
Abstract—The Session Initiation Protocol is used for setting up
multimedia sessions among users in such a way that personal
mobility is handled by the use of one identifier to distinguish
among users. This identifier in spite of being convenient and
simple does not fully describe the comminicating entities in terms
of their capabilities and their characteristics. In this paper we
address the problem of describing the communicating parties
with multiple attributes in the context of SIP. We present the
architecture of the prototype system and its integration with the
SIP protocol. The SIP protocol regards the location service as an
orthogonal part of the architecture and does not deal with this
issue. However the architecture of the location server plays an
important role in the operation of the protocol. Based on the
experience gained from the operation of prototype system we
present some enhancements in terms of the interoperability of the
location service and the SIP server.

Index terms—session initiation protocol, attribute based
addressing.

A. INTRODUCTION

The Session Initiation Protocol [8] utilizes a single user
identifier similar to an e-mail address in order to distinguish
among the different users. The user contact information for the
session setup consists of a user name, the machine name and
port number where the SIP client runs on. The machine name
can be either its IP address or its fully qualified domain name.
Thus the SIP contact information is already a collection of
attributes with the machine name being the one, which may
need a translation from a fully qualified domain name to an IP
address. The need for this duality in machine identifiers is a
result of the difficulty faced by humans to associate a device
with a string of numbers (IP address) and to be able to use this
address when referring to this machine. The fully qualified
domain name enables a more natural description of a device,
which is easy to memorize and associate as well.

This naming scheme greatly reflects the location of the
networked entities because the primary concern in the early
networks was to route information from one entity to another.
And since there were not many networked entities the IP
address naming scheme worked perfectly all right.

Moreover, the naming scheme used today although
simple[10] gives little information about the services that the
networked entities provide. The main concern of a user is to

* Part of the work was performed when the author was with

Telcordia Technologies, Inc.

use the network, which is attached to his/her machine to
perform a task. As a result the user focuses on the functionality
that the network can provide and is not willing to make yet
another association of an identifier to a desired service.

 With the advent of wireless networked machines the need
to keep track of the machine location led to patching the
existing naming and routing schemes with location directories.
These are essentially associations of the unique machine
identifiers with new identifiers, which reflected the current
machine location.

As the computers and networked devices became smaller
and smaller and they also become wireless, the need for new
naming schemes became evident. This is because on the one
hand the existing schemes are running out of names, and on
the other hand they were designed to facilitate the
communication of a relatively small number of machines.

Location is only one attribute of an entity that might change.
Several other entity attributes may change over time, but
existing naming and addressing schemes do not have efficient
ways of addressing this problem.

In this paper we address the naming problem providing a
naming scheme and a location service for the Session Initiation
Protocol [8]. The proposed scheme enables a more flexible
and natural user discovery by taking into account more
information about the user and his/her context than only a
single identifier. This is done by describing a user with a list of
attribute value pairs along with the SIP user and contact
information.

The paper is organized as follows: Section B describes the
motivation behind the proposed architecture. Section C
introduces the architecture for our location server. Section D
elaborates on the implementation. Section E describes some
related work. Section F includes the future work while section
G concludes the paper.

B. MOTIVATION

There are three categories in which we can identify the
benefit of using an attribute based naming scheme to describe
a user:
1. First of all the number of communication devices that are

connected on a network as well as the number of users
who tend to be mobile is increasing. As a result the
identifiers used to distinguish either the devices or the
people will become too large that other people will be
unable or unwilling to use them because they don’t know
them or they don’t want to know them. All that people

Vlasios Tsiatsis †*, Jyh-Cheng Chen ‡, Prathima Agrawal ‡, Mani Srivastava †

Attribute Based Addressing for SIP

† Electrical Engineering Department, University of California at Los Angeles
Los Angeles, CA 90095-1594
{tsiatsis, mbs}@ee.ucla.edu

‡ Applied Research, Telcordia Technologies, Inc.
Morristown, NJ, 07960-6438

{jcchen, pagrawal}@research.telcordia.com

INVITE
helen@ucla.edu

Location
Server

john@hol.gr

INVITE
helen@veria.ee.ucla.edu

ACK

Reply
helen@veria.ee.ucla.edu

helen@veria.ee.ucla.edu

Query

Figure 1. SIP Redirect Server

SIP Server

want is to be able to address other people or devices by
what they are or represent (e.g. PDAs with audiovisual
capabilities, nearest policeman).

2. Often people want to communicate with other individuals
or groups of people but they only know some
characteristics of either an individual or the group. It is
more natural to address these people with a description
rather than an identifier (e.g all interns in a company).

