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ABSTRACT

Scalable Network Architectures, Protocols and

Measurements for Adaptive Quality of Service

Xin Wang

New IP services and applications have diverse and stringent bandwidth and quality

of service requirements. It is diÆcult and costly to predict these requirements and

add suÆcient capacity to provide reliable and high quality service. This thesis is

broadly concerned with scalable and eÆcient architectures for delivering Internet

applications reliably and with high quality. The work consists of two parts.

We have developed a 
exible, scalable service framework to utilize existing net-

work capacity eÆciently. The framework is based on conditioning the network to

provide multiple services with certain quality of service expectations even under

high demand, using short-term, dynamic con�guration of network resources for bet-

ter response to user demand and more eÆcient resource usage. To support this

framework, we develop a Resource Negotiation and Pricing Protocol (RNAP) to

enable the user and the network (or two peer networks) to dynamically negotiate

services, and to formulate and communicate prices and charges.

As part of the service framework, we also propose a pricing model in which

services are priced based on QoS (resources consumed) and user willingness-to-

pay. The model also motivates rate and service adaptation by applications with

elastic demand through congestion-sensitive pricing of certain services, while pro-

viding more expensive services with static pricing for non-elastic users. We describe

two mechanisms to develop a congestion-sensitive price component, one based on

a tâtonnement process, and the other on a second-price, multiple-bid auction. We

also describe a user rate-adaptation model in response to price changes, based on



maximization of the user-perceived bene�t.

We have demonstrated the functionality of RNAP on a testbed network, and

have shown that the framework can achieve high utilization and control conges-

tion, while maintaining a stable price. We also present simulation results to show

that our proposed framework achieves a lower connection blocking rate, higher user

satisfaction based on user utility functions, and higher network revenue. The perfor-

mance improvement increases with the number of connections. The auction-based

congestion pricing mechanism is seen to provide higher network utilization than the

tâtonnement-based mechanism, at the cost of higher complexity.

The second part of the thesis is a study of the performance of the Lightweight

Directory Access Protocol (LDAP). LDAP is potentially useful for the management

of network resources, and the administration of traÆc-handling and pricing poli-

cies. We describe a benchmark tool to study LDAP performance in a dynamic

environment. The tool provides a a detailed pro�le of the latency and through-

put contributions of system components. We report measured performance using

a LDAP schema proposed for administration of Service Level Speci�cations in a

di�erentiated network. In most cases, the connection management latency increases

sharply at high loads and thus dominate the response time. The TCP Nagle algo-

rithm is found to introduce a very large additional latency, and it appears bene�cial

to disable it in the LDAP server. The CPU capability is found to be signi�cant

in limiting the performance of the LDAP server, and for larger directories, which

cannot be kept in memory, data transfer from the disk also plays a major role. The

scaling of server performance with the number of directory entries is determined by

the increase in back-end search latency, and scaling with directory entry size is lim-

ited by the front-end encoding of search results, and, for out-of-memory directories,

by the disk access latency.
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Chapter 1

Overview

Many new applications begin to be widely used in the Internet. These applications

include real-time audio, video, and mission-critical �nancial data. At the same time,

revenue from the traditional connectivity services (raw bandwidth) is declining. The

new value-added services provide new business opportunities, but also present new

challenges. The providers have to be able to add new services quickly and eÆciently,

and equip the network to meet the high quality and reliability expectations and

diverse requirements of the value-added services.

This thesis is broadly concerned with scalable and eÆcient architectures for

delivering multimedia applications over the Internet reliably and with high quality.

The work consists of the following two parts:

An integrated resource negotiation, pricing and QoS adaptation frame-

work for multimedia applications. The framework has the objectives of improv-

ing network utilization and user connectivity, and meeting the QoS requirements of

a range of user applications. The framework is based on dynamic resource nego-

tiation to enable short-term commitment of resources by the network and demand

adaptation by adaptive user applications, and the pricing of network resources based

on usage, QoS and user demand. The work incorporates a dynamic resource negoti-

ation protocol, RNAP. RNAP enables negotiation between user applications and the
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access network, as well as between adjoining network domains, and also enables the

distribution and collation of price and charging information. We describe detailed

mechanisms for the formulation of end-to-end prices in the RNAP architectures. We

also present a demand-sensitive pricing model based on the cost of resources and

long-term user demand. The pricing model considers a congestion-sensitive price

component to motivate user adaptation during high demand. Two methods are

considered for determining the congestion price, one based on a tâtonnement pro-

cess, and the other based on an auction mechanism. User demand and adaptation

are modeled based on user utility functions. The above resource negotiation and

pricing framework has been implemented on a test-bed network, and also studied

using simulations. We discuss the performance bene�ts under high or bursty loads,

particularly increased user bene�t and network revenue, and lower service blocking

rate.

Measurements and analysis of LDAP performance. The Lightweight Direc-

tory Access Protocol (LDAP) is being used for a number of distributed directory

applications. In the current context, it is potentially useful for the management of

network resources, and the administration of traÆc-handling and pricing policies. In

this work, we describe a tool to analyze the performance of LDAP under a variety of

access patterns. We report measured performance using a LDAP schema proposed

for administration of Service Level Speci�cations in a Di�Serv network. We discuss

how various system components a�ect latency and scalability under various access

patterns, and investigate mechanisms for improving performance.

The �rst part occupies the bulk of this thesis, and the second part is presented

in the last chapter.
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Part I

An Integrated Resource

Negotiation, Pricing and QoS

Adaptation Framework for

Multimedia Applications
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Chapter 2

Introduction

New distributed applications are growing rapidly. Many of these applications, such

as multimedia applications, are bandwidth-intensive, and may also require high

reliability from the network. The Internet's lack of control over quality of service

(QoS) has slowed the deployment of these applications. While the technology for

voice over IP is now available and the service is much in demand, its deployment

on the public Internet has been severely limited because of the congestion problem.

Clearly, we either need to greatly increase existing network capacity, or develop

more sophisticated network service schemes which utilize the existing capacity more

eÆciently and are able to provide QoS assurances under high load, or combine

both of these approaches. We now look at the motivation behind developing more

sophisticated service models.

2.1. Motivation

2.1.1 Status of the Current Internet

We �rst look at some examples of traÆc volume and congestion patterns in the

current Internet, given in [4].

SWITCH [5] is a regional ISP that provides Internet connectivity to
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Swiss academic and research institutions. Presently, the backbone con-

sists of E3 (34 Mbps) and OC-3 trunks. The measurements indicate

that although the average link utilization is low, the peak utilization at

the network access point (NAP) and the direct peering links is quite

high. The peak utilization at CERN NAP has reached the maximum

link capacity, with the NAP operating on an Ethernet.

NORDUnet [6] interconnects the Nordic national networks for research

and education and connects these networks to the rest of the world.

NORDUnet provides its services by a combination of leased lines and

Internet services provided by other international operators. The back-

bone is a mix of OC-3 and OC-12 trunks. NORDUnet connects to several

NAP's, including Chicago NAP, and is peering with several other large

provider backbones, such as TeleGlobe, Telia and FUNET. Most of the

access links are OC-3 trunks, except that the Chicago NAP link runs at

DS-3 speed, and the link to DGIX NAP is a 100 Mb/s Ethernet connec-

tion. Similar to other providers, NORDUnet uses multiple links to peer

with other providers, and traÆc to and from other providers are evenly

distributed across all the links.

The investigation indicates that both NAP and private peering links can get

congested, contrary to the general perception that private peering links are better

managed and thus have less congestion. Trans-Atlantic links are a part of the

provider's backbone, and have had very high peak utilization. This simply implies

that there are bottleneck links within provider networks, and user traÆc that stays

within the same provider's network can also get congested.

Even though the average link utilization is quite low, around 20% to 30%, the

peak link utilization is high on all links. At times, utilization reaches 100% on some
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of the links. The congestion occurrence varies depending on links. The Chicago

NAP link operated at peak once in August, 2000, for approximately seven hours.

The DGIX NAP link operated at peak (over 80% link utilization) �ve times in

September, 2000, and only once in August, 2000. Each congestion event in DGIX

lasted between around one hour to as many as ten hours. Frequent and long-lasting

congestion on several peering links has also been observed. During August and

September, 2000, the TeleGlobe links operated at peak (over 80% link utilization)

almost every workday. Each peak lasted about 8 hours.

Even though the traÆc condition in NORDUnet and SWITCH networks may

not be typical of the rest of the Internet, the statistics released by several other ISPs,

such as Above.net [7] and BBC [8], shows that they all have similar traÆc behavior,

i.e., the average link utilization is always reasonably low, and many links are lightly

loaded at all times. Every network always has some busy links (particularly, access

links at NAP's and peering points) that have long lasting high bandwidth utilization.

2.1.2 Cost of Bandwidth

One obvious solution to congestion is to add enough bandwidth. However, this

is probably not feasible or cost e�ective for a lot of current ISPs, especially the

smaller ones. This is because most of ISP links are leased from telephone companies.

Despite many predictions that bandwidth would become \dirt" cheap, the reality is

that leased line prices have not been decreasing consistently and dramatically.

Andrew Odlyzko in [9] estimated the tari� per month price for a T1 link from

New York City to Pittsburgh, a distance of about 300 miles, which is about the

average length of long distance private line links. In 1987, the link was priced at

$10,000, and this price consistently decreased for �ve years to $4,000 in 1992. But

from 1992 to 1998, the link price has climbed by over 50%, to $6,000 per month.
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Not only are leased lines expensive, interconnecting ISP's can be costly as well.

Recently, some US ISP's [10] have claimed that the cost for a transit DS-3 link was

$50,000 per month, and an OC-3 link costs up to $150,000 per month. The market

dominance of a relatively small number of telephone companies, and government

regulation are also likely to impede the drop in prices, despite the low cost of �ber

installation and maintenance.

2.1.3 More EÆcient Service Models

As we have seen, access networks get congested frequently, and the cost of bandwidth

is not dropping rapidly. It is also diÆcult to predict the various user requirements,

especially due to the rapid deployment of new applications. Also, recent history

tells us that availability of more bandwidth will create its own demand through

increasing utilization of bandwidth intensive applications, such as real-time video

and virtual reality. Consequently, it makes economic sense to study and develop

models that utilize resources more eÆciently than a simple best-e�ort, 
at-rate

network, and deliver adequate QoS even under high utilization. Two approaches

have been studied and used in recent times, one based on providing QoS support

through some form of resource reservation or prioritization, and the other based on

user adaptation of sending rates in response to network congestion.

2.1.3.1 Models based-on Quality of Service

Current research in providing QoS support in the Internet is mainly based on two

architectures de�ned by the IETF: per-
ow based integrated services (IntServ) [11],

and class-based di�erentiated service (Di�Serv) [12]. IntServ provides end-to-end

guaranteed [13] or controlled-load service [14], while Di�Serv deals with Per-Hop

Behaviors (PHB) [15] operating on traÆc aggregates. Examples of Di�Serv PHBs
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include assured forwarding (AF) [16] and expedited forwarding (EF)[17].

In general, adding multiple levels of QoS requires more network management,

and greater user-network negotiation. Currently, the Resource Reservation Protocol

(RSVP) [18] is being used for setting up IntServ services, whereas Di�Serv generally

assumes there are static pro�les to indicate users' preferences.

In addition, providing di�erent services also requires a di�erentiated pricing

structure. Currently the predominant form of Internet retail pricing in the united

state is 
at-rate pricing, which most home users of the Internet are familiar with.

That is, the user is charged a �xed fee for a set amount of bandwidth to access the

network. A network supporting multiple classes of service also requires a di�eren-

tiated pricing structure, to motivate users to use the services they require and can

a�ord, rather than the highest quality service.

2.1.3.2 Models based-on Application Adaptation

QoS-support models involve a traÆc contract or service level agreement (SLA) be-

tween the user and the network. If the agreement, including price negotiation and

resource reservation is done statically (before transmission), pricing, resource alloca-

tion and provisioning have to be conservative to be able to meet QoS assurances in

the presence of short- and long-term network traÆc dynamics during the life of the

application. Many multimedia applications are long-lived, exacerbating the prob-

lem. Allowing only static resource reservation unavoidably imposes higher resource

costs and hence higher charges to the users.

A number of protocols and algorithms have been proposed for multimedia ap-

plications to dynamically regulate the source bandwidth according to the existing

network conditions (a survey of this work is given in [19].) Compared to resource

reservation, the adaptation approach has the advantage of better utilizing available
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network resources, which change with time. But if network resources are shared by

competing users, users of rate-adaptive applications do not have any incentive to

scale back their sending rate below their access bandwidth, since sel�sh users will

generally obtain better quality than those who reduce their rate. Also, the work in

the current literature generally assumes best-e�ort service from the network, and

does not consider how to work with QoS-assured services.

2.2. Design Goals

The objective of our work is to develop an eÆcient service model which combines

QoS assurance and di�erentiation in the network with rate adaptation by adaptive

users. We de�ne certain design goals which would make such a model feasible.

2.2.1 Support Signaling for Dynamic Service Selection and Resource

Negotiation

As more services are implemented in the Internet, user applications should be able

to request and use the delivery service appropriate to their requirements. Also,

when multiple services are available at di�erent prices, users should be able to de-

mand particular services, signal the network to provision according to the requested

quality, and generate accounting and billing records. We can view the selection and

use of a speci�c delivery service as a negotiation process. The customer and network

negotiate and agree upon speci�cations such as the type of service user packets will

receive, the constraints the user traÆc must adhere to, and the price to be charged

for the service.

The �rst goal of our work is to develop a protocol which enables a user to se-

lect from a set of available network services with di�erent QoS characteristics, and

enables the user and network to dynamically re-negotiate the contracted service
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parameters and price. The protocol should be generic and 
exible enough to sup-

port multiple delivery services and environments (including IntServ, Di�Serv, and

best e�ort services), service negotiation at di�erent levels of granularity (
ow- and

aggregate-based), negotiation by both sender and receiver, and \in-band" and \out-

of-band" resource reservation mechanisms. It should allow the service provider to

communicate service availability, estimated prices for available services and charges

accruing to the user, and allow the user to request a speci�c service. It should also

support dynamic service re-negotiation between the user and the network, allowing

the network to adjust pricing in response to changes in network load, and allowing

the user to respond to changes in application requirements.

2.2.2 Support Di�erential Pricing for Di�erentiated Services

O�ering various value-added services over IP networks has major technical chal-

lenges; however, business and economic challenges are equally important. Clearly,

providing di�erent network services requires a di�erentiated pricing structure. The

lack of an appropriate pricing scheme is one of the reasons that prevents service

providers from supporting quality of service in the Internet.

While network tari� structures are often dominated by business and marketing

arguments rather than costs, we believe it is worthwhile to understand and develop

a cost-based pricing structure as a guide for actual pricing. In economically viable

models, the di�erence in the charge between di�erent service classes would presum-

ably depend on the di�erence in performance between the classes, and should take

into account the average (long-term) demand for each class. In general, the level

of forwarding assurance of an IP packet in a network supporting multiple classes of

services depends on the amount of resources allocated to a class the packet belongs

to, the current load of the class, and in case of congestion within the class, the drop
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precedence of the packet. The pricing structure should re
ect the di�erences in cost

arising from these factors.

2.2.3 Support Short-TermResource Allocation and Congestion-sensitive

Pricing

For eÆcient resource usage, the network should be able to commit resources for the

short-term, and dynamically recon�gure resources based on demand, particularly

if users are adaptive. Also, it should be able to adjust the price during network

congestion, by setting a congestion-sensitive component on top of the long-term,

relatively static price.

The dynamic con�guration of resources and pricing of services allows a more

competitive price to be o�ered, and allows the network to be used more eÆciently.

Di�erentiated and congestion-sensitive pricing also provides a natural and equitable

incentive for applications to adapt their service contract according to network con-

ditions. Users that are adaptation-capable can adapt to price changes by adjusting

their sending rate or selecting a di�erent service class. Users with stringent band-

width and QoS requirements can maintain a high quality by paying more, while

adaptation-incapable applications will choose a static service.

2.2.4 Develop Reference User Adaptation Model

Adaptation-capable users would tend to adapt to price-changes so as to maximize

their perceived \value for money", subject to budget and minimum quality require-

ments. We develop a user adaptation model based on this principle.
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2.3. Our Contributions

We propose a dynamic resource negotiation protocol, RNAP, to enable the collation

and distribution of prices and charges, and to enable dynamic resource negotiation

between user applications and the access network, as well as between adjoining

network domains. The proposed protocol and architecture are intended to co-exist

with current Internet QoS schemes (e.g., those proposed within the IntServ and

Di�Serv frameworks), and work in a scalable manner over a variety of network

architectures. RNAP is designed to be lightweight and 
exible: it can function as a

stand-alone protocol, but it is also possible to implement some components of RNAP

as a layer on top of RSVP or other hop-by-hop reliable signaling protocols. RNAP

is intended for use by both adaptive and non-adaptive applications. It provides a

framework within which an application can adapt so as to obtain the best value

from the network.

Our proposed architecture integrates resource reservation, negotiation, pricing

and adaptation in a 
exible and scalable way. The framework o�ers a middle ground,

where resources are reserved, but resource commitments are made only for short

intervals, instead of inde�nitely. Prices may vary for each interval, encouraging

applications to adjust their resource demands to network congestion. Unlike best-

e�ort adaptive approaches, applications are guaranteed resources and there is no

assumption that applications are cooperative. Our model allows the network opera-

tor to make di�erent trade-o�s between blocking new resource requests and raising

congestion prices to prevent overload.

In addition, we propose a pricing scheme in a Di�Serv environment based on

the cost of providing di�erent levels of quality of service to di�erent classes of users,

based on long-term user demand, and based on the level of congestion in the network.

The pricing scheme developed allows more eÆcient network usage. We also develop
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the demand behavior of adaptive users based on a physically reasonable user utility

function. We show how a set of user applications performing a given task (for

example, a video conference) can adapt their sending rate and quality of service

requests to the network in response to changes in service prices and subject to

budget and minimum quality requirements, so as to maximize the bene�t to the

user.

We evaluate two mechanisms for determining the congestion-sensitive price, the

�rst based on tâtonnement, and the second based on auction. In the tâtonnement

process, the price is adjusted gradually to drive the user demand to the supply level

of the network resources. In an auction process, the resources are allocated to the

users that value the resource the most. Auction appears to be a useful concept

for determining actual market prices in case of network congestion. However, the

auction schemes proposed in the literature tend to be theoretical and leave a lot of

practical issues open. In this work, we propose a new auction model, the M -bid

auction, in which a user sends multiple bids at a time indicating its willingness to

pay a premium for di�erent amounts of bandwidth during congestion. The network

evaluates the bids to obtain a congestion price, and allocates bandwidth to the users

based on their bids. We discuss problems of the auction framework, and attempt to

resolve them.

Using RNAP and an extended version of an existing Di�Serv implementation,

we develop a simulation framework to compare the performance of a network sup-

porting congestion-sensitive pricing and adaptive service negotiation to that of a

network with a static pricing policy. We evaluate the system performance and per-

ceived user bene�t (or value-for-money) under the dynamic and static systems. We

also study the relative e�ects on system performance of rate adaptation, network

load and traÆc burstiness, dynamic load balancing between service classes and ad-
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mission control. We simulate the tâtonnement-based congestion pricing model and

the auction-based model, and compare their performance with respect to network

utilization, connection blocking rate, user satisfaction and network revenue. We

also study the stability of the dynamic pricing and service negotiation mechanisms.

Although the simulation framework is based on the RNAP model, we try to derive

results and conclusions applicable to static and congestion-driven, dynamic pricing

schemes in general.

The proposed framework is shown to be able to control congestion and allow a

service class to meet its performance assurances under large or bursty o�ered loads.

Users see a reasonably stable service price and are able to maintain a very stable

expenditure. Compared with simple admission control schemes, the framework de-

veloped leads to a greatly reduced connection blocking rate at high loads by driving

down bandwidth requests of adaptive applications, resulting in a higher overall user

satisfaction.

We also describe a prototype implementation of the resource negotiation frame-

work on a test-bed network. The results con�rm the performance bene�ts predicted

by the simulations.

2.4. Organization

The work on resource negotiation, pricing and QoS adaptation is organized as fol-

lows. We �rst describe some related work in Chapter 3. In Chapter 4, we discuss

in detail the RNAP protocol and architectures, the roles of various RNAP agents,

and the price and charge formulation and collation mechanisms of RNAP. Chapter

5 discusses our proposed pricing model in detail. Chapter 6 develops a physically

realistic user utility function to represent user demand behavior in response to price

changes. In Chapter 7, we describe our simulation model and discuss the simulation
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results. We describe our prototype implementation of the proposed framework in

Chapter 8, and summarize our work in Chapter 9.

15



Chapter 3

Background and Related Work

3.1. Signaling for Resource Reservation and Allocation

IntServ and Di�Serv are two basic models for providing QoS support in the current

Internet. Although Di�Serv is more scalable than IntServ in terms of implementa-

tion, services provided with existing Di�Serv solutions usually have lower 
exibility,

utilization and assurance levels than IntServ services. In both architectures, im-

plementations should include a mechanism by which the user can request speci�c

network services, and thus acquire network resources. Any services with quality of

service expectation also need admission control, where the network admission con-

trol module will grant or reject the user requests based on the network resources

and network policies [20, 21]. Currently, resource reservation supported by both the

services is normally static and long lived.

3.1.1 Integrated Services (IntServ) and the Signaling

IntServ was proposed to be an Internet model that includes best-e�ort service, real-

time service, and controlled link sharing. Currently two types of service are proposed

in IntServ: guaranteed and controlled-load service.

Controlled-load service provides the client data 
ow with a quality of service
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closely approximating the QoS that the same 
ow would receive from an unloaded

network element, but uses capacity (admission) control to assure that this service is

received even when the network element is overloaded. The controlled load service

does not accept or make use of speci�c target values for control parameters such as

delay or loss.

Guaranteed service (guaranteed delay and bandwidth) provides �rm (mathemat-

ically provable) bounds on end-to-end datagram queuing delays. This service makes

it possible to provide a service that guarantees both delay and bandwidth.

Per-
ow resource reservation in IntServ is generally implemented through RSVP.

RSVP was designed to enable the senders, receivers, and routers of communication

sessions to communicate with each other in order to set up the necessary router

state to support the services requested. There are two fundamental RSVP message

types: Path and Resv. In the RSVP model, senders send the Path message towards

the receivers following the data path, to install reverse routing state in RSVP-

capable routers and provide the receivers with information about the characteristics

of the sender traÆc. In response, the receivers send the reservation requests (Resv)

messages hop-by-hop following the reverse path formed by Path messages towards

the sender. The two messages create and maintain \reservation state" in each

node along the path (s). For robustness, RSVP takes a \soft state" approach to

managing the reservation state in routers and hosts. RSVP soft state is created

and periodically refreshed by Path and Resv messages and the state is deleted if

no matching refresh messages arrive before the expiration of a \cleanup" timeout

interval.
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3.1.2 Di�erentiated Service (Di�Serv) and Signaling

The Di�Serv architectural model [22] provides multiple service classes with di�erent

QoS expectations. It improves the scalability of QoS provisioning by maintaining

state information only at the edges of the network, and keeping classi�cation and

packet handling functions in the core network as simple as possible. Flows are

classi�ed, policed, marked and shaped at the edges of a DS domain. Based on

this classi�cation, the nodes at the core of the network forward the marked packets

according to a corresponding per-hop behavior (PHB). The number of DS code points

and the number of PHBs is limited and consequently this mechanism allows for a

large number of individual 
ows to be aggregated from the point of view of the core

router. Two kinds of PHB have been recommended: expedited forwarding (EF) [17]

and assured forwarding (AF) [16].

The EF PHB is de�ned as a forwarding treatment for a particular di�serv ag-

gregate where the departure rate of the aggregate's packets from any di�serv node

must equal or exceed a con�gurable rate. It should average at least the con�gured

rate when measured over any time interval equal to or longer than the time it takes

to send an output link MTU sized packet at the con�gured rate. The EF PHB

can be used to build a low loss, low latency, low jitter, assured bandwidth, end-

to-end service through DS domains. This service appears to the endpoints like a

point-to-point connection or a \virtual leased line".

