
 1

Abstract—Placing voice traffic on the data network exposes it

to the same attacks that plague the existing Internet

infrastructure. Traditional perimeter security solutions cannot

cope with the complexity of VoIP protocols at carrier-class

performance. We have implemented a large-scale, SIP-aware

application layer firewall capable of filtering VoIP traffic at

carrier-class rates. We have also built an integrated testing and

analysis tool and a testbed that validates its functionality and

performance. Our testing tool is unique in its use of finer

granularity measurements of pinhole opening and closing delays

of the system under test (SUT) than previously available. The tool

is further enhanced with an array of ten standard Pentium 3GHz

processors to distribute VoIP traffic load generation, reaching the

desired target performance rates. This paper describes our novel

and original application layer firewall solution, the testing

methodology and the testbed used to benchmark our solution.

I. INTRODUCTION

ERIMETER security devices, such as firewalls, are meant to

prevent hosts on the Internet from accessing hosts on the

protected network. Firewalls primarily enforce access control

policies that define which hosts and services are allowed to

traverse the perimeter. The simplest type of packet filtering

firewalls, work at the network layer and compare each packet

to a set of security policy criteria to determine whether it

should be forwarded or dropped. Rules may include source

and destination IP address, source and destination port number

and protocol used. Blocking through packet filtering, any

random or malicious unauthorized network traffic from

entering the protected network is the first line of defense

against Denial of Service (DoS) attacks, which target the

availability of services running in the protected network to

legitimate users. Packet filtering firewalls need no further

understanding of the traffic being limited. Some protocols,

however, use additional randomly chosen port numbers for a

protocol specific channel (e.g., FTP). In order to support these

types of protocols, the firewall needs to examine packets at the

application layer and to dynamically change packet filtering

criteria according to application specific needs. Specifically,

protecting VoIP networks utilizing the Session Initiation

Protocol (SIP) [1], requires SIP application awareness in the

perimeter firewall along with dynamic packet filtering

capabilities.

This work was supported by Verizon Labs, Contract Number

SIT.2004.653.

SIP is an application layer signaling protocol, carried on the

well-known port 5060, for creating, modifying, and

terminating media sessions, such as Internet telephony calls,

between one or more participants. SIP does not transport

media content itself, but allows communicating parties to agree

on how and what media to exchange. This is accomplished by

using an offer/answer model that includes the Session

Description Protocol (SDP) [2] as an important component of

the SIP message scheme. Typically, SIP User Agents (UA)

negotiate SIP sessions through a series of network elements

called proxy servers. SIP proxy servers route SIP requests and

responses to and from communicating SIP UAs. A SIP UA

chooses a port number, associated with its IP address, for

receiving the media stream, and sends it to the opposite SIP

UA in the SDP body. Once the respective session parameters

are negotiated and signaled by the UAs, unidirectional media

streams begin to flow directly between the UAs through the

dynamically allocated ports.

A SIP aware application layer firewall needs to intercept

and parse the SIP session creation messages exchanged by the

UAs, extract the negotiated port numbers and IP addresses

from the SDP, and dynamically open the pinholes for the

media streams. When a UA terminates the session, the firewall

intercepts the appropriate message and closes the ports. For

this purpose, the firewall needs to maintain two state tables.

The first is a session state table, which contains active session

entries. The second is a connection state table, which contains

5-tuple entries (source and destination IP address, source and

destination port number and protocol used) for each active

media stream. Each session entry from the session state table

references one or more connection table entries, representing

the session related media streams. The session state table is

updated when a session is created or terminated and the

connection table is then updated accordingly. The connection

table, which represents the security policy enforced by the

firewall, is traversed for every arriving packet to determine

whether it should be forwarded or dropped. This stateful mode

carries the burden of being extremely consumptive of CPU

cycles, due to the full connection state table traversal for every

arriving media packet and the session signaling processing.

CPU exhaustion limits the currently available firewalls ability

to handle high volumes of concurrent calls, usually to no more

than a few hundreds.

