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Abstract

Virtual Network Address Translation (VNAT) is a novel architecture that allows transparent migration of end-to-end live
network connections associated with various computation units. Such computation units can be either a single process, or
a group of processes of an application, or an entire host. VNAT virtualizes network connections perceived by transport
protocols so that identification of network connections is decoupled from stationary hosts. Such virtual connections are
then remapped into physical connections to be carried on the physical network using network address translation. VNAT
requires no modification to existing applications, operating systems, or protocol stacks. Furthermore, it is fully compatible
with the existing communication infrastructure; virtual and normal connections can coexist without interfering each other.
VNAT functions entirely within end systems and requires no third party proxies. We have implemented a VNAT proto-
type with the Linux 2.4 kernel and demonstrated its functionality on a wide range of popular real-world network applica-
tions. Our performance results show that VNAT has essentially no overhead except when connections are migrated, in
which case the overhead of our Linux prototype is less than 7 percent.
1 Introduction
Ubiquitous mobile computing is a coming reality, fueled in part
by continuing advances in wireless transmission technologies and
handheld computing devices. As computations are increasingly
networked, mobility in data networks is becoming a growing ne-
cessity. Examples of this demand include laptop users who would
like to roam around the network without losing their existing con-
nections, system administrators of network service providers who
would like to move running server processes from one machine to
another due to maintenance or load balancing requirements with-
out service disruption, and scientific users who would like to
move their long-running distributed computations off to another
machine due to faulty processor or power failure without having
to restart the computation all over again. However, data networks
today offer very limited support for mobility among communicat-
ing devices. One can not move either end of a live network con-
nection without severing the connection.

The lack of system support for mobile data communication today
is due to the fact that the current de facto worldwide data network
protocol standards, the Internet Protocol (IP) suite, were designed
with the assumption that devices attached to the network are sta-
tionary. In addition, higher layer protocols such as TCP/UDP in-
herit this assumption. The key problem is that network connection
properties are shared among many entities, across network proto-
cols, transport protocols, and applications. For example, TCP/
UDP uses IP addresses to identify its connection endpoints; and
applications use sockets, which are typically bound to IP address-
es and TCP/UDP port numbers, for their network I/O. Clearly,
such information sharing makes it very difficult to change the net-
work protocol endpoints without disrupting the transport proto-
cols and/or the applications. A large amount of research has been
conducted in an effort to overcome this deficiency [MB98-2,
Perk01, Perk96, QYB97, SB00, ZD95]. However, previous ap-
proaches either require changes to network or transport layer pro-

tocols, or suffer from substantial performance penalties [ZM01],
which limit their deployment.

To effectively support efficient transparent migration of end-to-
end live network connections without any changes to existing net-
work protocols, we introduce Virtual Network Address Transla-
tion (VNAT). VNAT is a novel mobile communication
architecture that enables connection mobility for a spectrum of
computation units, ranging from a single process to the entire host.
VNAT utilizes three key mechanisms to enable transparent live
connection mobility: connection virtualization, connection trans-
lation, and connection migration. VNAT connection virtualiza-
tion virtualizes end-to-end transport connection identification by
using virtual endpoints rather than physical endpoints (e.g., IP ad-
dresses and port numbers). As a result, connection identifications
no longer depend on lower layer network endpoints and are no
longer affected by the movement of network endpoints. VNAT
connection translation translates virtualized connection identifi-
cations into physical connection identifications to be carried on
the physical network. As connections migrate across the network,
their virtual identifications never change. Instead, they are
mapped into appropriate physical identifications according to the
endpoints’ attachment to the physical network. VNAT connection
migration keeps states and uses protocols to automate tasks for
connection migration such as keeping connection alive, establish-
ing a security key, locating migrated endpoint(s), and updating
virtual-physical endpoints mappings.

VNAT is fully compatible with and does not require any modifi-
cations to existing networking protocols, operating systems, or
applications. It can be incrementally deployed and operates entire-
ly within communicating end systems without any reliance on
third party services or proxies. VNAT assumes no specific trans-
port protocol semantics and therefore can be easily adapted to any
transport protocol. It also supports both client and server mobility
and does not put any restriction on the mobility scope. We have
1



implemented VNAT as a loadable kernel module in Linux 2.4.
Our experience with VNAT shows that it works effectively with a
wide range of popular real world applications. Our experimental
results on an unoptimized VNAT prototype show that VNAT im-
poses almost no overhead except when connections are migrated,
in which case the overhead of our prototype is between 2 to 7 per-
cent for the applications tested.

This paper describes the VNAT architecture with a focus on the
VNAT connection migration mechanism and is organized as fol-
lows. Section 2 surveys related work. Section 3 presents the main
VNAT architecture concepts and constructs. Section 4 illustrates
how VNAT can be used in a few example connection migration
scenarios. Section 5 describes the implementation of our VNAT
prototype in Linux 2.4. Section 6 shows experimental results that
measures the performance overhead of our VNAT prototype. Fi-
nally, we present some concluding remarks.

2 Related Work
A variety of approaches have been taken in previous work in pro-
viding communication mobility in current (IP) data networks.
These approaches can be loosely classified as network layer mo-
bility mechanisms, transport layer mobility mechanisms, proxy-
based mechanisms, and socket library mechanisms. We discuss
these approaches and also describe related work in process migra-
tion and network address translation.

MobileIP [Perk01, Perk96] is the best-known network layer mo-
bile communication architecture. MobileIP allows a host to move
freely across the Internet without having to change its assigned
“home” IP address. As a result, the movement of the host is trans-
parent to layers above network layer. Therefore, MobileIP does
not require any modification to existing protocols and applications
above network layer. MobileIP only provides communication mo-
bility at the granularity of an entire host. It does not provide finer
granularity mobility of individual end-to-end connection between
two applications because network protocols are indifferent to
higher layer “connections”. Unfortunately, MobileIP requires net-
work layer protocol changes that are costly and make it very dif-
ficult to deploy. 

To allow migration of individual end-to-end connections between
two applications rather than just the entire host, [SB00] recently
proposed a transport layer mobility architecture called Migrate.
Since traditional transport protocols are not built with mobility in
mind, Migrate introduces a new TCP option to support suspending
and resuming TCP connections. [SAB01] further considers fine-
grained failover of long-running connections across a collection
of replica servers and uses [SB00] as its vehicle for migrating TCP
connections. Migrate does not support migration of TCP connec-
tions for which both endpoints move simultaneously. Since Mi-
grate is TCP-specific and requires transport layer protocol
changes, its architecture also makes it difficult to deploy.

We note that MobileIP and Migrate also provide mechanisms for
mobile host location. MobileIP uses the notion of home and for-
eign agents to provide mobile host location technologies. Migrate
uses dynamic DNS updates [SB00]. Our work on VNAT focuses
on the “tracking” aspect of connection mobility while being com-
patible with and taking advantage of existing mobile host location
technologies, such as those used in MobileIP and Migrate.

MSOCKS [MB98-2] is a proxy-based mobility architecture based
on the “TCP Splice” [MB98-1] technique. Essentially, a single
TCP connection between a mobile client and a stationary server is
“spliced” (transparent to both the client and the server) by a proxy
in the middle into two separate TCP connections: one between the
mobile client and the proxy and the other between the proxy and
the stationary server. The proxy, acting as a “TCP connection
switch”, handles the disconnecting and reconnecting of the client-
proxy half of the TCP connection when the mobile client moves
and makes the single TCP connection between the mobile client
and the stationary server appear to be intact. Due to its reliance on
“TCP Splice”, MSOCKS assumes TCP as the transport protocol.
MSOCKS is designed to allow client mobility only; and the mo-
bility is usually confined within the subnet for which the proxy is
acting as the gateway. The use of a proxy avoids transport proto-
col changes but can limit scalability and performance.