The AF PHB provides forwarding of IP packets in N independent AF classes.

Within each AF class, an IP packet is assigned one of M di�erent levels of drop

precedence. Currently, four AF classes are de�ned, where each AF class in each

DS node is allocated a certain amount of forwarding resources (bu�er space and

bandwidth). Within each AF class, IP packets are marked (again by the customer

or the provider DS domain) with one of three possible drop precedence values. A
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congested DS node tries to protect packets with a lower drop precedence value from

being lost by preferably discarding packets with a higher drop precedence value.

A Service Level Agreement (SLA) is a contract between a network service provider

and a customer that speci�es, usually in measurable terms, what services the net-

work service provider will furnish. The customer can be an individual or a peer

domain. A SLA provides a guarantee that traÆc o�ered by the (peer) customer

domain, that meets certain stated conditions, will be carried by the service provider

domain to one or more appropriate egress points with one or more particular service

levels. The guarantees may be quantitively or qualitively, may carry certain tari�s,

and may also carry certain monetary or legal consequences if they are not met. An

SLA may include PHBs to be applied, traÆc conditioners and their parameters, and

any applicable policies.

The Service Level Speci�cation (SLS) contains the technical details of the agree-

ment speci�ed by the SLA. Speci�cally, the SLS asserts that traÆc of a given class,

meeting speci�c policing conditions, entering the domain on a given link, will be

treated according to a particular PHB or set of PHBs. If the destination of the traf-

�c is not in the receiving domain, the traÆc will be passed on to another domain

(which is on the path toward the destination according to the current routing table

state) with which a similar (compatible and comparable) SLS exists specifying an

equivalent set of PHBs.

Bandwidth Brokers (BBs) [12] are agents whose responsibilities include the im-

plementation of the technical aspects of the agreements. In general, a bandwidth

broker may receive a resource allocation request (RAR) from an element in the do-

main that the bandwidth broker controls or represents, or from a peer bandwidth

broker. The bandwidth broker responds to this request with a con�rmation of ser-

vice or denial of service. This response is known as a Resource Allocation Answer
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(RAA). If the RAR is admitted, traÆc conforming to the RAR is handled according

to the SLS between the provider and the customer. In response to the RAR, the

BB may recon�gure routers in its domain, and possibly generate additional RAR

messages requesting downstream resources. Implementation of the bandwidth bro-

ker for Di�Serv is a subject of ongoing research, and various approaches have been

proposed [23].

The signaling associated with BBs includes the user/application protocol, the

intra-domain communication protocol and the inter-domain peer protocol. The

user/application protocol is an interface provided for resource allocation requests

from within the bandwidth broker's domain. These requests may be manual (e.g.,

via a web interface) or they may consist of messages from another setup protocol

(for example RSVP messages). An intra-domain signaling protocol communicates

BB decisions to routers within the bandwidth broker's domain in the form of router

con�guration parameters for QoS operation and (possibly) communication with the

policy enforcement agent within the router. Current bandwidth broker implementa-

tions have a number of di�erent protocols for communicating with routers, including

COPS [24] , DIAMETER [25], SNMP [26], and vendor command line interface com-

mands. An inter-domain protocol provides a mechanism for peering BBs to request

and send admission control decisions for aggregates and exchange traÆc.

Full parameterization of SLSs is complex and is currently poorly understood,

and there has been little work on SLS establishment and re-negotiation between

customer and access domain bandwidth broker as well between neighboring domain

bandwidth brokers. Some work has been done in the Qbone, an Internet2 initiative

to build a testbed for new IP quality of service (QoS) technologies.

In the Phase 1 of Qbone implementation, a Simple Inter-domain Bandwidth

Broker Signaling protocol (SIBBS) [23] was proposed. SIBBS is a sender-oriented,
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request-response protocol between the bandwidth broker peers. A basic assumption

of Phase 1 is that of a pure Di�Serv environment, in which heterogeneous networks

inter-operate at layer 3 and, speci�cally, achieve QoS inter-operability through Di�-

Serv. The SLSs are assumed to have already been established (pairwise) between

peer bandwidth brokers out-of-band, that is, without a SLS negotiation protocol.

It is also assumed that there are globally well-known services (GWS) and service

IDs (GWSID) referring to those services. The SLSs refer to these services and in

addition, resource allocation requests use the well-known IDs. The BB handles end

system requests for its domain, and may peer directly with non-adjacent BBs.

In the originating domain, the end system sends an RAR to the bandwidth bro-

ker. This message includes a globally well-known service ID and an destination IP

address, a source IP address, an authentication �eld, times for which the service

is requested and other parameters of the service. The bandwidth broker makes

a number of decisions at this point, including request authorization, egress router

location, admission decision for the 
ow based on the prede�ned SLS with neigh-

boring successor domain en route to the destination, and domain policies. If these

decisions all have a positive outcome, the bandwidth broker will modify the RAR

by including the ID for the domain and sign the request with its own signature.

In a transit domain, the bandwidth broker receives an RAR from an adjacent

bandwidth broker with a fully-speci�ed destination address speci�cation. The tran-

sit BB functions similar to the access domain BB, and also ensures that there are

suÆcient resources within the domain to support the 
ow from the ingress border

router and possibly determine the intra-domain route. In case that all these deci-

sions have positive outcomes, the transit bandwidth broker modi�es the RAR as

appropriate and sends it to the bandwidth broker of the following domain en route

to the destination IP address.
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In the destination domain, the bandwidth broker of the destination domain

knows the address of the end system which is to receive the 
ow. As in the behavior

just described, on the reception of the RAR, it checks that the requested resources

fall within any possible SLS with the end system.

In case the decisions have negative outcomes in a domain, the bandwidth broker

returns a Resource Allocation Answer (RAA) to the sending end system right away.

If all these decisions have positive outcomes, the end system makes the determina-

tion whether it can receive the 
ow. This is signaled with an RAA to the bandwidth

broker of the destination domain. This contains authentication of the end system,

and parameters for the 
ow which the end system is willing to accept (which may

be di�erent from those received). In case the 
ow is rejected, the RAA contains a

reason code and possibly hints about the set of service parameters that would be

acceptable.

Upon receiving the RAA from the end system, the bandwidth broker authen-

ticates the answer and forwards the RAA, with appropriate changes to the peer

bandwidth broker that sent the RAR. Similarly, transit BBs en route to the origi-

nating domain forward the RAA towards the originating BB, which in turn forwards

it to the requesting system. Along the way, a BB may modify traÆc conditioners

and PHB parameters in edge routers in response to the RAA, and may initiate

resource allocation in internal routers.

The sender end system receives the RAA and is able to send the 
ow. The

sender could send the 
ow earlier; however, the 
ow will not receive the requested

service until the RAA is received and the DSCP of packets sent earlier than this

will not be marked consistent with the service.
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3.1.3 Other Work on Resource Allocation

Resource allocation schemes based on perceived-quality have been studied in [27][28][29].

These studies were limited to a local system, and did not address the interaction of

the local system with a large network. Liao [30] allocates resources among users to

achieve equal perceived quality. We will argue later that perceived quality does not

directly represent the economic value of communications.

3.1.4 Conclusion

In general, RSVP and the implementations of Di�Serv lack integrated mechanisms

by which the user can select one out of a spectrum of services, and re-negotiate

resource reservations dynamically. For eÆcient resource usage, the network should

be able to commit resources for a short-term, and dynamically re-con�gure resources

based on user demand and network conditions, particularly if users are adaptive.

The protocols proposed currently also restrict the user requests to be either sender-

driven (e.g., SIBBS) or receiver-driven (e.g., RSVP), while sometimes both senders

and receivers would like to participate in the resource negotiation process. The

protocols also do not integrate mechanisms to support pricing and billing, which

are essential components of a multi-service framework.

3.2. Adaptive Internet Multimedia Applications

There has been a lot of recent research on adaptation of the sending rates of mul-

timedia applications in response to available network resources [19]. In general,

these adaptation algorithms rely on implicit signaling mechanisms such as packet

loss rates for feedback.

Adaptive control schemes presented in the literature can be broadly classi�ed

into sender-driven, receiver-driven, and transcoder-based. Sender-driven schemes
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require the sender to respond to 
uctuations in the service available from the net-

work, and adjust its transmission rate accordingly. Receiver-driven schemes specify

a mechanism for each receiver to select transmission of a particular quality accord-

ing to the service it receives from the network, typically by subscribing to di�erent

multicast groups. Transcoder-based schemes place gateways at appropriate loca-

tions to deliver di�erent levels of quality to network regions with di�erent types of

connectivity or di�erent levels of congestion.

3.2.1 Sender-driven Adaptation

Sender-driven adaptation schemes in the literature fall into two major categories:

bu�er-based adaption schemes and loss based adaptation schemes. Adaptation

schemes have been proposed based on other congestion indicators, including CSMA/CD

collisions [31], packet delay [31] and delay jitter [32].

Bu�er-based adaption schemes [33][34][35] base the adaptation of the transmis-

sion rate on the occupancy of a bu�er on the transmission path. Essentially, the

goal of the control algorithm is to maintain bu�er occupancy at a constant, desired

level. When the bu�er begins to �ll up, the transmission rate is reduced in response,

and when the bu�er begins to empty, the transmission rate is increased.
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Figure 3-1: Linear regulator with dead zone (from [1])

Loss based adaptation schemes [36][1][37] regulate the transmission rate based

on loss rate information reported by the receivers. Qualitatively, all three of the
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adaptation schemes adopt the following approach (Figure 3-1). Based on feedback

information from a receiver, the sender assumes that the receiver is in one of three

states: unloaded, loaded, or congested. In the unloaded state, the sender progres-

sively increases its transmission rate in an additive manner in response to feedback,

until the network state is driven into the loaded state or the sender is sending the

maximum useful rate. In the loaded state, the sender maintains a constant trans-

mission rate. Depending on packet loss feedback, it can be driven into either the

unloaded or the congested state. In the congested state, the sender progressively

reduces its transmission rate multiplicatively until the reported loss decreases to

the loaded state. Issues that need to be considered include the loss thresholds for

determining a particular network state, and the parameters controlling the additive

rate increase and multiplicative rate decrease. In a multicast environment with het-

erogeneously connected receivers, di�erent receivers may experience widely varying

degrees of congestion. The sender must deal with the problem of deciding upon

an overall network state based on feedback from these receivers. The adaptation

schemes take di�erent approaches in tackling this problem.

3.2.2 Receiver-driven Adaptation

In receiver-driven adaptation, receivers individually tune the received transmission

according to their needs and capabilities. A number of receiver driven schemes use

a combination of layered encoding, and a layered transmission scheme. The source

data is encoded into a number of layers. A base layer provides the minimal QoS

needed for an acceptable representation of the original data stream. Incrementally

combining higher layers with the base layer results in a progressively higher QoS.

Each encoded layer is transmitted to a separate multicast group. An alternative

to this cumulative layering scheme is to encode and transmit multiple copies of the
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source input; each copy is encoded to have a di�erent level of QoS, and is sent

to a separate multicast group. Although this approach (commonly referred to as

simulcast) makes ineÆcient use of bandwidth, it may be more appropriate for layered

transmission of audio using separate encoders for each layer, since audio encoders

usually do not support layered encoding. Possibly due to the more demanding

nature of distributed video applications relative to audio, layered adaptive schemes

reported in literature generally use the former (cumulative layering) approach, and

we restrict ourselves to this class of schemes in the present discussion.

The receiver selects a transmission quality appropriate to its requirements and

constraints by subscribing to a certain number of multicast groups carrying di�erent

layers. The receiver monitors network congestion (based on parameters such as

packet loss and throughput), and adapts to changes in network conditions by adding

or dropping layers accordingly.

In the RLM scheme proposed by McCanne, Jacobson, and Vetterli [38], the

sender takes no active role in the adaptation mechanism. It encodes the source

signal into cumulative layers, and transmits each layer of the signal to a separate

IP multicast group. Layered encoding of video usually results in a small number

of high bandwidth layers. Adaptation by adding or dropping an encoded layer is

of a correspondingly large granularity, and this may result in under-utilization of

bandwidth, and sub-optimal quality of reception. One approach towards alleviating

this problem is taken by the ThinStreams protocol [39]. An alternative approach

is to have the source dynamically adjust the bandwidth of each encoded layer in

response to feedback from the receivers or the network.

In the ThinStreams scheme, the granularity with which receivers may add/drop

layers is decoupled from the granularity with which the source signal is encoded into

layers. Each encoded layer at the sender is termed a thick stream, and this is split
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up into several thin streams of a �xed, small bandwidth. Each thin stream is sent

to a separate multicast group. A receiver drops and adds thin stream layers based

on perceived network congestion.

Source adaptation schemes combine the layered encoding and transmission ar-

chitecture with rate adaptation by the sender in response to feedback. Sisalem

and Emanuel [40] propose an Adaptive Layered Transmission (ALT) protocol. The

sender monitors loss information for each layer through periodic RTCP [41] re-

ceiver reports. The transmission rate of each layer is adapted using the additive

increase/multiplicative decrease model. In addition to the rate adaptation by the

sender, if a receiver experiences packet loss above a certain threshold, it drops a

layer to avoid driving the transmission rate of the layer down too low. If the re-

ceiver determines that it has excess capacity, it adds a layer. If all the receivers

drop the current highest layer, or if the transmission rate of the highest layer is re-

duced below the minimum transmission rate, the sender may choose to temporarily

discontinue the layer.

In [42], Vickers, Albuquerque, and Suda propose a rate-based adaptation schemes,

as well as a credit-based scheme (AMML). In response to receiver feedback, the

sender decides the number of layers to encode, and the rate at which to transmit

each layer. In the rate-based method, the sender receives feedback explicitly in the

form of the desired transmission rate for each layer. The sender initiates the feed-

back process by multicasting a \forward feedback packet". At each intermediate

node, the ERICA algorithm [43] is used to calculate the fair share of link band-

width of the connection, and this is entered in the explicit rate (RE) �eld of the

forward feedback packet. When the packet reaches a receiver, the RE �eld indicates

the transmission rate the receiver's connection can support. Based on this informa-

tion, receivers send \backward feedback packets" to the sender requesting speci�c
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transmission rates. Backward feedback packets are merged at intermediate nodes,

concatenating the rate �elds, and eliminating some if required according to speci�ed

criteria, so that the number of requested rates in a feedback packet does not exceed

the number of layers the sender can support.

In the credit-based method, congestion feedback, as well as information about

the number of receivers fully and partially receiving each video layer, propagates

hop-by-hop back to the sender. The underlying principle is that an upstream node

can send a certain number of packets to a downstream neighbor only if it has re-

ceived an equal number of credits from the downstream node. The feedback packet

eventually arriving at the sender indicates the total number of receivers fully and

partially receiving each layer. The sender uses this information, as well as its bu�er

occupancy, to decide the number of video layers and the transmission rate of each

layer.

3.2.3 Transcoder-based Adaptation

An alternative approach to layered encoding and transmission is to use video (or

multimedia) gateways at appropriate locations in the network to convert through

transcoding a high bandwidth transmission into a transmission with appropriate

bandwidth to accommodate groups of poorly connected receivers. In addition to

con�guring a session appropriately with gateways during start-up, receivers may be

allowed to adapt to network congestion by dynamically identifying and requesting

service from a node with better reception to serve as the gateway. Alternatively,

or in addition, the gateway may use an adaptive rate-control algorithm to adjust

its transmission in response to receiver feedback. The two main considerations in

developing a transcoder-based adaptation scheme are the design of the transcoding

algorithm, and the placement or selection of the gateway to perform the transcoding.
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In [2], Amir, McCanne and Zhang propose the following underlying model. The

input format is converted into an intermediate representation by a decoder. This

representation is transformed and delivered to the encoder, which produces a new bit

stream in a new format (Figure 3-2). Multiple intermediate formats are supported by

the proposed transcoding model, allowing 
exibility in choosing an encoder/decoder

pair, and optimizing performance by enabling a higher level of intermediate repre-

sentation (such as DCT coeÆcients) to be used instead of decomposing the input

stream into pixel format.
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Figure 3-2: Block diagram of transcoder proposed by Amir, et al. [2]

Kouvelas, Hardman and Crowcroft [3] present a control scheme that automati-

cally con�gures transcoders within the multicast tree to support branches with bad

reception. A group of receivers a�ected by a bottleneck tries to locate an upstream

receiver with better reception to provide a customized, transcoded version of the

session stream by multicasting request messages. To prevent requests from multiple

receivers in the group from proliferating, a requester delays its request by an interval

proportional to its distance from the stream source plus a small random interval.

If the requester receives an identical request during this delay, it cancels its own

request.
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3.2.4 Signaling Mechanism

A primary issue in rate adaptation schemes is the choice of the indicator which

signals congestion in the network. The feedback signal may be explicit, or network

assisted { for example, occupancy of a bu�er along the transmission path, request

for a speci�c transmission rate from the network or receivers, or source quench

messages. The feedback signal may also be implicit, or sent directly from receiver

to sender without network intervention { for example, packet loss, packet delay,

delay jitter, throughput, or CSMA/CD collisions. The main criteria in evaluating

the signaling mechanism are the promptness and reliability with which congestion

is indicated.

� In the bu�er based adaptation scheme of Kanakia, et al. [33], the sender

requires state information about the bottleneck router. The state informa-

tion propagates in either the forward or reverse direction, and each router

along the transmission path either updates the state information, or passes it

unmodi�ed.

� In AMML [42], intermediate nodes are responsible for periodically collecting

feedback messages from downstream routers, and merging the state informa-

tion into a new feedback packet which is sent upstream. Additionally, in

rate-based AMML, the sender multicasts a feedforward message; each switch

implements a fairness algorithm (ERICA) to calculate bandwidth share for

the connection, and updates state information in the feedforward message

accordingly. In credit-based AMML, the switch maintains state information

about the number of packets served at output links, and sends \credits" to

the upstream router in the merged feedback message.
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The adaptive scheme should detect and in react to congestion quickly, to min-

imize poor reception quality and interruptions at the receiver. At the same time,

the adaptation should not result in abrupt changes or oscillations in the reception

quality.

0

128

256

384

512

640

4 6 8 10 12 14

P
ac

ke
t s

iz
e 

(b
yt

es
)

Time (seconds)

Figure 3-3: Adaptation of packet size in the TCP-like congestion control scheme used by Kou-
velas, et al. [3]

3.2.5 Conclusion

The adaptive schemes which do TCP-like congestion control react to every packet

loss by halving the rate. This can result in rapid changes in the transmission rate

(for example, Figure 3-3) which may be perceived as unpleasantly abrupt changes

in quality at the receiver. In the LDA scheme [37], a TCP-like congestion control

mechanism is used in which the multiplicative rate reduction factor can be reduced

to obtain a smoother change in the rate at the cost of a longer convergence time,

but without sacri�cing the goal of fairness to competing TCP connections. In the

bu�er-based scheme of Jacobs, et al. [34], abrupt changes may be smoothed out

by the use of local bu�ering, but this is reported to add a delay of a few seconds,

undesirable in real-time applications.

The loss-based, sender-driven schemes have relatively low overhead and simple

implementations. In comparison, layered transmission schemes add complexity and

delay to the encoding and decoding systems, and transcoder-based systems require
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implementation of transcoding systems at routers, and have possible concerns about

increased delay and security. At the same time, sender-driven schemes are limited

in their ability to accommodate a heterogeneous group of receivers which di�er in

their connectivity or the amount of congestion on their delivery paths, since all

receivers have to receive the same rate. They are better-suited to multicast sessions

with a homogeneous group of receivers, distributed over a relatively small area. In

larger, heterogeneous sessions, transcoder-based schemes and layered transmission

schemes are better suited. Transcoder-based schemes may be preferred in a session

which has diverse receivers with di�erent connectivities. In an environment with

dynamically changing congestion, layered transmission schemes may be preferable

to avoid having to dynamically locate and con�gure transcoders.

In general, the multimedia adaptive schemes in the literature assume no QoS

support. The frequent and passive rate adjustment can severely degrade multimedia

quality, and sometimes can not guarantee that an application is able to maintain

its minimum QoS requirement. The literature work also assumes the users are

well-behaved and cooperative, and would adapt without any incentive.

3.3. Pricing and Billing in the Network

Microeconomic principles has been applied to various network traÆc management

problems. In this section, we review some of the work.

3.3.1 Total User Bene�t Maximization based on Welfare Theory

The studies in [44][27][45][46][47] are based on a maximization process to determine

the optimal resource allocation such that the utility (a function that maps a resource

amount to a satisfaction level) of a group of users is maximized. These approaches

normally rely on a centralized optimization process, which does not scale. Also,
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some of the algorithms assume some knowledge of the user's utility curves and

truthful revelation by users of their utility curves, which may not be practical.

Kelly [48] showed that if users' utilities are concave functions of their attained

throughput, then their aggregate utility is maximized by the network allocations

of scarce network resources according to a weighted proportional fairness criterion,

that is, the network shares resources in proportion to how much the users choose to

pay. It was also shown in [47] that a weighted proportionally fair allocation could

not be achieved by simple rate control algorithms, using increase and decrease rules

similar to those described Chiu and Jain [49]. This work provides a sound theoretical

analysis for the market-based network resource control. However, the implicit price

calculation makes its application to real networks as an incentive to drive user

traÆc adaption an open question. The assumption of an extremely simple user

utility function also restricts the model's application in real system.

3.3.2 Pricing for EÆcient Resource Utilization and Congestion Control

In [50], packets are statistically marked similar to the ECN proposed for the Internet

[51] and it was shown that the resulting system converges to a system optimal state

as long as all utility curve are strictly concave. This model provides a simple pricing

mechanism for packet transmission. However, the control is applied at the packet

level and it is not clear whether the theoretical results hold in the presence of real

timing and delay e�ects at the scale of a large network.

In [52][53][54][55][56], the resources are priced to re
ect demand and supply. The

pricing model in these approaches is usage-sensitive. The methods in [54][56][53] are

limited by their reliance on a well-de�ned statistical model of source traÆc, and are

generally not intended to adapt to changing traÆc demands.

The scheme presented in [55] is more similar to our work in that it takes into
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account the network dynamics (session join or leave) and source traÆc character-

istics (VBR). It also allows di�erent equilibrium prices over di�erent time periods,

depending on the user resource demand. However, congestion is only considered

during admission control, and the study is restricted to single service class.

3.3.3 Pricing in Multi-service Environment

There is relatively little work on provider-oriented models for packet-switched multi-

service networks.

Odlyzko [57] described an approach to Internet pricing, called Paris Metro Pric-

ing, where logically separate networks each charge a �xed price per packet. The

networks di�er only in the price paid, and each user decides for each packet which

price to pay. It is expected that the higher-priced classes will have less load and will

provide better service. However, this approach provides no real service guarantee

to the users, and there is nothing to prevent overloading of a service class.

Kumaran et al. [58] described the utility maximization by users and revenue op-

timization by service providers based on the quantitative admission control model

proposed in [59][60]. The equivalent bandwidth estimation in [59][60] is under very

speci�c assumptions about the traÆc, and the analysis is also constrained to two

classes, with users in the same class assumed to have the same bandwidth require-

ments. This prevents the application of the results to a general network service

environment.

3.3.4 Auction Mechanisms

Several auction based mechanisms have been studied to elicit truthfully reported

user utility functions and encourage the eÆcient utilization of scarce network re-

sources. MacKie-Mason et al. [61] proposed implementation of congestion pricing
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using a \smart market" model. In this model, the price for sending a packet varies on

a very short time-scale (minute-by-minute), re
ecting the current degree of network

congestion. Each packet header contains a bid �eld, and the packet is admitted if the

bid exceeds the current cuto� amount, determined by the marginal congestion costs

imposed by the next additional packet. The user pays the cuto� amount, instead

of her own bid. The optimal strategy for the user is to bid her true valuation. The

mechanism only provides a priority relative to other users, and is not an absolute

promise of service. Issues that need to be addressed include accounting complexity,

user service interruptions during traÆc peaks, and user response to 
uctuations in

price.