3. Finally, what it is desirable to have, is not only a service
that plays a role similar to the Domain Name System
Service. On the one hand it would be good to have a
network of servers, which have the ability to resolve
network identifiers from high-level descriptions of
entities. This kind of service would be used for name
resolution for path setup for call setup protocols over IP
networks (e.g. SIP) or it could be used for maintaining
profile information for users with changing profiles. On
the other hand the need for a service that enables users to
push their own data to other users that have some common
characteristics is gaining interest in the research
community. This is what we call profile-based services.
One example of this service is location dependent queries
for user discovery. Another example is short messages
sent to users that satisfy some criteria.

C. ARCHITECTURE

1st. Overview of SIP
Since our attribute-value based naming system assists the

Session Initiation Protocol (SIP) we present a brief
introduction to the protocol.

The SIP is an application level protocol that can establish,
modify and terminate multimedia sessions or calls. SIP enables
the concept of personal mobility by providing name mapping
and redirection services. Personal mobility is the ability of
users to originate and receive calls on any terminal in any
location and the ability of the network to identify end users as
they move [12].

The main SIP architecture includes two major components.
The first component is the SIP client, which is an application
that provides the user with the ability to initiate (INVITE
requests) and terminate (CANCEL requests) calls to other SIP
clients as well as to register (REGISTER requests) to a SIP
server. A SIP Server maintains the SIP registration records for
a limited amount of time (soft state registrations) and can setup
connections between clients. When a SIP client registers with a
SIP server it indicates the user name with which it is going to
be known to the SIP protocol along with contact information
used for setting up the connection. This contact information
includes the user name that runs the SIP client, the machine
name and the port number that the SIP client application runs
on.

Although two SIP clients can communicate directly without
the interference of a SIP server, the server is needed for user
registration and call setup. A SIP Server can be configured to
operate in one of two modes:
a) Redirect Server Mode (Figure 1)

In this mode a client john@hol.gr sends an invitation
request to the server indicating the SIP identifier URI (uniform

resource identifier) of the other communicating party
helen@ucla.edu. The SIP server contacts a location server and
determines if there is a registered user under the requested SIP
identifier. If such a user exists, the SIP server returns the
contact information of client helen@ucla.edu to client
john@hol.gr. In general the SIP identifier and the contact
information are not identical. This is due to the fact that a user
may want to be known under the SIP protocol by one name
while his/her contact information is changing according to
his/her current location. When finally the client john@hol.gr
receives this information it initiate an invitation request to
client helen@veria.ee.ucla.edu directly. If the other party
accepts the call an acknowledgement is sent back to the
originating client and a real-time session can begin between
the two parties. The type of initiated session depends on the
device or the SIP capable software. For hardware SIP phones
[18] only audio sessions can be initiated while the Columbia
software SIP client [19] supports the initiation of real-time
audio and video sessions.

b) Proxy Server Mode (Figure 2)
In this mode the SIP server does not return the contact

information of client helen@ucla.edu to client john@hol.gr but
instead sends an INVITE request to client
helen@veria.ee.ucla.edu on behalf of client john@hol.gr after
contacting the location server. When client
helen@veria.ee.ucla.edu accepts the invitation for a
connection an acknowledgement of the acceptance is sent to
client john@hol.gr. After that, the two communicating parties
are ready to initiate a real-time session between each other.

One of the main operations that SIP supports for multimedia
real-time setup is location discovery for users. The SIP
documentation explicitly mentions that the interaction of the
SIP server with the location server is not in the scope of the
protocol. However this does not mean that the location server
is not an important part of the SIP architecture. We judge that
enhancing the intelligence of the location server is crucial for
locating users with specific characteristics and this is main the
focus of this paper.

2nd. Attribute Based Location Server
We considered the implementation of our attribute based

location server in two forms. A centralized one, which is used
by all the SIP servers to register the SIP clients, and the
distributed version, which consists of multiple location servers
interconnected together. Each SIP server receives location
services from only one distinct location server.
1) Centralized Approach

The overall architecture for a centralized name resolution
server of this system is shown in Figure 3. The name server
consists of a Database Engine, and a number of Client
Communication Components. The number of client
components depends on the number of active clients since
each time a new connection occurs, a new client component is
spawned to provide attribute based naming resolution services
to the requesting client. The clients request services from the
server using messages formatted in a specific way described
later in the paper. The client components communicate with
the database engine to update and query the attribute value pair
database.