Carrier-to-carrier VoIP peering, hosted IP Centrex and other

multimedia packet-based services present new challenges for

IP networks and edge networking technologies. Carriers are

Large Scale SIP-aware Application Layer

Firewall
Eilon Yardeni and Henning Schulzrinne, Department of Computer Science, Columbia University

Gaston Ormazabal, Verizon Labs

P

 2

confronted with deployment barriers such as service level

assurance, NAT traversal and most importantly, security.

Security is ideally provided with cryptographic techniques

applied on the traffic content and supplemented with perimeter

protection as a first line of defense. Securing the data channels

with protocols such as IPsec and Transport Layer Security

(TLS), however, involves the use of digital certificate-based

key systems, which are today still difficult to manage at the

carrier-class scale. The resulting alternative is protecting

crucial network assets such as media gateways, signaling

gateways, and application servers, through the use of network

perimeter protection devices that can block potentially

nefarious unwanted traffic from ever reaching those assets.

The correct implementation of a SIP-aware firewall

performing dynamic pinhole filtering at the network edge

provides a good level of protection at a level of granularity not

otherwise achievable with other current security technologies.

We have implemented a SIP-aware application layer

firewall that filters SIP based VoIP traffic. Our firewall is

based on a call control architecture, where the call control

application logic is outside the firewall and handled by a SIP

proxy. This fully SIP conformant solution alleviates firewall

traversal that is fairly complex for a protocol such as SIP. Our

solution can support up to 30,000 concurrent VoIP calls of

signaling and media, thus satisfying carrier-class rates

requirements. We have also designed a benchmarking

methodology, built a generic testing tool for measuring the

performance of SIP-aware dynamic packet filter devices at

carrier-class rates, and applied the testing methodology to our

firewall.

 The remainder of this paper is organized as follows: we

first describe our SIP-aware firewall implementation, second,

we describe the benchmarking methodology and testing

architecture, and finally we describe the benchmarking results.

II. APPLICATION LAYER FIREWALL ARCHITECTURE

DPPM

Inbound

CAMCAM

Dynamic

Table

Outbound

Table

Drop

Lookup Switch

SIPFCP/UDP

sipd

Static

CS-2000

ASM

FCP
Virtual
Server

FCP

Figure 1: The sipd proxy resident in the CS-2000 Application Server Module

(ASM), intercepts SIP messages and passes instructions to the Deep Packet

Processing Module (DPPM) using a Firewall Control Protocol (FCP).

A. Overview

Our solution combines two components: the Columbia

developed SIP-Proxy sipd, which is part of the Columbia

InterNet Multimedia Architecture (CINEMA) [3], and the

commercial hardware CloudShield CS-2000 [4] fast packet

processing application server.

The sipd proxy is a SIP redirect, forking proxy and

registration server that provides name mapping, user location

and scripting services. As such, sipd implements a full SIP

stack and supports multiple transport protocols (e.g., TLS,

TCP and UDP).

The CloudShield CS-2000 is designed to run deep packet

inspection applications on high-speed networks. The CS-2000

consists of a Deep Packet Processing Module (DPPM) based

on the Intel IXP 2800 network processor, consisting of 16

programmable data plane computers, a silicon database using

Content Addressable Memory (CAM) technology, and a

separate onboard Pentium-based Linux Application Server

Module (ASM) for application development, management and

control. Applications are written in a high-level proprietary

language, called Rapid Application and Visualization

Environment (RAVE), in the ASM, and subsequently

“pushed” to the DPPM and converted into DPPM application

logic for execution in real time. The CS-2000 has five GigE

input ports and a total of 5Gb/s packet processing throughput.

In the proposed architecture (Figure 1), sipd is the SIP-

aware application that controls the CS-2000 server, which

performs dynamic packet filtering. The sipd proxy is executed

in the CS-2000 ASM and instructs the DPPM which ports

should be opened and closed for the Real Time Protocol

(RTP) [5] media streams negotiated by SIP. This is done using

a Firewall Control Protocol (FCP) that we have designed and

implemented. This architecture allows segregation of the

signaling processing and the media packet filtering which have

been traditionally done on a shared CPU. The high concurrent

call volume is achieved by keeping the connection state table

in hardware using the CAM database.