The model in [44] allows multiple QoS guarantees to be provided by scheduling

resources in advance. The implementation scheme is again called \smart market",

and is actually a \generalized Vickrey auction" (GVA). The central idea in the well-

known Vickrey auction [62] is to award the item on auction to the highest bidder,

but charge the second highest bid as the price. Bidding one's true valuation is a

dominant strategy for each agent, and the resulting allocation is Pareto-eÆcient

[62]. The generalized Vickrey auction extends the idea to allow agents to have

preferences over more than one item, more than one unit of the item, and over the

quantities of the items consumed by other agents (externalities). The model elicits

the truthful revelation of user valuations, and preferentially allocates the scarce

bandwidth to the users with the highest willingness to pay. The \second-price"

analogue is to charge each agent the total social surplus that would be possible

if that agent did not participate in the auction. The optimal solution requires

substantial computation, which increases polynomially with the number of users,

and the number of optimizations increases linearly with the number of users.

The \second-price" model is also used in [63], and the proposed auction scheme
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is called progressive second price auction (PSP). The PSP model extends the tra-

ditional single non-divisible object auction to the allocations of arbitrary shares of

the total available resource. Each user that receives resources pays the unit price of

the maximum amount which the next highest bidder would pay if she is not denied.

A number of practical issues are not addressed in the above models. Other than

computation and sorting complexity, potential problems include signaling bursts,

set-up delay, and uncertainty of connection availability. Auctions taking place at

intervals may cause signaling bursts around each auction moment. Set-up delays

arise because new users have to wait until the next auction to receive requested

resources. If the auction is implemented at multiple entities along a path to enable

end-to-end reservation, the delay becomes cumulative. Since the refresh interval of

current Internet reservation is normally of the order of tens of seconds, this would

result in impractically long delays. Finally, if an auction is used for congestion

control, the end-to-end connection will need to be refreshed from time to time

based on the current traÆc by performing new auction. At each refresh, a user risks

losing its connection if its bid is rejected at any hop. Thus, the availability of the

connection is always uncertain.

To address some of these concerns, Delta Auction (DA) [64] was proposed to

allow auction to take place continuously. Arriving requests are processed immedi-

ately, and bids that are too low are refused right away. SuÆcient bids are accepted

provisionally, but there is the possibility that bids arriving later may exceed those

that admitted and thus oust them from the auction. The advantage of this scheme

is that the signaling traÆc is distributed over time in a very uniform way, and a

user is informed quickly about refused reservations.

A Connection-Holder-is-Preferred-Scheme (CHiPS) [65] was proposed to resolve

the uncertainty of the connection. The auction mechanism is still used to deter-
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mine a ranking among the bidders as well as the market-clearing price. Current

connection-holders are preferred by allowing them to submit a second bid if their

�rst bid is rejected. This still does not eliminate the uncertainty completely. It

also appears to be inconsistent with the objective of the second-price model, which

is to truthfully elicit the user valuation of a service, since the only choices for a

users are either to withdraw, or to submit a second-chance bid with a price di�erent

from the user's real willingness to pay. If some users withdraw, other users may

end up paying an unfairly higher price, compared to the price they would have paid

if the withdrawals were taken into account at the outset. Similar to DA, CHiPS

requires that resource auction take place regularly after each expiration of a given

time period, and that reservations are possible and valid only for whole time periods.

Moreover, each customer is allowed to send only one bid per time slot.

3.3.5 Signaling Support for Pricing and Charging

Even though a fair amount of work is found in the literature addressing the resource

optimization and pricing issues from an economic angle, little attention has been

paid to the price quotation and collection mechanism, which becomes particularly

necessary when the pricing is dynamic, based on the current network state.

In [66], a charging and payment scheme for RSVP-based QoS reservations is

described. A signi�cant di�erence from our work is the absence of an explicit price

quotation mechanism| instead, the user accepts or rejects the estimated charge for

a reservation request. Also, the scheme is coupled to a particular service environment

(IntServ), whereas our goal is to develop a more 
exible negotiation protocol usable

with di�erent service models.
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3.3.6 Conclusion

In general, the work on network pricing in the literature is restricted to theoreti-

cal issues, and the results are not easily applicable to real networks. We design a

pricing algorithm that takes into account the current Internet service infrastructure,

and considers di�erent service classes, the long-term user demand, and short-term

network dynamics. The algorithm allows the network to optimize pro�t, and we

also consider the user demand adaptation which would maximize the user bene�t

in such an environment. Also, the literature does not enter into detail about the

negotiation process and the network architecture, and mechanisms for collecting

and communicating locally computed prices. We address these drawbacks in our

work by developing a resource negotiation framework with pricing and billing mech-

anisms. The framework is demonstrated in conjunction with our pricing model, but

is general enough to be used with other models. We also propose an auction-based

pricing model which minimizes the uncertainty of service availability inherent in

most auction schemes, and addresses some of the other implementation issues.
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Chapter 4

RNAP: A Resource Negotiation and Pricing

Protocol

As growing numbers of \better-than-best-e�ort" (BBE) services are investigated

and deployed in the Internet, user applications will be able to request and use the

delivery service appropriate to their requirements. We may regard the selection and

use of a speci�c delivery service as a negotiation process. The customer and network

negotiate and agree upon speci�cations such as the type of service user packets will

receive, the constraints the user traÆc must adhere to, and the price to be charged

for the service. We designed a Resource Negotiation And Pricing protocol, RNAP,

which provides a framework through which this negotiation can take place.

The RNAP protocol is generic and 
exible enough to support multiple delivery

services and environments (including IntServ, Di�Serv, and best e�ort services),

service negotiation at di�erent levels of granularity (
ow- and aggregate-based), ne-

gotiation by both sender and receiver, and \in-band" and \out-of-band" resource

reservation mechanisms. It allows the service provider to communicate service avail-

ability, estimated prices for available services and charges accruing to the user, and

allows the user to request a speci�c service. It also supports dynamic service re-

negotiation between the user and the network, allowing the network to adjust pricing
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in response to changes in network load, and allowing the user to respond to changes

in application requirements.

Based on the policy of each domain, di�erent algorithms can be used for com-

putation of a local or incremental price for a service at a given point in a network.

RNAP as a signaling protocol does not depend on the actual pricing algorithms,

and di�erent domains can also have di�erent pricing policies. The proposed pro-

tocol can be embedded in the current Internet QoS schemes (e.g., those proposed

within the IntServ and Di�Serv frameworks), or can be implemented stand alone.

We present RNAP as a stand-alone protocol, but it is also possible to implement

some components of RNAP as a layer on top of RSVP or other hop-by-hop reliable

signaling protocols.

RNAP is intended for use by both adaptive and non-adaptive applications. Non-

adaptive applications may choose services that o�er a static price, or absorb any

changes in price while maintaining their sending rate. Adaptive applications adapt

their sending rate and/or choice of network services in response to changes in net-

work service prices. RNAP provides a framework within which an application can

adapt so as to obtain the best value from the network.

This chapter is organized as follows. We �rst describe the basic characteristics

of the RNAP in Section 4.1. We then de�ne two alternative protocol architectures,

a centralized architecture (RNAP-C), and a distributed architecture (RNAP-D) in

Section 4.2.2, followed by the introduction of the basic RNAP operations. We

present a description of the basic RNAP protocol, including protocol objects and

messages in Section 4.3. We then expand our discussion to the aggregation of RNAP

messages in Section 4.4. In Section 4.5., we present the messaging scenario when a

receiver initializes the negotiation. In Section 4.6., we discuss pricing and charging

mechanisms in RNAP. The communication of pricing and charging information in
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the various RNAP messages is discussed. In Section 4.7., we describe a scheme to

locate the peering NRN address through DNS SRV [67]. Finally, in Section4.8.,

we discuss some additional issues including transport protocol and reliability, the

stability of the periodic negotiation mechanism, and security.

4.1. Basic Characteristics

In this section, we introduce some basic characteristics of RNAP.

4.1.1 Dynamic Re-negotiation Capability

Allowing customers to re-negotiate with the network dynamically and change their

service requests during a session bene�ts both the customer and the network, par-

ticularly during network congestion.

In general, the network would like applications to acquire network resources so

that there is high network utilization, but not at the expense of poor QoS. The

real-time constraints of multimedia traÆc make it diÆcult for these applications to

estimate the bandwidth required for an application.

Also, many existing multimedia applications allow the media rate and quality to

be adjusted over a wide range, allowing them to respond to network congestion by

gracefully reducing their rate [19], possibly utilizing application-speci�c knowledge

(a speci�c model for such user adaptation is discussed in Chapter 5). Such appli-

cations have the incentive to re-negotiate a service with lower QoS when network

congestion results in the current service becoming more expensive, or if the net-

work provider denies the requested service because of unavailability of the amount

of resources requested.

The periodic nature of the RNAP message sequence provides a natural way for

the customer and service provider to re-negotiate services. Possible re-negotiation
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scenarios include periodic re-negotiation, in which the service contract expires after

a period and is re-negotiated, and asynchronous re-negotiation initiated either by

the customer or by the network provider. If the customer is an end-user running

adaptive applications, these applications are able to respond to network congestion

and also to changes in application task requirements by adjusting their sending rates,

and hence network resource requirements. If the customer is an adjoining domain

requesting network services for an aggregate of 
ows belonging to its customers,

it would like to be able to re-negotiate its request if the size of the 
ow-aggregate

changes signi�cantly. Dynamic re-negotiation enables the service providing network

to maintain a high network utilization without QoS degradation.

4.1.2 Pricing and Charging Capability

A network service model that provides a choice of delivery services must also incor-

porate a pricing system, so that users are charged appropriately for di�erent levels

of service. Usage and congestion sensitive pricing also signals network congestion to

the customer. In combination with a periodic or dynamic service re-negotiation ca-

pability and adaptation-capable applications, it provides a congestion-control mech-

anism.

A pricing system should include monitoring of user traÆc, price formulation at

one or more points within the network, computation of a global, or end-to-end,

price for a particular service, and a mechanism to communicate pricing informa-

tion from the network to the customer. The RNAP protocol provides the means

to communicate price quotations for di�erent services and the charge rendered to

the customer. It also supports di�erent charging modes: charging the sender, or

receiver, or both. The periodic re-negotiation framework provides a natural way to

communicate periodic price quotations and cumulative charges to the customer.
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4.1.3 Scalability

We envision that individual customer 
ows will be gradually aggregated towards

the core of the network, and RNAP sessions will correspond to progressively larger

granularity 
ows. We discuss a sink-tree based aggregation mechanism in Section

4.4..

4.1.4 Service Predictability

Predictability includes the quality expected from a service type, and the price

charged for it. Each particular delivery service model assures di�erent level of

quality expectation by the user. The periodic price quotation mechanism of RNAP

provides pricing predictability by keeping the price constant during a negotiation

period.

4.2. Basic Model

RNAP supports service negotiation between the customer and network service provider

as well as negotiation between two network domains. We represent the negotiating

processes by two logical entities, a Host Resource Negotiator (HRN) that resides on

the host machine, and a Network Resource Negotiator (NRN) that either resides on

each network router or controls resources for an entire domain.

The HRN negotiates only with its access network to reserve resources, even if

its 
ows traverse multiple domains. It obtains information and price quotations

for available services from the network. It requests particular services, specifying

the type of service (guaranteed [13], controlled load [14] (CL), expedited forwarding

[17], assured forwarding [16], best e�ort, etc.), parameters to characterize the user

traÆc (e.g., peak rate, average rate and burst size) and QoS requirements (e.g., loss

rate and delay). A customer (sender or receiver) may reserve network resources for
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multiple 
ows, for example, 
ows corresponding to audio, video and white-board

applications in a video-conference. In this case, the HRN can request a di�erent

service for each 
ow from the network through RNAP.

4.2.1 The RNAP Architecture

For negotiations by the network service provider, RNAP supports two alternative

architectures, a centralized architecture, and a distributed architecture, described

below.

4.2.1.1 Centralized Architecture (RNAP-C)
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Figure 4-1: RNAP-C architecture

The RNAP-C architecture is based on an underlying network divided into Au-

tonomous Systems (AS), and each domain negotiates through an NRN (Fig. 4-1).

Protocol messages are sent between NRNs, or between HRNs and NRNs, and touch

each AS once.

The NRN delivers price quotations for the di�erent available service levels to

customers, answers service requests from customers, and is also responsible for main-

taining and communicating charges for a customer session.

The NRN may be an individual entity, or may be a complementary functional

unit that works with other administrative entities. For example, the NRN can be

part of (or function as) the Bandwidth Broker (BB) in the Di�Serv model [12] and

the PDP in the COPS architecture [24]. The NRN either has a well-known address,
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or is located via the service location protocol (SLP) [68] or DNS SRV [67]. The

NRN address of a neighboring domain can be pre-con�gured or obtained through

DNS SRV. NRN location is described in more detail in Section 4.7..

Resource reservation and admission decisions may be performed by the NRN or

by other entities, such as the BB of the Di�Serv model. If they are performed by an

NRN, the NRN will access intra-domain routing information to determine the path

and therefore resource allocation and pricing information. The NRN will also store

or have access to customer state information, and network administration informa-

tion such as router con�gurations, current resource allocations, policy information,

network statistics, and authentication information. Intra domain signaling, such as

COPS can be used to send network statistics from domain entities to the NRN.

If reservation and admission decisions are performed by other entities, the NRN

communicates requests for services to them individually or in aggregate, and re-

ceives admission and pricing decisions from them. The implementation of resource

reservation and admission control, and the associated communication with admin-

istrative entities, is closely related to speci�c better than best e�ort (BBE) services,

and is outside the scope of the RNAP protocol.

4.2.1.2 Distributed Architecture (RNAP-D)

In this architecture (Fig. 4-2), networks do not have a single negotiating entity.

Instead, the RNAP protocol is implemented at each router, in the form of a Local

Resource Negotiator (LRN). RNAP messages propagate hop-by-hop along the same

path as customer data 
ows. We consider the messaging process in greater detail

in Section 4.3.3.

The RNAP message format is independent of the architecture. Therefore, the

two architectures can co-exist. For instance, a domain administered by a centralized
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NRN can exchange RNAP messages with a neighboring domain which employs the

distributed architecture. A HRN needs to know about the RNAP architecture of

its local domain to decide where to send the messages to, but it receives and sends

the same negotiation messages in either case.
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Figure 4-2: RNAP-D architecture

4.2.2 Protocol Operation
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Figure 4-3: RNAP messaging sequence between HRN and NRN.

The basic RNAP message sequence is shown in Fig. 4-3. Typically, the sequence

of Fig. 4-3 repeats periodically, with a pre-de�ned negotiation interval. This allows

the protocol to maintain soft-state - state information that expires in the absence of

any RNAP Reserve message. It also allows the customer and the network to easily

re-negotiate services.
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A network domain manages its own pricing scheme, which may be congestion

sensitive or static, independent of other domains, and will have its own per-unit

resource costs for each class. When a user 
ow traverses multiple domains, RNAP

messaging collates pricing and billing information from each domain and determine

the total price and charge for the user.

We �rst consider how a customer reserves resources for a 
ow end-to-end, to

a particular destination address, assuming that the intervening domains implement

RNAP-D. In general, the forwarding of RNAP messages in RNAP-D is similar to

RSVP forwarding [18]. The router alert option is turned on in the RNAP message

by the HRN, so that intermediate LRNs can intercept and process the message

before forwarding it to the next-hop LRN.

1. The HRN sends a Query message towards the destination, requesting a price

quotation from all the LRNs along the path for one or more services, for a


ow or group of 
ows belonging to the customer. The HRN speci�es a set of

requirements (such as service time and QoS) with each service.

The destination initiates a Quotation message and sends it upstream towards

the HRN following the recorded path of Query message. Each intermediate

LRN veri�es local availability of each service, and increments the price by the

local price that it computes. When a Query message does not specify any

service, the Quotation message contains pricing information for all available

services using default values of unspeci�ed service parameters. In addition to

send Quotation messages in response to queries, the destination also sends out

Quotation messages periodically, containing price quotations for all services

requested by the customer.

2. The HRN sends a Reserve message towards the data destination to apply

for services with speci�ed service parameters for a 
ow or group of 
ows. A
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Reserve message is sent at the beginning of a session to request services for

the �rst time, and thereafter, periodically or by trigger to renew or change

existing reservations.

In response to a Reserve message, the destination initiates a Commit message

stating the admissibility of the 
ow. The Reserve request may be admitted or

denied, or admitted partially if network resources are scarce and the provider

admits the service request with a lower QoS or sending rate than requested. If

the 
ows are admitted, the Commit message also contains a local price for the

contracted service. For an on-going session, it also contains the accumulated

local charge for a service. As the Commit message is forwarded upstream, the

committed price and accumulated charge are incremented at each router.

Upon receiving an updated Quotation message periodically, the HRN re-

negotiates resources by sending Reserve messages and receiving Commit mes-

sages in return.

3. To terminate a session, the HRN sends a Close message, which is forwarded

to the receiver. The receiver sends a Release message upstream, and delete

the session states. Upstream routers forward the Release message towards the

HRN and release the resources.

When a customer 
ow traverses a domain implementing RNAP-C, with a con-

trolling NRN, the 
ow of messages is identical to that considered earlier for RNAP-

D, if each domain is considered to be equivalent to a single node, with the NRN

corresponding to the LRN for that node. Accordingly, the NRN is responsible for

collecting and communicating admission and pricing and charging information for

the domain as a whole instead of for a single node (mechanisms for doing this are

discussed in Section 5.1.). The forwarding mechanism in RNAP-C is di�erent from
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RNAP-D. To forward a RNAP message downstream towards the destination HRN,

the sending HRN or the intermediate domain NRN needs to �nd the targeted NRN

address.

It is also possible that the 
ow traverses multiple domains some of which imple-

ment RNAP-C and others RNAP-D. In this case, the NRN of a RNAP-C domain

would talk to the corresponding boundary LRN of an adjoining RNAP-D domain,

and the messaging 
ow would be as before.

4.3. The Protocol

In this section, we start with an explanation of some basic objects used in the

protocol messages, followed by a description of the protocol messages, and the typical

negotiation sequence in which they are used. In the discussion that follows, we

assume for convenience the RNAP-C architecture, and refer to the NRN as one of

the negotiating entities. We later extend the discussion to the RNAP-D architecture,

with the routers along the delivery 
ow path collectively playing the role of the NRN.

Also for convenience, we assume that the other negotiating entity is a HRN, acting

on behalf of the user application. As mentioned earlier, the RNAP protocol is also

applicable to resource negotiation between two network domains, in which case, the

�rst domain (through its NRN, in case RNAP-C is employed) plays the role of the

HRN.

4.3.1 Basic Objects

Id: The Id object contains two sub-�elds: Flow Id, and Aggregate Flow Id. The

Flow Id de�nes a 
ow for which services are negotiated. For individual 
ows,

the Flow Id is based on one or a combination of destination IP address and

port, source address and port, and transport protocol. The port number
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may be null when only a subnet address is used. For aggregates of 
ows, it

is based on the destination subnet addresses, determined by the HRN by a

method such as RADB lookup [69]. The Aggregate Flow Id �eld is optional

and is attached only if the messages is indicated to contain aggregation 
ow

information. The purpose of the Aggregate Flow Id sub-�elds is explained

when we discuss message aggregation, in Section 4.4..

RNAP Hop: This object carries the IP address of the interface through which the

last RNAP-knowledgeable hop (a node or an NRN) forwarded this message.

The Logical Interface Handle (LIH) is used to distinguish logical outgoing

interfaces. A node receiving an LIH in a Query message (or Quotation message

when a receiver initiates the negotiation) saves its value and returns it in the

RNAP HOP objects of subsequent messages sent to the node that originated

the LIH. The LIH should be zero if there is no logical interface handle.

Sender Identi�er: When an RNAP message is sent between domains, the sender

domain may need to include authentication information for resource negoti-

ation and accounting at the peer receiving domain. This information is con-

tained in the Sender Id and Sender Signature �elds of the Sender Identi�er

object.

Service: The Service object describes the service being negotiated. The HRN (or

NRN for negotiation between domains) uses it to request a price quotation or

reserve resources for a particular service with a set of associated parameters.

The NRN uses it in the corresponding acknowledgment messages. A Service

object consists of Service Independent Parameters (SIP), Service Speci�c Pa-

rameters (SSP), Service State, and Price objects. Multiple SSP-Price pairs or

SSP-Service State pairs or SSP-Service State-Price triplets may be carried by
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a RNAP message to convey price and service statistics.

Service Independent Parameters (SIP)

SIP speci�es a list of parameters that are generic to all service models and

used to characterize a service. The service independent parameters include

Number of Services, Negotiation Capability, Preemption Capability, Reserva-

tion Coverage, Negotiation Interval, Expiration Action, Start Time, and End

Time.

Number of Services:

Specify how many di�erent services are attached in the Service object.

Some RNAP messages, such as a Quotation message, may carry multiple

service information to allow an end user to select the best service each

time. In this case, multiple SSP and Price pairs will follow the SIP �eld.

Negotiation Capability:

The Negotiation Capability 
ag is used by the HRN (or NRN) to signal

its capability or willingness to negotiate. If the Negotiation Capability

bit is set, service will be negotiated periodically between a HRN and

NRN, or neighboring domain NRNs. Otherwise, the service con�rmed

will be e�ective until it is cancelled speci�cally.

Preemption Capability:

Preemption Capability de�nes whether the service is pre-emptable or

non-pre-emptable. A non-pre-emptable service assures service to the user

for the negotiated period. A pre-emptable service is subject to being ter-

minated by the NRN asynchronously, instead of being allowed to expire

at the end of a negotiation interval. For speci�c services, further re-

�nements may be considered. For example, instead of all the reserved
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resources being \at risk", resources reserved above a certain base level,

or just the cost of reservation may be \at risk". These particulars can be

negotiated and indicated in the Service Speci�c Parameter �elds.

Reservation Coverage:

Reservation Coverage indicates the extent of reservation over the 
ow

paths. The reservation can be end-to-end, over contiguous sub-trees

where branches may not use or support reservations or for discontiguous

segments. In the latter case, referred to as partial reservation, reserva-

tions may fail on a link, yet the resource reservation request will not be

automatically removed for the remaining links.

Negotiation Interval:

For a client that would like to negotiate with the network periodically

by setting the Negotiation Capability, the Negotiation Interval (in sec-

onds) de�nes the length of time over which the negotiated service and

price are valid. The negotiated service expires automatically at the end

of the negotiation interval, and the HRN must periodically re-negotiate

(by sending a Reserve message) before the expiration to ensure uninter-

rupted service. Speci�c services may de�ne di�erent actions on part of

the provider regarding the treatment of user packets after the service has

expired.

To reduce the signaling overhead, the negotiation interval for a service can

be set equal to a multiple of time periods associated with an underlying

protocol, for example, the TCP round-trip time, RSVP [18] refresh time,

or RTCP [41] receiver report interval. To reduce control overhead, a

minimum negotiation interval should be enforced. Multimedia services

should not renegotiate too frequently, to avoid adjusting data rate too
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often resulting in poor perceived quality.

The negotiation interval a�ects how a service is priced. A service with

a longer negotiation interval will generally be charged more to protect

against future congestion price increases.

Start Time and End Time:

Start Time and End Time specify the time period over which service is

requested. The Start Time and End Time �elds are optional and may be

used to make either immediate or advance reservations. When immediate

service is required, the Start Time and End Time �elds are set to zero.

Expiration Action:

Re-negotiation requests may get lost, or a customer may choose not to re-

negotiate even though it signs for the negotiation service with the bene�t

of lower average cost. When the negotiation period expires, possible

actions are: maintaining the current service at the previously negotiated

price, maintaining the current service but updating the price unilaterally

as required, transmitting using best e�ort service, or halting the service.

Service Speci�c Parameters (SSP)

SSP consists a service type �eld, and a list of parameters used to charac-

terize a service, speci�c to a particular service type. Examples of services

are the Guaranteed and Controlled Load service models de�ned within the

IntServ framework [13][14], and the Expedited Forwarding (EF) and Assured

Forwarding (AF) models de�ned within the Di�Serv framework [17][16]. The

service type de�nition for services belonging to IntServ is the same as the

service number de�ned in IntServ [70][71].