Higher layer approaches such as [QYB97, ZD95] modify the
socket library to introduce another layer between the application
and the transport protocol. This layer maintains a location-inde-
pendent connection identification (usually the 5-tuple) invariant
to applications and “switches” the invariant onto an appropriate
real 5-tuple to maintain the TCP connection between two applica-
tions when one or both applications move. The invariant 5-tuple
idea is similar to VNAT’s connection virtualization idea. Howev-
er, similar to the proxy in MSOCKS, the extra layer is tied to the
transport protocol (i.e., TCP) and has to deal with TCP specific is-
sues to maintain the semantics of TCP when the application
moves. Due to the duplicated functions of the transport protocol,
the extra layer creates substantial performance overhead as shown
in [ZM01].

Much work has been done in the area of process migration
[MDW99]. Kernel-level and user-level mechanisms have been
previously developed that can migrate processes or groups of pro-
cesses from one machine to another. Although there is some lim-
ited work in this area on supporting networked processes using a
stub mechanism similar to the home agent idea used in MobileIP,
the work on process migration mostly focuses on non-networked
processes instead of communication mobility and is complemen-
tary to our work on VNAT.

VNAT make use of the well-known and widely used Network Ad-
dress Translation (NAT) technology [SE01]. Traditional NAT is
typically used to translate IP addresses from one realm to another.
The purpose of NAT is to provide transparent routing solution to
hosts using “private” IP addresses that cannot be routed on a “pub-
lic” network. This basic functionality of NAT, although not di-
rectly intended for mobility, turns out to be a powerful mechanism
for mobility solutions. As a matter of fact, [SH99] describes a
variation of NAT called “twice NAT” (modifying both source and
destination IP addresses) that can be used when a site changes its
Internet service provider and elects to keep its (internal) addresses
assigned by the first provider; and one can indeed consider the
case as a very rudimentary form of mobility. VNAT capitalizes on
this fundamental function of NAT and utilizes it to translate virtu-
al endpoints to and from physical endpoints for end-to-end trans-
port connections.

3 The VNAT Architecture
The VNAT architecture is based on the surprisingly simple idea
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of introducing a virtual address to identify a connection endpoint.
In current IP networks, the reason it is impossible to keep end-to-
end transport connections alive when one or both connection end-
points move is because physical network protocol endpoints are
used by transport protocol to identify its connections. VNAT uses
virtual addresses to break this tie between the transport protocol
and network protocol by virtualizing the transport endpoint iden-
tification. Once the transport endpoint identification is made inde-
pendent of network endpoint identification, the lifetime of a
transport connection is no longer limited by changes in network
endpoints. 

The VNAT architecture can be decomposed into three compo-
nents, as shown in Figure 3-1. VNAT connection virtualization is
the mechanism used to virtualize the endpoints. VNAT connec-
tion translation is the mechanism used to maintain proper associ-
ation and mapping between the virtual and the physical
identifications because only real network endpoints can be used
on the physical network to carry packets. VNAT connection mi-
gration facilitates the automation of keeping alive connections
during migration, locating the endpoints of a migrated connection
when it is resumed, and securing the migrating connection. As dis-
cussed in Section 5, these components can be implemented in a
single module that is simply downloaded, installed and executed
on end systems without any need to modify or reconfigure the net-
work infrastructure. We describe the function of these three com-
ponents in more detail in the following sections.

3.1 VNAT connection virtualization

The function of VNAT connection virtualization is to virtualize
the endpoints used by the transport protocol to identify its end-to-
end connections. An endpoint is virtualized by identifying it with
a virtual identification, which is a fictitious identification not tied
to any real physical endpoint. We refer to an end-to-end transport
connection identified by a pair of virtual endpoint identifications
as a virtual connection, while a connection identified by a pair of
physical endpoint identifications a physical connection. In
VNAT, virtual endpoint identifications do not change during the
lifetime of a virtual connection, even if the physical endpoints of
the underlying physical connection change. Since a virtual con-
nection is not tied to specific physical endpoints, it can be moved
freely among physical endpoints without changing its virtual end-
point identifications.

Depending on the specific transport protocol, a virtual identifica-
tion may take different forms. For example, with TCP/UDP, a vir-

tual identification is the combination of a network IP address and
a transport port number, both of which are virtualized by VNAT.
Throughout the paper, we use the generic term “virtual address”
to refer to a virtual identification of a combined virtual IP address
and virtual port number. However, the examples we use in this pa-
per will leave out the virtual port number for simplicity. The same
holds for the term “physical address”, which is the combination of
a physical IP address and a physical port number.

Let us use an example to explain the virtual connection idea. Al-
though VNAT is designed to be independent of any particular
transport protocol, throughout the paper we will use TCP as the
transport protocol to illustrate various functions of VNAT. Figure
3-2 illustrates how VNAT virtualizes a TCP connection. VNAT
intercepts connection setup requests from the application to the
transport protocol and replace the physical addresses supplied by
the application with virtual addresses. For example, a server typi-
cally calls bind with the address INADDR_ANY to indicate that it’s
willing to accept incoming connections from any of the physical
addresses assigned to the host. VNAT intercepts the bind call and
replaces INADDR_ANY with a virtual address 2.2.2.2. Similarly, a
client typically calls connect with the physical address,
20.20.20.20, of the server. VNAT intercepts the connect call and
replaces 20.20.20.20 with the virtual address 2.2.2.2. Note that
connect usually does an “autobind” for the client. This is also
handled by VNAT so that the client is bound to a virtual address
1.1.1.1 rather than the physical address 10.10.10.10.

Without explaining how such a virtualized connection can actual-
ly be established across the physical network, which is described
in Section 3.2, we can see the end result is that the TCP on both
the client and the server will perceive a virtual connection
{1.1.1.1,2.2.2.2} rather than a physical connection
{10.10.10.10,20.20.20.20} (note we ignore the order of source
and destination address pair in our discussion). This virtual con-
nection identification will stay unchanged for the life of the con-
nection no matter where the client or the server moves. For
example, should the client later decide to move to another host
with physical address 30.30.30.30, the virtual connection per-
ceived by both the client and the server will stay as
{1.1.1.1,2.2.2.2} rather than change to {30.30.30.30,

20.20.20.20}.

VNAT connection virtualization provides a simpler approach than
previous mobility approaches such as proxy-based mechanisms
and socket library wrappers. All VNAT does is to convince TCP
to use virtual IP addresses and ports rather than physical IP ad-
dresses and ports for connection identification. TCP treats a virtu-
al connection exactly the same as any other physical connections.
As a matter of fact, TCP does not even know the connection is vir-
tualized. All TCP semantics apply equally to the packet flow on a
virtual connection. Also note that the virtualization is done com-
pletely transparently to both the application and the transport pro-
tocol and requires no modification to either party. Unlike previous
approaches that strive to hide physical IP address changes from
applications when connections migrate, the philosophy behind
VNAT is to avoid such transport layer changes in the first place.

Although theoretically the virtual addresses can be anything that
is accepted by the transport protocol and this is what we used in
our example (e.g., 1.1.1.1 and 2.2.2.2), careful selection of the
virtual addresses can greatly simplify the system. Since both par-

Figure 3-1: VNAT architecture overview
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ties to a connection must be aware of the same virtual address pair,
there needs to be some way for each party to inform the other of
its virtual address. If an arbitrary choice of virtual addresses is
used as in our example with virtual addresses 1.1.1.1 and
2.2.2.2, additional communication and delay will be incurred for
every connection so that both parties to a connection can learn the
virtual address chosen by the other side. This extra delay would be
excessive if it was required for all connections, especially for
short-lived connections in wide-area networks that never migrate.