B. Call Flow Example

Firewall

Trusted-User Zone Untrusted Zone

User B

SIP proxy

User A

1:Invite
2:100 Trying
5:180 Ringing

9:ACK

3:Invite
4:180 Ringing

6:200 OK
10:ACK

11: RTP Media Traffic
(Pinholes)

7: 200 OK
inging 8: Open Pinhole FCP 12: BYE

13: BYE
inging

14: Close Pinhole FCP

FCP

SIP

RTP

Figure 2: SIP and Firewall Control Protocol (FCP) call flow

 3

1 INVITE User A -> sipd

INVITE sip:UserB@there.com SIP/2.0

Via: SIP/2.0/UDP here.com:5060

From: BigGuy <sip:UserA@here.com>

To: LittleGuy <sip:UserB@there.com>

Call-ID: 12345600@here.com

CSeq: 1 INVITE

Contact: BigGuy <sip:UserA@here.com>

Content-Type: application/sdp

Content-Length: 147

v=0

o=UserA 2890844526 2890844526 IN IP4 here.com

s=Session SDP

c=IN IP4 100.101.102.103

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

6 200 OK B -> sipd

SIP/2.0 200 OK

Via: SIP/2.0/UDP here.com:5060

Record-Route: <sip:UserB@there.com;maddr=ss2.wcom.com>,

<sip:UserB@there.com;maddr=ss1.wcom.com>

From: BigGuy <sip:UserA@here.com>

To: LittleGuy <sip:UserB@there.com>;tag=314159

Call-ID: 12345601@here.com

CSeq: 1 INVITE

Contact: LittleGuy <sip:UserB@there.com>

Content-Type: application/sdp

Content-Length: 147

v=0

o=UserB 2890844527 2890844527 IN IP4 there.com

s=Session SDP

c=IN IP4 110.111.112.113

t=0 0

m=audio 34560 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Figure 3: User A’s INVITE Request (message 1) and User B's 200 OK

Response (message 6)

A simple call flow example is shown in Figure 2. In this

scenario User A sends an INVITE (message 1) request (Figure

3) to User B through the sipd SIP proxy. The sipd proxy

intercepts the INVITE request, fetches the media IP address

and port number from the SDP body (100.101.102.103 and

49172, respectively) and forwards the request to User B

(message 3). User B responds with a 200 OK (message 6)

response (Figure 3) that contains the media IP address and port

number in the SDP body. The sipd proxy fetches User B’s

media IP address and port number (110.111.112.113 and

34560, respectively), updates its state table and sends an

“open” FCP command (message 8) to the DPPM. The DPPM

updates the CAM database with the open pinholes and the

RTP media streams can now flow through the firewall

(message 11). Later on, User B terminates the session by

sending a BYE request (12). The sipd proxy forwards the

BYE request (message 13) to User A, removes the session

from its state table and sends a “close” FCP command

(message 14) to the DPPM. The DPPM removes the

connection from the CAM database, which closes the pinholes.

C. Firewall Control Module

We have enhanced the sipd proxy resident in the ASM, with

a Firewall Control Module. This module parses the media

streams’ IP addresses and port numbers from the SDP,

manages a session state table, and sends FCP commands to the

DPPM. The sipd proxy intercepts INVITE/200 OK messages,

and extracts the IP addresses and port numbers that were

negotiated for the RTP media streams. Subsequently, sipd

constructs 5-tuple connection entries for an “open” pinhole

FCP message, instructing the DPPM to open four pinholes;

two pinholes for the RTP streams in each direction, and two

additional pinholes for the accompanying Real Time Control

Protocol (RTCP) channels. The sipd proxy maintains a

session state table in memory, which contains active sessions,

indexed by the SIP Call-ID header field– a globally unique-

per-call identifier. The sipd proxy associates the 5-tuple entries

to a session state table entry, so that when the corresponding

BYE message arrives, the matching pinholes can be closed.

