-
focom), (Toronto, Canada), pp. 680–688, IEEE Computer Society Press,
Los Alamitos, California, June 1994.

[13] J. Rosenberg, L. Qiu, and H. Schulzrinne, “Integrating packet FEC into
adaptive voice playout buffer algorithms on the internet,” inProceedings
of the Conference on Computer Communications (IEEE Infocom), (Tel
Aviv, Israel), Mar. 2000.

[14] A. Sasse, V. Hardman, I. Kouvelas, C. Perkins, O. Hodson, A. Watson,
M. Handley, J. Crowcroft, D. Harris, A. Bouch, M. Iken, K. Hasler,
S. Varakliotis, and D. Miras, “Rat (robust-audio tool),” 1995.

[15] M. R. Civanlar, G. L. Cash, R. V. Kollarits, B.-B. Paul, C. T. Swain, B. G.
Haskell, and D. A. Kapilow, “VideoTalks: A comprehensive multime-
dia conferencing system,” inProc. of Packet Video, (Sardinia, Italy), May
2000.

[16] H. M. Vin, P. T. Zellweger, D. C. Swinehart, and P. V. Rangan, “Mul-
timedia conferencing in the Etherphone environment,”IEEE Computer,
vol. 24, pp. 69–79, Aug. 1991.

[17] K. Singh and H. Schulzrinne, “Interworking between SIP/SDP and
H.323,” in Proceedings of the 1st IP-Telephony Workshop (IPtel 2000),
(Berlin, Germany), Apr. 2000.