This extra delay can be avoided by simply selecting the virtual ad-
dresses to be the initial physical addresses associated with a con-
nection. In this way, no extra communication is required because
the virtual addresses are essentially known beforehand. In effect,
VNAT treats all physical connections as initially “implicitly” vir-
tualized, with the virtual addresses for the connections being the
same as the physical addresses. Note that when a connection end-
point moves to a different physical endpoint, the virtual address
for the endpoint does not change and is still the same as the initial
physical address, not the new physical address. This selection of
virtual addresses also has benefits for connection translation, as
discussed in Section 3.2.

3.2 VNAT connection translation

Once a TCP connection is virtualized, it’s ready to be migrated
anywhere without paying any attention to the physical IP address-
es to which the connection endpoints are attached. But connection
virtualization alone is not yet sufficient to allow packets to flow
over a virtual connection. Recall in Figure 3-2 that a packet with
header {1.1.1.1,2.2.2.2} sent by a client using TCP is never
going to go anywhere on the physical network; and the server us-
ing TCP is never going to receive a packet with header
{1.1.1.1,2.2.2.2} from the physical network.

VNAT connection translation makes it possible to communicate
over virtual connections by translating a set of virtual addresses
associated with virtual transport endpoints to and from a physical
address associated with a physical network endpoint. VNAT con-
nection virtualization creates the virtual addresses while VNAT
connection translation maintains the proper association and map-
ping between the virtual addresses and the physical network ad-
dresses. VNAT connection translation is done using well-known
NAT technology, which is commonly used in the network layer
today. However, instead of translating a set of “private” addresses
on the LAN side to and from a “public” address on the WAN side,
VNAT uses NAT concept to translate between virtual and physi-
cal addresses. Note that VNAT connection translation is done

transparently below the transport protocol and therefore requires
no modification to the transport protocol. 

We illustrate VNAT connection translation by continuing with
our example from Figure 3-2. In Figure 3-3, it is clear that a packet
with header {1.1.1.1,2.2.2.2} sent by the client TCP must be
translated into a packet with header {10.10.10.10,

20.20.20.20} for it to reach the intended server. Similarly, a
packet with header {10.10.10.10,20.20.20.20} must be trans-
lated back into a packet with header {1.1.1.1,2.2.2.2} for it to
be accepted by the server TCP. 

Using the initial physical addresses of a connection as its virtual
addresses has benefits for VNAT connection translation as well.
Because the virtual and physical addresses are the same for a con-
nection that does not migrate, there is no need to perform connec-
tion translation for connections that have not migrated. As a result,
no translation overhead will ever be imposed on a connection so
long as it does not move. Connection translation is only necessary
for connections after they migrate, so only migrated connections
will incur any connection translation overhead.

3.3 VNAT connection migration

VNAT connection migration builds on VNAT connection virtual-
ization and translation to provide the mechanisms necessary to ac-
tually move a connection from one machine to another. VNAT
connection virtualization and translation make an end-to-end
transport connection “migratable” (can be freely moved) and
“alive” (packets can flow). VNAT connection migration enables
connections to be suspended at one location and resumed at anoth-
er. To suspend a connection, VNAT does not need to do anything
at all, but it does provide optional functionality to establish a se-
curity protection key, determine the migration roles of the end-
points of a migrating connection, and activate a connection
migration helper. To resume a suspended connection, VNAT lo-
cates the migrated endpoints, verifies the security protection key
if it is available, and updates the appropriate virtual-physical end-
point mappings. The protocol messages used by VNAT connec-
tion migration to perform its various functions are collectively
called the VNAT Connection Migration Protocol (VCMP). The
various functions in the timeline of a typical connection migration
are described in further detail in the following sections.

3.3.1 Suspend a connection

VNAT is designed to work with a variety of mechanisms for sus-
pending and migrating a connection endpoint. A connection end-
point may move when the hardware associated with the

Figure 3-2: VNAT connection virtualization

server
bind[INADDR_ANY]1

TCP
IP

3

client
connect[20.20.20.20]

TCP
IP

9 bind[2.2.2.2]

8

{10.10.10.10, 20.20.20.20}

{1.1.1.1, 2.2.2.2}

connection
virtualization

NIC(virtual)
10.10.10.10

NIC
1.1.1.1

NIC(virtual)
20.20.20.20

NIC
2.2.2.2

connection
virtualizationsocket socket

autobind[1.1.1.1] connect[2.2.2.2]
4



connection moves its network location or when the process asso-
ciated with the connection moves from one machine to another.
For example, the connection endpoint may move because its host
laptop is suspended, disconnected from the network, and moved
and resumed in another place. Alternatively, the endpoint may
move with a process that has been moved via an operating system
process migration mechanism. Yet another way in which a con-
nection endpoint may move is to simply unplug the network cable
of a host and move the host. VNAT simply needs to be notified of
the event of suspending a connection. We have in fact integrated
VNAT with APM for moving suspended laptops and also built a
process migration mechanism to operate with VNAT to enable
migration of various computation units. However, a discussion of
these systems is beyond the scope of this paper. 

Because a connection may be suspended and migrated without
any notification as in the case of unplugging the network cable of
a host and moving it, VNAT is designed to provide connection mi-
gration without any required processing or saving of state at the
time a connection is suspended. VNAT can perform all of its nec-
essary processing for connection migration when a connection is
resumed. However, VNAT can provide additional benefits if it is
able to perform some functions when a connection is suspended.
These optional functions are discussed further below.

3.3.1.1 Establish security protection key

After a connection endpoint migrates, it needs to inform the other
endpoint to update the virtual-physical address mapping for a vir-
tual connection. This potentially leaves the door open for a mali-
cious process to “hijack” the network connection of another
process. For example, the malicious process can send a fake up-
date message to a server, causing the server to map a virtual con-
nection to a physical connection that is destined to the malicious
process. Thus traffic intended for the original process is now be-
ing sent to the malicious process.

This scenario is very similar to the security problem with “binding
updates” in MobileIP where a mobile node informs its home agent
or correspondent node about its new care-of address. MobileIPv6
mandates the use of IPsec authentication (IPsec AH) [KA98] for
binding updates and binding acknowledgements. In the absence of
IPsec AH, [OR01] has proposed a unilateral authentication proto-
col (CAM) for MobileIPv6 binding messages. Although VNAT
can make use of these solutions, both IPsec AH and CAM (which
is specifically designed for IPv6) are not yet widely deployed.

To address the problem of connection hijacking, VNAT provides
the ability to protect each virtual-physical address mapping for a

virtual connection by a secret key shared between the two end-
points. The key is established between the two endpoints at the
time when a connection is suspended for migration. Note again
that the key exchange only happens if a connection is to be migrat-
ed. VNAT is designed to use existing techniques, such as Diffe-
Hellman [DH79], to establish the key. Diffe-Hellman is particu-
larly suited for VNAT because the secret key can be established
over a public network without any prior shared knowledge be-
tween the two endpoints. At the time of resuming a migrated con-
nection, exchange of virtual-physical address mapping update
messages is protected by the mutual authentication of the two end-
points through the secret key. It is assumed that the secret key is
part of the connection state saved and transported by the migration
mechanism used.

3.3.1.2 Determine migration roles

When a connection is suspended, VNAT can set up some state to
differentiate between the roles played by the two endpoints after
their migration. One role is called the primary, and the other the
secondary. The purpose of this option is to minimize the protocol
messages exchanged between the migrated endpoints for locating
each other when they are resumed. This will become clear later on
when we describe how migrated endpoints locate each other in
Section 3.3.2.1.