The database engine consists of a Client Request Engine,
which is responsible for client queries and a Soft State
Manager, which is responsible for maintaining the soft state of
each database record. For each record in the database, along
with the attribute value pairs that characterize a network entity,
there are additional record fields, used by the entities to
communicate with other entities. In the case of the SIP
protocol the additional information is the SIP contact
identifier.

The centralized approach is suitable for isolated
environments where the communication traffic to the server is
light; otherwise the server becomes the bottleneck of the SIP
protocol.

The more interesting approach to architect the location
server is the distributed case.

2) Distributed Approach
In the distributed version of the name resolver different

resolvers are connected with each other to provide distribution
of the database information and higher availability to the user.
The database information can be either replicated in every
server or in a set of servers. The replication occurs when an
entity registers and updates the registration information. The
registration and update messages are then forwarded to every
eligible server and result in changes in the database of each
server. An eligible server is the one within the scope of a
registration or update message. The types of messages as well
as their formats are described later in the paper. The way the
different servers are connected together depends on the
configuration that each server obtains by contacting a server
that maintains neighborhood information.

When each server is started, it contacts another server that
maintains the connectivity list of the distributed network. The
connectivity list is used for forwarding the subsequent
messages to the rest of the network. The internal server
architecture is depicted in Figure 4.

As in the centralized server case, there is a client
component, which is responsible for servicing client requests
and a database engine responsible for accessing the local
database of attribute value pairs. The additional components
shown in Figure 4 enable the server-to-server communication.

There is one packet receiving and one packet sending
component for each server. The messages exchanged between
the servers carry the appropriate source and destination
identification to assist those two components in their
operation.

The Duplicate Elimination Tables are tables that maintain
information about the processed packets already received or
sent so that duplicate messages are not processed again.
Duplicate packets can be received when more than one other
name servers can contact one server. The list of the name
servers that the current one can contact is maintained in the
Neighbor Table.

The Open Client Connections is a table that maintains
inoformation about the client query requests in progress. The
query processing in the distributed case resembles the

INVITE
helen@ucla.edu

Location
Server

john@hol.gr

Query

Reply
helen@veria.ee.ucla.eduACK

ACK

helen@veria.ee.ucla.edu

INVITE
helen@veria.ee.ucla.edu

SIP Server

Figure 2. SIP Proxy Server

Client
Component

DATABASE ENGINE

Client
Component

Attribute-Value
Database

Client
Request

Engine
Soft State

Manager

Client

Client

Figure 3. Centralized Server

recursive query processing in DNS [11]. All the DNS servers
are hierarchically connected together according to the domain
name they reside in. When a DNS server cannot resolve the
requested domain name, it forwards the query to another DNS
server that can handle the request. In the meantime the client
waits until the query reply comes back through the reverse
path. In our case the query is also recursive and as a result all
the information about the waiting client must be stored in the
Open Client Connection Table so that the query reply is
forwarded to the appropriate client.

More details about the server-to-server communication will
be given in the next section.

D. IMPLEMENTATION

The implementation of the attribute based naming server
was done in Java in order to provide a portable proof of the
concept of attribute based naming of networked entities. The
integration of the naming server as a location server for SIP
was performed using the SIP client and server implementations
from Columbia University [19]. Our goal was to provide an
implementation that would help us understand the problems
faced by introducing such a service not only to SIP but other
environments as well[14].

1st. Database structure
The database of the entity descriptions consists of a list of

records, which contain the following information: an entity
identifier which acts as a handle for update operations, a list of
attribute value pairs, some entries for database maintenance
(record number, timestamp, expiration time), the IP address
and the port number of the entity and a user name, which is
associated with this entity (in our case the entity is a SIP user).

The structure of a record is shown in Figure 5. The list of
attribute value pairs consists of a list of triples (AttributeName,
Operator, Value). In the current implementation every triple
has the equality operator (“=”) as its operator. However an
entity can also have an attribute described by using other
operators. An example is the range operator used to describe
that a user’s work hours are from nine to five.