53



The service type de�nition for services belonging to Di�Serv is the same as

that de�ned for the Di�erentiated Services Field (DS Field) [72]. Typical

service parameters de�ne the traÆc pro�le the user traÆc should adhere to,

such as average rate, peak rate, burst length, and parameters specifying the

QoS provided by the service such as loss rate and maximum delay. For some

services such as those belonging to Di�Serv, the performance requested from

a class may be in terms of a qualitative expectation. For example, service

using EF PHB may be expected to have lower average loss, delay and jitter.

The contents and format for SSP are speci�ed in documents prepared by the

IntServ working group, and Di�Serv working group.

Price

The Price �eld contains two sub-�elds: NewPrice and Accumulated Charge.

The NewPrice carries the current price being quoted by the service provider

for a service, and the Accumulated Charge carries accumulated charges corre-

sponding to a particular customer session.

Service State

Service State is an optional �eld that can be used by the network provider

to provide service statistics to the customer. Typical service statistics would

be average packet loss rate, average queueing delay, and maximum queueing

delay. The length of this �eld is variable, depending on the speci�c statistics

being provided.

HRN Data: The HRN Data object contains information about the agent from

which the message originates. The message originating agent is usually the

negotiating HRN, but we will also discuss a situation in which the partner or
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peer HRN originates the message.

Status: The Status object is carried by Commit and RNAPError messages. It

has three values: Admit, Admit Incomplete, and Reject. It is used in Commit

message to convey admission/denial decisions in response to Reserve messages.

If a negotiation request is Admit Incomplete or Reject, the reasons will be

indicated in the reason �eld. If the request is partially admitted, that is,

admitted with one or more of the requested parameters, the modi�cations

are indicated in the appropriate SSP/SIP �elds. RNAPError messages always

have a Status value of Reject.

4.3.2 Message Forwarding Mechanisms

Before we describe in details the transmission and processing of RNAP messages,

we introduce the RNAP message forwarding mechanism in this section.

Forward messages (e.g., Query, Reserve, Close) are forwarded di�erently depend-

ing on whether RNAP-C or RNAP-D is used. For RNAP-C, the messages will be

sent towards the destination domain and touch each AS once. The IP source ad-

dress is the address of the sending RNAP node, either HRN or NRN, while the

destination address must be the peer downsteam domain NRN address. The deter-

mination of the neighboring domain NRN address will be described in Section 4.7..

If authentication is required, a sending domain NRN will insert its Sender Id, and

a receiving domain NRN will authenticate the request.

For RNAP-D, the messages travel from a sender to receiver(s) along the same

path(s) used by the data packets. The IP source address of a message in forward

direction must be the address of the origin HRN, while the destination address

must be the destination HRN. These addresses assure that the message will be

correctly routed through a non-RNAP cloud. In either case, each RNAP node
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stores the previous hop. For RNAP-D, this information needs to be recorded in the

RNAP Hop �eld of when the RNAP message is passed from the previous hop.

Reversemessages (e.g., Quotation, Commit,Release) need to visit the same nodes

as the forward messages and thus are sent hop-by-hop. Each node keeps a table of

all RNAP sessions and their previous hop IP address. Reverse RNAP messages thus

always use the IP address of the next hop as their IP destination address.

4.3.3 RNAP Message Format

RNAP supports service negotiation from sender, receiver, or both. In this section,

we assume the negotiation is initiated by the sender side, and we will explain the re-

ceiver negotiation in Section 4.5.. We now describe the RNAP negotiation messages,

with some explanation of the sequence in which they are used. The negotiation se-

quence is represented schematically in Fig. 4-3.

4.3.3.1 Query Messages

The HRN uses Query messages to request a price quotation and/or quality statistics

from the NRN for one or more services. The HRN will inform the NRN whether

the HRN supports negotiation by setting the Service.Negotiation Capability bit ap-

propriately. The HRN speci�es a set of requirements with each service, by setting

some or all of the SIP and SSP parameters in the corresponding service identi�ers.

The HRN sends a Query message to the �rst-hop Local Resource Negotiator

(FHL). The FHL forwards the Query message downstream to the last-hop Local

Resource Negotiator (LHL), and the LHL forwards the message to the destination

HRN.

Each RNAP-capable node or NRN along the path(s) captures a Query message

and processes it to create RNAP state for the sender (HRN or NRN) identi�ed Id
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objects. The RNAP state will store the the unicast IP address of the previous hop

or NRN and use it to route the messages hop-by-hop in the reverse direction. The

IP address for RNAP-D is gained from the RNAP Hop object. Any Service objects

are also saved in the RNAP state, to allow the proper service statistics or pricing

information to be associated with a session.

For getting the price quote, a request may indicate the required service type

only, without specifying the traÆc format and amount of resource needed. Further

more, the Service �eld can be set to NULL. A Query message with a null service list

is interpreted by the NRN as a request for price quotations for all available services,

for each Id speci�ed in the Query message.

4.3.3.2 Quotation Messages

We �rst consider the message 
ow in RNAP-D. Upon receiving a Query message,

the receiver initiates a Quotation message and sends it hop-by-hop upstream. The

IP destination address of a Quotation message is the unicast address of a previous-

hop node, obtained from the RNAP state. The IP source address is an address

of the node that sent the message. If price quote is requested by the HRN, each

intermediate LRN veri�es local availability of each service, and increments the price

by the local price that it computes. If network service statistics is requested, the

LHL and each intermediate LRN will attach the service statistics for the service type

and set the corresponding parameters. The FHL returns the Quotation message to

HRN. If periodical negotiation is requested, periodic Quotation messages are also

sent by the receiver hop-by-hop upstream, as above.

For a customer 
ow traversing multiplenetwork domains that implementsRNAP-

C and with a controlling NRN, the 
ow of messages is identical to that considered

earlier for RNAP-D. If each domain is considered to be equivalent to a single node,
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with the NRN corresponding to the LRN for that node, the NRN is responsible for

collecting and communicating admission and pricing and charging information for

the domain as a whole instead of for a single node. If the pricing scheme used by the

domain is path dependent, the path between an egress and an ingress will be located

through the domain routing table. The accumulated price along the path will be

used as the domain price. The IP destination address of a Quotation message is the

unicast address of a previous domain NRN, or HRN obtained from the RNAP state.

The IP source address is the NRN address of the domain that sends the message.

In general, an NRN sends a Quotation message upon receiving a Query mes-

sage, and upon expiry of the session quotation timer. The timer is reset whenever

a new Quotation message is sent out, either synchronously, or asynchronously. A

Quotation message sent periodically contains price quotations for all services re-

quested by the customer. When a Query message has null Service list, the NRN

returns quotations for all available services using default values of unspeci�ed ser-

vice parameters. It does not return quotations for services which have one or more

mandatory parameters to be speci�ed by the customer.

If the Negotiation Capability 
ag is false, the HRN and NRN could still exchange

an initial pair of Query and Quotation messages, and negotiate a service with a set

of parameters that remains unchanged for the rest of the session. A HRN may

re-enable negotiation capability at any time during the session by sending a Query

or Reserve message.

4.3.3.3 Reserve Messages

For any service that requires admission control, the HRN sends a Reserve message

to apply for services with speci�ed service parameters for a 
ow. A HRN makes

decision on the service request based on the price quotation and user requirements
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and willingness to pay. A Reserve message is sent at the beginning of a session

to request services for the �rst time, and thereafter, periodically at negotiation

intervals, and also asynchronously at any time. The parameters of the Service may

be modi�ed at each re-negotiation period.

The HRN applies for resources for a particular session through a corresponding

service identi�er, specifying the type of service, and a set of SIP and SSP parameters

characterizing the user requirements from that service. As mentioned previously,

some parameters may be mandatory for a particular service (typically parameters

such as peak and average sending rates). In general, each Reserve message carries

one Id-Service pair.

The Reserve message must be routed along the same path as the corresponding

Query message. At each RNAP-knowledgeable hop, the Reserve request is authen-

ticated, and its state information looked up by matching on the Id and RNAP Hop

objects. If resources are available, the request is admitted, the corresponding state

is updated, and the Reserve is forwarded to the next hop. If the Reserve request

can not be accomplished at any hop, a Commit message with status Reject (as will

be seen in Section 4.3.3.4) is sent back to the HRN. If block reservation is set be-

tween domains in advance as discussed in Section 4.4.5, the reservation request is

authenticated to determine if it can use part of the reserved resource-block.

4.3.3.4 Commit Messages

The Commit message is generated by the receiver in response to a Reserve message,

and consists of Id, Service and Status triples. For each Id, the LRN/NRN determines

the admissibility of the session, and returns this information in the Status �eld, as

Admit Complete, Admit Incomplete or Reject. The admission policy is speci�c to

the service, and need not be administered by the NRN. For instance, in a Di�Serv
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service, the bandwidth broker (BB) could make the admission decision, and the NRN

simply communicates the admission decision through RNAP between the domains

or between the access domain NRN and the HRN.

If the 
ow is admitted, the LRN/NRN returns the price for providing the ser-

vice in the price parameters of the Service object (normally the same as the price

quoted in the preceding Quotation message). If the Commit is in response to a

re-negotiation Reserve request in an ongoing session, the LRN/NRN also returns

the amount charged for each service in the preceding negotiation period, and the

accumulated charge since the beginning of the session.

The Status is Admit Incomplete if network resources are scarce and the provider

admits the service request with a lower QoS or sending rate than requested. The

reduced QoS parameters or the sending rate will be set in the corresponding �elds

of the Service object.

If the 
ow is rejected at a point in the path, the Commit message will be sent

back to the sender immediately. If partial reservation is indicated in the Reservation

Coverage �eld of the Service object, the completed reservation before the failure

node will be kept. Otherwise, the reservation state will be cancelled as the Commit

message passes by.

4.3.3.5 Preempt Messages

If a Service is set as preemptable (at the bene�t of lower price), the NRN may

preempt resources allocated previously to this service and make room for the other

more important 
ows. Currently the Preempt �eld in the Service identi�er is bi-

nary, i.e., preemptable or non-preemptable. More preemptation priorities could be

supported and allow di�erent 
ows with di�erent priority levels to be di�erentiated.
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4.3.3.6 Close Messages

A Close message is sent from the HRN to the NRN to tear down the negotiation

session between them.

4.3.3.7 Release Messages

The Release message acknowledges the Close message and optionally reports to HRN

the cumulative charging information for the entire session. This information is for

informational purposes, and may not be tied to the actual billing and payment

procedures. The NRN releases the resources it had allocated for the session, and

sends a Release message.

4.3.3.8 RNAPError Messages

RNAPError messages will be triggered when processing an RNAPmessage. If a error

come from the processing of Query, Reserve or Close messages, the corresponding

RNAPError messages are simply sent upstream to the sender that created the error,

and they do not change RNAP state in the nodes through which they pass. At each

hop, the IP destination address is the unicast address of a previous hop (a router

or an NRN).

If an error arises during the processing of Quotation, Commit or Release, RNAPError

messages travel downstream towards the appropriate receivers. At each hop, the IP

destination address is the unicast address of a next-hop node or NRN.

4.4. State Aggregation

If end-to-end RNAP reservation is carried out for each customer 
ow, RNAP agents

in the core network may potentially need to process RNAP messages for hundreds
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Figure 4-4: Example of RNAP-D message aggregation.

of thousands of 
ows, and maintain state information for each of them. In this

section, we discuss how RNAP messages can be aggregated in the core of the net-

work by allowing RNAP agents to handle reservations for 
ow-aggregates instead

of individual 
ows.

4.4.1 Overview of the Aggregation Scheme of RNAP

All RNAP messages have an Id �eld identifying the corresponding data 
ow; it

contains three sub-�elds: Flow Id, Aggregation Flag, and Aggregate Flow Id. The

merging point aggregates RNAP messages for user 
ows which request the same or

similar services and have similar negotiation intervals.

We consider the aggregation of RNAP messages belonging to senders sharing

the same destination network address, forming a \sink tree". Sink tree based ag-

gregation has also been discussed in [73][74].

RNAP messages will be merged by the source domain and split again for each

individual HRN at the border router (for RNAP-D) or NRN (for RNAP-C) of the

destination domain. The merging point in the HRNs home network forwards two

messages: one that travels directly to the destination network, without visiting any

of the RNAP agents in between, and an aggregated-resource message that reserves

resources and collects prices in the \middle" of the network.

The merged resource message requests resources equal to the sum of all the

branch resource requests further up in the sink tree. At each merging point, up-

62



stream 
ow arrivals, departures and reservation changes will trigger the update of

the downstream merged request. To avoid frequent re-negotiation, the merging

point may decide to reserve more resources than the sum of the upstream requests

and add resources in larger increments if the current downstream allocation has

been reached or is about to be reached. (BGRP [74] analyzes the trade-o� in some

detail.) We consider aggregation �rst for RNAP-D, and then for RNAP-C.

4.4.2 Aggregation and De-aggregation in RNAP-D

Fig. 4-4 illustrates how RNAP message aggregation works in the RNAP-D archi-

tecture. Consider the aggregation of Reserve messages (this also applies to Query

messages). At access network A, the border router Ra creates an aggregate Reserve

message, with the source address of the Id object set to `a', the interface address

the aggregator Ra, and the destination address of the aggregate message set to

the network address B. It also sets the aggregation 
ag, which marks the message

as aggregate. Ra then forwards the aggregate Reserve message hop by hop down-

stream. Ra also turns o� the router alert option of the incoming per 
ow messages

and tunnels the per-
ow Reserve messages down to the de-aggregation point (Rb in

Fig. 4-4), so that per-
ow reservation can resume in the destination network. In

each per-
ow Reserve message, the address of the aggregator will be included in the

Aggregate Flow Id �eld, to enable proper mapping at the de-aggregation point. A

per-
ow Reserve message is encapsulated in an UDP packet with the destination

network address set as B, and the port number set to a port reserved for RNAP,

and forwarded.

A border router of a domain is a potential de-aggregation point for RNAP mes-

sages to that domain. Therefore, �lters are set up at border routers of a domain

so as to intercept aggregate RNAP messages as well as tunneled per-
ow RNAP
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messages. For instance, the border router Rb (Fig. 4-4) of domain B is set up to in-

tercept UDP packets with destination address set to the network address B and port

number set to the RNAP port. Once intercepted, aggregate Reserve messages and

tunneled per-
ow messages are sent up to the transport layer. The de-aggregation

point will record the mapping between an aggregation 
ow and per 
ow messages,

by checking the Aggregation Flow Id �eld. The router alert option will be turned on

for per-
ow Reserve messages arriving at Rb, and the messages will be forwarded,

allowing per-
ow resource reservation within domain B. The aggregate Reserve mes-

sage (identi�ed as such by its Aggregation Flag) terminates at the de-aggregation

router.

In response, a Commit message will be sent upstream for the aggregate Reserve

message as well as each per-
ow Reserve message. The de-aggregation point Rb will

decide that the destination address for the per 
ow Commit message is `a', by check-

ing the mapping between the aggregate message and the per 
ow messages. Each

per 
ow Commit message is then encapsulated in a UDP message with destination

address `a' and tunneled back to its aggregation point Ra. The aggregate Commit

message will be forwarded hop by hop upstream until it reaches the aggregation

point, and con�rms the aggregate Reserve request sent by the aggregation agent.

There is a similar message 
ow for RNAP Quotation messages in the upstream

direction.

The aggregation entity on the source network side is also responsible for de-

aggregation of RNAP response messages. It checks the mapping between an aggre-

gate session and per-
ow RNAP response messages. If it is the origination point

for the corresponding aggregate session, it will map the aggregate-level pricing and

charging (returned by the aggregate session Quotation and Commit messages) to

the corresponding per-
ow prices and charges for individual 
ows based on the local
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policy.

Multiple levels of aggregation can occur, so that aggregate messages are aggre-

gated in turn, resulting in a progressively thicker aggregate \pipes" towards the root

of the sink-tree. For a level two aggregation of several level one RNAP aggregate

requests as shown in Fig. 4-4, node Rx in domain X forms a level two aggregate

message with the source address in the Flow Id set to `x'. Node `x' also records the

level one requests, and terminates these messages instead of forwarding them. In

response, the RNAP agent at the de-aggregation node Rb sends response messages

for the level two aggregate towards point `x'. At point Rx, the level one response

messages are formed by mapping the pricing and charge data from level two aggre-

gate message to individual level one aggregate response massages to send towards

Ra and Rc. All the per 
ow request messages are tunneled downstream to node Rb,

and per-
ow response messages are tunneled from Rb directly either to Ra or Rc.

4.4.3 Aggregation and De-aggregation in RNAP-C
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Figure 4-5: Example of RNAP-C message aggregation.

In the RNAP-C architecture of Fig. 4-5, the aggregation and de-aggregation

entity are NRNs. Once again, we consider the aggregation of Reserve messages. At

an aggregating NRN `a', the aggregate Reserve message will be formed and sent

domain by domain towards the destination domain NRN `b', as in Section 4.3.3.

In addition, the destination domain NRN is located through DNS SRV [67], and

the aggregating NRN encapsulates the per 
ow Reserve messages in UDP packet
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headers and tunnels them directly to the destination domain NRN `b'.

The destination domain NRN sends a Commit messages \hop by hop" (each hop

is one domain) upstream towards `a' in response to an aggregate Reserve message.

It also receives the encapsulated per 
ow Reserve messages from `a', processes them

to perform per-
ow reservation in the destination domain, and determines from the

Aggregate Flow Id �eld what per-
ow response messages are to be encapsulated and

tunneled back to `a'. There is a similar message 
ow for RNAP Quotation messages

in the upstream direction. The mapping of pricing and charging information from

aggregate session to per 
ow message is similar to that in RNAP-D.

4.4.4 Overhead Reduction due to Aggregation

As a result of the aggregation of RNAP messages, the message processing overhead

and the storage of the RNAP state information are greatly reduced in the core

network. Since per 
ow messages need to be tunneled to the destination network,

the RNAP message transmission bandwidth is not reduced, and actually slightly

increased because of the extra aggregation messages. But since RNAP messages are

updated with a relatively long interval, this is not a major concern compared with

the bandwidth that will be consumed by the data 
ows.

4.4.5 Resource Negotiation for Flow-Aggregates and Advance Reserva-

tion

At the aggregation point, the NRN acts as the client negotiator for an aggregate

session in negotiations with the downstream NRN (for example, referring to Fig.

4-5 again, the aggregating NRN `a' negotiates with NRN `x'). In general, the client

negotiator will negotiate resources for an aggregate session corresponding to the per-


ow reservation requests. To avoid frequent re-negotiation, however, it is likely that
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the client negotiator will increment or decrement the requested resources with some

minimum granularity. When the sum of per-
ow requests approaches the resources

reserved (or reaches some threshold) for the aggregate, the client negotiator reserves

an additional block of resources. Similarly, the requested reservation is decremented

in blocks as required. The larger the block, the less frequently the aggregate session

needs to be re-negotiated, but a higher cost is incurred for resources which may

be under-utilized. In general, negotiation of resources in blocks results in a fairly

static service, and periodic re-negotiations, if any, would occur with a much longer

negotiation interval. Hence price Quotation messages for the aggregate session will

probably only be sent in response to Query messages, when an additional block of

resources needs to be reserved or removed.

The NRN at an aggregation point may also forecast a certain demand to a

particular destination network, and could negotiate a large block of resources in

advance, using the advance reservation mechanism. The HRN or client NRN in-

dicates an advance reservation using the Start Time and End Time �elds in the

Service description. The server NRN initializes session state at the conclusion of

the advance negotiations, and maintains the state until the actual transmission has

been completed.

If the client negotiator chooses to cancel part or all of the reservation made

in advance, it can re-negotiate with the server negotiator and try to `sell back'

previously reserved resources at an agreed price. The price eventually agreed upon

would probably re
ect any cancellation or holding cost fee the server negotiator

wishes to charge. The server negotiator may also o�er to buy back resources reserved

in advance, for more important usage.
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4.5. Receiver Negotiation

When the HRN of the receiver side initiates the negotiation, the message sequence

will be similar to that described in Section 4.2.2, but in the reverse direction. How-

ever, the routing of the message will be di�erent, and thus the message processing

is slightly di�erent.

In RNAP-D, a receiver side will initiate the negotiation by sending a Query

message with the sender as the destination address. No processing will be done as

the message passes the intermediate routers, until the sender-side HRN receives the

message.

Upon receiving a Query message, the sender side HRN will send the quotation

message back hop-by-hop towards the receiver. The Quotation message travels from

a sender to receiver(s) along the same path(s) used by the data packets. The IP

destination address of a Quotation message is the unicast address of the receiver,

while the the IP source address of a Quotation message must be the address of the

sender. Each RNAP-capable node (or NRN) along the path(s) processes it to create

RNAP state for the sender de�ned by the Id objects. Any service objects are also

saved in the RNAP state.

If a price quote is requested by the HRN, the �rst-hop LRN (FHL) and each

intermediate LRN veri�es local availability of each service, and increments the price

by the local price that it computes. If network service statistics are requested,

each intermediate LRN will attach the service statistics for the service type and

set the corresponding parameters in the Service �eld. The sender HRN sends the

message to the FHL, and the FHL forwards the Quotation message downstream to

LHL. The LHL forwards the Quotation message to receiver HRN. If re-negotiation

is requested, periodic Quotation messages are also sent by the sender side HRN

hop-by-hop downstream towards the receiver HRN, as above.
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Based on the network price quotation and service statistics, sender traÆc spec-

i�cation and receiver requirement, the receiver HRN sends a Reserve message to

apply for services with speci�ed service parameters for a 
ow or group of 
ow. The

IP destination address of a Reserve message is the unicast address of a previous-hop

node, obtained from the RNAP state. The IP source address is an address of the

node that sent the message. A Reserve message is sent at the beginning of a ses-

sion to request services for the �rst time, and thereafter, periodically at Negotiation

Intervals, and also asynchronously at any time.

The Commit message is generated by the sender HRN in response to a Reserve

message. For each Id , the LRN determines the admissibility of the session, and

returns this information in the Status �eld.

In RNAP-C, the IP source address of a Query or Reserve message must be the

address of the receiver HRN (or an NRN), and the destination address is the unicast

address of a NRN of the destination domain (or the neighboring domain towards

the source), obtained from the RNAP state. The IP source address of a Quotation

or Commit message must be the address of the sender HRN, while the destination

address must be the downstream neighboring domain NRN address.

4.6. Price and Charge Collation in RNAP

The main RNAPmessages, Query, Reserve, Quotation and Commit, all contain price

�elds in the Service objects, used to convey pricing and charging information. We

�rst brie
y discuss the purpose of the various price �elds, and how they are used in

RNAP messaging. We then consider the scenario in which sender and receiver HRNs

share the charges for services used, and consider charging in a multicast session.
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4.6.1 Pricing Structure and its Use in RNAP Messages

The price �elds in the Service object carried by RNAP messages consists of the sub-

�elds NewPrice and Accumulated Charge. The NewPrice �eld contains the price

quoted by the network provider to the negotiating HRN for the next negotiation

period. The units of the quoted price are service-speci�c. A reasonable unit could be

\currency/Mb", so that the charge is computed according to the volume of the data

transmitted. Alternatively, the unit could be \currency/time", so that the charge

is computed according to the time of usage at a speci�c data transmission rate.

In this case, the HRN can expect to be charged an amount equal to the NewPrice

multiplied by the length of the negotiation period.

The Accumulated Charge �eld contains the total amount charged by the network

provider since the beginning of the session. The accumulated charge is carried to

protect against the loss of Commit messages. This �eld should have an unit of

currency, but the speci�c unit is service speci�c.

In addition to the price �elds, a message can also carry a HRN Data object with

information related to HRN (at sending end or receiving end). The HRN Data.Account

�eld identi�es the account to which charges are to be debited. The corresponding

HRN Data.Charging Fraction �eld indicates the fraction of the total charge to be

borne by the HRN. If for example, the negotiating HRN wishes to be responsible

for half of the charges, (in the understanding that the peer HRN will be responsible

for the other half), it sets the HRN Data.Charging Fraction to 0.5. We return to

this issue in more detail in Section 4.6.2. The HRN Data.MinimumDataRate and

HRN Data.MaximumDataRate �elds are included to allow the sender and receiver

HRNs to reach a basic agreement about the desired transmission rate. With respect

to the sender HRN, the data rates represent the minimum and maximum sending

rates the sender is willing and able to transmit. With respect to the receiver HRN,
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these rates indicate the minimum and maximum data rates the receiver is willing

and able to receive. HRN Data.Budget �eld is used to indicate the budget a nego-

tiator would a�ord. The unit for HRN Data.Budget is the same as that indicated

in the price parameters. The HRN Data.OtherData �eld is intended to carry other

information that could be used to facilitate negotiation.