When one endpoint is about to migrate and before it suspends, it
sends a VNAT_SUSP_PRIMARY message to its peer claiming
the role of the primary. If an endpoint receives a
VNAT_SUSP_PRIMARY message before it sends its own, it re-
plies with a VNAT_SUSP_SECONDARY message to accept the
role of the secondary (Figure 3-4(a)). Otherwise, the
VNAT_SUSP_PRIMARY messages sent by both endpoints
would have crossed each other and a simple arbitration mecha-
nism is used to decide which is the primary and which is the sec-
ondary. For example, the host with a “higher” IP address can be
the primary (Figure 3-4(b)). In case of an arbitration taking place,
there will be no further reply sent to each other by the two end-
points. Note that in the case of only one endpoint moves, the mov-
ing endpoint will always become the primary through message
exchange (a).

3.3.1.3 Activate connection migration helper

When only one endpoint of a live network connection is suspend-
ed for migration, it may be desirable to provide additional func-
tionality to preserve the connection while one endpoint is
suspended. In order not to require application modification and
not to tie the core VNAT architecture to any particular applica-

Figure 3-3: VNAT connection translation
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tion, VNAT uses the concept of a connection migration helper to
address this issue.

A connection migration helper is a user-defined function that
“hooks” into the VNAT system through a well-defined interface.
Once activated for a virtual connection whose other end is sus-
pended and being migrated, it is the responsibility of the helper
function to monitor potential outgoing traffic on the virtual con-
nection and to buffer and/or respond to the traffic in any applica-
tion-specific manner. There are two types of outgoing traffic a
helper function has to deal with:

(1) a “keepalive” message sent by the transport protocol indepen-
dent of the application. This is relatively easy to deal with and
can be done in an application-independent manner.

(2) a generic message sent by the application. This is more diffi-
cult and may require the helper to have detailed understand-
ing of the application’s semantics. Alternatively, a more
generic helper may be used that essentially blocks the corre-
sponding process associated with the live endpoint of the con-
nection.

VNAT maintains a repository of helper programs. Helpers for
known application protocols such as TELNET, FTP, SSH, and
HTTP, etc., are shared by applications and must be installed by
privileged users such as root. Unprivileged users can also submit
their own custom helpers and request these helpers on the remote
end for their connection migration. These custom helpers run in
unprivileged mode and have access to only the connections their
are intended for. With connection migration helpers, VNAT can
achieve true migration of live connections without any data loss
for the duration of the migration while keeping the core of the
VNAT architecture independent of application specifics.

3.3.2 Resume a connection

Resuming a connection is the reverse of suspending a connection.
If a connection endpoint is migrated by checkpointing a process,
the saved the process states are restored and the process is restart-
ed. If an entire host was suspended, the states of the entire host are
restored and the host is resumed. If it is just the network cable that
was unplugged, one can simply just reconnect the network cable.
VNAT simply needs to be notified after the appropriate states
have been restored but before the process or host are resumed.

3.3.2.1 Locate migrated endpoints

When only one endpoint of a connection migrates, it is trivial for
the migrated endpoint to find its peer because the existing connec-
tion states tell where its peer is. When both endpoints of a connec-
tion migrate, however, there must be a mechanism for the two

endpoints to inform each other their new location if neither end-
point is aware where the other party is migrating beforehand.
There are several potential approaches for the problem. For exam-
ple, one approach can use a well-known server that is consulted by
both endpoints to find out the new location of each other after mi-
gration. Another approach is for both endpoints to leave new lo-
cation states at their original location. VNAT combines both
approaches to take advantage of existing connection states that is
being migrated. However, we note that VNAT does not leave
states behind when a connection is suspended. It only stores the
new location state at the old locations when a connection is re-
sumed.

Recall in Section 3.3.1.2 that as part of connection suspension
procedure, the two endpoints will negotiate their roles as primary
and secondary via VCMP. The procedure for locating each other
carried out by the primary and the secondary host after migration
and during restart is illustrated in Figure 3-5 and described below.

The primary follows these procedure to locate the secondary:

P(1) Contact the old location of the secondary and query for the
new location of the secondary. If successful, go to P(4); oth-
erwise (the secondary has not resumed yet), attempt to store
its own new location so it can be looked up when the second-
ary is resumed. If successful, the procedure finishes and the
primary returns to suspended state (the length of the suspen-
sion is a policy decision that can be negotiated at the connec-
tion suspension time); otherwise (this happens when the
entire secondary has moved),

P(2) Contact the old location of the primary, perform the same
query and store operations as in P(1). If both query and store
operations fail (this happens when the entire primary has
moved),

P(3) Contact one or more predefined location servers, perform
the same query and store operations as in P(1). If both query
and store operations fail, the location of the secondary can-
not be determined and the migration of the connection will
be aborted.

P(4) Once the primary learns the new location of the secondary,
it uses VCMP update message (described in Section 3.3.2.3)
to communicate with the secondary and update the virtual-
physical address mapping for the migrated virtual connec-
tion.

The secondary follows almost exactly the same procedure except
the order of contacting the old locations are switched.

S(1) Contact the old location of the secondary (instead of the pri-
mary) and query for the new location of the primary. If suc-

Figure 3-4: Determine migration roles
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cessful, goto S(4); otherwise, attempt to store its own new
location so it can be looked up when the primary is resumed.
If successful, the procedure finishes and the secondary re-
turns to suspended state; otherwise,

S(2) Contact the old location of the primary and perform the same
query and store operations as in S(1). If both query and store
operations fail (this happens when the entire primary has
moved),

S(3) Contact one or more predefined location servers, perform
the same query and store operations as in S(1). If both query
and store operations fail, the location of the primary cannot
be determined and the migration of the connection will be
aborted.

S(4) Once the secondary learns the new location of the primary,
it uses VCMP update message (described in Section 3.3.2.3)
to communicate with the primary and update the virtual-
physical address mapping for the migrated virtual connec-
tion.

Readers can now see the purpose of differentiating the roles of the
primary and the secondary when the migrated endpoints try to lo-
cate each other. It is used so that the two endpoints can “meet”
each other at a common location more quickly rather than “cross”
each other. For example, if the protocol didn’t differentiate the
two endpoints and simply stated that an endpoint should always
go to its peer’s old location first when resumed, we could see that
the first try by both endpoints will always fail.

Recall from Section 3.3.1 that a connection may be migrated by
simply unplug the network cable of the host and move the host to
another place. In this case, VNAT on both ends will never have a
chance to negotiate the roles. Or the user has simply turned off the
option for negotiating the roles. Either way, when the connection
is being resumed and there is no roles negotiated, VNAT on both
ends will default to the primary role independent of each other.
From our previous description, this is the same case as when the
protocol does not differentiate the roles. It will not cause any ad-
ditional message exchanges in the case of only one endpoint
moves. For the case of both endpoints move, they will “cross”
each other on the first try since they both assume the primary role
and will contact each other’s old location first. But eventually they
will locate each other either at one of the old locations or at the lo-
cation server.

The function of the location server is similar to that of home/for-
eign agent used in MobileIP and dynamic DNS update used in
[SB00]. It maps an invariant virtual connection tuple (a pair of vir-
tual addresses) into the current physical address (IP address and
port number) of either the primary or the secondary of the virtual
connection. In the case of MobileIP, an invariant home IP address
of a mobile host is mapped into its current IP address; and in the
case of [SB00], an invariant DNS name of a mobile host is
mapped into its current IP address. We can use these mechanisms
to provide the functionality needed by our location server; there-
fore avoid unnecessary re-engineering. Note also that consulting
a location server, which usually requires manual configuration, is
used as a last resort when attempts for the migrated endpoints to
locate each other through their old locations have failed.