2nd. Message Types
A client connecting to an attribute based name server can

perform the following operations:
1. Registration
2. Signoff
3. Description Modification
4. Query
5. Application Level Forwarding

Clients request each of the above operations by connecting
to the name server and sending a message formatted in a
specific way. In the current implementation the message is
send as a string of characters without any coding, for
compression or encryption purposes. The first part of the
message contains the identification of the source of the
message in terms of a user name, an IP address, and a port
number and a keyword that distinguishes the type of the
message. The next part is a field (time-to-live field) that
facilitates the scoping of the messages in terms of number of
server hops that the message can travel. The structure of the
rest of the message depends on the message type.
1) Registration

A sample registration message is shown in Figure 6(a). This
type of message is characterized by the keyword register,
which is followed by the list of attribute value pairs that the
requesting entity possesses. When the registration of the entity
is completed the name server gives the client a handle for that
entity. This handle acts as a certificate that the client shows to
the name server when the former requests an update of the
registration record. This handle is a string of hashes
concatenated together. These hashes are produced by the fully
qualified domain name of the server, the originating user
information, the register request string and a server sequence
number. The possible types of updates are the signoff of an
entity from the database, and the modification or deletion of a
set of the entity attributes.

Client Client
Component

Database
Engine

Server
Engine

ReceiverSender

Duplicate
Elimination

Tables

Neighbor
Table

Open Client
Connections

Figure 4. Distributed Server Case

Record No

• User Name
• IP Address/Port number
• Timestamp/Expiration Time
• Entity ID
• Attribute Value Pair List

♦ AttributeName1, Operator1, Value1

♦ AttributeName2, Operator2, Value2

♦ AttributeNameN, OperatorN, ValueN

Figure 5. Database Record

2) Update Operations
Examples of a signoff message and attribute deletion and

modification messages are also shown in Figure 6(b)-(d). The
only information that a signoff message has to carry is the
record handle returned by the registration request. An attribute
deletion message carries the identification of the user whose
description needs to be changed and the names of the attributes
that need to be removed. An attribute modification message
contains the user record handle and a list of attribute value
pairs. The attribute names of the pairs may or may not exist as
part of the original user description. In the former case the
attribute value is changed, while in the latter case the new
attribute value pair is inserted in the user description.

3) Query
A client can issue a query, which is, in general, a

combination of primary queries. A primary query consists of
an attribute name, a matching operator and an attribute value.
An attribute value can be either a number or a string of
characters.

The primary query operators are:
1. exact match operators(Attribute = Value),
2. range operators (A1>V1, A2>=V2, A3<V3, A4<=V4,

A5 @[V5-V6]),
3. set operators (A @[V1, V2, .., VN]) and
4. the wildcard operator (=*)

The notation A5 @[V5-V6] means that the primary query
will be satisfied for those entities that have the attribute A5 in
the range [V5, V6]. The notation A @ [V1, V2,.., VN] means
that the primary query will be satisfied for those entities that
have an attribute A belonging into the set [V1, V2, .., VN]. A
number of primary queries can be combined together, using
AND/OR operators together with parentheses to construct
composite queries. An example of a composite query is
presented in Figure 7. A client that issues this query is looking
for a policeman or a firefighter at Zimbabwe.

A query message has the keyword query followed by a
query modifier and the actual composite query. The query
modifier modifies the output of the actual query. The output of
the actual query is a set of records that satisfy the query. Out of
these records the user may choose to filter these records so as

to get any of the records, or all the records or the record, which
describes an entity, that is nearest to the client that issues the
query. The modifier used in each case is ANY, ALL,
NEARESTFROM respectively. In the example in Figure 7 the
user requests that all the matching records be returned in the
query reply.

In order for the NEARESTFROM modifier to have a
meaningful output the users must also register their locations.
In our prototype implementation for demonstration purposes
we assume that the location of a user is given as a triple of the
x, y and z coordinates of a coordinate system whose origin is
at the center of a city where the SIP network of servers is
employed. Without loss of generality the location of a user can
be an arbitrary character string (e.g. Room 1045) as long as
there is a well-defined ordering function among those strings
in terms of the location.

The location attribute is useful when the entities are
spatially distributed over an area of interest or the client is
interested in having location dependent services as in the case
of a query with the NEARESTFROM modifier.

(a) src(vlasios@veria.ee.ucla.edu:4443)
ttl(2)
register
#a=1#b=2#c=3#

(b) src(vlasios@veria.ee.ucla.edu:4443)
ttl(255)
signoff userid (1345_345_224_1)

(c) src(vlasios@veria.ee.ucla.edu:4443)
ttl(255)
del_attr userid(1345_345_224_1)
#a#c#

(d) src (vlasios@veria.ee.ucla.edu:4443)
ttl(255)
mod_attr userid (1345_345_224_1)
#a=3#d=4#

Figure 6. Message examples

(a) src(vlasios@veria.ee.ucla.edu:4443)
ttl(255)
query
all
location = Zimbabwe
AND

(occupation=firefighter
OR
occupation= policeman)

