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Abstract—Placing voice traffic on the data network exposes it 

to the same attacks that plague the existing Internet 

infrastructure. Traditional perimeter security solutions cannot 

cope with the complexity of VoIP protocols at carrier-class 

performance. We have implemented a large-scale, SIP-aware 

application layer firewall capable of filtering VoIP traffic at 

carrier-class rates. We have also built an integrated testing and 

analysis tool and a testbed that validates its functionality and 

performance. Our testing tool is unique in its use of finer 

granularity measurements of pinhole opening and closing delays 

of the system under test (SUT) than previously available. The tool 

is further enhanced with an array of ten standard Pentium 3GHz 

processors to distribute VoIP traffic load generation, reaching the 

desired target performance rates. This paper describes our novel 

and original application layer firewall solution, the testing 

methodology and the testbed used to benchmark our solution. 

 

I. INTRODUCTION 

ERIMETER security devices, such as firewalls, are meant to 

prevent hosts on the Internet from accessing hosts on the 

protected network. Firewalls primarily enforce access control 

policies that define which hosts and services are allowed to 

traverse the perimeter. The simplest type of packet filtering 

firewalls, work at the network layer and compare each packet 

to a set of security policy criteria to determine whether it 

should be forwarded or dropped. Rules may include source 

and destination IP address, source and destination port number 

and protocol used. Blocking through packet filtering, any 

random or malicious unauthorized network traffic from 

entering the protected network is the first line of defense 

against Denial of Service (DoS) attacks, which target the 

availability of services running in the protected network to 

legitimate users. Packet filtering firewalls need no further 

understanding of the traffic being limited. Some protocols, 

however, use additional randomly chosen port numbers for a 

protocol specific channel (e.g., FTP). In order to support these 

types of protocols, the firewall needs to examine packets at the 

application layer and to dynamically change packet filtering 

criteria according to application specific needs. Specifically, 

protecting VoIP networks utilizing the Session Initiation 

Protocol (SIP) [1], requires SIP application awareness in the 

perimeter firewall along with dynamic packet filtering 

capabilities.  

 
This work was supported by Verizon Labs, Contract Number 

SIT.2004.653.  

SIP is an application layer signaling protocol, carried on the 

well-known port 5060, for creating, modifying, and 

terminating media sessions, such as Internet telephony calls, 

between one or more participants. SIP does not transport 

media content itself, but allows communicating parties to agree 

on how and what media to exchange. This is accomplished by 

using an offer/answer model that includes the Session 

Description Protocol (SDP) [2] as an important component of 

the SIP message scheme. Typically, SIP User Agents (UA) 

negotiate SIP sessions through a series of network elements 

called proxy servers. SIP proxy servers route SIP requests and 

responses to and from communicating SIP UAs. A SIP UA 

chooses a port number, associated with its IP address, for 

receiving the media stream, and sends it to the opposite SIP 

UA in the SDP body. Once the respective session parameters 

are negotiated and signaled by the UAs, unidirectional media 

streams begin to flow directly between the UAs through the 

dynamically allocated ports. 

A SIP aware application layer firewall needs to intercept 

and parse the SIP session creation messages exchanged by the 

UAs, extract the negotiated port numbers and IP addresses 

from the SDP, and dynamically open the pinholes for the 

media streams. When a UA terminates the session, the firewall 

intercepts the appropriate message and closes the ports. For 

this purpose, the firewall needs to maintain two state tables. 

The first is a session state table, which contains active session 

entries. The second is a connection state table, which contains 

5-tuple entries (source and destination IP address, source and 

destination port number and protocol used) for each active 

media stream. Each session entry from the session state table 

references one or more connection table entries, representing 

the session related media streams. The session state table is 

updated when a session is created or terminated and the 

connection table is then updated accordingly. The connection 

table, which represents the security policy enforced by the 

firewall, is traversed for every arriving packet to determine 

whether it should be forwarded or dropped. This stateful mode 

carries the burden of being extremely consumptive of CPU 

cycles, due to the full connection state table traversal for every 

arriving media packet and the session signaling processing. 

CPU exhaustion limits the currently available firewalls ability 

to handle high volumes of concurrent calls, usually to no more 

than a few hundreds.  

Carrier-to-carrier VoIP peering, hosted IP Centrex and other 

multimedia packet-based services present new challenges for 

IP networks and edge networking technologies. Carriers are 
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confronted with deployment barriers such as service level 

assurance, NAT traversal and most importantly, security. 