3.3.2.2 Verify security protection key

After the migrated endpoints locate each other and before any vir-

tual-physical address mapping update for virtual connections can
happen, the two endpoints must verify, for every virtual connec-
tion to be updated, the security protection key they established at
the time when the connection was suspended. The exact process
obviously depends on the particular security mechanism in use.
For example, when using Diffie-Hellman, one endpoint can sim-
ply encrypt the update request message with the secret key; the
other endpoint can decrypt the request only if it possesses the
same secret key. Recall that the secret key is part of the connection
states saved and transported by the migration mechanism. If no se-
curity protection key was established when the connection was
suspended and if VNAT is not configured to guarantee security,
then there is no security key to verify and the connection is simply
resumed.

3.3.2.3 Update virtual-physical endpoints mapping

When a connection endpoint migrates to a new location, its virtual
address stays unchanged and therefore the virtual connection will
stay intact. However, this virtual address now has to be mapped to
and from a new physical address for the continued flow of packets
over the virtual connection. The virtual-physical address mapping
is updated by exchanging two simple messages, VNAT_UPD and
VNAT_UPD_R.

(1) VNAT_UPD message

To resume a connection at a new location, the VNAT system run-
ning at the new location sends a VNAT_UPD message to notify
the corresponding VNAT running on the remote peer to update its
virtual-physical address mapping for a virtual connection. The
format of the VNAT_UPD message is shown in Figure 3-6. The
message contains the virtual addresses of both endpoints as well
as the physical address of the new location. For implementation
efficiency, the message format is aligned on a 32-bit address
boundary.

• Version: VCMP version
• Command: VNAT_UPD
• R_Vir_Port: old remote virtual port
• R_Vir_Addr: old remote virtual address
• L_Vir_Addr: old local virtual address
• L_Phy_Addr: new local physical address
• L_Vir_Port: old local virtual port
• L_Phy_Port: new local physical port

Upon receiving a VNAT_UPD message, VNAT searches its vir-
tual-physical address mapping table for a virtual connection
{L_Vir_Addr:L_Vir_Port, R_Vir_Addr:R_Vir_Port}. If the vir-
tual connection is found, its remote physical address and physical
port are updated by the L_Phy_Addr and L_Phy_Port fields sup-
plied in the message, and connection translation NAT rules for the
virtual connection is updated accordingly.

(2) VNAT_UPD_R message

Figure 3-6: VNAT_UPD message
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The VNAT_UPD_R message is sent by VNAT in response to a
VNAT_UPD message. It contains the new virtual-physical ad-
dress mapping on the recipient side, if any, for a virtual connection
identified by the sender’s VNAT_UPD message. The format of
the VNAT_UPD_R message is shown in Figure 3-7.

The fields in VNAT_UPD_R message are the same as those in
VNAT_UPD message except the fields used for identifying the
virtual connection are not used.

Upon receiving a VNAT_UPD_R message, VNAT updates the
remote physical address and physical port of the migrated virtual
connection returned in the L_Phys_Addr and L_Phy_Port fields,
and updates the connection translation NAT rules for the virtual
connection accordingly.

3.3.2.4 Deactivate connection migration helper

If a connection migration helper was activated when the migrated
connection was suspended, VNAT notifies the helper that the con-
nection has been restored. The helper can then perform any neces-
sary operations to deactivate gracefully. This may be as simple as
just unloading a kernel module or stopping a userspace program.
It may also be as complex as playing back buffered data seamless-
ly, requiring an understanding of application semantics. Due to
space constraints, a detailed discussion of the operation of connec-
tion migration helpers is beyond the scope of this paper.

3.4 Other architectural issues

We consider, in this subsection, certain architectural issues that,
although orthorgonal to the VNAT architecture itself, are never-
theless important ones and worth mentioning.

3.4.1 Support connectionless protocols

Our discussion so far has implicitly concentrated on connection-
oriented transport protocols using TCP as our example. The rea-
son we focused on connection-oriented transport protocols is be-
cause today the most popular internet applications, such as remote
login (e.g., TELNET, SSH), file transferring (e.g., FTP), web
(e.g., HTTP), email (e.g., SMTP), news (e.g., NNTP), and text-
based chat (e.g., IRC), etc., are all based on TCP. However, we be-
lieve it is important to understand the relative merit in how to sup-
port connectionless transport protocols due to a couple of reasons.
First, many multimedia applications, which are becoming increas-
ingly popular, use UDP based protocols such as RTP [SCFJ01].
Second, even though there is no concept of a “connection” with
connectionless transport protocols, applications using these proto-
cols often maintain by themselves some notion of a “connection”
at the application level; although the applications usually do not
expect either end of the “connection” to move.

Because the “connection” is maintained by the application itself
rather than the transport protocol, it is necessary to hide from the
application the current physical host location in order to virtualize

such application-level “connection” without any modification to
the application. VNAT provides such a mechanism as an option
on a per application base. When the option is turned on, VNAT
will hide from the application the fact that its location or its peer’s
location has changed; therefore enable transparent migration of
such UDP based “connections”. However, we would like to point
out that in doing so we are also violating the conventional trans-
port protocol behavior, which is to always tell applications the
truth of the current host location. VNAT is committed to be com-
patible with existing networking protocols and therefore will not
by default hide host location change from applications.

3.4.2 Resolve virtual addresses conflict

As connection endpoints migrate from host to host, so do the vir-
tual identifications for the endpoints. This creates a situation
where a virtual identification may be reused after it migrates to an-
other host. For example, a process on host C at port P1 connecting
to a host S at port P2 may be migrated to another host C’. Later,
another process on C may reuse P1 for its connection to S at P2.
Another possibility is that the whole host C might be migrated to
another place and later its original IP address is recycled by a new
host and P1 is reused by a process on the new host.

In either case, as long as the original connection made by C from
P1 to S at P2 is still alive somewhere, no other process can make
a connection to S at P2 originating from C at P1. Note that this re-
striction is imposed by the transport protocol itself rather than
VNAT. IP addresses and port numbers are considered as “hard”
resources that cannot be shared by different connections. When a
connection migrates, even though it might be physically disasso-
ciated with a host, as far as the transport protocol is concerned, the
IP address and port number are still in use. Although it is desirable
to allow reuse of these resources on a different physical host, it
would require changes in the transport protocol itself.

There is also a situation when processes are indeed able to reuse a
pair of virtual addresses still in use to make a new connection.
This happens with both endpoints of a connection migrate. For ex-
ample, {C, P1; S, P2} can be used for a virtual connection be-
tween C and S and the virtual connection is migrated to between
C’ and S’. Now the virtual address {C, P1; S, P2} can be reused
for another connection between C and S. However, if either end-
point of the new connection were to migrate to C’ or S’, either sep-
arately or simultaneously, there would be a conflict of the virtual
address {C, P1; S, P2} at either C’ or S’ or both.

One solution for this problem is to disallow reuse of virtual iden-
tifications, i.e., a virtual identification can not be used until a pre-
vious connection that uses the same virtual identification has been
closed. This approach however has a couple of serious drawbacks.
First, it requires leaving state behind on the “original” host to keep
track of which virtual identifications have migrated away but are
still in use. Second, it prevents efficient use of virtual identifica-
tions; it is really harmless as long as two connections with the
same virtual identification do not share a common host.

The approach adopted by VNAT is to allow reuse of virtual iden-
tifications but deal with conflicts as they occur. Because of the
condition for the conflict to occur, we believe that conflicts occur
rarely under normal circumstance. When a virtual identification
conflict does happen during a connection migration, a policy can
be set on a per-connection base to resolve the conflict by either

Figure 3-7: VNAT_UPD_R message
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aborting the migration or preempting the existing virtual connec-
tion on the target host.