In general, pricing and charging information follows the following basic 
ow:

after a session has been opened, the negotiating HRN sends a Query message. The

HRN indicates how much of the charge for each service it is willing to bear by setting

the HRN Data.ChargeFraction �eld accordingly, and may also indicate its budget for

a particular service by setting the HRN Data.Budget �eld. If the Query message has

a null Service list, the HRN may still wish to indicate how much of the total charge

it is willing to bear by including a single HRN Data structure by itself in the Query

message, with the HRN Data.ChargeFraction set. The network responds to the

Query message with a Quotation message in which the Service.NewPrice �elds are

set to the price quoted for each service, if it is possible to determine it on the basis of

the received Query. The HRN then requests one or more services through a Reserve

message. As with the Query message, it can use the HRN Data.ChargeFraction �eld

in the Reserve message to indicate the fraction of the charge it is willing to bear for

each service. The network responds with a Commit message, committing or denying

the requests, and setting the Service.NewPrice �eld for each Flow Id-Service pair to

the committed price.

Subsequently, the network sends periodic Quotation messages to quote the up-

dated price for available services, and the HRN and network re-negotiate services by

exchanging Reserve and Commit messages. The price parameters in these messages

are used as before. In addition, the Service.Accumulated Charge �eld in the Commit

message is used to carry the charges for the corresponding Flow Id-Service pairs in
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the preceding negotiation interval.

4.6.2 Shared Charging

Let us assume that the sender HRN negotiates services, but the receiver pays part

of the bill. We consider end-to-end services across multiple domains, and assume for

convenience the centralized architecture in each domain - the equivalent situation in

a distributed architecture can be understood by replacing the NRN with a router.

The sender HRN sets the HRN Data.ChargeFraction �elds in the service iden-

ti�er in Query and Reserve messages according to the fraction of total charges it is

willing to bear. In response, the receiver HRN generates a Quotation message, and

indicates its willingness to pay by setting the HRN Data.ChargeFraction �eld to (1

- negotiating HRN Data.ChargeFraction). It may indicate its unwillingness to be

responsible for the entire amount by setting HRN Data.ChargeFraction to a smaller

value. It could also agree to bear the entire charge, but indicate an upper limit on

the price it is willing to pay by setting the HRN Data.Budget.

The Quotation message is forwarded by intermediate NRNs back to the sender,

where it serves as feedback to the sender HRN about the willingness to pay of the re-

ceiver. A modi�ed Reserve message is similarly read by the receiver and used to gen-

erate a Commit message, with the last hop NRN either accepting or denying the ser-

vice requested by the Reserve message. If the respective HRN Data.ChargeFraction

�elds in the Reserve messages received from the sender and receiver HRNs add up

to less than 1, the service request is denied, and the Status.Reasons �eld is set ac-

cordingly. The Commit message is forwarded upstream through intermediate NRNs,

updating Status and Price �elds along the way.

Other than indicating its willingness to pay, the receiver could also set the

HRN Data.MaximumDataRate and HRN Data.MinimumDataRate �elds to convey
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to the sender the minimum sending rate it requires and the maximum rate that it

can handle. This allows the receiver, for example, to indicate to the sender that

it cannot handle a rate o�ered by the sender, and in general, provide the sender

guidelines for the negotiation process.

In receiver negotiation with sender bearing part of the charges, a similar sequence

of messages is used, except that the 
ow of information is in the reverse direction.

4.6.3 Multicast Charging

In a multicast session, either sender or the receivers could negotiate separately, or

they could both participate in negotiation.

If the sender is solely responsible for negotiation and payment, messaging se-

quence is similar to the simple scenario considered for unicast. The sender HRN

determines a service request based on price quotations from the NRN, and on feed-

back about received quality from the receivers. A similar messaging sequence is

also followed when the receiver negotiates and is responsible for payments. The

receiver's Reserve message is based on its knowledge of sender traÆc formats. The

price splitting among receivers are based on the individual domain policy. In both

the above case, the sender and receiver can learn about each other's capabilities and

requirements by end-to-end Query and Quotation messages contained in the HRN

Data �elds.

In receiver negotiation with partial or full sender payment, the receiver HRN

learns about the sender's willingness to pay through end-to-end Query and Quotation

messages, as in Section 4.6.2. The sender may specify a maximum expenditure

through the HRN Data.Budget. An example of this kind of negotiation may be

when a company multicasts a commercial advertisement. The receiver adjusts its

received transmission according to the sender budget and network conditions.
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If the sender negotiates, with partial or full receiver payment, the sender receives

feedback about each receiver's willingness to pay, as discussed in Section 4.6.2. The

sender negotiates resources based on the overall demand willingness to pay, and may

request partial reservation on some paths on which receivers have a low willingness

to pay.

4.7. NRN Location for a Neigboring Domain

When a HRN wishes to send a Query, it either sends the request to a locally con-

�gured NRN if it is known, or needs to look up the port and IP address of the local

domain NRN �rst. Similarly, a NRN needs to determine the address of the neigh-

boring domain's NRN when forwarding a request. We use client in the remainder of

this section to represent either a HRN or a NRN, which needs to locate the address

of the peering NRN server.

A client should be able to interpret explicit network noti�cations (such as ICMP

messages) which indicate that a server is not reachable, rather than relying solely

on timeouts. (For example, when UDP is the transmit protocol, the socket needs

to be bound to the destination address using connect() rather than sendto() or

similar so that a second write() fails with ECONNREFUSED if there is no server

listening). If the client �nds the server is not reachable at a particular address, it

should try the RNAP-D mode by sending messages to the destination address of the

data packets with the port number set as the designated port number for RNAP.

The client tries to �nd one or more addresses for the NRN server by querying

the DNS. If one or more addresses are found, but no RNAP server at any of those

addresses responds, then the client concludes the server is not available, and does

not continue on to the next step. Before concluding the server is down, a client

should try the RNAP-D mode by sending messages to the destination address of

74



the data packets with the port number set as the designated port number for RNAP.

The service identi�er for DNS SRV records is \rnap". The client queries the DNS

server for address records for the corresponding host name. There are no mandatory

rules on how to select a host name for a NRN server. For locating a neighboring

domain NRN address, a client needs to �nd out the neighboring domain number �rst

through BGP4 [75]. Users are hence encouraged to name their NRN servers using

the as-number.rnap.arpa convention, as speci�ed in RFC 2219 [76]. SRV records

contain port numbers for servers, in addition to IP addresses; the client always

uses this port number when contacting the RNAP server NRN. If there is no port

number, the default port is used. The format of these queries is de�ned in RFC 2782

[67]. The results of the query are merged and ordered based on priority. Then, the

searching technique outlined in RFC 2782 [67] is used to select servers in order. If a

list of addresses are returned, the user attempts to contact each server in the order

listed. If no server is contacted, or the DNS server returns no address records, the

client tries the RNAP-D mode. By address record, we mean A RR's, AAAA RR's,

or other similar address records, chosen according to the client's network protocol

capabilities.

A client may cache the list of DNS query results if one of the addresses was

contacted successfully. Request for the same transaction should be sent to the same

network address. Other requests from the same client select a server from the list

of addresses cached, using the SRV load-balancing mechanism if applicable. The

client must invalidate this list and retry the DNS query according to the rules in

RFC1035 [77] when the DNS time-to-live expires. If the client does not �nd a RNAP

server among the addresses listed in the cached answer, it starts the search described

above.

For example, consider a client that wishes to send a RNAP Query. The client
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does a DNS query of QNAME = \as-number.rnap.udp.arpa00, QCLASS = IN,

QTYPE = SRV. If there is no address in the DNS response, the client will do

a DNS query for A records. When an address is found, the client attempts to con-

tact a NRN at that address at the speci�ed port if it exists in the srv record or

default port.

4.8. Other Issues

4.8.1 Transport Protocol and Reliability

RNAP messages are sent using the UDP protocol. In both RNAP-C and RNAP-D

models, periodic RNAP messages provide a natural way of protecting against loss.

RNAP also allows the HRN to solicit any service related information at any time

during the negotiation session. In this case, the response message will serve as a

con�rmation message. For example, the receipt of Quotation message will indicate

that the Query is sent correctly. To protect against triggered message loss and as

an additional protection against periodic message loss, the RNAP client continues

to retransmit a request with exponential back-o� (for congestion control). That

is, the re-transmission interval starts from a time interval T1 which is larger than

the round-trip time, doubles the interval for each packet sent, and stops when a

response message is received or the timeout interval T2 is exceeded. Default values

for T1 and T2 are 500 ms and 30 s (default negotiation period) respectively. If one

or more Reserve messages are lost in transmission, the network will provide service

based on contracted rules from previous negotiation period as in Section 4.3.1 or

local policy.

In addition to the periodical transmission and retry mechanism for UDP, the

charge information in RNAP is transmitted as a cumulative value, that the current

charge can be recovered after the successive response information is received. Also,
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when multiple levels of quality of service are available from the network, RNAP

messages can be sent with a high quality service to protect against their loss.

Failure of a negotiation server or of a device storing RNAP state information,

device reboots, and network partitions need also to be considered. A back-up NRN

may be needed for the RNAP-C model. If a request is timed out, a new connection

needs to be opened to the backup server. A re-negotiation process is triggered from

the failure domain to the corresponding neighboring domains to allow new resource

agreements to be reached. Use of non-volatile storage is recommended in critical

elements to protect against the element failure and device reboots. When a device

that stores customer charging information is recovered or the network connectivity

is re-established, the charge for the period can be retrieved.

The network should also be able to track the liveness of an application using

RNAP by tracking periodic RNAP messages and also by monitoring the data 
ow.

This would avoid charging a terminated application and wasting network resources.

4.8.2 Stability

We prove the stability of the framework through analysis at Section 6.4.. The

stability of the framework is further proved through simulation in Section 7. The

proposed RNAP negotiation is intended for period in the unit of minute or longer,

and hence the transmission delay is not a big concern. To reduce the oscillation of

the resource request due to the large number of re-negotiation, resource negotiation

between domains can be in the granularity of block (detailed in Section 4.4.5), at

the cost of slightly lower bandwidth utilization. In addition, the network could set

some traÆc modi�cation threshold beyond which the price will be adjusted, and an

end host could set up its own threshold to avoid unnecessary re-negotiation.
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4.8.3 Security

For security, RNAP messages may be authenticated and encrypted similar to RSVP

[78] or using IPSEC [79].

4.9. Protocol Comparison between RNAP and RSVP

RNAP shares an important functionality with RSVP: performing end-to-end re-

source reservations. Consequently, they share some common features, and, as we

have pointed out earlier, it is possible to embed some components of RNAP as part

of RSVP. In Chapter 8, we explain the extensions needed for RSVP to support

RNAP.

However, RNAP has a broader range of functions, and di�ers from RSVP in a

number of ways. We compare the two protocols in this section.

Transport Mechanism: RSVP operates on top of IPv4 or IPv6, occupying the

place of a transport protocol in the protocol stack. However, RSVP does

not transport application data but is rather an Internet control protocol, like

ICMP, IGMP, or routing protocols. As described in Section 4.8., RNAP op-

erates on top of UDP.

Transmission Architectures: RSVP messages are forwarded hop-by-hop along

the same path as data 
ows, i.e., in the distributed format. RNAP is designed

to support both centralized and distributed architectures. Correspondingly,

RNAP messages may either be routed independently, or along the same path

as data 
ows. This allows for 
exibility in supporting di�erent types of services

and various requirements of service providers.

Reliability: RSVP sends its messages as IP datagrams with no reliability enhance-

ment, and relies on periodic transmission of refresh messages to recover from a
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lost message. This will lead to a delay in recovery for at least a RSVP refresh-

ment interval. RNAP supports a special re-transmission mechanism when a

message is not received as expected.

Protocol Initiation: RSVP is designed to operate with both unicast and multicast

routing protocols. In order to eÆciently accommodate large groups, dynamic

group membership, and heterogeneous receiver requirements, RSVP makes

receivers responsible for requesting a speci�c QoS. Therefore, RSVP is receiver-

oriented, i.e., the receiver of a data 
ow initiates and maintains the resource

reservation used for that 
ow.

RNAP is also designed to work with both unicast and multicast routing pro-

tocols. However, RNAP allows either data sender or receiver to initiate a

reservation request. In general, it is reasonable for the entity paying for the

service to initiate the negotiation and resource reservation process. Sender-

driven negotiation can greatly reduce the signaling complexity; for example,

the sender does not need to inform the receiver about the data path before

sending a resource request. Allowing traÆc initialization to be either sender-

driven, receiver-driven, or from both sides adds 
exibility, and supports dif-

ferent business models.

Dynamic Negotiation Support: RSVP allows a sender to modify the reserva-

tion request at any time. However, it does not facilitate selection from a

group of services, or modi�cation of existing requests. Supporting dynamic

resource negotiation is one of the design goals of RNAP. RNAP can provide

users with updated service statistics, as well as updated price information, to

allow the users to select services and service parameters according to their

needs. Support for dynamic negotiation is particularly useful for adaptive
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applications, which would adapt their sending rate in response to changes in

price and/or network statistics.

Price and Charge Collection Support: There is currently no mechanism in RSVP

for supporting price and charge collection, which may be an important re-

quirement for providing better than best e�ort services. As indicated earlier,

the RNAP protocol provides the means to communicate price quotations and

charges incurred. It also supports di�erent charging modes: charging the

sender, or receiver, or both.

80



Chapter 5

Pricing Strategies

A few pricing schemes are widely used in the Internet today [80]: access-rate-

dependent charge (AC), volume-dependent charge (V), or the combination of the

both (AC-V). An AC charging scheme is usually one of two types: allowing un-

limited use, or allowing limited duration of connection (typically per month), and

charging a per-hour fee for additional connection time. Similarly, AC-V charging

schemes normally allow some amount of volume to be transmitted for a �xed access

fee, and then impose a per-volume charge. Although time-of-day dependent charg-

ing is commonly used in telephone networks, it is not generally used in the current

Internet. User experiments [81] indicate that usage-based pricing is a fair way to

charge people and allocate network resources. Both connection time and the trans-

mitted volume re
ect the usage of the network. Charging based on connect-time

only works when resource demands per time unit are roughly uniform. Since this is

not the case for Internet applications and across the range of access speeds, we only

consider volume-based charging.

In this work, we study two kinds of volume-based pricing: a �xed-price (FP)

policy with a �xed unit volume price, and a congestion-price-based adaptive service

(CPA) in which the unit volume price has a congestion-sensitive component. In the

�xed price model, the network charges the user per volume of data transmitted,
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independent of the congestion state of the network. The per-byte charge can be

the same for all service class (\
at", FP-FL), depend on the service class (FP-PR),

depend on the time of day (FP-T) or a combination of time-of-day and service class

(FP-PR-T).

If the price does not depend on the congestion conditions in the network, cus-

tomers with less bandwidth-sensitive applications have no motivation to reduce their

traÆc as network congestion increases. As a result, either the service request block-

ing rate will increase sharply at the call admission control level, or the packet delay

and dropping rate will increase greatly at the queue management level. Having a

congestion-dependent component in the service price provides a monetary incentive

for adaptive applications to adapt their service class and/or sending rates according

to network conditions. In periods of resource scarcity, quality sensitive applications

can maintain their resource levels by paying more, and relatively quality-insensitive

applications will reduce their sending rates or change to a lower class of service.

The total price under CPA is composed of a component that depends on congestion

and a �xed volume-based charge. Thus, with four variations on the �xed volume-

based charge as outlined above, we have the pricing models CP-FL, CP-PR, CP-T,

CP-PR-T.

Based on the policy of each domain, di�erent algorithms can be used for com-

putation of a local or incremental price for a service at a given point in a network,

and RNAP can be used to facilitate the price distribution, collation, and dynamic

resource negotiation.

In this chapter, we �rst consider the issues of formulating end-to-end prices

and charging customer 
ows accordingly. We address these issues within both the

RNAP-D and RNAP-C architectures, and also discuss pricing and charging across

multiple network domains. We then propose a pricing scheme in a Di�Serv environ-
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ment based on the cost of providing di�erent levels of quality of service to di�erent

classes, on long-term demand, and on the level of congestion in the network. Fi-

nally, we describe two methods to derive the congestion price component of the total

price, one based on a tâtonnement process and the other based on a multiple-bid,

second-price auction system. We also discuss a slightly modi�ed RNAP messaging

sequence which can be used to implement the proposed auction scheme.

5.1. Price and Charge Formulation in Network

In the previous chapter, we discussed how price and charge information are commu-

nicated to the HRN through RNAP messages. We now consider the issue of arriving

at the contracted price to be quoted for a 
ow receiving a particular service in a

given negotiation period, and computing the charge for the service at the end of the

period.

A network pricing entity, a router or an NRN, needs to maintain the price

quotation for each service type. In general, the service prices are re-calculated

periodically, based on network traÆc characteristics, and this period is independent

of the RNAP negotiation interval. The entities that are responsible for session price

quotation and accounting (edge routers or NRNs) need also to maintain price quoted

and charge accumulated for the active sessions.

The price structure maintained in the pricing entity may consist of several �elds

in order to re
ect a complex pricing strategy such as that to be presented in Section

5.2., and is hence more complicated than the single NewPrice �eld carried in RNAP

messages, which simply quote the estimated price to the HRN. The price quoted to

a session remains unchanged during a negotiation interval, and is updated at the

end of a negotiation period if the price of a service type has changed at some time

during the interval. At the end of each negotiation period, the AccumulatedCharge
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for a session is re-computed using the current price quoted for that period.

The service price quotation and session charging information are maintained by

di�erent entities, and used in di�erent ways, depending on the RNAP architecture.

We consider the centralized and distributed architectures separately.

5.1.1 Price and Charge Formulation in RNAP-D

In the distributed architecture, each LRN of an edge router maintains charging state

information for the 
ows passing through it, based on prices quoted from the domain.

At the beginning of a negotiation period (and also in response to a Query message),

the destination HRN originates a Quotation message. The Quotation message is

sent hop-by-hop back towards the HRN. At each LRN, the Service.NewPrice �elds

in the message are incremented according to the current price computed for the

corresponding service at the LRN. In Section 5.2., we discuss a speci�c local pricing

strategy in which a set of prices is computed for each service. In this case, some

mapping behavior may have to be de�ned to obtain a single increment for the quoted

Service.NewPrice. When the Quotation message arrives at the negotiating HRN, it

carries the total quoted price for each service.

Similarly, Commit messages originate at the destination HRN, and are sent hop-

by-hop back to the HRN. In this case, the Service.NewPrice and Service.AccumulatedCharge

�elds are all incremented at each router-LRN on the way.

5.1.2 Price Formulation in RNAP-C

When the centralized negotiation architecture is used, the local charging state in-

formation for a domain is maintained by the NRN. The price formulation strategy

is a much more open-ended problem. Various alternatives may be considered, and

di�erent domains may apply di�erent local policies. The NRN may compute a price
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based on the service speci�cations alone. The price could be �xed, or modi�ed based

on the time of day. In general, if the price charged to a 
ow needs to depend on the

network state and the 
ow path, we consider the following three approaches:

Dest Next Hop

Domain Routing Table

R1

      

B2

Next Hop

R2

Next Hop

B1 R1 R2

B2

R2

(C, BW, Q, P) (C, BW, Q, P)

R1

Resource Table

R1

B1
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1, 2, 30, 1

1, 3, 30, 1
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R1
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B2

B3
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BW: average bandwidth (Mb)
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Step2: accumulate price along

Step1: determine a path (Table 1)

the path (Table 2)

Step 3: send total price ($4/Mb)

C: Service class

Q:average queue length 
P: price ($/Mb)

B3

B4

Figure 5-1: Price formulation in RNAP-C

1. The NRN makes the admission decision and decides the price for a service,

based on the network topology, routing and con�guration policies, and network

load. In this case, the NRN sits at a router that belongs to a link-state routing

domain (for example an OSPF area) and has an identical link state database

as other routers in the domain. This allows it to calculate all the routing

tables of all other routers in the domain using Dijkstra's algorithm. A similar

idea has been explored in [73] in a di�erent context.

The NRN maintains a domain routing table which �nds any 
ow route that

either ends in its own domain, or uses its domain as a transmit domain (Fig. 5-

1). The domain routing table will be updated whenever the link state database

is changed. A NRN also maintains a resource table, which allows it to keep

track of the availability and dynamic usage of the resources (bandwidth, bu�er

space). In general, the resource table stores resource information for each
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service provided at a router. The resource table allows the NRN to compute a

local price at each router, for instance, using the usage-based pricing strategy

to be described in Section 5.2.. For a particular service request, the NRN �rst

looks up the path on which resources are requested using the domain routing

table, and then uses the per-router prices to compute the accumulated price

along this path. The resource table also facilitates monitoring and provisioning

of resources at the routers. To enable the NRN to collect resource information,

routers in the domain periodically report local state information (for instance,

average bu�er occupancy and bandwidth utilization) to the NRN. A protocol

such as COPS [24] can be used for this purpose.

To compute the charge for a 
ow, ingress routers maintain per-
ow (or ag-

gregated 
ow from neighboring domains) state information about the data

volume transmitted during a negotiation period. This information is periodi-

cally transmitted to the NRN, allowing the NRN to compute the charge for the

period. The NRN uses the computed price and charge to maintain charging

state information for each RNAP session.

2. Prices are computed at the network boundary, and communicated to the NRN.

For price calculation, there are two alternatives.

One alternative is that the ingress router periodically computes a price for

each service class and ingress-egress pair. The calculation is based on ser-

vice speci�cations and local per-service demand at the ingress router; internal

router states along the 
ow path are not taken into account.

The other alternative allows internal router load to be taken into account.

Probe messages are sent periodically from an egress router to all ingress

routers. A probe message carries per-service Price structures which accu-
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mulate prices hop-by-hop at each router in a similar manner to Section 5.1.1.

In both of the above cases, the ingress router maintains per-
ow state infor-

mation that includes the per-
ow price (the price charged to the service class

the 
ow belongs to), as well as the per-
ow data volume entering the domain.

This information is transmitted every negotiation period to the NRN, which

computes the charge and is responsible for the messaging.

3. Price formulation takes place through a intra-domain signaling protocol. If

resource reservation for a particular service in a domain is performed through

a dynamic resource reservation protocol, such as RSVP or YESSIR[82], the

price information is collected through the periodic messages of the reservation

protocol, and stored at the ingress router. For example, the RSVP PATH mes-

sage and RTCP [41] messages in YESSIR can collect pricing information. If

the ingress router is responsible for sending the price information to the NRN,

the price accumulated from a domain will be send back to ingress router along

with the RSVP RESV message. Such an implementation, utilizing RSVP, is

described in [83]. Communication between the ingress router and NRN occurs

as discussed in the �rst scenario.

In the above schemes, we assume that a domain has one NRN. A domain could

also have multiple NRNs, each NRN residing at an ingress router. In this case,

the ingress router does not need to send periodic per-session reports to a centralized

NRN, and pricing, charging, and RNAPmessaging are done directly from the ingress

router. Reliability concerns make a more distributed architecture (multiple NRNs,

or RNAP-D) preferable. But some management goals (for instance, all NRNs in

one domain need to have a coherent view of the resources at internal routers to

allow them to make correct admission decisions) may make a centralized policy

more attractive.
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5.1.3 Charge Formulation for Multiple Domains and Flow Aggregates

When a customer 
ow spans more than one administrative domain, each domain

computes incremental prices and charges for the 
ow using its own pricing strategy

and architecture, and the total end-to-end price and charge are obtained by addition

in a hop-by-hop manner (with each domain representing a single hop) as in Section

5.1.1.

When a set of 
ows enter a domain as a 
ow-aggregate, the NRN (or network

domain as a whole in RNAP-D) carries out messaging and charging as if the aggre-

gate belonged to a single customer. The NRN in the aggregating domain (or LRN

at the aggregation point) is responsible for mapping the total charge into charges

for individual customer 
ows or 
ow-aggregates.