Figure 7. Query Example

 Query → SetModifier BooleanQuery

– SetModifier →

é any

é all

é nearestfrom(x,y,z)

– BooleanQuery → ANDquery (OR ANDquery)*

– ANDquery → PrimaryQuery (AND PrimaryQuery)*

– PrimaryQuery →

é (BooleanQuery)

é ID (= | > | >= | < | <=) (ID | NUM)

é ID @ [(ID |NUM) - (ID |NUM)]

é ID @ [(ID |NUM) , (ID |NUM), ... , (ID |NUM)]
ID : character string, NUM : number

Figure 8. Query Grammar

3rd. Query Language
The query grammar is depicted in Figure 8. A query is

preceeded by a query modifier called SetModifier because it
determines the output of the query, which is in general a set of
matching records. The actual query can be viewed as an
expression tree with the operators AND and OR as the non-
leaf nodes and PrimaryQueries as leaf nodes. An example of
an expression tree is shown in Figure 9. A PrimaryQuery can
be one of the four types of primary queries depicted in Figure
8.

4th. Lookup Algorithm
After the descriptive name server receives a query, a query

parse tree is formed based on the query string. An example of
a query and a query parse tree is shown in Figure 9. The first
part of the message that contains the query keyword and the
source identification is omitted is Figure 9. The query targets
the users that work in location MCC and have authorization
code greater than 1 or their organization code lies in the set
[5,7,9].

According to the query grammar the parse tree will have a
root (R) of an OR operation with two subtrees (S1 and P3)
which correspond to one AND operation and one primary
query. The AND operation will have two primary queries as
leaves. As a result, primary queries P1 and P2 will produce the
result sets Set1 and Set2. Because of the fact that P1 and P2 are
leaves of a subtree which has an AND tag the result of the
operation that this subtree corresponds will be the intersection
(Inter1) of Set1 and Set2. The result of the right subtree query
will be Set3. Finally the result of the tree R will be the union of
Inter1 and Set3 (Union1). Because of the query modifier ANY
the result of the original query will be any random record of
the Union1 set.

5th. Application Level Forwarding
Application level forwading in our service is the ability of

the location service to support forwarding of packets from one

user to another using the location server network. The
forwarding of these packets is subject to conditions that
resemble a query.

An application-level-forwarding-request message consists of
two parts, apart from the source identification part and the
TTL field, which are carried on every request. The first part is
a condition expressed in terms of a query and the second part
consists of the data that the requesting client sends to other
entities that satisfy the query. The data portion of the message
is encoded in base 64 encoding since the whole protocol is
character string oriented. An example of an application
forward message is shown in Figure 10.

6th. Reply Format
The replies each server sends back to the requesting client

are given in the form of XML [2]. XML is the perfect
candidate for this kind of a naming system. It is first of all a
string-oriented language in order to be compatible, portable
and easy to debug. Secondly structured information can be
easily represented in XML. On the one hand entity registration
and signoff, attribute deletion and modification can result
either in success or failure, which can be represented by just
one success or error message. On the other hand a typical
query reply will result in a list of entities, which in turn have
their own lists of attribute value pairs. This kind of information
fits perfectly into the XML specification. Figure 11(a) presents
a successful registration reply, which includes the entity handle
for future updates. Figure 11(b) shows a query reply for which
the query was not satisfied, while Figure 11(c) shows a query
reply which includes all the entity information in a structured
way.

7th. SIP Integration
For the purposes of a proof of concept implementation the

Columbia SIP client and server was used while the first author
was with Telcordia Technologies, Inc. The SIP client is
written in Tcl/Tk while the SIP server is written in C. The
operations that the SIP client allows are user registration, user
signoff and refresh of user registration because of the soft state
registration. The attribute value naming system provides
similar operations in addition to attribute value pair
modification and attribute value pair addition and deletion
operations. With these additional operations an entity can have
a variable behavior in terms of the services this entity provides

 Example Query:
 any location=MCC AND AC>1 OR OrgCode @ [5, 7, 9]

Query Parse Tree

AND

OR

location=MCC AC>1

OrgCode @[5,7,9]

Figure 9. Query Parse Tree

R

S1

P1
P2

P3

(b) src(vlasios@veria.ee.ucla.edu:4443)
ttl(255)
app_lev_forw
filter (location = Zimbabwe

AND
(occupation = firefighter
OR
Occupation = policeman)

)
 packet (Base64 encoded message)

Figure 10. Application level forwarding example

and causes the queries of the other entities to have variable
outcomes. Therefore we integrated these additional operations
in the SIP client as well as the SIP server.