Security is ideally provided with cryptographic techniques 

applied on the traffic content and supplemented with perimeter 

protection as a first line of defense. Securing the data channels 

with protocols such as IPsec and Transport Layer Security 

(TLS), however, involves the use of digital certificate-based 

key systems, which are today still difficult to manage at the 

carrier-class scale. The resulting alternative is protecting 

crucial network assets such as media gateways, signaling 

gateways, and application servers, through the use of network 

perimeter protection devices that can block potentially 

nefarious unwanted traffic from ever reaching those assets. 

The correct implementation of a SIP-aware firewall 

performing dynamic pinhole filtering at the network edge 

provides a good level of protection at a level of granularity not 

otherwise achievable with other current security technologies. 

We have implemented a SIP-aware application layer 

firewall that filters SIP based VoIP traffic. Our firewall is 

based on a call control architecture, where the call control 

application logic is outside the firewall and handled by a SIP 

proxy. This fully SIP conformant solution alleviates firewall 

traversal that is fairly complex for a protocol such as SIP. Our 

solution can support up to 30,000 concurrent VoIP calls of 

signaling and media, thus satisfying carrier-class rates 

requirements. We have also designed a benchmarking 

methodology, built a generic testing tool for measuring the 

performance of SIP-aware dynamic packet filter devices at 

carrier-class rates, and applied the testing methodology to our 

firewall. 

 The remainder of this paper is organized as follows: we 

first describe our SIP-aware firewall implementation, second, 

we describe the benchmarking methodology and testing 

architecture, and finally we describe the benchmarking results. 

 

II. APPLICATION LAYER FIREWALL ARCHITECTURE 
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Figure 1: The sipd proxy resident in the CS-2000 Application Server Module 

(ASM), intercepts SIP messages and passes instructions to the Deep Packet 

Processing Module (DPPM) using a Firewall Control Protocol (FCP). 

A. Overview 

Our solution combines two components: the Columbia 

developed SIP-Proxy sipd, which is part of the Columbia 

InterNet Multimedia Architecture (CINEMA) [3], and the 

commercial hardware CloudShield CS-2000 [4] fast packet 

processing application server. 

The sipd proxy is a SIP redirect, forking proxy and 

registration server that provides name mapping, user location 

and scripting services. As such, sipd implements a full SIP 

stack and supports multiple transport protocols (e.g., TLS, 

TCP and UDP). 

The CloudShield CS-2000 is designed to run deep packet 

inspection applications on high-speed networks. The CS-2000 

consists of a Deep Packet Processing Module (DPPM) based 

on the Intel IXP 2800 network processor, consisting of 16 

programmable data plane computers, a silicon database using 

Content Addressable Memory (CAM) technology, and a 

separate onboard Pentium-based Linux Application Server 

Module (ASM) for application development, management and 

control. Applications are written in a high-level proprietary 

language, called Rapid Application and Visualization 

Environment (RAVE), in the ASM, and subsequently 

“pushed” to the DPPM and converted into DPPM application 

logic for execution in real time. The CS-2000 has five GigE 

input ports and a total of 5Gb/s packet processing throughput. 

In the proposed architecture (Figure 1), sipd is the SIP-

aware application that controls the CS-2000 server, which 

performs dynamic packet filtering. The sipd proxy is executed 

in the CS-2000 ASM and instructs the DPPM which ports 

should be opened and closed for the Real Time Protocol 

(RTP) [5] media streams negotiated by SIP. This is done using 

a Firewall Control Protocol (FCP) that we have designed and 

implemented.  This architecture allows segregation of the 

signaling processing and the media packet filtering which have 

been traditionally done on a shared CPU. The high concurrent 

call volume is achieved by keeping the connection state table 

in hardware using the CAM database. 

 

B. Call Flow Example 
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Figure 2: SIP and Firewall Control Protocol (FCP) call flow 
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1 INVITE User A -> sipd