5.2. Pricing for Di�erentiated Services

We assume that routers support multiple service classes and that each router is par-

titioned to provide separate link bandwidth and bu�er space for each service, at each

port. We use the framework of the competitive market model [62]. The competitive

market model de�nes two kinds of agents: consumers and producers. Consumers

seek resources from producers, and producers create or own the resources. The ex-

change rate of a resource is called its price. The routers are considered the producers

and own the link bandwidth and bu�er space for each output port. The 
ows (indi-

vidual 
ows or aggregate of 
ows) are considered consumers who consume resources.

The congestion-dependent component of the service price is computed periodically,

with a price computation interval � . The total demand for link bandwidth is based

on the aggregate bandwidth reserved on the link for a price computation interval,

and the total demand for the bu�er space at an output port is the average bu�er

occupancy during the interval. The supply bandwidth and bu�er space need not
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be equal to the installed capacity; instead, they are the targeted bandwidth and

bu�er space utilization. The congestion price will be levied once demands exceeds

a provider-set fraction of the available bandwidth or bu�er space. We now discuss

the formulation of the �xed charge, which we decompose into holding charge and

usage charge, and the formulation of the congestion charge.

5.2.1 Holding Charge

A service may enforce admission control to ensure some level of performance. In

this case, the applications admitted into the network will impose some potential

cost by depriving other applications the opportunity to be admitted. Hence, it is

fair to charge the admitted applications a holding price. The holding charge can

be justi�ed as follows. If a particular 
ow or 
ow-aggregate does not utilize the

resources (bu�er space or bandwidth) set aside for it, we assume that the scheduler

allows the resources to be used by excess traÆc from a lower level of service. The

holding charge re
ects revenue lost by the provider because instead of selling the

allotted resources at the usage charge of the given service level (if all of the reserved

resources were consumed) it sells the reserved resources at the usage charge of a

lower service level. The holding price (pjh) of a service class j is therefore set to be

proportional to the di�erence between the usage price for that class and the usage

price for the next lower service class.

The holding price can be represented as:

pjh = �j(pju � pj�1u ); (5.1)

where �j is a scaling factor related to service class j. The holding charge cijh (n)

89



when the customer i reserves a bandwidth rij(n) from class j is given by:

cijh (n) = pjhr
ij(n)� j (5.2)

where � j is the negotiation period for class j. rij(n) can be a bandwidth requirement

speci�ed explicitly by the customer i, or estimated from the traÆc speci�cation and

service request of the customer.

5.2.2 Usage Charge

The usage charge is determined by the actual resources consumed, the average user

demand, the level of service guaranteed to the user, and the elasticity of the traÆc.

The usage price (pu) will be set such that it allows a retail network to recover the

cost of the purchase from the wholesale market, and various �xed costs associated

with the service. In a network supporting multiple classes of service, the di�erence

in the charge between di�erent service classes would presumably depend on the

di�erence in performance between the classes. The model we consider is a network

supporting J classes of services, the service price for class j is pju, the long time user

bandwidth demand is known (e.g., through statistics) and can be represented as

xj(p1u; p
2
u; :::; p

J
u), and the cost of having capacity C during one unit of time is f(C).

The provider's decision problem is to choose the optimal prices for each class that

optimize its pro�t:

max
p
j
u

[
JX
j

xj(p1u; p
2
u; :::; p

J
u)p

j
u � f(C)];

subject to: r(xj(p1u; p
2
u; :::; p

J
u)) � R; j 2 J (5.3)

where r represents the bandwidth requirement for all classes, and R is the total

bandwidth availability of the network. Assuming users can select individually a
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class, the total demand for a class over a long enough time period depends only on

the price for that class. If we assume the users have the utility functions of Chapter

6, the total demand of service class j can be represented as a constant elasticity

model: xj(pju) = Aj=pju, which varies inversely with the price of the service class.

Aj re
ects the total willingness to pay of users belonging to service class j.

Service pricing for di�erentiated service

Di�Serv supports SLA negotiation between the user and the network. An SLA

generally includes traÆc parameters, which describe the user's traÆc pro�le, and

performance parameters, which characterize the level of performance that the net-

work promises to provide to the conforming part of the user's traÆc. A widely used

descriptor for a user's traÆc pro�le consists of a peak rate, a sustainable rate, and a

maximum burst tolerance. The generally considered QoS parameters are delay and

loss. Mechanisms, such as weighted fair queuing (WFQ) and class based queuing

(CBQ) can be used to provision resources for di�erent service classes. In general,

a class with lower load leads to lower delay expectation. A higher level of service

class is expected to have a lower average load, and hence lower average delay. If

we do not consider the di�erence in element costs for di�erent classes, charging ser-

vices based on their individual expected load seems to reasonably re
ect the cost

of providing the services and the di�erences between their performance. Assuming

that unit bandwidth of a service class would be charged a basic rate pbasic if all its

bandwidth were used, and the expected load ratio of service class j is �j, the unit

bandwidth price for service class j can then be estimated as pju = pbasic=�
j . The

e�ective bandwidth consumption of an application with rate xij can be represented

as xij=�j . For constant elasticity demand, xj(pju) = Aj=pju, and the e�ective band-

width consumption is Aj=(pju�
j). Then the price optimization problem of equation

5.3 can be written as:
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max
p
j
u

[
JX
j

Aj

pju
pju � f(C)]; pju =

pbasic
�j

;

subject to:
JX
j

Aj

pju�j
� C (5.4)

The Lagrangian for the problem can be represented as:

max
pbasic

[
JX
j

Aj + �(C �

PJ
j A

j

pbasic
)� f(C)] (5.5)

The optimal solution is:

pbasic =

PJ
j A

j

C
; pju =

pbasic
�j

=

PJ
j A

j

C�j
(5.6)

The bandwidth provisioned for each service class will be given by Aj=pbasic, and is

hence proportional to total user willingness to pay for that class. The usage charge

ciju (n) for class j over a period n in which vij(n) bytes were transmitted is given by:

ciju (n) = pjuv
ij(n) (5.7)

5.2.3 Congestion Charge

Simple usage-based charging schemes monitor the data volume transmitted and in

principle charges users based on their average rate. Charging according to the mean

rate, though encouraging the user to use network bandwidth more eÆciently, does

not discourage users from selecting large traÆc contracts and sending the worst-case

traÆc allowed by their contract, which can create problems for network traÆc man-

agement. An appropriate pricing scheme should provide users incentives to select

traÆc contracts that re
ect their actual needs. E�ective bandwidth [84][85] and
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pricing based on e�ective bandwidth [86] have been proposed in a multiple-service-

class environment. However, e�ective bandwidth normally accounts for the worst

case traÆc subject to the traÆc pro�le. The contract for typical users has an e�ec-

tive bandwidth much larger than the mean rate. Provisioning based on equivalent

bandwidth is not economically eÆcient. Performance guarantees in Di�Serv are

qualitative and can be very loose. This may make it diÆcult to evaluate the equiv-

alent bandwidth. Also, Di�Serv does not allocate resources to applications based

on their e�ective bandwidth. Therefore, it appears unfair to charge users based on

their pro�le declaration only, though the charge should take the pro�le into account.

To encourage users to reduce their resource requirements under network resource

contention, we propose an additional congestion-sensitive price component.

With congestion price for class j over a period n represented as pjc(n) and the

volume transmitted as vij(n), the total congestion charge for customer i is given by

cijc (n) = pjc(n)v
ij(n): (5.8)

We now consider two methods for deriving the congestion price pjc(n). The �rst

method is based on a tâtonnement process and denoted as CPA-TAT. The second

method is based on auction, and is denoted by CPA-AUC.

5.2.3.1 Congestion Pricing under CPA-TAT

The general network resources considered are bandwidth and bu�er space. There-

fore, two kinds of congestion pricing can be considered: pricing when the expected

load bound is exceeded, or pricing when bu�er occupancy reaches certain level. In

the �rst case, when the average demand for a certain class exceeds a threshold, an

additional congestion price is charged all users of that class.

In the case of priority dropping for AF class, the dropping precedence is only con-
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sidered when the bu�er occupancy reaches di�erent thresholds. The same thresholds

can be associated with di�erent congestion or bu�er prices. When each threshold is

reached, user packets with the corresponding precedence level begin to be dropped

with a certain probability, and users with higher precedence levels are charged the

additional bu�er price. Therefore, the higher precedence users pay the sum of bu�er

prices corresponding to all the exceeded thresholds. During congestion, lower prece-

dence users will su�er lost packets, or reduce their rate, or smoothen their traÆc

at the source (at the cost of higher delay due to bu�ering), or change to a higher

precedence and pay a higher price.

Both kinds of congestion price for a service class can be calculated as an iterative

tâtonnement process [62]:

pjc(n) = min[fpjc(n� 1) + �j(Dj ; Sj)(Dj � Sj)=Sj ; 0g+; pjmax] (5.9)

where Dj and Sj represent the current total demand and supply respectively, and

�j is a factor used to adjust the convergence rate. �j may be a function of Dj and

Sj ; in that case, it would be higher when congestion is severe. Dj and Sj will be

di�erent for bandwidth and bu�er space congestion. The router begins to apply

the congestion charge only when the total demand exceeds the supply. Even after

the congestion is removed, a non-zero, but gradually decreasing congestion charge is

applied until it falls to zero to protect against further congestion. In our simulations,

we also used a price adjustment threshold parameter �j to limit the frequency with

which the price is updated. The congestion price is updated if the calculated price

increment exceeds �jpjc(n � 1). The maximum congestion price is bounded by the

pjmax. When a service class needs admission control, all new arrivals are rejected

when the price reaches pmaxj . If p
j
c reaches p

j
max frequently, it indicates that more

resources are needed for the corresponding service, or usage price for a class needs
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to be adjusted to re
ect the new demand statistics.

5.2.3.2 Congestion Pricing under CPA-AUC

In our proposed framework, the network commits resources only for short intervals,

and periodically re-negotiates contracts with users, enabling optimal usage of net-

work resources. Auction schemes proposed in the literature normally do not consider

the short-term resource reservation scenario. The auction price either varies on a

packet level [61], or remain constant throughout a 
ow's life time [87][63]. Only

the DA and CHiPS models proposed in [64][65] require that resource auctions take

place periodically, and that reservations are possible and valid only for a time pe-

riod. However, neither the DA nor the CHiPS model addresses the user response

to price 
uctuations. In addition, the auction schemes in the literature generally

assume that a user has an unique service requirement, and bids for a �xed amount

of bandwidth at a certain price. An adaptive application could have very elastic

service requirements, and di�erent preferences for di�erent levels of service. A user's

preference can therefore be represented as a utility function, as will be discussed in

Section 6.

Users' utility functions are generally concave, that is the perceived value per unit

bandwidth decreases as the total bandwidth increases. Consequently, when the user

application learns of an increase in service price under CPA-TAT, it tends to reduce

its bandwidth request in order to maximize the perceived surplus. However, in a

periodic auction scheme in which users submit single bids, the user does not learn

about increased competition for scarce bandwidth ahead of the auction, and may

learn about it after its bid is rejected. The CHiPS auction scheme [65] gives current

connection holders a second chance, as mentioned in section II. But this does not

eliminate completely the uncertainty of service availability, and has other problems
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discussed in section II.

M -bid Auction

We propose an auction scheme called M -bid auction. The underlying principle

is that users express their willingness to pay for a number of levels of bandwidth

in advance of the auction. Each user sends a M -bid, which consists of multiple

(price, bandwidth) pairs. The bid price represents the per-unit premium a user is

willing to pay during the congestion to receive the corresponding bandwidth, and

the bid is derived by sampling the user's utility function. Users who have elastic

bandwidth requirements but highly value an uninterrupted connection will ensure

a high probability of receiving at least the minimum required bandwidth during

congestion by bidding a high price (per unit bandwidth) on their minimum band-

width bids, and a relatively low price on their higher-bandwidth bids. Users with

higher budgets and less elastic requirements will bid a relatively high price at all

bandwidths. At low levels of congestion, the former group of users bene�t by paying

less for a high bandwidth. During congestion, the network preferentially reduces the

bandwidth allocation of users with elastic bandwidth requirements, while maintain-

ing the bandwidth allocation of users with more willingness to pay. In this way,

the network utilizes its capacity more eÆciently and obtains a higher overall user

satisfaction.

When an auction is performed at a network entity, such as a link, all the bids

from all the users are ranked based on their individual bid price. Bandwidth is

allocated starting with the highest bid, until the target utilization is met. The

service congestion price (5.2.3.2) is set to the highest rejected bid price, in accordance

with the second-price concept. If more than one bid price from a user is higher than

the cuto� price, only the one with the lowest bid price (potentially the highest

bandwidth) is ultimately selected.
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Bid Price Bid Bandwidth Bidder Bid Selection
5 10 1
4 10 2
4 15 1  

3.5 20 3  

3 25 2  

2 30 3 �

Table 5.1: Example M -bid auction. Selected bids are marked as ' ', rejected bids
are marked as '�'

Table 5.1 shows an exampleM -bid auction. There are three users, each submit-

ting two bids to a network entity. The total available network bandwidth is 70. All

the user bids are ranked based on their bidding price. The example shows that all

the users are accepted, and the total allocated bandwidth is 60. The lowest bids

from users 1 and 2 are selected. The lower bid of user 3 is rejected. The per-unit

bandwidth congestion-price is set as 2, the highest rejected bid price.

It is convenient to organize all the bids in a binary tree. New bids are inserted

into the tree upon a session's arrival and all the bids from a session will be removed

from the tree upon its departure. If the total number of bids in the tree is N , and a

new user submits Nu bids, the insertion and deletion complexities are each Nu logN

separately. The complexity for calculating the total bandwidth is O(N).

RNAP Messaging Sequence for CPA-AUC

In Section 4, we discussed the formulation of end-to-end prices by accumulating

the local (node- or domain-wise) prices using the RNAP query-response message

sequence. We now describe a slightly modi�ed sequence of RNAP messages to

facilitate sending of CPA-AUC M -bids, and the accumulation of the end-to-end

charge in this case.

1. The HRN sends a Query message towards the destination, along with a set

of M bids for each service. The Query message collects the number of hops
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along the user path until it reaches the destination. The receiver calculates

the per-hop bids by averaging the set of M bids over the number of hops,

and initiates a Quotation message containing the per-hop bids, as well as

�elds for QoS speci�cations, the allocated bandwidth and the service price,

or a rejection decision. Subsequently, the receiver continues to initiate a new

Quotation message periodically, with per-hop bids based on the last received

Query message. The Quotation message is sent towards the HRN along the

reverse path of the Query message. If the user is submitting M -bids for the

�rst time, the Quotation message is forwarded upstream by each on-the-path

LRN after accepting the M -bid for its next scheduled auction. For an existing

connection, the LRN on each hop accepts the M -bid and also updates the

Quotation message with the allocated bandwidth and increments the service

price in the message based on its latest auction, and then forwards it upstream.

When it reaches the HRN, theQuotationmessage either contains the minimum

allocated bandwidth and the cumulative service price along the data path, or

a rejection decision indicating that one or more LRNs along the path has

rejected the user bids.

2. If the Quotation message rejects all the submitted bids, the HRN either sub-

mits a fresh set of bids in a Query message, or transmits data using best-

e�ort service, or terminates the application. Also, the HRN may transmit

data before service negotiation is complete end-to-end, and it will be served

best-e�ort on part or all of the data-path. If the received Quotation message

admits one of the M bids, the HRN learns how much bandwidth it can obtain

end-to-end, and sends a Reserve message towards the destination to reserve

this bandwidth. Subsequently, Reserve messages are sent in response to re-

ceived Quotation messages, and may also be sent by trigger in some special
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circumstances. Each Reserve is forwarded hop-by-hop to the destination. The

LRN at each hop modi�es its resource allocation if necessary, and reserves

the corresponding bandwidth. The destination initiates a Commit message to

con�rm the resource allocation and forwards it upstream. At each hop, the

service price and AccumulatedCharge are incremented appropriately by the

LRN based on its local service price.

3. To reduce the setup delay of a new session, we propose the following mecha-

nism when a LRN receives a set of bids from a new user, and it determines that

the wait until the next auction is longer than a certain threshold. The LRN

will allocate bandwidth to the user immediately if it is available, and if at least

one of the user bids exceeds the service price from the preceding auction. The

�rst Quotation message which installs the bids at a hop will also communicate

the allocated bandwidth and service price when it is sent upstream towards

the HRN. The bids will also be entered in the next scheduled auction, and the

messaging sequence described above will take over. Bandwidth may be avail-

able for immediate allocation in various ways - due to the demand during the

previous auction being less than the capacity, due to sessions being terminated

since the last auction, or due to users reserving less bandwidth than they were

allocated by auction (generally due to being allocated less bandwidth at other

nodes along their data paths).

5.2.4 Total Charge

Based on the price formulation strategy described above, a router arrives at a cost

structure for a particular RNAP 
ow or 
ow-aggregate at the end of each price

update interval. The total charge for a session is given by
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cijs =
NX
n=1

[p
j

hr
ij(n)� j + (pju + pjc(n))v

ij(n)] (5.10)

where N is the total number of intervals spanned by a session.

In some cases, the network may set the usage charge to zero, imposing a holding

charge for reserving resources only, and/or a congestion charge during resource con-

tention. Also, the holding charge would be set to zero for services without explicit

resource reservation or admission control, for example, best e�ort service.
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Chapter 6

User Adaptation

In a network with congestion dependent pricing and dynamic resource negotiation

(through RNAP or some other signaling protocol), adaptive applications with a

budget constraint will tend to adjust their service requests in response to price

variations. Adaptive applications could maintain a constant charging rate without

worrying about the price change by varying the service requests in response to price

changes. We call this service congestion-price-based adaptive service (CPA).

Although we focus on adaptive applications as the ones best suited to a dy-

namic pricing environment, the negotiation framework does not require adaptation

capability. Applications may choose services that provide a �xed price and �xed

service parameters during the duration of service. Generally, the long-term average

cost for a �xed-price service will be higher, since it uses network resources less ef-

�ciently. Alternatively, applications may use a service with usage-sensitive pricing,

and maintain a high QoS level, paying a higher charge during congestion.

In Chapter 5, we introduced two alternative methods based on tâtonnement and

M -bid auction to determine the congestion price. We refer to the congestion-price

based adaptation processes based on tâtonnement and auction as CPA-TAT and

CPA-AUC, respectively.

In this chapter, we consider how network bandwidth is allocated among compet-
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ing users under the two policies. Under the CPA-TAT policy, we assume that the

user chooses a sending rate and level of service so as to maximize her \satisfaction",

subject to the service price and user budget. Under the CPA-AUC policy, each user

submits bids in the form of willingness to pay for di�erent sending rates and levels

of service, and the network entity sets the price and allocates bandwidth based on

the bids. In either case, the application source rate is adapted accordingly. We

also discuss the stability of the adaptation process, including price changes in the

network due to changes in user demand, and rate adaptation by the user in response

to price changes.

6.1. The Utility Function

We consider a set of user applications, required to perform a task or mission, for

example, audio, video, and whiteboard applications for a video-conference. The

user would like to determine a set of transmission parameters (sending rate and

QoS parameters) from which it can derive the maximum bene�t.

We assume that the user de�nes its preferences or willingness to pay quanti-

tatively, through a utility function. The utility function represents the perceived

monetary value (say, 15 cents/minute) provided by the set of transmission parame-

ters towards completing the user task.

The utility of a reservation request denotes how bene�cial the corresponding

network resource allocation would be towards completing the mission. The utility

function is therefore a function in a multi-dimensional space, with each dimension

representing a single transmission parameter allocation for a particular application.

The objective of the adaptation is to select a set of transmission parameters that

gives the maximum possible utility relative to the cost of obtaining this service,

subject to the user budget constraint.
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6.1.1 Utility as Perceived Value

Clearly, the utility of a transmission depends on its quality as perceived by the

user. However, since the user is paying for the transmission, it appears reasonable

to de�ne the utility as the perceived value of that quality to the user. For example,

an audio transmission requiring a certain sending rate and certain bounds on the

end-to-end delay and loss rate may be worth 10 cents/minute to the user. The per-

ceptual value is strongly correlated to the perceptual quality, but is not exactly the

same. For example, a pair of audio transmissions encoded identically and with the

same transmission QoS parameters also have the same perceived quality, but their

perceived values may di�er according to the application requirements. For example,

the requirement of a weekly meeting between native speakers will probably have a

lower quality requirement than a conferencing system teaching a foreign language

and hence the users will see a higher value for using high quality transmission for

the latter.

A number of researchers have measured the subjective quality of multimedia

transmissions [88][89][90]. Generally, these experiments were intended to derive

the Mean Opinion Score (MOS), which is measured as an average perceptive qual-

ity across a number of test subjects. But in our framework, perceived value very

strongly re
ects individual user preferences, and the application task being per-

formed. We consider it likely, therefore, that an user application will have one or

more of the following features:

� allow the user to customize utility function(s);

� allow the user to de�ne \scenario"-speci�c utility functions; a particular sce-

nario may be selected by the user during a session, or may be deduced by the

application based on user actions;
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� allow user to specify a certain time-dependence of the utility function.

6.1.2 Utility as a Function of Bandwidth

����

����
�
�
�
�

bandwidth

Utility

utility1

utility3
utility2

Figure 6-1: Some example utility functions

It is likely that only a few service alternatives will be available to a multimedia

application on the Internet - at the current stage of research, some possible services

are guaranteed [13] and controlled-load service [14] under the IntServ model, and

Expedited Forwarding (EF) [17] and several classes of service under Assured For-

warding (AF) [16], also under Di�Serv. A particular user application would be able

to choose from a small subset of the available services. Each such service would

probably provide some qualitative or quantitative guarantee for loss and delay. It

seems likely, therefore, that the user would develop an utility function as a function

of the transmission bandwidth (which in turn would depend on speci�c encoding

parameters such as frame rate, quantization, etc.), at di�erent discrete levels of loss

rate and delay.

We can make some general assumptions about the utility function as a func-

tion of the bandwidth, at a �xed value of loss and delay. The application has a

minimum transmission bandwidth, and the utility is zero for bandwidth below this

threshold. Also, user experiments reported in the literature [89][90] suggest that

utility functions typically follow a model of diminishing returns to scale, that is, the
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marginal utility as a function of bandwidth diminishes with increasing bandwidth

and eventually goes to zero, de�ning a maximum QoS requirement.

Fig. 6-1 shows some possible utility vs. bandwidth curves. Utility1 is a smooth

function. User experiments for deducing the utility function would be performed

at discrete bandwidths, and some form of interpolation, such as a piecewise linear

function (utility2), can be used to approximate the utility function. In addition, in

some multimedia applications, only discrete bandwidths are feasible. For example,

audio codecs can only operate at certain bandwidth points (Utility3).

6.1.3 E�ect of Scaling

In this section, we consider how changes in the utility function may in
uence the

resource distribution. The operations we consider are an o�set applied uniformly

to the utility over all bandwidths, and multiplicative scaling of the utility function.

We discuss the operations qualitatively here, and present some experimental results

in Chapter 8. The utility function represents the relative preference of the user

for di�erent bandwidths. A constant (bandwidth-independent) o�set to the utility

function will not in
uence the resource distribution as long as the valuation of a

bandwidth is higher than its cost.

On the other hand, a constant o�set of the utility function changes the minimum

perceived value. The minimum perceived value represents how much the user is

willing to pay to just keep the application alive. Lowering this value allows the

application to be terminated more readily during congestion (high cost). If a user

values an uninterrupted service very highly, he increases the perceived value of the

\keep alive" bandwidth.

A multiplicative scaling of the utility function by a factor greater than one tends

to increase its bandwidth share, since it results in a bigger additive increase in
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perceived surplus at higher bandwidth than at lower bandwidths. E�ectively, the

demand elasticity of the application is reduced. The opposite e�ect is observed

when the scaling factor is less than 1.

6.1.4 Time Dependence of Utility

For a particular application, the value of the information may vary with time. An

user may perceive a higher value initially after the connection is established, and a

lower value after a certain duration (typically, a phone call is very important to the

user in the �rst one minute, compared to one that has lasted 30 minutes), or the

reverse (for a movie, the ending is usually more interesting than the introduction).