SIP provides a mechanism for its extensibility by means of
stating in a SIP packet if the packet needs special handling
(“Require” packet header). Therefore providing a new user
location service is smoothly integrated with the SIP protocol
by using the special SIP packet header. Every SIP packet
originating from a SIP client to a SIP server carries this special
header if the attribute based naming system is used. Along
with the “Require” header another header (“Abea-name”) was
added. The additional header serves the purpose of carrying
the information specific to the attribute based naming system.
This information is the actual message (registration, signoff,
attribute modification/deletion and application level
forwarding). In the reply packets the same header operates as
the reply from the location server. All the necessary User
Interface components for the additional operations were added
to the Tcl/Tk SIP client and all the demultiplexing code for the
new location service was incorporated in the SIP server. These
include components for registration and modification of an
entity description, as well as for the query construction. The
registration, the signoff and attribute
modification/addition/deletion operations are encapsulated in
SIP REGISTER requests, while the user query is encapsulated
in SIP INVITE requests.

After the SIP server receives a SIP packet that requires
special handling the attribute based naming server is contacted
to take care of the special operation. This server processes the
request and returns an XML reply to the SIP server. If the
request was a registration/signoff/attribute modification

addition and deletion then the reply does not need to be further
processed by the SIP server. The XML reply is subsequently
sent to the SIP client for being processed. If the request was a
query request then the SIP server processes the XML reply,
formats the reply according to the SIP protocol (list of contact
information) and returns the reply to the SIP client. No further
processing is need on behalf of the client because the reply
does not contain any special handling directive.

8th. Information Distribution and Request Processing
In the case of an entity registration, entity signoff and entity

description modification the requests are forwarded to the
whole distributed system or to a set of servers. This is
accomplished by scoping the messages using the time to live
message field.

In the case of registration and update messages the Server
Engine updates the local database, determines the neighboring
server(s) and forwards the requests to the set of qualifying
servers (neighbors with the message scope). They, in turn,
update their databases and forward the requests to their
neighbors.

In the case of a client query the Server Engine searches the
local database and if any registration records are found, it
returns them to the requesting client. Otherwise the necessary
information for the open client connection is stored in the
Open Client connection table and the query request is
forwarded to the neighbors of the current name server. This
form of a query request follows the recursive query principle,
which is also followed by the DNS servers. If the query
reaches a terminal server (no neighbors other than the one that
send the request) and no records satisfy the query, no negative
reply is sent back. In this way the network does not fill up with
unnecessary negative repiles. The purpose of a query is to find
some entities satisfying the query and not to receive negative
replies. This means that the originating server implements a
mechanism to send a negative reply to the client after a timeout

 <reply>

<userid>AF134BC_CD975_1</userid>
 </reply>

(a)
<reply>

<error>User Not Found!</error>
</reply>

(b)
<reply>
 <list>
 <entity>

 <user>
 helen@veria.ee.ucla.edu:4500

 </user>
 <attribute_value_list>

 <item>a=1</item>
 <item>b=new york</item>
 <item>d=876</item>
 </attribute_value_list>
 </entity>
 </list>

</reply>

(c)

Figure 11. XML Reply Examples

Send(Hello) to
all Friends

A

B
D Friends are at

C

Registration

Forwarding
Friends are at

B

Friends are at
A

C

Figure 12. Application level forwarding

period. If negative replies were tracked, additional state should
be preserved in each server that forwards the query, so that it
gathers all the replies from the other servers (downstream
servers) and send one reply back to the server that it got the
request from (upstream server). In this case the timeout
mechanism would also be necessary for each upstream server.

When an application-level forwarding message enters a
name server, the name server searches the local database to
find all the records that satisfy the query. If some records are
found, the server determines if the entities described by the
records have registered to the current server directly or via a
registration forward message from another server. If the entity
has registered directly with the current server the data part of
the message is sent to the matching entities using UDP
packets. If the entity has registered directly with another server
the application level forward packet is sent to that server. Thus
if the registration message has gone through a series of servers
then the application level forward packet will go through the
reverse path (Figure 12). If no records were found in the local
database the message is forwarded to the neighbors of the
current server and the procedure above is repeated.