INVITE sip:UserB@there.com SIP/2.0

Via: SIP/2.0/UDP here.com:5060   

From: BigGuy <sip:UserA@here.com>   

To: LittleGuy <sip:UserB@there.com>   

Call-ID: 12345600@here.com   

CSeq: 1 INVITE   

Contact: BigGuy <sip:UserA@here.com>   

Content-Type: application/sdp   

Content-Length: 147

v=0   

o=UserA 2890844526 2890844526 IN IP4 here.com   

s=Session SDP   

c=IN IP4 100.101.102.103

t=0 0   

m=audio 49172 RTP/AVP 0   

a=rtpmap:0 PCMU/8000

6 200 OK B -> sipd

SIP/2.0 200 OK   

Via: SIP/2.0/UDP here.com:5060   

Record-Route: <sip:UserB@there.com;maddr=ss2.wcom.com>,    

<sip:UserB@there.com;maddr=ss1.wcom.com>   

From: BigGuy <sip:UserA@here.com>   

To: LittleGuy <sip:UserB@there.com>;tag=314159   

Call-ID: 12345601@here.com   

CSeq: 1 INVITE   

Contact: LittleGuy <sip:UserB@there.com>   

Content-Type: application/sdp   

Content-Length: 147

v=0   

o=UserB 2890844527 2890844527 IN IP4 there.com   

s=Session SDP   

c=IN IP4 110.111.112.113

t=0 0   

m=audio 34560 RTP/AVP 0   

a=rtpmap:0 PCMU/8000 

Figure 3: User A’s INVITE Request (message 1) and User B's 200 OK 

Response (message 6) 
 

A simple call flow example is shown in Figure 2. In this 

scenario User A sends an INVITE (message 1) request (Figure 

3) to User B through the sipd SIP proxy. The sipd  proxy 

intercepts the INVITE request, fetches the media IP address 

and port number from the SDP body (100.101.102.103 and 

49172, respectively) and forwards the request to User B 

(message 3). User B responds with a 200 OK (message 6) 

response (Figure 3) that contains the media IP address and port 

number in the SDP body. The sipd proxy fetches User B’s 

media IP address and port number (110.111.112.113 and 

34560, respectively), updates its state table and sends an 

“open” FCP command (message 8) to the DPPM. The DPPM 

updates the CAM database with the open pinholes and the 

RTP media streams can now flow through the firewall 

(message 11). Later on, User B terminates the session by 

sending a BYE request (12). The sipd proxy forwards the 

BYE request (message 13) to User A, removes the session 

from its state table and sends a “close” FCP command 

(message 14) to the DPPM. The DPPM removes the 

connection from the CAM database, which closes the pinholes.  

C. Firewall Control Module 

We have enhanced the sipd proxy resident in the ASM, with 

a Firewall Control Module. This module parses the media 

streams’ IP addresses and port numbers from the SDP, 

manages a session state table, and sends FCP commands to the 

DPPM. The sipd proxy intercepts INVITE/200 OK messages, 

and extracts the IP addresses and port numbers that were 

negotiated for the RTP media streams. Subsequently, sipd 

constructs 5-tuple connection entries for an “open” pinhole 

FCP message, instructing the DPPM to open four pinholes; 

two pinholes for the RTP streams in each direction, and two 

additional pinholes for the accompanying Real Time Control 

Protocol (RTCP) channels.  The sipd proxy maintains a 

session state table in memory, which contains active sessions, 

indexed by the SIP Call-ID header field– a globally unique-

per-call identifier. The sipd proxy associates the 5-tuple entries 

to a session state table entry, so that when the corresponding 

BYE message arrives, the matching pinholes can be closed. 

Either side of the VoIP call can choose termination by sending 

a BYE message. The sipd proxy intercepts the BYE message, 

deletes the session from its session state table, and instructs the 

DPPM to close the pinholes using a “close” pinhole FCP 

message. The Firewall Control Message set consists of either 

“open” or “close” pinhole commands, encapsulated in a UDP 

packet, and containing four 5-tuples for the four pinholes that 

are opened or closed for each VoIP call. The need for the FCP 

surfaced when the CS-2000 built-in API used for pushing data 

updates from the ASM to the DPPM, in real time, failed to 

perform at high speeds. A delay of the order of two seconds to 

open a port was experienced, causing an unacceptable 

degradation in service, as a user answering a ringing phone, 

hears no audio for the first two seconds. 

The DPPM is programmed to act as a dynamic packet filter 

peeking at layers 3 and 4 of the packet headers. It uses two 

connection state tables, static and dynamic, that are stored in 

the CAM database resident in the DPPM. The static table 

contains statically configured pinholes such as port 5060 for 

SIP traffic. The dynamic table contains 5-tuple connection 

entries that are updated by sipd. When a packet arrives at one 

of the DPPM input ports, it first constructs a 5-tuple 

connection identifier from the packet headers. The DDPM 

then tries to look for a match in the static connection table in 

the CAM. If there is a match, the packet is forwarded to an 

output port; otherwise a second attempt is made to lookup for 

a match in the dynamic connection table. If there is no match, 

the packet is dropped. .  