The relative importance of individual applications in a system may also evolve with

time.

The evolution with time of the application utilities may be de�ned based on

various user-de�ned scenarios. A simple way of representing the time evolution is

to represent the multiplicative scaling and additive o�set in Section 10.5.1, with a

pair of time dependent parameters, � and �, so that the time-dependent utility can

be represented as �j(t)�Uj(�)+�j(t), where j represents a task performed at a time

t.

6.1.5 An Example Utility Function and User Adaptation

Based on the previous discussion, we assume that the utility function is concave,

with minimum and maximum constraints. The minimum perceived value for a task

can be regarded as an \opportunity" value, and this is the perceived utility when

the application receives just the minimum required bandwidth. The user terminates

the application if its minimum bandwidth requirement can not be ful�lled, or when

the price charged is higher than the opportunity value derived from keeping the
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connection alive. Hence, a utility function can be represented in a general form as

a function of bandwidth as:

U(x) = U0 + w log
x

xm
; (6.1)

where xm represents the minimum bandwidth the application requires, w represents

the sensitivity of the utility to bandwidth, and U0 is the monetary \opportunity"

that the user perceives at the lowest QoS level xm.

The utility function is also sensitive to network transmission parameters such

as loss and delay. In our work, we rely on the experimental results in [91] which

show that users' perceived quality for interactive audio decreases almost linearly

with either delay or loss, with a minimum acceptable quality requirement. More

subjective tests are needed for other application types. Currently, we assume a

similar linear dependence for all applications. Accordingly, we represent the utility

function as:

U(x) = U0 + w log
x

xm
� kdd� kll; for x � xm; (6.2)

where kd and kl represent respectively the user's sensitivity to delay and loss. In

some cases, the user's perceived sensitivity to loss and delay may depend on the

bandwidth used, for example, when using di�erent speech codecs. Since we are not

assuming any particular application model, we assume that the users' delay and

loss sensitivity are independent of bandwidth in our simulations. A user with a

higher sensitivity to delay or loss will tend to select a higher service class rather

than request more bandwidth.
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6.2. Application Adaptation Under CPA-TAT Policy

Consumers in the real world generally try to obtain the best possible \value" for

the money they pay, subject to their budget and minimum quality requirements; in

other words, consumers may prefer lower quality at a lower price if they perceive

this as meeting their requirements and o�ering better value. Intuitively, this seems

to be a reasonable model in a network with QoS support, where the user pays for

the level of QoS he receives. In our case, the \value for money" obtained by the

user corresponds to the surplus between the utility U(�) with a particular set of

transmission parameters, and the cost of obtaining that service. The goal of the

adaptation is to maximize this surplus, subject to the budget and the minimum and

maximum QoS requirements.

We assume the applications belong to a single user, and have piecewise linear

utility functions. We �rst consider the adaptation strategy of a single application

when its utility is a function only of bandwidth (at a �xed loss and delay). We then

discuss the adaptation strategy when the utility is a function of multiple transmis-

sion parameters (bandwidth, loss and delay). Finally, we consider the problem of

maximizing the mission-wide utility of a system comprising multiple applications

performing a certain task. We also use the example user utility function from Sec-

tion 6.1.5 in Section 6.2.4, to model user adaptation in response to a changing price

and discuss the user adaptation strategy.

6.2.1 Adaptation of Single Application with Fixed Transmission Quality

If the quality of transmission is �xed (a particular delay and loss), the application

utility (that is, the user-perceived value) increases monotonically with the band-

width. Hence the maximization problem for the user can be written as:
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max [U(x)� C(x)]

s. t. C(x) � b

xmin � x � xmax; (6.3)

where x is the bandwidth under consideration, C(x) is the cost for the requested

bandwidth, b is the budget of user, xmin is the minimum bandwidth requirement,

and xmax represents the maximum bandwidth requirement. Note that U , b and c

are in units of money/time.

One way of carrying out this optimization is to �t the utility function to a

closed form function. The optimal solution is then obtained by using Kuhn-Tucker

conditions for a maximum subject to inequality constraints.

As mentioned earlier, the application utility is likely to be measured by user

experiments and known at discrete bandwidths. In this case, it is convenient to

represent the utility as a piecewise linear function, as shown in Fig. 6-2. The

�gure also assumes a constant unit bandwidth cost C, so that the cost-vs-bandwidth

function is a straight line with slope equal to C. The budget is shown as a horizontal

line intercepting the cost/utility axis. From the �gure, it is evident that the optimal

bandwidth is

either the segment end-point with the highest surplus, if this end-point meets the

budget constraint (b in Fig. 6-2 case A)

or else the bandwidth corresponding to the intersection point of the cost line with

the budget line (b' in Fig. 6-2 case B).
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Figure 6-2: A perceived value based rate adaptation model

6.2.2 Adaptation of Single Application over Multiple Transmission Pa-

rameters

We now consider the maximization of the application surplus over a set of trans-

mission parameters (usually, the bandwidth, loss rate and delay). The objective

function is as shown earlier in equation 6.3, but x, xmin and xmax are now vectors

corresponding to the set of transmission parameters. If a complete quality of service

parameter space is considered, the searching cost can be prohibitive. As brie
y ex-

plained however, we believe it is likely that the application utility will take the form

of a small set of utility versus transmission bandwidth functions, each at a di�erent

level of loss rate and delay, corresponding to a particular service. In this case, the

optimization routine is as follows:

1. For each available service, use the corresponding utility versus bandwidth

function to determine the optimal bandwidth, as in Section 6.2.1.

2. Select the service which gives the highest surplus at its optimal bandwidth.
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6.2.3 Simultaneous Adaptation of Multiple Applications corresponding

to Single Task

We now consider the simultaneous adaptation of transmission parameters of a set

of n applications performing a single task. The transmission bandwidth and QoS

parameters for each application are selected and adapted so as to maximize the

mission-wide \value" perceived by the user, as represented by the surplus of the

Total Utility , Û over the total cost C. We can think of the adaptation process as

the allocation and dynamic re-allocation of a �nite amount of resources between the

applications.

A number of researchers have noted the interaction between the perception of

the di�erent component media in a multimedia system, such as a video conference

[90][92][93][94]. For example, an investigation of video phone systems indicated that

any increase in visual representation of the speaker increases the viewer's tolerance

to audio noise [92]. To take into account the interdependencies among applications,

the utility of the ith application should, in general, be written as U i(x1; ::xi; ::xn),

where xi is the transmission parameter tuple for the ith application. The total

utility function of a system consisting of n individual application streams can be

represented in general as Û(U1(�); :::; Un(�)), where U i(�) represents the utility of

stream i. Since we consider utility to be equivalent to a certain monetary value, we

can write the total utility as the sum of individual application utilities:

Û =
X
i

[U i(x1; :::; xi; :::; xn)] (6.4)

and the optimization of surplus can be written as

max
X
i

[U i(x1; :::; xi; :::; xn)� Ci(xi)]
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s. t.
X
i

Ci(xi) � b

ximin � xi � ximax; (6.5)

where ximin and ximax represent the minimum and maximum transmission require-

ments for stream i, and C i is the cost of the type of service selected for stream i at

requested transmission parameter xi.

The general approach to solving this problem is to represent each utility U i(�)

as a continuous function of the entire space of transmission parameters of all n

applications, and solve the Kuhn-Tucker equations so as to maximize the total

surplus.

A simpler method is to use a similar approach as to that for the single application

case, along with some heuristics. In this case, we make the simplifying assumption

that the individual application utility functions can be de�ned independently and

is a function only of the transmission parameters of that application such that

U i(�) = U i(xi). This is a reasonable assumption since U i(�) would normally depend

strongly mainly on the vector xi . We can then write the total utility as:

Û =
X
i

[U i(xi(Tsepc; Rspec)] (6.6)

where xi is the transmission (Tspec) and quality of service parameter (Rspec) tuple

for the ith application.

As earlier, we can decompose a single utility function U i(xi) into a set of service-

speci�c utility functions which are functions only of bandwidth, each corresponding

to a particular delay and loss provided by a particular service. Clearly, several

combinations of services (and hence, service-speci�c utility functions) are possible.

We �rst consider one particular combination of service-speci�c utility functions. Let
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the utility of an application i be de�ned at Li bandwidth levels. The utility at each

level is uil (l = 1; 2; ::Li), and the utility function is piece-wise linear. Segment l (the

straight line between levels l and l + 1) has a slope kil . The optimal transmission

parameter set for a particular combination of service-speci�c utility functions is then

determined as follows:

1. From the utility function for each application i, determine the segment end-

point lopt(l = 1; 2; ::Li), with bandwidth Bi
opt, at which the surplus (utility

minus cost) is maximized for that application. Let the cost of the targeted

bandwidth be C i
opt(B

i
opt).

2. If the total expenditure needed for the system,
P

iC
i
opt(B

i
opt), exceeds the total

system budget, go to step 3, else stop.

3. From all the applications that receive service at level lopt > lmin, �nd the

application ivictim with the smallest slope in the surplus (uil � C i
l ) from level

lopt to lopt�1 (this corresponds to the smallest sensitivity of application surplus

to a reduction in bandwidth). Reduce the current bandwidth allocation for

this application to the next lower bandwidth level (lopt lopt � 1).

4. If the total system expenditure remains greater than the system budget, go

back to step 3. If there is excess budget, allocate the excess budget to the

current victim application (from step 3) to acquire as much bandwidth as

permitted by the budget.

The above algorithm is repeated for each possible combination of service-speci�c

utility functions; each time, an optimal transmission parameter set is obtained.
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6.2.4 Adaptation of Applications with Example Utility Functions

If the utilities of all the applications are represented in the format of equation 6.2,

the optimization process for a system with multiple applications can be represented

as:

max
X
i

[U i
0 + wi log

xi

xim
� kidd� kill� pixi]

s. t.
X
i

pixi � b; xi � xim; 8i; d � D; l � L (6.7)

where D and L are respectively the loss and delay bound of an application, above

which the application no longer functions usefully.

The optimization involves assigning a service class and a bandwidth to each

application i. For a particular assignment of service classes to applications, if the

user can obtain the optimal bandwidth distribution according to equation 6.7 at a

cost below his budget, then the bandwidth allocation that maximizes the perceived

surplus for an application can be shown to be:

xi =
wi

pi
: (6.8)

Hence, wi represents the money a user would spend based on its perceived value

for an application.The above bandwidth distribution is considered for all possible

service class assignments (constrained by application requirements and budget), and

the one giving the highest total surplus is used.

If there is no set of service class assignments for which the optimal distribution

of equation 6.8 can be obtained at a cost below the budget, the total budget is �rst

distributed to the component applications according to their relative bandwidth

sensitivity wi. That is, each application receives a budget share bi such that
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bi = b
wi

P
k w

k
(6.9)

Each application is then allocated a service i and bandwidth xi = bi

pi
which maxi-

mizes its individual surplus according to equation 6.2.

The discussion so far assumes that each price pi is per unit average bandwidth.

A price based on unit equivalent bandwidth [86] may be fairer since it takes into

account the burstiness of user traÆc. In this case, the adaptation of the source rate

in response to a price change is not trivial. For the simple pricing scheme proposed

in Section 5.2., a user could calculate a new average bandwidth when the price

increases, or introduce additional bu�ering at the source to reduce its burstiness, at

the cost of a higher delay.

6.3. Resource Allocation under CPA-AUC Policy

When the congestion price is derived from the auction-based CPA-AUC policy, the

user adaptation is in fact a result of resource re-allocation by the network. If the

transmission parameters such as loss and delay are �xed, the user samples its utility

vs bandwidth characteristic at a �xed number of points, and submits the resulting

(price,bandwidth) bid pairs. The network periodically determines the end-to-end

price and bandwidth allocation for each user using the results of M -bid auctions

as described in Chapter 5, and informs the user. The user application adjusts its

sending rate to meet its target bandwidth.
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6.3.1 Adaptation of Single Application over Multiple Transmission Pa-

rameters

In this case, we assume as before that the application utility will take the form of

a small set of utility versus transmission bandwidth functions, each for a di�erent

service with di�erent loss and delay expectations. In this case, a user sends a

di�erent set of bids for each available service by sampling the corresponding utility

versus bandwidth function. Each set of bids is submitted to the corresponding

auction at a node or domain, and the user will eventually receive an end-to-end

allocation decision for each set of bids. The user then selects the service for which

the received allocation provides the highest bene�t.

6.3.2 Auction for Multiple Applications corresponding to a Single Task

We now consider the simultaneous adaptation of transmission parameters of a set of

n applications performing a single task. A user will submit bids for each application

individually. If the total of the allocated resources for all the applications is under

its budget, the user will adjust the bandwidth for each application correspondingly.

Otherwise, the total budget is �rst distributed to the component applications ac-

cording to their relative bandwidth sensitivity. Then the resource request for each

allocation is based on the budget.

6.3.3 Bidding over Multiple Hops

A connection will in general span multiple hops and multiple network domains.

We assume that each network domain, and possibly each node, allocates bandwidth

locally based on aM -bid auction. The user utility function represents the willingness

to pay of the user to receive di�erent levels of bandwidth end-to-end, that is, from

auctions at each hop. It is not obvious how the user should distribute this total
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willingness to pay among bids at the di�erent nodes. In this paper, we assume that

the user's willingness to pay for a bandwidth is distributed equally among all the

hops. If the user has traÆc information from the network, it will probably try to

allocate a higher bid to a bottlenecked node(s). This is a complex issue, and we

would like to address this in future work.

6.4. System Stability and Network Dynamics

Application adaptation as well as applications entering and leaving the network lead

to resource re-allocation and possibly adjustment of service prices. In this section,

we �rst consider the stability of our pricing algorithm, and then the stability of the

corresponding rate adaptation process.

6.4.1 Price Stability

In our proposed pricing strategy of Chapter 5, three price components are consid-

ered: holding price (ph), usage price (pu), and congestion price (pc). For a speci�c

network provider, the holding price (ph), and usage price (pu) for a particular service

are �xed, or change infrequently. Hence, only the stability of the congestion price

needs to be considered.

The adaptation of the proposed congestion price follows the tâtonnement process

for an equilibrium. The price will be quoted upward or downward, depending on

whether or not demand exceeds supply, until the demand and supply reach equilib-

rium and a stable price pe is located.

Since demand is a function of price, we can denote demand as D(p). For a

network service class, the targeted resource supply is �xed and is denoted as S.

Suppose the rate of change of price moves directly with excess demand, E(p) =

D(p) � S as follows:

117



p0 =
dp

dt
= f(D(p)� S) = f(E(p)); (6.10)

where f 0 � 0. The price change drives the demand and supply towards equilib-

rium. If the tâtonnement process is successful, the mechanism in equation 6.10 will

generate a path of prices which will approach pe as t increases:

lim
t!1

p(t) = pe (6.11)

If equation 6.10 holds for any initial price p and pe is unique, the system is called

globally stable. If there is more than one equilibrium-price vector, then if p(t) reaches

any of the pe's, the model is called locally stable. We only consider local stability in

our system, where equation 6.11 holds for all prices p in some neighborhood of pe. To

prove that the local price stability exists, the function f(E(p)) can be represented

by a Taylor series expansion:

dp

dt
= f(E(pe)) + f 0E0(pe)(p� pe) + � � � (6.12)

The higher order terms are negligible in comparison with the �rst-order term in

equation 6.12, as long as only local stability is considered. Since E(pe) = 0 by the

de�nition of price, the equation 6.12 can be written as:

dp

dt
= f 0E 0(p� pe) (6.13)

The solution of this equation is:

p(t) = pe + (p0 � pe)e(f
0E0)t (6.14)

where p0 is any initial price.

The assertion of stability requires that the exponential term in equation 6.14
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approaches zero as t!1. Since f 0 > 0, so the stability assertion requires

E0 = Dp(p) < 0 (6.15)

In a reasonable network system, user demand will decrease as the price increases, so

Dp(p) < 0. This proves that the proposed price will reach stability as times increases.

However, the convergence speed of the system will depend on the convergence rate

parameter �(D;S), or �(p). In our experiments, in order to obtain rapid but smooth

convergence, �(D;S) is large when the demand is much higher than supply, and is

gradually reduced as the demand approaches supply.

Since the user demand will change as users join and leave, a new stable price

may be reached as the total user demand changes. In the above process, the total

demand and supply are assumed to be known instaneously. For a network with

delay, this assumption may not be true. Since in our proposed model, the price is

only updated periodically and in the time unit of minutes, the network delay has

negligible in
uence on the stability.

6.4.2 Stability of User Bandwidth Requests

Even though the network can reach stability for any �xed set of bandwidth require-

ments, the stability can be disturbed when new applications enter the network and

existing applications leave the network. In addition, bandwidth adaptation by a

number of users sharing the same link bandwidth can also lead to the oscillation of

the system price and user requests, before the demand and supply reach equilibrium.

In the core network, oscillatory behavior can be minimized by aggregating RNAP

requests, reducing the frequency with which the RNAP agent re-allocates resources

and adjusts the price. The resource negotiated will be incremented or decremented

with some minimum granularity. When the sum of per-
ow requests approaches
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the resources reserved for the aggregate (or earlier, at some pre-de�ned threshold),

the client negotiator will reserve an additional block of resources. Similarly, the re-

quested reservation is decremented in blocks as required as the requested bandwidth

decreases. The larger the block, the less frequently the aggregate session needs to

be re-negotiated, but a higher holding cost is incurred for resources which may be

under-utilized.

As the network price changes, users will renegotiate resources to optimize their

perceived bene�t (surplus) from the service. The total user requests are hence oscil-

latory. The piece-wise linear utility function used to simplify the optimization can

sometimes result in a severe oscillation between two adaptation points far apart in

bandwidth, as will be seen in the experiments in Section 4.6.2. In our experiments,

we used two measures to damp out the oscillations. The �rst measure was to use

a proportional plus derivative (PD) controller. During each negotiation period, in-

stead of letting the requirement jump to a new optimal bandwidth, the user shifts

to a bandwidth between the current one and the optimal one, resulting in temporar-

ily sub-optimal operation. The PD control law regulates the bandwidth request as

follows:

ri+1 =

8><
>:

ri � �0(ri � r�)� �1(ri � ri�1); if jSP (r
�)�SP (ri)j
SP (ri)

> �

ri; otherwise
(6.16)

where r� is the desired optimal rate, ri is the rate requested for negotiation period

i, and SP (x) represents the surplus corresponding to bandwidth x. Quicker conver-

gence is attained by making �0 large, while the overshoot is minimized by making

�1 large.

In addition to the PD control, the bandwidth was allowed to be adjusted only

if the new bandwidth led to an increase in surplus of at least � %. This prevented

bandwidth adaptation which did not result in a signi�cant improvement in the
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perceived surplus.
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Chapter 7

Simulation

In this chapter, we describe our simulation model for the CPA and FP policies.

Depending on the service type and network infrastructure, the network may learn

user resource requirements explicitly through a signaling protocol, or implicitly by

traÆc measurement. We �rst simulate explicit resource reservation and price signal-

ing through RNAP. Unless otherwise speci�ed, the policies are simulated at the call

level, that is, we consider user resource contention due to the total user requested

bandwidth exceeding the provisioned system bandwidth, rather than due to the

burstiness of user traÆc. The results are shown in Section 7.2. through Section 7.5..

We also perform simulations at packet level over a single Di�Serv service domain,

under which resources are not explicitly reserved for each 
ow. We simulate the ser-

vice performance with or without admission control from the domain. User resource

requirements are declared explicitly through RNAP, allowing admission control to

be enforced if required in an experiment. The individual and total user resource

demands are also obtained through measurement. Price and network statistics are

signaled to users through RNAP.
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7.1. Simulation Model

We used the network simulator [95] environment to simulate two network topologies,

shown in Fig. 7-1 and Fig. 7-2. Topology 1 contains two backbone nodes, six access

nodes, and twenty-four end nodes. Topology 2 is a more general network topology

described and used in [96]. This topology contains �ve backbone nodes, �fteen

access nodes, and sixty end nodes. All links are full duplex and point-to-point. The

links connecting the backbone nodes are 3 Mb/s, the links connecting the access

nodes to the backbone nodes are 2 Mb/s, and the links connecting the end nodes

to the access nodes are 1 Mb/s. We use topology 1 in most of our simulations to

allow congestion to be simulated at a single bottleneck node, and use topology 2 to

illustrate the CPA performance under a more general network topology [97].

We modi�ed the Di�Serv module developed by Sean Murphy to support dynamic

SLA negotiation and monitor the user traÆc at ingress point. A Weighted-Round-

Robin scheduler is modeled at each node, with weights distributed equally among

EF, AF, and Best E�ort (BE) classes. Although the Di�Serv proposals mention 4

AF classes with three levels of drop precedence in each, we only simulated one AF

class to make the simulations less resource-intensive, since this does not a�ect the

general results in any way. Three di�erent bu�er management algorithms are used

for di�erent Di�Serv classes - tail-dropping for EF, RED-with-In-Out [98] for AF,

and Random Early Detection [99] for the BE traÆc. The default queue length for

EF, AF and BE are set respectively to 50, 100, 200 packets. Other parameters are

set to the default values in the network simulator implementation.

A combination of exponential on-o� and Pareto on-o� traÆc sources are used

in the simulation. Unless otherwise speci�ed, the traÆc consists of 50% of each for

all the service classes, and the on time and o� time are both set to 0.5 seconds.

The shape parameter for Pareto sources is set to 1.5. The packet size is uniformly
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distributed and the mean is set to 200 bytes. The traÆc conditioners are con�gured

with one pro�le for each traÆc source, with peak rate and bucket size set to the

on-o� source peak rate and maximum amount of traÆc sent during an on period

respectively for both EF and AF classes.
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A5

A6

B1 B2
3 Mb/s

2 Mb/s1 Mb/s

ReceiversSenders

Figure 7-1: Simulation network topology 1
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Figure 7-2: Simulation network topology 2

We also characterize the system load by burst index and o�ered load. The o�ered

load for a service class is de�ned as the ratio between the total user resource require-

ment for a service type, and the con�gured class capacity at the bottleneck. Under

the FP policy, the total user resource requirement is also the actual resource demand

from all the users. Under the CPA policy, the total user resource requirement is

what the total resource demand would be if there were no resource contention at

the bottleneck and the network did not impose an additional congestion-dependent
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price. The burst index is de�ned as O�Time/(OnTime + O�Time) for both types

of On-O� sources.

User requests are generated according to a Poisson arrival process and the life-

time of each 
ow is exponentially distributed with an average length of 10 minutes.

In topology 1, users from the sender side independently initialize unidirectional 
ows

towards randomly selected receiver side end nodes. At each sender side end node,

up to Ns 
ows can be initialized. At most 12Ns 
ows (60 sessions with Ns set to 5)

can run simultaneously in the whole network. In topology 2, all the users initialize

unidirectional 
ows towards randomly selected end nodes. At most 60Ns users (360

sessions with Ns set to 6) are allowed to run simultaneously in the whole network.

For ease of understanding, all prices in this section are given in terms of price

per minute of a 64 kb/s transmission, currently equivalent to a telephone call. The

basic price charged by the FP policy, and the basic usage price charged by CPA

(pbasic), are both set to $0.08/min. We set the target average load of the EF class at

40%, the AF class at 60%, and the BE class at 90%. Therefore, based on the pricing

strategy proposed in Chapter 5, the usage price for EF, AF and BE classes are set

respectively as $0.20/min, $0.13/min, and $0.089/min. When admission control is

enforced, the holding price for the CPA policy is correspondingly set to $0.067/min

for EF class, and $0.044/min for AF class.

Congestion pricing is applied at a node when instantaneous usage exceeds the

target load threshold of each class or when the loss or delay exceeds the bounds

associated with the class (delay bound of 2 ms, 5 ms, and 100 ms, respectively,

for EF, AF, and BE, and loss bounds of 10�6, 10�4 and 10�2 respectively). The

price adjustment procedure is also controlled by a pair of parameters, the price

adjustment step � from equation 5.9 and the price adjustment threshold parameter

�, de�ned in Chapter 5. Unless otherwise speci�ed, values of � = 0:06 and � = 0:05
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are used.