3.5 Incremental usability

An important underlying design principle in VNAT is the idea of
incremental usability. VNAT provides a core set of functions to
support connection mobility, but it also provides additional fea-
tures which can be used incrementally. For instance, developers
and users do not need to do anything to allow existing applications
to work with VNAT without modification. However, VNAT en-
ables applications to provide richer functionality during connec-
tion migration by providing interfaces and mechanisms to support
application-specific helper functions. Similarly, VNAT provides
other functions that can be used when a connection is suspended
to improve security and performance, but these functions are op-
tional and need not be used to provide connection migration func-
tionality. 

VNAT also provides incremental usability in terms of deploy-
ment. Not only does VNAT facilitate easy of deployment by not
requiring changes to applications, operating systems, or network
protocols, but its architecture also facilitates deployment of its
functions in an incremental fashion. VNAT can be locally in-
stalled on any subset of systems to provide connection mobility
within those systems. It does not need to be installed in an entire
administrative domain to operate and is compatible with existing
network infrastructures. Furthermore, not all aspects of the VNAT
architecture need to be deployed when not all of its functionality
is required. For example, VNAT provides an optional location
server which can be deployed when migrating both endpoints of a
connection simultaneously. However, the location server is not
necessary in the common case when migrating only one endpoint
of a connection at a time. As discussed in Section 5, VNAT can be
implemented as a loadable kernel module that does not even re-
quire a system to be rebooted when VNAT is installed, which
makes it easier to deploy on shared servers that attempt to mini-
mize downtime. Furthermore because of how it selects the initial
virtual address, VNAT can be used to provide connection mobility
to connections that already exist even before VNAT is installed.

VNAT further facilitates incremental usability in terms of perfor-
mance. The computational cost of additional functionality in
VNAT is only paid for by those users and applications that use it.
In particular, non-migrating connections do not require any con-
nection translation or connection migration functionality, result-
ing in almost no extra VNAT overhead for such connections.

4 Example Migration Scenarios
Let’s now put all the pieces from previous sections together and
describe two typical scenarios and see how VNAT migrates a live
network connection. The two scenarios we describe are migrating
one endpoint of a connection and migrating both endpoints of a
connection.

4.1 Migrate one endpoint

Migrating one end of the connection is probably the most common
case of mobility today. For example, users connect their laptops at
work, suspend their laptops when they get off work and then re-
sume at home to continue working. Or business users travel
around with their laptops connecting to and disconnecting from

different networks all the time.

Assume a client on host 10.10.10.10 opens a TCP connection to
a server on host 20.20.20.20. As shown in Figure 4-1, the con-
nection is virtualized by VNAT and perceived by TCP on both the
client and the server as {10.10.10.10,20.20.20.20}. Note that
here, unlike in Figure 3-2 and Figure 3-3, we are using the initial
physical addresses as the virtual addresses based on our discus-
sion in Section 3.1. In this example, we assume the client migrates
and it doesn’t matter whether a process or the whole client host
migrates.

At the time of suspending the connection, the client will send a
VNAT_SUSP_PRIMARY message and will receive a
VNAT_SUSP_SECONDARY message and therefore claim the
role of the primary. Secret key will be established between the cli-
ent and the server and connection migration helper may be activat-
ed on the server for the migrating connection.

At the time of resuming the connection, the client VNAT at the
new location will, being the primary, try to contact the “old” loca-
tion of the server (rather than its own old location) following our
VCMP. And the client will trivially locate the “new” server loca-
tion. After verifying the secret key, the client will update the serv-
er with its new physical address 30.30.30.30. And both the client
and the server will start translating the virtual connection
{10.10.10.10,20.20.20.20} to and from the physical connec-
tion {30.30.30.30,20.20.20.20}. Note how the virtual connec-
tion {10.10.10.10,20.20.20.20} perceived by the client TCP
and the server TCP stays intact across the migration. And either
the client TCP or the server TCP is completely unaware of the
change of the underlying physical address of the client. So with
the addition cost of translating a virtual connection to and from a
physical connection, VNAT will seamlessly migrate a transport
end-to-end connection regardless of where the client moves.

4.2 Migrate both endpoints

We now look at the scenarios when both endpoints of a connection
migrate, which are a little bit more involving. Although we do not
expect such cases happen frequently today, we envision that in the
future when process migration technology has matured it would
not be uncommon to see such cases. The example we consider
here is when the whole client host migrates while only a process
on the server migrates. For instance, this could occur when a client
(laptop) is suspended and traveling and the process handling the
connection on the server end is moved off to another machine due
to maintenance or load balancing.

In this example, we assume for simplicity that the server will

Figure 4-1: Migrate one endpoint
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claim the primary role at the time of suspending the connection
since it has a “higher” IP address. We further assume that the mi-
grated server process will be resumed first.

When the migrated server process is resumed, the server VNAT at
the new location will, being the primary, try to contact the old lo-
cation of the client following our VCMP. Since the whole client
host has moved, the attempt will fail (step 1 in Figure 4-2). The
server VNAT will then try to contact its own old location which
will succeed since the server host didn’t migrate, just the process
(step 2). But when the server VNAT at the new location tries to
find out the new location of the client from the server VNAT at
the old location, it will fail because the client has not yet been re-
sumed. However, the server VNAT at the new location will be
able to store its new location on the server VNAT at the old loca-
tion for the client VNAT to look it up when the client host is re-
sumed. After the new location is stored, the migrated server
process will continue to be suspended.

At a later time when the client host is resumed, the client VNAT
will, being the secondary, try to contact the old location of the
server. It will succeed and be able to retrieve the new location of
the server process (step 3). Now both the client VNAT and the
server VNAT at the new locations can verify their secret key and
update their respective new physical addresses for the virtual con-
nection {10.10.10.10,20.20.20.20}, which will be translated to
and from the physical connection {30.30.30.30, 40.40.40.40}.

Because the original server host is still available after the server
process has migrated, VNAT on both the client host and the new
server host make use of the original server host to locate each oth-
er without having to go through a separate location server.

5 Implementation
We have implemented the VNAT system in the Linux operating
system as a loadable kernel module. As a result, VNAT can be
easily installed and used without modifying or recompiling the
operating system kernel. The module can be loaded at any time
and will commence virtualizing and translating connections as
needed once it is loaded. Since none of the connections will have
migrated before VNAT is installed, the virtual addresses used for
those connections will be the same as the respective physical ad-
dresses, requiring no change in kernel state to virtualize those con-
nections. As a result, VNAT can be used to provide connection
mobility to connections that already exist even before VNAT is
installed. All that is required is the creation of some VNAT inter-
nal state per connection, which can be easily obtained by reading

the existing network kernel state for each connection.

In the following sections, we describe some of the implementation
details of the connection virtualization, translation, and migration
components of the VNAT system. Section 5.1 describes how sys-
tem calls are intercepted to provide connection virtualization.
Section 5.2 describes how VNAT uses the Linux netfilter system
for connection translation. Section 5.3 describes how connection
migration is supported by the VNAT daemon that runs on each
system.

5.1 Intercept socket system calls

VNAT connection virtualization is implemented at the kernel
socket layer by intercepting socket calls that open and close con-
nections. All system calls on Linux goes through the entry rou-
tines in arch/i386/kernel/entry.S. These routines look up the
system call number passed in a register and jump to the value
stored in the system call table, essentially an array of function
pointers. So the standard way of intercepting system calls on
Linux is to write a kernel module that overwrites the relevant
function pointer with a pointer to one’s own code.