Either side of the VoIP call can choose termination by sending

a BYE message. The sipd proxy intercepts the BYE message,

deletes the session from its session state table, and instructs the

DPPM to close the pinholes using a “close” pinhole FCP

message. The Firewall Control Message set consists of either

“open” or “close” pinhole commands, encapsulated in a UDP

packet, and containing four 5-tuples for the four pinholes that

are opened or closed for each VoIP call. The need for the FCP

surfaced when the CS-2000 built-in API used for pushing data

updates from the ASM to the DPPM, in real time, failed to

perform at high speeds. A delay of the order of two seconds to

open a port was experienced, causing an unacceptable

degradation in service, as a user answering a ringing phone,

hears no audio for the first two seconds.

The DPPM is programmed to act as a dynamic packet filter

peeking at layers 3 and 4 of the packet headers. It uses two

connection state tables, static and dynamic, that are stored in

the CAM database resident in the DPPM. The static table

contains statically configured pinholes such as port 5060 for

SIP traffic. The dynamic table contains 5-tuple connection

entries that are updated by sipd. When a packet arrives at one

of the DPPM input ports, it first constructs a 5-tuple

connection identifier from the packet headers. The DDPM

then tries to look for a match in the static connection table in

the CAM. If there is a match, the packet is forwarded to an

output port; otherwise a second attempt is made to lookup for

a match in the dynamic connection table. If there is no match,

the packet is dropped. .

 The FCP message is sent by sipd from the ASM network

interface, to a Virtual Server (VS), written in RAVE, which

resides in the DPPM (Figure 1), and intercepts FCP UDP

packets. The FCP packet enters the DPPM and is processed

like any other incoming network packet. The VS identifies

FCP packets by the special IP address and port (1.1.1.1 and

9999, respectively) they are sent to. The VS extracts the 5-

tuple connection entries from the FCP packet and writes them

to, or deletes them from the dynamic table in the CAM

database. The FCP packet is not forwarded to an output port

but processed and terminated at the VS. The FCP message also

sets a timer for the updated four CAM entries correlating to a

single VoIP call. The timer removes the CAM entries if the

call is idle, meaning no RTP or RTCP packets are sent for the

duration of the timer. Conversely, any CAM match will reset

the timer. This functionality guarantees that there are no open

pinholes left in case of a signaling fault, a scenario that could

leave a security backdoor. Since the DPPM is designed to peek

 4

into packets at wire-speed, the FCP allows sipd to send real-

time data updates to the DPPM at GigE rates.

D. Signaling Performance

Signaling processing is somewhat limited in our

implementation as sipd runs on a 1GHz CPU within the ASM.

Singh et al [6] showed that sipd can handle up to 900

calls/second when running on a Pentium IV 3GHz CPU with

1GB memory. Our proposed architecture is highly scalable in

signaling processing power, as sipd could be placed on a

separate, speedier, host located in the trusted network. For

even higher signaling processing power, an array of sipd

servers, running in load sharing mode [6] and controlling a

single CS-2000 server, could also be used. An array of six sipd

servers was proved to handle up to 2800 calls per second. This

roughly translates to a carrier-class grade of 10 million BHCA

(Busy Hour Call Attempts).

E. Security Considerations

As the FCP packets are conveyed to the DPPM through a

general traffic port, a security issue is raised because in

principle a malicious user could write directly into the CAM

database. In our implementation, one of the GigE input ports is

reserved for the FCP channel, so that FCP packets are

segregated from the general traffic. The ASM running the sipd

is connected to the DPPM through this reserved input port. If

more than one SIP-proxy is used to control the firewall, they

should be placed in a private subnet, isolated from the external

network, and connected to the reserved input port. Additional

mechanisms to protect this channel can be applied, for

example, an Access Control List (ACL) specifying the FCP

hosts. Cryptography based authentication mechanisms could

not be currently used as the DPPM lacks cryptographic

capabilities, but is recommended when the DPPM is enhanced

with this technology.

