
Brief Announcement: Building an Adaptive Distributed
Web Server System on the Fly for Handling Web Hotspots

Weibin Zhao and Henning Schulzrinne
Department of Computer Science

Columbia University
New York, NY 10027

{zwb,hgs}@cs.columbia.edu

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability; C.5.5 [Computer System Implementation]: Servers;
C.2.4 [Computer-communication Networks]: Distributed systems

General Terms
Performance, Design, Experimentation, Algorithms

Keywords
Web hotspots, overload control, adaptive distributed server sys-
tems, service discovery, scalability

As more web sites experience a request load that can no longer be
handled by a single server, using multiple servers to serve a single
site becomes a widespread approach. Traditionally, a distributed
web server system has used a fixed number of dedicated servers
based on capacity planning, which works well if the request load
is relatively constant and matches the planned capacity. However,
web requests could be very bursty. A well-identified problem web
hotspots (a.k.a., flash crowds or the Slashdot effect) may trigger a
large load increase but only last for a short time. For such situ-
ations, overprovisioning a web site is not only uneconomical but
also difficult since the peak load is hard to predict.

To handle web hotspots effectively, we advocate dynamic allo-
cation of server capacity from a server pool distributed globally be-
cause the access link of a local network could become a bottleneck.
As an example of global server pools, content delivery networks
(CDNs) have been used by large web sites, but small web sites of-
ten cannot afford the cost particularly since they may need these
services very rarely. We seek a more cost-efficient mechanism. As
different web sites (e.g., different types or in different locations)
are less likely to experience their peak request loads at the same
time, they could form a mutual-aid community, and use spare ca-
pacity in the community to relieve web hotspots at any individual
site. Based on this observation, we designed DotSlash, which al-
lows a web site to build an adaptive distributed web server system
on the fly to expand its capacity by utilizing spare capacity at other
sites. Using DotSlash, a web site not only has a fixed set of ori-
gin servers, but also has a changing set of rescue servers drafted
from other sites. A web server allocates and releases rescue servers
based on its load conditions. The rescue process is completely self-
managing and transparent to clients. Note that DotSlash does not
aim to support a request load that is persistently higher than a web
site’s planned capacity, but rather to complement the existing web
server infrastructure to handle short-term load spikes effectively.

Copyright is held by the author/owner.
PODC’04, July 25--28, 2004, St. Johns, Newfoundland, Canada.
ACM 1-58113-802-4/04/0007.

DotSlash consists of service discovery, workload monitoring,
request redirection, dynamic virtual hosting, and rescue control.
Service discovery enables servers of different web sites to learn
about each other dynamically and collaborate automatically with-
out any administrator intervention. Workload monitoring allows a
web server to react quickly to load changes. We focus on moni-
toring outbound HTTP traffic within a web server since network
bandwidth is the most constrained resource for most web sites dur-
ing hotspots. Request redirection allows an origin server to offload
client requests to its rescue servers. We use two mechanisms for re-
quest redirections: DNS round robin at the first level for crude load
distribution, and HTTP redirect at the second level for fine grained
load balancing. Dynamic virtual hosting enables a rescue server to
serve the content of its origin servers on the fly, without the need
of any advance configuration. A rescue server works as a reverse
caching proxy for its origin servers.

Rescue control allows a web server to tune its resource utiliza-
tion by using rescue actions. To ensure that the network bandwidth
utilization ρn remains within the desired load region [ρl

n, ρu

n], over-
load control actions are triggered if ρn > ρu

n, and under-load con-
trol actions are triggered if ρn < ρl

n. A web server becomes an
origin server if it has allocated rescue servers. An origin server
uses the redirect probability Pr as the major control parameter: it
increases Pr if ρn > ρu

n, and decreases Pr if ρn < ρl

n. An origin
server allocates additional rescue servers if it has run out of the redi-
rect capacity, and releases all rescue servers if it has not redirected
requests to rescue servers for a configurable number of consecutive
control intervals. In contrast, a web server becomes a rescue server
if it has accepted rescue requests. A rescue server uses λa

rd, the
allowed redirect data rate for its origin servers, as the major con-
trol parameter: it decreases λa

rd if ρn > ρu

n, and increases λa

rd if
ρn < ρl

n. Note that a rescue server maintains a separate λa

rd for
each of its origin servers. A rescue server accepts new rescue re-
quests if ρn < ρl

n, and shutdowns a rescue relationship if ρn > ρu

n

and λa

rd = 0, or the rescue relationship has been idle for a config-
urable number of consecutive control intervals.

We have implemented a prototype of DotSlash on top of Apache,
which consists of an Apache module that supports DotSlash func-
tions related to client request processing such as accounting for
each response, HTTP redirect, and dynamic virtual hosting, and a
daemon that accomplishes other DotSlash functions such as service
discovery, dynamic DNS updates, and rescue control. Experiments
show that using DotSlash a web server can increase the request rate
it supported and the data rate it delivered to clients by an order of
magnitude, even if only HTTP redirect is used. Once DNS redirec-
tion is incorporated, a web site can further improve its performance
and scalability.