E. RELATED WORK

1st. Content based routing
In [4] the authors have implemented a content based

addressing and routing architecture based on the
communication model of an event notification service. This
model clearly differs from our approach in the proposed
architecture. They base the content routing on the event
notification service called SIENA [3], which is in principle, a
publish/subscribe service. The users interested in some piece
of information subscribe their interests in terms of constraints
on attribute values. Each interested user registers a filter
similar to our query and every piece of published information
(notification) is filtered through the user subscription (filter). If
a notification matches the subscription then the notification is
forwarded to the interested party. The philosophy of this
approach is clearly different from our approach in which users
issue the filters that scan the information database of an
attribute based location server. However our approach could
benefit from the techniques for merging subscriptions when
one subscription can be logically inferred from another. These
techniques could be used for implementing an indexing
scheme for more efficient searching through our distributed
system.

2nd. Lightweight Directory Access Protocol, WHOIS and
WHOIS++ Service

The Lightweight Directory Access Protocol (LDAP)[17] is
a protocol for accessing directory services like X.500 [7].
However it is not extensible and flexible enough to provide a
location service that can do more than just binding of user
descriptions to low level addresses. The WHOIS and
WHOIS++[9][6] services are designed to provide information
about the Internet users similar to our scheme but the
supported query language is limited. It supports only
equalities, regular expressions and wildcards combined with
the AND, OR and NOT boolean operator, thus making the

matching procedure purely string oriented. Our scheme
provides a richer collection of operators and matching
mechanisms.

3rd. Service Discovery Protocols
The Service Location Protocol [15] is a protocol for

discovering network services with a different query language
that firstly indicates the type of service that is being searched
and then the attributes of this service in a structure-free
manner. The services register with a central directory agent
that maintains all the necessary information about the available
services and handles the client requests. Our approach is not
restricted to only network services and it does not include a
centralized repository of user registration information.
Moreover our query language has more operators and a query
modification machanism that is applied on the result of the
query.

The Secure Service Discovery Service [5] proposes an
architecture of hierarchically connected directory servers that
maintain the descriptions of network services in XML [2].
Additionally the servers exchange indexing information in the
form of lossy compressed summary service records. The query
language [16] used by SDS is based on the XML, and it is less
expressive than our query language since it is oriented to
search through XML structured information.

4th. Intentional Name Resolution
Intentional Name Resolution [1] from MIT addresses the

descriptive name resolution and application level packet
forwarding problem by creating a distributed system of
descriptive name resolvers (INRs). These resolvers are also
responsible for disseminating routing information about the
registered intentional names. Networked entities are described
with attribute value pairs that are hierarchically structured in
order to narrow down the search space. However this approach
has the drawback that the queries must also be structured in the
same way that the information is structured. Therefore the
entities issuing queries must know the exact information
structure so that their queries are correctly resolved. Our flat
naming scheme does not impose this limitation and it enables
us to also incorporate information similarity indicators that can
be used for evaluating the relevance of a descriptive name.

F. FUTURE WORK

The current status of the implementation enables a SIP user
to invite another user issuing a query with the following
modifiers: a) ANY: return any record that matched the query,
b) ALL: return all records that matched the query and c)
NEARESTFROM(x,y,z): Return the records that are nearest to
the given point d) modify and delete attributes thus changing
the behavior of the query matcher. If an entity d changes a type
of service, it can use this mechanism to update its registration.

The scope of the registration messages can be selected by
the client so as to minimize the amount of the forwarded
registration messages and the amount of storage for each
server. This solution however calls for an indexing scheme
since the unsatisfied queries in one server will be virtually

broadcasted in the whole network of the location servers. This
problem can be solved by having the registration and update
messages forward the attribute names beyond the scope of the
message. In this way each neighbor in the neighbor table will
have a list of attribute names that the server knows something
about. The server either has at least one record that includes
this attribute name or it knows another server that has similar
information. In this way the queries are forwarded to the
neighbors that have some information about some attribute
names. In addition to maintaining attribute names each
neighbors can have indexes of attribute names as well as the
ranges of the values of attributes. Moreover an indexing
scheme similar to the one used in [4] can also be employed.

With the attribute based naming system in which the queries
are an important part (for the INVITE requests and for the
application level forwarding), the SIP users can implement
some interesting types of services like the following:
1. The users can register with the following attributes: i)

DISCLOSE_USER = [userlist] which means that if the
user that issues the query is in the user list then and only
then a matched record is disclosed and it is taken in
account for the filtering process that the modifier imposes,
ii) DISCLOSE_MACHINE = [machinelist]; in this case
the records are disclosed if the originating client issues the
query from a machine listed in the machinelist, iii)
DISCLOSE_TIME[FROM-TO]; this attribute is used by a
user that requests from the system to disclose her
information if the query is issued in the time interval
[FROM-TO].