III. BENCHMARKING METHODOLOGY

A. Overview

The benchmarking methodology’s primary aim is the

verification of the proper functioning of a dynamically

allocating pinhole implementation, and its scalability and

performance at carrier-scale traffic rates. The stateful packet

filtering we describe is very consumptive of both memory and

CPU. The memory utilization is expected to be linear

according to the size of the 5-tuple connection state table. The

CPU usage has a direct impact on the speed of pinhole

opening and closing since a full connection state table traversal

is needed for every arriving RTP packet. As the number of

concurrent calls or incoming call rate rises, the CPU may get

overloaded. An overloaded CPU may delay signaling

processing and miss SIP BYE messages, causing pinhole

closing delays that would start getting longer and longer until

at some point the CPU can no longer handle any new calls.

Determination of opening and closing delays is a significant

measure of firewall operation efficiency. These delays should

be measured as a function of the call rate and the number of

concurrent calls.

B. Testing Apparatus and Instrumentation

The measurements are performed in a controlled IP

telephony test bed consisting of several SIP UAs, generating

VoIP calls that traverse the SIP firewall. The firewall’s

onboard SIP-proxy routes the signaling traffic between the

UAs. The methodology proposed here includes the use of

“originator” and “target” Integrated End-Points (IEPs) and

“loader” and “handler” traffic generators.

Integrated End Points

The IEPs incorporate traffic generation and analysis tools.

Specifically, the IEPs have VoIP traffic generation for both

SIP signaling and RTP media, scanning probes and a protocol

analyzer. The IEPs’ traffic generation component is based on a

Columbia developed SIP UA called sipua, capable of

generating both signaling and correlating media traffic for

simulating VoIP calls. The originator IEP is placed at the

untrusted side of the firewall, and the target IEP is placed at

the trusted side. The originator IEP also includes the nmap

[7] port scanner, used for scanning probes, whereas the target

IEP includes the snort [8] protocol analyzer. The IEPs are

used as traffic injection tools at the originator end, and as a

traffic analyzer at the target end. The IEPs run on two Centrino

1.8GHz CPU, with 512 MB of memory, running Redhat Linux

(Mandrake), IBM T42 ThinkPad hosts.

Untrusted Zone Trusted Zone

CS-2000

sipd

DPPM

External

Loaders
External

Handlers

Originator
IEP

Target
IEP

Controller

GigE

switch

GigE

switch

CAM

ASM

Figure 4: Load Generation and Pinhole Measurement Testbed

Large Scale Testing Environment

The IEPs, were supplemented with five pairs of additional

hosts running sipua, each consisting of a “loader” placed at the

untrusted side, and a “handler” placed at the trusted side.

These hosts generate VoIP calls that traverse the SIP firewall

for load generation purposes. The external loaders and

handlers run on ten Pentium IV 3GHz CPUs, with 1GB of

memory each, running Redhat Linux (Fedora). A central

benchmark manager, called the controller, placed at either side

 5

of the firewall and using SSH as a control channel, coordinates

the execution of the benchmark. The controller runs on a

Pentium III 1GHz CPU, with 512MB memory. The sipd proxy

runs on a Pentium III 1GHz CPU, with 1GB memory Linux

server, which resides in the ASM. Three of the five input ports

of the CS-2000 are used. Two ports are used for connecting

GigE switches, one from the untrusted side and one from the

trusted side. The third port is connected to the ASM interface

that is used by sipd. .

C. Measurements Methodology

Verification that only “signaled” pinholes are open

The objective of the testing is to launch traffic at the

originating end and verify what traffic traversed the firewall

and can be detected at the target end. To verify that all the

ports that are not defined within the firewall rule-set, and

hence not currently dynamically allocated are closed, traffic

must be generated across the entire UDP and TCP port ranges

from a legitimate IP address, while monitoring this traffic on

the target end. The IEP is used to launch calls associated with

a pair of legitimately opened pinholes. The IEP scanning

probe component, launched from the same legitimate IP

address, probes the entire TCP and UDP port ranges for that

particular originating IP address. The destination IEP analyzes

the arriving traffic and discriminates between the allowed

traffic per the firewalls rules and traffic addressed to ports

other than the legitimate dynamic ports. The expected result is

that no traffic other than that addressed to ports dynamically

allowed should appear at the target end. The presence of any

ports other than those dynamically allocated would indicate a

failure in the implementation.