 The FCP message is sent by sipd from the ASM network 

interface, to a Virtual Server (VS), written in RAVE, which 

resides in the DPPM (Figure 1), and intercepts FCP UDP 

packets. The FCP packet enters the DPPM and is processed 

like any other incoming network packet. The VS identifies 

FCP packets by the special IP address and port (1.1.1.1 and 

9999, respectively) they are sent to. The VS extracts the 5-

tuple connection entries from the FCP packet and writes them 

to, or deletes them from the dynamic table in the CAM 

database. The FCP packet is not forwarded to an output port 

but processed and terminated at the VS. The FCP message also 

sets a timer for the updated four CAM entries correlating to a 

single VoIP call. The timer removes the CAM entries if the 

call is idle, meaning no RTP or RTCP packets are sent for the 

duration of the timer. Conversely, any CAM match will reset 

the timer. This functionality guarantees that there are no open 

pinholes left in case of a signaling fault, a scenario that could 

leave a security backdoor. Since the DPPM is designed to peek 
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into packets at wire-speed, the FCP allows sipd to send real-

time data updates to the DPPM at GigE rates.  

D. Signaling Performance 

Signaling processing is somewhat limited in our 

implementation as sipd runs on a 1GHz CPU within the ASM. 

Singh et al  [6] showed that sipd can handle up to 900 

calls/second when running on a Pentium IV 3GHz CPU with 

1GB memory. Our proposed architecture is highly scalable in 

signaling processing power, as sipd could be placed on a 

separate, speedier, host located in the trusted network. For 

even higher signaling processing power, an array of sipd 

servers, running in load sharing mode [6] and controlling a 

single CS-2000 server, could also be used. An array of six sipd 

servers was proved to handle up to 2800 calls per second. This 

roughly translates to a carrier-class grade of 10 million BHCA 

(Busy Hour Call Attempts).  

E. Security Considerations 

As the FCP packets are conveyed to the DPPM through a 

general traffic port, a security issue is raised because in 

principle a malicious user could write directly into the CAM 

database. In our implementation, one of the GigE input ports is 

reserved for the FCP channel, so that FCP packets are 

segregated from the general traffic. The ASM running the sipd 

is connected to the DPPM through this reserved input port. If 

more than one SIP-proxy is used to control the firewall, they 

should be placed in a private subnet, isolated from the external 

network, and connected to the reserved input port. Additional 

mechanisms to protect this channel can be applied, for 

example, an Access Control List (ACL) specifying the FCP 

hosts. Cryptography based authentication mechanisms could 

not be currently used as the DPPM lacks cryptographic 

capabilities, but is recommended when the DPPM is enhanced 

with this technology.  

 

III. BENCHMARKING METHODOLOGY 

A. Overview 

The benchmarking methodology’s primary aim is the 

verification of the proper functioning of a dynamically 

allocating pinhole implementation, and its scalability and 

performance at carrier-scale traffic rates.  The stateful packet 

filtering we describe is very consumptive of both memory and 

CPU. The memory utilization is expected to be linear 

according to the size of the 5-tuple connection state table. The 

CPU usage has a direct impact on the speed of pinhole 

opening and closing since a full connection state table traversal 

is needed for every arriving RTP packet. As the number of 

concurrent calls or incoming call rate rises, the CPU may get 

overloaded. An overloaded CPU may delay signaling 

processing and miss SIP BYE messages, causing pinhole 

closing delays that would start getting longer and longer until 

at some point the CPU can no longer handle any new calls. 

Determination of opening and closing delays is a significant 

measure of firewall operation efficiency. These delays should 

be measured as a function of the call rate and the number of 

concurrent calls.  

B. Testing Apparatus and Instrumentation 

The measurements are performed in a controlled IP 

telephony test bed consisting of several SIP UAs, generating 

VoIP calls that traverse the SIP firewall. The firewall’s 

onboard SIP-proxy routes the signaling traffic between the 

UAs. The methodology proposed here includes the use of 

“originator” and “target” Integrated End-Points (IEPs) and 

“loader” and “handler” traffic generators. 

 

Integrated End Points 

The IEPs incorporate traffic generation and analysis tools.  