More specifically, we intercept three socket system calls: accept,
connect, close. When a connection is being setup and before
these calls reach the transport protocol, virtual addresses states are
saved for the virtual-physical address mapping for the connection.
VNAT saves a very small amount of state about the virtual con-
nection so that if the virtual connection were to be suspended and
migrated later, its physical mapping and other related OS states
can be quickly looked up given its tuple. When the connection is
closed, its associated address mapping states are cleaned up.

In addition, we also intercept the getsockname and getpeername
calls, which may seem strange since these calls have nothing to do
with opening and closing a connection. Recall in Section 3.4.1 we
discussed VNAT’s optional support for connectionless protocols
which requires hiding physical host location from the application.
And the getsockname and getpeername calls are what the appli-
cations use to find out the physical host location. In addition to
supporting connectionless protocol, certain “strange” applications
using connection-oriented protocol, notably FTP, explicitly check
the connection endpoints (using getsockname and getpeername
calls) for its protocol interaction. As a result, applications like FTP
are either not willing or not prepared to be moved. VNAT also
provides support for transparently migrating connections created
by this type of application using the same optional mechanism it
uses for supporting connectionless protocols. We note that appli-
cations like FTP are in the minority of existing network applica-
tions and can be identified and dealt with on a case by case base
using this option. We emphasis again that the default behavior of
VNAT is completely compatible with existing transport protocol
behavior.

5.2 Instrument netfilter hooks

VNAT connection translation is entirely done through the netfilter
system in the Linux 2.4 series kernel. Linux netfilter system is a
packet filtering and mangling system [Russ01]. It instruments the
IP protocol stack at well-defined points during the traversal of the
stack by a packet. It provide hooks that invoke user-registered
functions to process the packet at these well-define points. 

Figure 4-2: Migrate client host and server process

TCP

10.10.10.10

9

8

server

TCP

20.20.20.20

9

client

TCP

30.30.30.30

9

{10.10.10.10, 20.20.20.20}

{10.10.10.10, 20.20.20.20}

client

server

TCP

40.40.40.40

9

1. fail

2.
 s

uc
ce

ed3. succeed
10



For outgoing traffic, the VNAT system use the hooks
NF_IP_LOCAL_OUT for destination address translation
(DNAT) and NF_IP_POSTROUTING for source address transla-
tion (SNAT), respectively, to perform connection translation. For
incoming traffic, the VNAT system uses the hooks
NF_IP_PREROUTING for DNAT and NF_IP_LOCAL_IN for
SNAT, respectively, to perform connection translation.

Using the same example as we used in Section 3.1, we will illus-
trate how the translation is done. When the client tries to send a
packet, the TCP on the client side will construct a packet with
source address 1.1.1.1 and destination address 2.2.2.2 since the
connection has been virtualized. At the NF_IP_LOCAL_OUT
hook, a DNAT is performed on the packet to translate 2.2.2.2
into 20.20.20.20. This will allow correct routing functions to be
performed. Once the routing decision for the packet has been
made and before it is sent out to the appropriate interface, an
SNAT is performed at the NF_IP_POSTROUTING hook to trans-
late 1.1.1.1 into 10.10.10.10. This is necessary for the reply
packet to come back to the client. The process is illustrated in Fig-
ure 5-1. On the server, the reverse translation is done at the hooks

NF_IP_PREROUTING (DNAT) and NF_IP_LOCAL_IN
(SNAT).

5.3 Automate migration tasks

All the VNAT connection migration related tasks are done by the
VNAT daemon vnatd using VCMP without any manual interven-
tion. Vnatd is a very simple kernel thread that listens on a well-
known port (2031) and functions exactly the same as a normal
server process except it runs entirely within the kernel address
space for performance reasons. 

When vnatd is notified with a suspension event of a virtual con-
nection, it contacts the vnatd on the other end of the connection
and carries out the routine tasks for suspending a connection.
These tasks include establishing a secret key to protect the virtual-
physical address mapping update for the migrating connection,
negotiating migration roles to minimize the message exchanges
for locating the peer’s new location after migration, and activating
connection migration helper to keep the connection alive during
the migration.

After a virtual connection migrates, the vnatd will restore the con-
nection when it is notified with a resumption event. After locating
the peer’s new location, vnatd on both sides will verify the secret

key for the virtual connection established at suspension time, and
exchange VNAT_UPD and VNAT_UPD_R messages to update
their virtual-physical address mapping for the migrated virtual
connection.

6 Experimental Results
We present some experimental data measuring the performance of
our VNAT prototype implementation in Linux. We measured the
performance overhead of VNAT in terms of throughput, latency,
CPU utilization, and connection setup. We also measured the per-
formance overhead associated with resuming a migrated network
connection in a typical LAN environment. We have used VNAT
with a suite of popular real world applications and discuss some
of our experiences with the system.

To measure the performance overhead of VNAT, we compared
the performance of three different system configurations: Vanilla,
Netfilter, and VNAT. The Vanilla system is a stock Linux system
without either netfilter or VNAT loaded into the kernel. The Net-
filter system is a system with netfilter loaded into the kernel with-
out any rules configured. The VNAT system is a system with both
netfilter and VNAT loaded into the kernel. We measured the per-
formance of VNAT for two cases, which we refer to as VNAT1
and VNAT2. VNAT1 represents a VNAT system with all connec-
tions not migrated and hence only performing connection virtual-
ization. VNAT2 represents a VNAT system with all connections
migrated and hence incurs both connection virtualization and
translation overhead.

Our experiments were conducted using two machines: an IBM
ThinkPad 760 (TP760) with a 150Mhz Pentium CPU, 80 MB
RAM, and a Linksys PCMPC100 10/100 Ethernet PC Card, and
an IBM ThinkPad 770 (TP770) with a 266Mhz Pentium II CPU,
160 MB RAM, and a 3Com Fast EtherLink XL 3C575-TX 10/100
Ethernet PC Card. To ensure that we were accurately measuring
the performance overheads of our systems as opposed to raw net-
work link performance, we intentionally choose slow machines
for our experiments so that the 100Mbps network link capacity
could not be saturated easily.

We measured throughput, latency, and connection setup overhead
using netperf [Jone96], a network performance benchmarking
program. To minimize any discrepancies that might arise from us-
ing different tools, we used netperf as our primary measurement
tool for the results presented here as it offers the types of measure-
ments that were relevant in a single tool package. We ran the net-
perf client on the TP760 and the netperf server on the TP770.
Three different types of netperf experiments were conducted:
throughput, latency, and connection setup. The throughput exper-
iment simply measures the throughput achieved when sending
messages as fast as possible from client to server. The latency ex-
periment measures the inverse of the transaction rate in which a
transaction is simply the exchange of a request message and reply
message of the same size. The connection setup experiment is the
same as the latency experiment except that a new connection is
used for every request/response transaction. This experiment sim-
ulates the interaction between a client and server in which many
short-lived connections are opened and closed. In the throughput
and latency experiment, we also measure the CPU utilization. For
each type of experiment, eight different message sizes were used,
ranging from 64 bytes to 8192 bytes and doubling in size, for a to-
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tal of 24 different runs. Each experiment was run for 60 seconds
with a given constant message size. Since these measurements fo-
cused on processing overheads on the end systems, we used a
100Mbps cross-cable between the machines to make sure that
there were no other external factors such as hub contention or
switching delay affecting the results. 