Measurement of pinhole open and close delays

This measurement verifies two areas:

1) The speed with which a firewall correlates the

information from the INVITE/200OK messages and

the opening of the pinhole, the pinhole opening delay,

This measures the implementation’s ability to prevent

blocking the beginning of the audio conversations.

2) The length of time a pinhole remains open after a call

has effectively terminated, the closing delay. The

closing delay is defined by the time the last RTP packet

sent from the originating IEP is detected by the target

IEP. This is a very important measurement as it helps to

characterize the firewall in terms of its commitment to

provide absolute security.

The opening and closing delays are measured using a

manipulation of the RTP sequence number and marker bit

header fields, along with monitoring of the packets being

received by both IEPs. For the open delay, the IEP starts the

RTP media stream with a zero sequence number. RTP packets

are then sent with sequentially increasing sequence numbers

every 20 ms. At the analysis stage, the IEP uses the first

recorded RTP sequence number as the indicator of the number

of packets that were dropped by the firewall, before the

pinhole was opened. The pinhole open delay is thus computed

by multiplying the number of dropped packets by the 20 ms

packetization interval. For the closing delay, the originator IEP

does not stop the RTP stream after it sends a BYE message to

the target IEP. The IEP sets the marker bit in RTP packets that

are sent after the BYE. Some RTP packets may traverse the

firewall while the BYE message is processed and until the

pinhole is actually closed. The set marker bit distinguishes

RTP packets, which traversed the firewall after the BYE

message. At the analysis stage, the target IEP counts the

number of packets having the marker bit set. The pinhole

closing delay is computed using the same multiplication

operation. For finer granularity measurement the originating

IEP can be set to send these “post BYE” RTP packets at a

shorter packetization interval. We used a 10 ms packetization

interval for our closing delay measurements.

Measurement under load

For measuring pinhole opening and closing delays while the

firewall is loaded, we use our distributed VoIP call generation

architecture. The cost of a commercial VoIP traffic generator

is on the order of a few hundred thousand dollars. The

proposed architecture is based on “loaders” and “handlers”

standard Pentium CPU machine pairs running the sipua tool in

traffic generation mode (Figure 4). The array of machines is

used to generate external load on the firewall before internal

load is generated for pinhole opening and closing delay

measurements. The controller reads an input benchmark

configuration file that specifies:

o The loader and handler user names

o The sipd proxy IP address

o The IP addresses of the loaders, handlers and IEPs

o The calls per second rate

o The total number of calls to generate

The controller then establishes the configurable number of

concurrent calls that are handled by the firewall. Once the load

is established, the controller invokes the IEPs for measuring

the pinhole opening and closing delays. The IEPs create and

destroy calls at the configured call rate. Once pinhole

measurements are done, the controller tears down all the

established calls and analyzes the IEPs’ output.

IV. BENCHMARKING RESULTS

A. Traffic Volume

We generated 6,000 concurrent calls from each pair of

loader and handler hosts. Each call consists of two RTP

streams with 160 bytes RTP packet payload. We could not

generate more than 6,000 calls from a single host due to CPU

exhaustion. As the CPU is loaded, signaling processing is

delayed and RTP packets are sent further and further apart. As

a result, at some point no more new calls can be established

and total generated bandwidth is limited to about 40 Mb/s.

From the five pairs of loaders and handlers we were able to

generate up to 30,000 concurrent calls, namely 30,000 RTP

streams in each direction. The IEP machines could not

generate more than 300 calls per second since higher call rates

introduced an increasing delay in the 20ms RTP packetization

 6

intervals, which is essential for our pinhole opening and

closing delay measurements.