Specifically, the IEPs have VoIP traffic generation for both 

SIP signaling and RTP media, scanning probes and a protocol 

analyzer. The IEPs’ traffic generation component is based on a 

Columbia developed SIP UA called sipua, capable of 

generating both signaling and correlating media traffic for 

simulating VoIP calls. The originator IEP is placed at the 

untrusted side of the firewall, and the target IEP is placed at 

the trusted side.  The originator IEP also includes the nmap 

[7] port scanner, used for scanning probes, whereas the target 

IEP includes the snort [8] protocol analyzer. The IEPs are 

used as traffic injection tools at the originator end, and as a 

traffic analyzer at the target end. The IEPs run on two Centrino 

1.8GHz CPU, with 512 MB of memory, running Redhat Linux 

(Mandrake), IBM T42 ThinkPad hosts. 
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Figure 4: Load Generation and Pinhole Measurement Testbed 

 

Large Scale Testing Environment  

The IEPs, were supplemented with five pairs of additional 

hosts running sipua, each consisting of a “loader” placed at the 

untrusted side, and a “handler” placed at the trusted side. 

These hosts generate VoIP calls that traverse the SIP firewall 

for load generation purposes. The external loaders and 

handlers run on ten Pentium IV 3GHz CPUs, with 1GB of 

memory each, running Redhat Linux (Fedora). A central 

benchmark manager, called the controller, placed at either side 
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of the firewall and using SSH as a control channel, coordinates 

the execution of the benchmark. The controller runs on a 

Pentium III 1GHz CPU, with 512MB memory. The sipd proxy 

runs on a Pentium III 1GHz CPU, with 1GB memory Linux 

server, which resides in the ASM. Three of the five input ports 

of the CS-2000 are used. Two ports are used for connecting 

GigE switches, one from the untrusted side and one from the 

trusted side. The third port is connected to the ASM interface 

that is used by sipd. .  

C. Measurements Methodology 

Verification that only “signaled” pinholes are open  

The objective of the testing is to launch traffic at the 

originating end and verify what traffic traversed the firewall 

and can be detected at the target end. To verify that all the 

ports that are not defined within the firewall rule-set, and 

hence not currently dynamically allocated are closed, traffic 

must be generated across the entire UDP and TCP port ranges 

from a legitimate IP address, while monitoring this traffic on 

the target end. The IEP is used to launch calls associated with 

a pair of legitimately opened pinholes. The IEP scanning 

probe component, launched from the same legitimate IP 

address, probes the entire TCP and UDP port ranges for that 

particular originating IP address. The destination IEP analyzes 

the arriving traffic and discriminates between the allowed 

traffic per the firewalls rules and traffic addressed to ports 

other than the legitimate dynamic ports. The expected result is 

that no traffic other than that addressed to ports dynamically 

allowed should appear at the target end.  The presence of any 

ports other than those dynamically allocated would indicate a 

failure in the implementation. 

 

Measurement of pinhole open and close delays  

This measurement verifies two areas: 

1) The speed with which a firewall correlates the 

information from the INVITE/200OK messages and 

the opening of the pinhole, the pinhole opening delay, 

This measures the implementation’s ability to prevent 

blocking the beginning of the audio conversations. 

2) The length of time a pinhole remains open after a call 

has effectively terminated, the closing delay. The 

closing delay is defined by the time the last RTP packet 

sent from the originating IEP is detected by the target 

IEP. This is a very important measurement as it helps to 

characterize the firewall in terms of its commitment to 

provide absolute security. 

 

The opening and closing delays are measured using a 

manipulation of the RTP sequence number and marker bit 

header fields, along with monitoring of the packets being 

received by both IEPs. For the open delay, the IEP starts the 

RTP media stream with a zero sequence number. RTP packets 

are then sent with sequentially increasing sequence numbers 

every 20 ms. At the analysis stage, the IEP uses the first 

recorded RTP sequence number as the indicator of the number 

of packets that were dropped by the firewall, before the 

pinhole was opened. The pinhole open delay is thus computed 

by multiplying the number of dropped packets by the 20 ms 

packetization interval. For the closing delay, the originator IEP 

does not stop the RTP stream after it sends a BYE message to 

the target IEP. The IEP sets the marker bit in RTP packets that 

are sent after the BYE. Some RTP packets may traverse the 

firewall while the BYE message is processed and until the 

pinhole is actually closed. The set marker bit distinguishes 

RTP packets, which traversed the firewall after the BYE 

message. At the analysis stage, the target IEP counts the 

number of packets having the marker bit set. The pinhole 

closing delay is computed using the same multiplication 

operation. For finer granularity measurement the originating 

IEP can be set to send these “post BYE” RTP packets at a 

shorter packetization interval. We used a 10 ms packetization 

interval for our closing delay measurements. 