2. A message system can be implemented using the
application level forwarding ability of the location server.
This can be done by encapsulating the application level
forwarding message inside an INVITE request by using
the “Require” keyword in the SIP packet. A unified
messaging system was proposed by [13], which involves
SIP and RTSP (Real Time Streaming Protocol). Our
system enables a different architecture for implementing a
messaging system using the added functionality of the
location service.

3. Since a query can be forwarded in the network of the
location servers it would be good if the location server
had the ability communicate with SIP clients and servers.
The intuition behind this is that a query may reach a
destination user’s network and then return to the
originating user. After that the originating user sends an
INIVTE request. If the location server is able to play the
role of a proxy it can initiate a call thus eliminating one
roundtrip message exchange.

G. CONCLUSION

The Session Initiation Protocol is used to setup real-time
sessions among users that register with a SIP Server using user
names that resemble an e-mail address. The location server
utilizes the user information in order to find the user’s contact
information, which serves as the other communicating party’s
SIP address. In this paper we deal with the problem of making
the INVITE requests address a user with a more natural way
by using attribute value pairs. We have presented the overall

architecture for two types of location servers, a centralized and
a distributed one. A distributed location server enables a user
to register locally while it can be found by any other SIP
server that uses another location server connected with the
former one. This can be done either with full replication of the
location information or with scoped registration and indexing
of the attribute names. Along with the ability to locate mobile
users a messaging service based on the application level
forwarding feature can be implemented.

The attribute based naming system proposed for the location
server enables the SIP users to initiate calls to users whose
exact SIP addresses may not be known. The only requirement
is that the users register with enough attribute value pairs so
that other users can discover them using the proposed attribute
based location service.

H. REFERENCES
[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, J. Lilley, ”The

Design and Implementation of an Intentional Naming System”
Operating Systems Review, vol.33, no.5, Dec. 1999. pp. 186-201.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, “Extensible
Markup Language (XML) 1.0 (Second Edition)”, W3C
Recommendation, October 2000, http://www.w3.org/TR/REC-xml.

[3] A. Carzaniga, D.S. Rosenblum, A.L. Wolf, ”Achieving
Expressiveness and Scalability in an Internet-Scale Event Notification
Service”, Proceedings of the Nineteenth ACM Symposium on Principles
of Distributed Computing (PODC2000), Portland OR. July, 2000.

[4] A. Carzaniga, D. S. Rosenblum,, A. L. Wolf
”Content-Based Addressing and Routing: A General Model and its
Application”, Technical Report CU-CS-902-00, Department of
Computer Science, University of Colorado, January, 2000.

[5] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, R. H. Katz,
“An Architecture for a Secure Service Discovery Service”, Proceedigs of
Fifth Annual International Conference on Mobile Computing and
Networks (MobiCom '99), pp. 24-35.

[6] P. Deutsch, R. Schoultz, P. Faltstrom, C. Weider, "Architecture of
the WHOIS++ Service", RFC 1835, August 1995.

[7] The Directory: Overview of Concepts, Models and Service. CCITT
Recommendation X.500, 1988.

[8] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg, “Session
Initiation Protocol”, RFC 2543, March 1999.

[9] K. Harrenstein , M. Stahl., E. Feinler, "NICNAME/WHOIS", RFC
954, October 1985.

[10] P. Maniatis, Mary Baker, "IdentiScape: Tackling the Personal
Online Identity Crisis.", Technical Report CSL-TR-00-804, Stanford
University, June 2000.

[11] P. Mockapetris, K. J. Dunlap, “Development of the Domain Name
System”, Proceedings of SIGCOMM ’88, pp. 123-133.

[12] R. Pandya, “Emerging mobile and personal communication
systems”, IEEE Communications Magazine, vol. 33 , pp. 44-52, June
1995].

[13] K. Singh, H. Schulzrinne, “Unified Messaging using SIP and
RTSP”, IP Telecom Services Workshop, Sept. 11, 2000. Atlanta,
Georgia.

[14] D. Tennenhouse,”Proactive Computing” Commun. ACM 43, 5
(May. 2000), pp. 43-50

[15] J. Veizades, E. Guttman, C. Perkins, S. Kaplan, “Service Location
Protocol”, RFC 2165, June 1997.

[16] Xset Database and Query Engine,
http://www.cs.berkeley.edu/~ravenben/xset/

[17] W. Yeong, T. Howes, S. Kille, “Lightweight Directory Access
Protocol”, RFC 1777, March 1995.

[18] http://www.3com.com/products/sip/index.html
[19] http://www.cs.columbia.edu/~hgs/sipc/