B. Results

Table 1 describes our testing results. Note that we do not show

the results of measurements taken with lower calls per second

rates, as they all show zero opening and closing delays.

concurrent calls calls per second open delay (ms) close delay (ms)

10,000 300 15 0

15,000 300 14.8 0

20,000 300 15 0

25,000 300 15 0

30,000 300 15.4 3.4

Table 1: Pinhole open and close delay test results

The results show flawless behavior of our SIP firewall

implementation. The opening delays are negligible as on

average less than one RTP packet was dropped before the

pinhole is opened. Some minor closing delays were detected

when 30,000 concurrent calls were established. The signaling

processing and session state table lookup that occurs in the

sipd proxy is assumed to cause this delay. Upon termination of

existing calls, this table is traversed before a “close” pinhole

FCP message is sent to the DPPM. It should be noted,

however, that the state table look up in sipd is executed only

for signaling packets, representing approximately 3% of the

total payload handled by the system. The far more intensive

state table look times required by the arriving RTP packets, is

handled by the CAM table in the DPPM, and processed in one

CPU cycle, thus affording the exceptional processing speeds of

this system. Improvements to sipd table lookup can be

implemented by increasing the host’s CPU power or by load

balancing a networked array of sipds to match the processing

power provided by the DPPM.

V. CONCLUSION

As perimeter security has become of prime importance to

VoIP services carrier providers, our work suggests a highly

scalable solution. We have also developed the methodology

for verifying this SIP based dynamic pinhole filtering

functionality. This implementation leverages a fast parallel

processing packet-processing server - that uses a CAM

database for storing the huge connection state table associated

with high volumes of concurrent calls - with the full SIP

conformance afforded by the Columbia SIP Proxy - supplying

the signaling processing out of band. By following the call

control architecture, and a novel and original method of data

exchange, we gained fast and simple development of our SIP-

aware firewall. The resulting prototype described in this paper

has the very unique property of being simultaneously fully SIP

conformant while also performing at carrier-class rates. The

compactness of the hardware platform also makes this solution

the most cost-effective for a device performing at these rates.

Furthermore, the testing and benchmarking methodology

afforded us the ability to apply it to our solution,

demonstrating that it performed flawlessly. Using our current

test environment we showed that the firewall can handle

30,000 concurrent calls at 300 calls per second rates. The fully

scalable architecture for the signaling processing module

indicates that the signaling processing can be improved

linearly with the addition of other SIP proxies in a load-

sharing configuration. Testing and evaluating such a device

will be the subject of follow-up research.

ACKNOWLEDGMENT

We would like to thank Jim Sylvester, Vice President of

Systems Integration and Testing, and Stu Elby, Vice President

of Network Architecture, at Verizon Laboratories, for their

sponsorship of this work, and their continued interest and

support throughout the year.

We would also like to thank Jonathan Lennox, the primary

architect of our SIP-proxy sipd, and Kundan Singh the primary

architect of our SIP UA sipua for their contributions

throughout this work.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation

Protocol”, RFC 3261, June 2002.

[2] J. Rosenberg, H. Schulzrinne, “An offer/answer model with the session

description protocol (SDP),” RFC 3264, June 2002.

[3] K. Singh, W. Jiang, J. Lennox, S. Narayanan, and H. Schulzrinne,

“CINEMA: Columbia InterNet Extensible Multimedia Architecture”,

Tech. Rep. CUCS-011-02, Department of Computer Science, Columbia

University, New York, New York, USA, May 2002.B. Smith, “An

approach to graphs of linear forms (Unpublished work style),”

unpublished.

[4] CloudShield Technologies,

http://www.cloudshield.com/what_we_do/cs2000.html

[5] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A

Transport Protocol for Real-Time Applications”, RFC 3550, July 2003.

[6] K. Singh and H. Schulzrinne, “Failover and Load Sharing in SIP

Telephony”, International Symposium on Performance Evaluation of

Computer and Telecommunication systems (SPECTS), Philadelphia,

PA, July 2005.

[7] nmap, “Network Mapper”, http://www.insecure.org/nmap/

[8] snort, http://www.snort.org/