 

Measurement under load  

For measuring pinhole opening and closing delays while the 

firewall is loaded, we use our distributed VoIP call generation 

architecture. The cost of a commercial VoIP traffic generator 

is on the order of a few hundred thousand dollars. The 

proposed architecture is based on “loaders” and “handlers” 

standard Pentium CPU machine pairs running the sipua tool in 

traffic generation mode (Figure 4). The array of machines is 

used to generate external load on the firewall before internal 

load is generated for pinhole opening and closing delay 

measurements. The controller reads an input benchmark 

configuration file that specifies:  

o The loader and handler user names 

o The sipd proxy IP address 

o The IP addresses of the loaders, handlers and IEPs  

o The calls per second rate 

o The total number of calls to generate 

The controller then establishes the configurable number of 

concurrent calls that are handled by the firewall. Once the load 

is established, the controller invokes the IEPs for measuring 

the pinhole opening and closing delays. The IEPs create and 

destroy calls at the configured call rate. Once pinhole 

measurements are done, the controller tears down all the 

established calls and analyzes the IEPs’ output. 

 

IV. BENCHMARKING RESULTS 

A. Traffic Volume 

We generated 6,000 concurrent calls from each pair of 

loader and handler hosts. Each call consists of two RTP 

streams with 160 bytes RTP packet payload. We could not 

generate more than 6,000 calls from a single host due to CPU 

exhaustion. As the CPU is loaded, signaling processing is 

delayed and RTP packets are sent further and further apart. As 

a result, at some point no more new calls can be established 

and total generated bandwidth is limited to about 40 Mb/s. 

From the five pairs of loaders and handlers we were able to 

generate up to 30,000 concurrent calls, namely 30,000 RTP 

streams in each direction. The IEP machines could not 

generate more than 300 calls per second since higher call rates 

introduced an increasing delay in the 20ms RTP packetization 
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intervals, which is essential for our pinhole opening and 

closing delay measurements. 

B.  Results 

Table 1 describes our testing results. Note that we do not show 

the results of measurements taken with lower calls per second 

rates, as they all show zero opening and closing delays. 

 
concurrent calls calls per second open delay (ms) close delay (ms)

10,000 300 15 0

15,000 300 14.8 0

20,000 300 15 0

25,000 300 15 0

30,000 300 15.4 3.4

Table 1: Pinhole open and close delay test results 

 

The results show flawless behavior of our SIP firewall 

implementation. The opening delays are negligible as on 

average less than one RTP packet was dropped before the 

pinhole is opened. Some minor closing delays were detected 

when 30,000 concurrent calls were established. The signaling 

processing and session state table lookup that occurs in the 

sipd proxy is assumed to cause this delay. Upon termination of 

existing calls, this table is traversed before a “close” pinhole 

FCP message is sent to the DPPM. It should be noted, 

however, that the state table look up in sipd is executed only 

for signaling packets, representing approximately 3% of the 

total payload handled by the system. The far more intensive 

state table look times required by the arriving RTP packets, is 

handled by the CAM table in the DPPM, and processed in one 

CPU cycle, thus affording the exceptional processing speeds of 

this system. Improvements to sipd table lookup can be 

implemented by increasing the host’s CPU power or by load 

balancing a networked array of sipds to match the processing 

power provided by the DPPM. 

 

V. CONCLUSION 

As perimeter security has become of prime importance to 

VoIP services carrier providers, our work suggests a highly 

scalable solution. We have also developed the methodology 

for verifying this SIP based dynamic pinhole filtering 

functionality. This implementation leverages a fast parallel 

processing packet-processing server - that uses a CAM 

database for storing the huge connection state table associated 

with high volumes of concurrent calls - with the full SIP 

conformance afforded by the Columbia SIP Proxy - supplying 

the signaling processing out of band. By following the call 

control architecture, and a novel and original method of data 

exchange, we gained fast and simple development of our SIP-

aware firewall.  The resulting prototype described in this paper 

has the very unique property of being simultaneously fully SIP 

conformant while also performing at carrier-class rates. The 

compactness of the hardware platform also makes this solution 

the most cost-effective for a device performing at these rates. 

Furthermore, the testing and benchmarking methodology 

afforded us the ability to apply it to our solution, 

demonstrating that it performed flawlessly. Using our current 

test environment we showed that the firewall can handle 

30,000 concurrent calls at 300 calls per second rates. The fully 

scalable architecture for the signaling processing module 

indicates that the signaling processing can be improved 

linearly with the addition of other SIP proxies in a load-

sharing configuration. Testing and evaluating such a device 

will be the subject of follow-up research.  
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