We measured connection restoration overhead using a simple cli-
ent and server program to represent typical TCP connections cre-
ated by real world applications. The program opens a number of
TCP connections and keeps these connections open so that VNAT
can be used to migrate them. For this experiment, connections
were migrated by simply changing the physical network location
of the machine. No connection migration helper or security pro-
tection key was used. In these experiments, the TP760 was used
as the client and the TP770 was used as the server. Since these
measurements are impacted by network round-trip latencies, we
conducted these measurements in a more realistic LAN environ-
ment by connecting the machines together through a 3Com Of-
ficeConnect 3C16700 10Mbps hub. To suspend and resume
connections, the connections were initially created over a separate
802.11b wireless LAN network using an Orinoco Gold PC Card
in the client. The NIC card was then removed causing the connec-
tions to be suspended. The Linksys NIC card was then inserted
into the client, connecting it in the new 10Mbps network test en-
vironment and moving the client to a new network location.

6.1 Throughput overhead

Figure 6-1 shows the throughput measurements for running the
netperf throughput experiments. The results show that the VNAT2
system has an overhead of around 9%-13% over the Vanilla sys-
tem. However, as indicated by the results with the Netfilter sys-
tem, about half of the overhead comes from just loading netfilter
itself without any rules configured, which implies only about 4%-
6% overhead is contributed by the VNAT system alone. The
VNAT1 system performs almost identically to the Netfilter system,
indicating that connection virtualization requires almost no addi-
tional overhead.

Figure 6-2 shows the CPU utilization for the throughput experi-
ment. When using the VNAT2 system, the sender incurs about 8%-
15% overhead while the receiver incurs about 29%-44% overhead
compared to the Vanilla system. However, as indicated by the re-
sults with the Netfilter system, about half of the sender overhead

and 94% of the receiver overhead are contributed by just loading
netfilter. This implies that the overhead just due to VNAT is actu-
ally about 4%-7% for the sender and 2%-3% for the receiver. The
VNAT1 system CPU utilization is almost identical to the Netfilter
system, again indicating that connection virtualization requires al-
most no additional overhead, as expected.

We argue that it is more fair to compare a VNAT system with a
Netfilter system rather than a Vanilla system. Due to increased se-
curity concerns, major Linux distributions such as RedHat are
now shipped with a default setup of “medium” firewall protection
which requires netfilter to be loaded. As a result, we expect that
an increasing number of Linux hosts will have netfilter loaded by
default.

6.2 Latency overhead

Figure 6-3 shows the latency measurements for running the net-
perf latency experiments. The results show that the VNAT2 system

has an overhead of around 14%-20% over the Vanilla system.
However, as indicated by the results with the Netfilter system,
more than 70% of the overhead comes from just loading netfilter
itself without any rules configured. So the VNAT2 system alone
effectively contributes about 4%-6% overhead, similar to the re-
sult of throughput measurement. We again notice that the VNAT1
system performs identically to the Netfilter system, indicating that
connection virtualization requires almost no additional overhead.

Figure 6-1: VNAT throughput overhead
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Figure 6-2: Throughput CPU utilization overhead

Figure 6-3: VNAT latency overhead
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Figure 6-4 shows the CPU utilization for the latency experiment.
When using the VNAT2 system, the sender incurs about 7%-20%

overhead while the receiver incurs about 27%-34% overhead
compared to the Vanilla system. However, as indicated by the re-
sults with the Netfilter system, about 87%-95% of the sender over-
head and 72%-79% of the receiver overhead are contributed by
just loading netfilter. This implies that the overhead just due to
VNAT is actually about 2%-7% for the sender and 5%-6% for the
receiver. Again, the VNAT1 system incurs virtually no overhead
over a Netfilter system.

6.3 Connection setup overhead
Figure 6-5 shows the latency measurements for running the net-
perf latency experiments with a new connection for each transac-
tion to measure connection setup overhead. Since connection

setup in VNAT occurs before migration, there is no translation
overhead associated with connection setup, so VNAT results are
only shown for the VNAT1 system. The results show that VNAT1
system has an overhead of about 11%-18% over the Vanilla sys-
tem, of which about 80% is contributed by just loading netfilter.
So the VNAT system alone contributes about 2%-3% of the over-
head.

6.4 Connection restoration overhead

Table 1 shows the measurements for running the experiments to

measure connection restoration overhead. No comparisons with
the Vanilla or Netfilter systems are shown since they do not pro-
vide connection restoration functionality. The results show that on
average it takes about 47 milliseconds (including the round trip
delay) to restore a connection and the overhead stays fairly con-
stant. Based on the VCMP interaction and its implementation us-
ing TCP in our prototype, we can infer that once the migrated
endpoint(s) located each other, it would take two round trips and
some local processing to restore the connection. The round trip
time obviously depends on the actual physical network condition,
while the bulk of the local processing involves searching a virtual
connection given its “tuple”. The results show that most of the
time required to restore the connection is due to local processing
as opposed to network latency. Depends on the particular imple-
mentation, the cost of searching for a virtual connection could
range from O(log(n)) with a binary search to O(n) with a linear
search, where n is the total number of virtual connections. Our
current implementation uses a linear search and this is reflected in
the results.

6.5 Migrate popular network applications

We tested the migration capability of our VNAT system with a
suite of popular real world Linux applications, including but not
limited to:

• telnet client and server (standalone and via xinetd)
• ftp client and server (standalone and via xinetd), both active 

and passive mode
• ssh client and server
• mozilla/netscape/opera and apache
• Ximian evolution and qpopper/sendmail
• slrn and innd
• VNC thin client and VNC server
• remote X client and X server

All the above applications worked over a virtualized connection
right out of the box. We were able to migrate live connections cre-
ated by all the above applications and the connections stayed alive
as if nothing had happened. Among all the application we tested,
FTP was the only one that we had to turn on the special option we
mentioned in Section 5.1 in order to migrate its connections. We
are glad to see that the majority of today’s network applications
behave as we have expected. Rather than relying on transport con-
nection properties for their application logic, they use the trans-
port protocol solely for the purpose of transporting data.

7 Conclusions
We have introduced in this paper VNAT, a novel architecture that
enables transparent migration of live network connections associ-
ated with a spectrum of computation units. VNAT is based on the
simple idea of virtual addresses and employs connection virtual-

Figure 6-4: Latency CPU utilization overhead

Figure 6-5: VNAT connection setup overhead
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Total number of 
connections

Total restoration 
time (seconds)

Restoration time 
per connection 
(milliseconds)

Average round 
trip delay 

(milliseconds)

10 0.434 43.4 3.104

50 2.374 47.5 3.134

100 4.856 48.6 3.159

500 24.657 49.3 3.147

Table 1: VNAT connection restoration overhead
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ization, translation, and migration to achieve its goals. VNAT sup-
ports migration of live end-to-end transport connections when
either one or both endpoints of the connections migrate. VNAT
provides incremental usability and does not require any modifica-
tion to existing applications, operating systems, or networking
protocols, which enable the system to be more easily deployed
and used. 

We have implemented a prototype of VNAT in the Linux operat-
ing system and we have shown it performs with very low overhead
and works very well with a wide range of popular real world ap-
plications. Our results on an untuned prototype show that there is
no noticeable overhead for connections that do not migrate, and a
fairly constant and small 2%-7% overhead on top of standard
Linux distributions with netfilter loaded for migrated connections.
These results are due to the fact that VNAT connection virtualiza-
tion only introduces very small overhead at connection setup time
and connection translation only performs simple deterministic
NAT functions.

With the rapid increase of distributed networked systems and
ubiquitous mobile computing devices, it is becoming a pressing
need for developing new networking functionality to support
these systems. However, developing and deploying new network-
ing infrastructure is often a long and enduring process. We hope
that our work can give insight in how such new networking func-
tionality can be developed and deployed while allowing existing
legacy applications to take advantage of the tremendous benefits
offered by the coming reality of ubiquitous mobile computing and
communication.
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