The users are assumed to have the general form of the utility function shown in

Section 6.1.5. At the beginning of each experiment, the user population is divided

into users of the EF, AF and BE classes, although in some experiments they are

allowed to adapt to price changes by switching to a di�erent class.

For EF users, the elasticity factor factor w (which is also the user's willingness

to pay), is uniformly distributed between $0.13/min and $0.40/min for a 64 kb/s

bandwidth. For AF and BE users, it is uniformly distributed between $0.09/min

and $0.26/min, and $0.06/min and $0.18/min, respectively. The minimum delay

and loss requirements for each type of users are set to be the same as the expected

performance bound of the corresponding service class. The opportunity cost pa-

rameter U0 is set to the amount a user is willing to pay for its minimum bandwidth

requirement, and is hence given by U0 = phigh � xmin, where phigh is the maximum

price the user will pay before terminating his connection altogether. Also, the M

bids under CPA-AUC are obtained by sampling the utility function at �ve equally

spaced points - therefore, each M bid is a set of �ve bids. Users re-negotiate their

resource requirements with a period of 30 seconds in all the experiments. The total

simulation time for a call level experiment is 60,000 seconds, and the simulation time

for a packet level experiment is 20,000 seconds due to the CPU memory constraint.

We use a number of engineering and economic metrics to evaluate our experi-

ments. The engineering metrics include the average reserved bandwidth (expressed

as a ratio of the link capacity) over all negotiation periods, the average traÆc arrival

rate at the bottleneck, the average packet delay, the average packet loss rate, and

the user request blocking probability. The averages are computed as exponentially

weighted moving averages. The economic performance metrics include the average

and total user bene�t (the perceived value obtained by users based on their utility
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functions), the end-to-end price for each service class, the charge a user incurres,

and the network revenue a network provider can earn from all the admitted requests

during a simulation.

We group the results of our simulations as follows. In Section 7.2., we present

simulations results of the FP policy and the two versions of the CPA policy under the

default conditions and parameter values as given earlier in this section, and compare

their performance under these conditions. In section 7.3., we vary the number of

customers sharing a system and evaluate the e�ect of the increased multiplexing of

session requests under the di�erent policies as the number of sessions is increased.

In Section 7.4., we look at the e�ect of di�erent features of user behavior on the

relative performance of CPA and FP: user demand elasticity, adaptive and non-

adaptive user populations, and adaptation during session initiation only as compared

to adaptation during the life of the session. In Section 7.5., we discuss the e�ect

of some network control parameters speci�c to the CPA-TAT policy. Finally, we

present results from simulations of Di�Serv services, performed at the packet level,

under the CPA and FP policies.

We show results for the CPA-AUC policy only in Sections 7.2. and 7.3.. In sub-

sequent sections we generally present results only for the FP and CPA-TAT policies.

The results obtained under CPA-TAT and CPA-AUC are qualitatively similar, and

the performance bene�ts observed for the CPA-TAT policy are applicable to CPA-

AUC as well.

7.2. Performance Comparison of CPA-TAT, CPA-AUC and

FP policies

All of the simulations in this section are performed using topology 1 (Figure 7-

1), except the simulations in Section 7.2.6, which use topology 2 (Figure 7-2) and
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therefore allow multiple bottlenecks.
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Figure 7-3: Performance metrics of CPA-TAT, CPA-AUC, and FP policies as a function of
o�ered load: (a) bottleneck utilization; (b) blocking probability; (c) total network revenue; (d)
total user bene�t; (e) average user bene�t.

7.2.1 Bottleneck Bandwidth Utilization

Fig. 7-3 (a) shows the variation of the bottleneck utilization as a function of the

o�ered load, expressed as a fraction of the link capacity. The network utilization

under FP policy increases continuously with the increase of o�ered load. The CPA-
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TAT coupled with user adaptation is seen to maintain the total traÆc load at the

targeted level, 0.9 in this experiment, while the network load of both FP policy

and CPA-AUC policy increases continuously with the increase in o�ered load. This

is because the CPA-TAT policy tries to restrict user demand to a target level by

driving up the congestion price, while the FP and CPA-AUC policy try to sell (or

auction) all of the link capacity.

7.2.2 User Request Blocking Rate

All the policies admit connections until the total link capacity is saturated. Fig.

7-3 (b) indicates that the blocking rate of the FP scheme increases almost linearly

as the o�ered load increases beyond 0.9, while both CPA policies are able to keep

the blocking rate low even at very high loads. Both policies essentially drive users

with elastic bandwidth requirements to use their reduced bandwidth requirement

at high loads, rather than their optimal bandwidth requirements (which result in

maximum user satisfaction). Hence, in period of congestion, the network can admit

more users. The blocking rate of CPA-TAT increases initially and actually starts

to decrease after reaching a maximum at o�ered load 1.2. This is because the

price adjustment step is proportional to the excess bandwidth above the targeted

utilization and increases progressively faster with o�ered load at higher loads, and

the user bandwidth request decreases proportionally with the price according to the

general utility function of Section 6.1.5. The blocking rate of CPA-TAT is up to 30

times smaller than that of FP. With centralized control, CPA-AUC model allows

the resources to be re-distributed among competing applications based on individual

user's willingness to pay. Since the total resource requirement based on each user's

minimumbandwidth is set to be less than the network capacity in the simulation, the

blocking rate of the CPA-AUC policy is seen to be almost zero. The more eÆcient
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bandwidth allocation of CPA-AUC contributes to its increased bandwidth utilization

in Fig 7-3 (a). The blocking rate with the immediate, \auctionless" admission policy

actually indicates the probability of new users receiving delayed admission (until the

next scheduled auction at the bottleneck node) instead of immediate admission. Up

to 40% of users are delayed at high loads.

7.2.3 Network Revenue

Fig. 7-3 (c) shows that the revenue of FP 
attens out after the onset of request-

blocking, since the average number of accepted connections increases very slowly

beyond this point. Though the total admitted load under CPA-AUC is close to

that of FP, the revenue under CPA-AUC increases continuously as a result of the

increase of the market price with o�ered load during congestion. The revenue of

CPA-TAT policy is seen to increase faster than linearly after the network utilization

saturates at the targeted level. CPA-TAT obtains more revenue than CPA-AUC at

very high loads due to its lower blocking rate, as well as higher market price. The

loss of revenue due to the scaling down of individual bandwidth requests of CPA

policies are more than o�set by gains due to the admission of more connections and

the increase in the congestion price.

7.2.4 Average and Total User Bene�t

Fig. 7-3 (d) shows that the user bene�t 
attens out for all policies after the onset

of request blocking. The total bene�t gained under both CPA polices are higher

than that under FP beyond this point, and the di�erence increases as the o�ered

load increases. As illustrated in Section ??, there is a potential opportunity cost

associated with a request being blocked. The decrease in perceived bene�t per

connection of CPA due to the reduction of bandwidth is o�set by the increase in the
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number of admitted connections, each of which receives an \opportunity". In e�ect,

the CPA policy allows the network bandwidth to be used more eÆciently under high

loads. Since the CPA-TAT controls the total bandwidth to a targeted level and the

CPA-AUC does not, the CPA-AUC can allocate more total bandwidth, resulting in

higher total user bene�t.

Similarly, Fig. 7-3 (e) shows the average perceived bene�t per user against

o�ered load. The average user bene�t of CPA-AUC is higher than that of CPA-

TAT, and the bene�t of both CPA policies are higher than under the FP policy.

For the FP policy, individual user requests do not depend on the o�ered load, and

consequently, the average bene�t per admitted user is independent of o�ered load.

However, a progressively smaller fraction of users is admitted by the FP policy due

to blocking. Therefore, the average perceived bene�t of FP across all users decreases

sharply with the load.

7.2.5 Dynamics of the System Price and User Bandwidth

Figs. 7-4 (a)(b) and (d)(e) show the variation of the system price and user bandwidth

at three di�erent levels of o�ered load under CPA-TAT and CPA-AUC policies. The

bandwidth demand is shown for an \average" user, that is, one whose minimum and

maximum bandwidth requirements are averages of the corresponding requirements

of the user population. The price and bandwidth are nearly static at a load of 0.8,

and are adjusted more frequently at higher o�ered loads, due to the more frequent

arrival and departure of users. The price variation of CPA-AUC is smaller than that

of CPA-TAT. Both polices have stable prices.

Figs. 7-4 (c) and (f) show the average and standard deviations of the system

price and user bandwidth demand as a function of the o�ered load. The standard

deviation in both �gures shows the same trend, an increase to a certain level and
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Figure 7-4: System dynamics under CPA-TAT and CPA-AUC: variation over time of system
price (a), user demand (b) of CPA-TAT; time-average and standard deviation of system price of
CPA-TAT and CPA-AUC at o�ered load 1.2 (c); variation over time of system price (d), user
demand (e) of CPA-AUC; and average user demand and standard deviation of CPA-TAT and
CPA-AUC at an o�ered load of 1.2 (f).
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then a decrease. Initially, the price variations increase with the o�ered load due to

the more aggressive congestion control. At heavy loads, the increased multiplexing

of user demand smooths the total demand, and therefore reduces 
uctuations in the

price.

The average price is higher under CPA-TAT than under CPA-AUC during con-

gestion. When the o�ered load exceeds the congestion threshold, CPA-TAT at-

tempts to limit the utilization to the threshold value. This results in a more aggres-

sive increase in the congestion price than under CPA-AUC. In a sense, the resource

allocation under CPA-AUC truly re
ects the demand for installed bandwidth rela-

tive to the supply. Since CPA-TAT is pro-active in preventing congestion, it may

impose a higher price than the actual demand price. This also leads to a higher

revenue for CPA-TAT as compared with CPA-AUC as indicated earlier, but a lower

utilization, and lower total and average bandwidth usage and perceived bene�t for

the users. The total variation in price over a range of loads also depends on the

basic usage price and holding price values, which should be set to re
ect the long-

term user demand for di�erent service classes, so that demand 
uctuations above

the congestion threshold are short-term and infrequent, and congestion pricing is

only occasionally employed to smooth out traÆc peaks.

7.2.6 A General Network Topology

In the experiments above, we studied the performance of CPA when the traÆc

shares a common bottleneck. In this section, we assume network topology 2 in Fig.

7-2, with the potential for multiple bottlenecks to exist, and for these bottlenecks

to interact.

In the simulation, traÆc is generated symmetrically from all users, as described

in Section 5. The �ve backbone links are the potential bottleneck links. Note that in
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Figure 7-5: Performance metrics of CPA-TAT, CPA-AUC, and FP policies as a function of
o�ered load with topology 2: (a) blocking probability; (b) average user bene�t; (c) Time-average
and standard deviation of system price of CPA-TAT and CPA-AUC at o�ered load 1.2.

reality, the backbone links are normally over-provisioned. We target the backbone

links to be bottlenecks only for the convenience of simulation. We monitor the

utilization at one of the backbone links, and calculate all the other parameters

across the whole network. Fig. 7-5 shows the blocking probability and average

perceived user bene�t as a function of o�ered load, and the variation of the system

price with time, for the three policies. All three metrics show trends similar to those

for a single bottleneck, though the overall request blocking rate is higher than with

a single bottleneck for all the policies. The variation with time of the average price

under CPA-TAT is less smooth than the single bottleneck case due to the coupling

of the traÆc between di�erent paths.

7.2.7 Result Summary

The results in this section indicate that the CPA policy takes advantage of applica-

tion adaptivity for signi�cant gains in network availability, revenue, and perceived

user bene�t, relative to the �xed-price policy. The congestion-based pricing is stable

and e�ective. If the nominal (un-congested) price is set to correctly re
ect long-term

user demand, the congestion-based pricing should e�ectively limit short-term 
uc-

tuations in load.

Both CPA-TAT and CPA-AUC can e�ectively perform the role of congestion
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control and form the congestion price. The congestion price calculated using auc-

tion tends to better re
ect the actual usage, and allows higher network bandwidth

utilization. This is at cost of its implementation complexity, and longer set-up de-

lay for new connections (or alternatively, higher initial blocking rate if inter-auction

admissions are allowed).

7.3. E�ect of Session Multiplexing

In this simulation, we vary the number of customers sharing a system and evaluate

the e�ect of the increased multiplexing of session requests under both CPA-TAT

policy and CPA-AUC policy. We keep the network topology and user utility distri-

butions unchanged, but scale the link capacity proportionally with the maximum

number of 
ows.

(a)
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ot

tle
ne

ck
 u

til
iz

at
io

n

Offered network load

CPA−AUC 24 flows 
CPA−AUC 48 flows 
CPA−AUC 96 flows 
CPA−TAT 24 flows
CPA−TAT 48 flows
CPA−TAT 96 flows 

(b)
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
eq

ue
st

 b
lo

ck
in

g/
de

la
ye

d−
ad

m
is

si
on

 r
at

e

Offered network load

CPA−TAT blocking, 24 flows
CPA−TAT blocking, 48 flows
CPA−TAT blocking, 96 flows 
CPA−AUC blocking, 24 flows 
CPA−AUC blocking, 48 flows 
CPA−AUC blocking, 96 flows 
CPA−AUC delayed−admission, 24 flows  
CPA−AUC delayed−admission, 48 flows 
CPA−AUC delayed−admission, 96 flows 

(c) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

−4

A
ve

ra
ge

 u
se

r 
be

ne
fit

 (
$/

m
in

)

Offered network load

CPA−TAT, 24 flows 
CPA−TAT, 48 flows 
CPA−TAT, 96 flows 
CPA−AUC, 24 flows 
CPA−AUC, 48 flows 
CPA−AUC, 96 flows 

Figure 7-6: Performance of CPA and FP with di�erent number of customers sharing the system:
(a) bottleneck utilization; (b) blocking probability; (c) average user bene�t

Fig. 7-6 (a) shows that the overall link utilization under CPA-AUC increases as

the number of connections increases, at a given o�ered load. The link utilization

under CPA-TAT also increases with the number of 
ows at moderate to high loads,

but the utilization is eventually limited to the targeted level. Fig. 7-6 (b) shows

that, as the number of connections increases, both the blocking rate under CPA-TAT

and delayed-admission rate under CPA-AUC decrease. This is because the larger
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number of connections leads to better traÆc multiplexing and hence more eÆcient

use of network bandwidth. Under CPA-TAT, the blocking rate with 96 connections

is up to 30 times smaller than that with 24 connections. Under CPA-AUC, the

delayed-admission rate with 96 connections is up to 1.3 times smaller than that

with 24 connections. Correspondingly, the average user bene�t for both CPA-TAT

and CPA-AUC increases as the number of connections increases (Fig. 7-6 c).
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Figure 7-7: Time-average and standard deviation of system price of CPA-TAT (a) and CPA-AUC
(b), plotted against o�ered load.

Fig. 7-7 depicts the average price of CPA-TAT and CPA-AUC as the network

scales. As expected, both price become smoother as more users share the network,

which is indicated by the smaller standard deviations. The average price of CPA-

TAT increases slightly as the number of connections increases, due to the slightly

higher network utilization. The average price of CPA-AUC does not change appre-

ciably as network scales.

The results in this section indicate that the performance of the CPA policy

further improves as the network scales and more connections share the resources.

7.4. User Behavior

We now look at e�ects of di�erent aspects of user behavior on the performance of

the CPA and FP policies.In Section 7.4.1, we evaluate the e�ect of user demand
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elasticity on the system performance. In section 7.4.2, we study the system perfor-

mance when di�erent fractions of the user population are bandwidth-adaptive, and

the remaining users maintain �xed bandwidth requests independent of the network

price. In Section 7.4.3, we compare the system performance when users only adapt

at session set-up, with the default adaptive behavior during the session.

7.4.1 E�ect of User Demand Elasticity

In the previous simulations, as mentioned in section 5, user utility functions of

the form of equation 6.2 were used, with the elasticity factor w and the minimum

and maximum bandwidth requirements uniformly distributed. In this section, we

study the e�ect of the user demand elasticity factor w on the system performance.

A smaller value of w corresponds to a more elastic demand, since the bandwidth-

dependent component of the utility is smaller, and the user can reduce its bandwidth

request in response to a price increase with only a small decrease in utility. (As ex-

plained in Section 6.2.4, w also represents a user's willingness to pay for bandwidth).

We study the bandwidth and charge sharing among users with di�erent utility func-

tions, with w randomly set to the average default value of $0.25/min. times 0.8,

1.0, or 1.2, keeping the other utility function parameters constant.

1. Fig. 7-8 (a) and (b) shows the instantaneous bandwidth sharing among users

when all users have utility functions with the same elastcity, and three di�erent

elasticities, respectively. The o�ered load is 1.2. In both cases, we show the

maximum,minimum as well as average bandwidth for all the active sessions in

the system. Fig. 7-8 (a) indicates that when all the users have the same utility

function, they share the bandwidth fairly at any time, and the maximum,

minimum and average bandwidth demands coincide. Fig. 7-8 (b) indicates

that when the users have di�erent demand elasticities (w = 0.20, 0.25, and
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Figure 7-8: E�ect of the elasticity factor w on bandwidth allocation and user expenditure: (a)
minimum, maximum and average requested bandwidth when users have the same utility function;
(b) minimum, maximum and average requested bandwidth when users have three di�erent utility
functions, with w set to 0.20, 0.25, and 0.30 $/min. respectively; (c) average bandwidth reserved
by users with the three di�erent values of w; (d) average expenditure of users with the three
di�erent values of w
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0.30 $/min), their bandwidth shares span a range of approximately 50 kb/s.

2. Fig. 7-8 (c) shows the average bandwidth allocated to users with the three

di�erent utility functions. At a given o�ered load, the bandwidth users obtain

is proportional to their individual demand elasticity factor or willingness to

pay (that is, inversely proportional to the bandwidth demand elasticity). Fig.

7-8 (d) shows that average user expenditure is also proportional to w, and

independent of the o�ered load.

Evidently, users with more elastic requirements are more sensitive to price changes

and reduce their resource requirements faster as price increases, therefore receiving

a smaller share of the bandwidth. In e�ect, users with more stringent bandwidth

requirements choose to pay a higher charge and \borrow" bandwidth from users

with more elastic requirements when the network is congested.

7.4.2 Adaptive and Non-adaptive Users

In this section, we consider the environment where some users adapt their band-

width requests under the CPA policy, while others maintain �xed service requests

even when the congestion price is imposed. The latter group represents users with

a willingness to pay that is high enough to maintain their maximum bandwidth re-

quirements even at the highest price charged by the network. Under the CPA policy,

the congestion-dependent price component increases until usage is driven down to

the target utilization. We restrict the maximum price to 0.49 cents/kb/min for this

set of simulations, so that the price does not increase inde�nitely when 100% of the

users are non-adaptive.

1. Fig. 7-9 (a) shows that when some users do not adapt, the network utilization

can no longer be kept at the targeted level when the o�ered load exceeds a
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Figure 7-9: Performance of CPA when only some of the users adapt their bandwidth requests:
(a) bottleneck utilization; (b) blocking probability; (c) network revenue; (d) total user bene�t,
plotted against o�ered load.
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certain threshold. This threshold decreases as the ratio of the adaptive re-

quests decreases. Fig. 7-9 (b) shows that corresponding to the sharp increase

in utilization beyond a certain load threshold, the blocking rate also increases

sharply. We can also see that the network blocking probability reduces signif-

icantly even when some of the 
ows are adaptive, compared to when none of

the 
ows is adaptive. Therefore, even if some of the users are adaptive, all the

users can receive improved performance, particularly up to a certain threshold

load.

2. Fig. 7-9 (c) shows that the total revenue increases as the proportion of non-

adaptive users increases, since more users maintain their service request at

high loads, and pay the higher price. Fig. 7-9 (d) shows that at a given load,

the total user bene�t increases with the number of adaptive users, an outcome

of the lower blocking probability.

3. In CPA policy, an adaptive user selects a request x� to maximize its net bene�t,

i.e., U(x�)�C(x�) � U(x0)�C(x0). Therefore, U(x�)�U(x0) � C(x�)�C(x0).

At equilibrium, any improvement in service quality is o�set by the increased

cost, and any decrease in cost obtained is o�set by the resulting decrease in

service quality. In this simulation, we assume that all the users (adaptive

and non-adaptive) have the same utility function, and hence their perceived

bene�ts and surplus can be compared.

Fig. 7-10 (a) shows that a non-adaptive user receives a higher perceived bene�t

(corresponding to a higher quality of service) compared to a non-adaptive

user, although the absolute bene�t decreases with increasing load, and also

with a decrease in the proportion of adaptive users. Fig. 7-10 (b) shows

that for adaptive users, the lower received bene�t relative to non-adaptive
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users is more than compensated by a lower cost. The cost paid by users

decreases proportionally with bandwidth, while the received bene�t decreases

less sharply because of the opportunity bene�t associated with simply holding

a connection. Consequently, adaptive users receive a higher net than non-

adaptive users. This may be regarded as a higher \value for money" and is

an economic reward for user adaptation.

The above results seem to indicate that the performance bene�ts of CPA decrease

as fewer users adapt, which is to be expected. The results do show that even a

small proportion of adaptive users may result in a signi�cant performance bene�t

and better service for the entire user population.

We should also expect CPA to have an additional inherent advantage over the

FP policy even when most of the users are non-adaptive. In reality, the usage

price shown in Section 5.2.2 would re
ect the estimated long-term network load.

The congestion price would be only used to smooth out temporary peaks, and the

general usage pattern would result in optimal utilization at the o�ered usage price.

However, a vendor charging a static price (FP) would need to charge a certain

premium above this optimal price, as a risk premium, while the CPA policy allows

the vendor to operate around the optimal price and use congestion pricing to protect

against demand peaks.

7.4.3 Initial Adaptation versus Continuous Adaptation

For a given service price and quality, an application can initially determine its opti-

mal bandwidth requirement to maximize its perceived bene�t. Some applications,

such as multimedia adaptive applications [19], can also adapt their sending rate

during an ongoing multimedia session. Under the RNAP framework, as mentioned

in Section 4.2., users can negotiate and re-negotiate services at any time. In this
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section, we compare the performance under the two scenarios: bandwidth selection

only at session set-up, and ongoing bandwidth adaptation during a session. Clearly,

the �rst scenario is sub-optimal, since the users as a group become less adaptive.

We are interested in how this sub-optimality a�ects the performance metrics under

the simulation conditions.
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Figure 7-11: Performance when CPA users select bandwidth only at session set-up, compared
with performance when they continue to adapt during the session (a) bottleneck utilization;
(b)blocking probability; (c) network revenue; (d) total user bene�t.

Fig. 7-11 (a) shows that initial adaptation results in a slightly lower network

utilization at moderate-to-high loads, about 3-5% smaller than the utilization under

ongoing adaptation. This is because if a session arrives during a traÆc peak, it will

request a smaller bandwidth, which will not be scaled back after the the demand

is driven down. Fig. 7-11 (b) shows that as expected, adaptation during a session

allows for more eÆcient bandwidth usage and the blocking probability is reduced

by half. Fig. 7-11 (c) shows that the total network revenue increases slightly with
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initial adaptation, and Fig. 7-11 (d) shows a decrease in the total user bene�t,

arising from the higher blocking rate.

7.5. CPA-TAT Control Parameters

In this section, we study the impact of certain network control parameters on the

network and user metrics. The parameters are: the congestion control threshold (or

targeted link utilization) beyond which the congestion-dependent price component

is imposed; the price adjustment factor � in equation 5.9, used to control the rate

at which a congested link is brought back to the targeted utilization; and the price

adjustment threshold parameter �, de�ned in Section 5.2.3. The parameters are

varied one at a time in the �rst three subsections, with the other two parameters

set to the default values de�ned in Section 7.1.. In the �nal subsection, we study

the e�ect of a partial admission policy in which the connection is admitted by the

network even if the requested bandwidth cannot be allocated, provided the available

bandwidth is greater than the minimum bandwidth requirement of the user.

7.5.1 E�ect of Congestion Control Threshold

As shown in Figure 7-12 (a), for three di�erent values of the threshold parameter �,

the CPA policy limits the average link utilization to �.

Figure 7-12 (b) shows that the blocking rate depends strongly on the targeted

utilization, decreasing by a factor of 140 when � decreases from 0.95 to 0.85. In

general, the total network revenue does not depend strongly on the target utilization

(Figure 7-12 (c)). A lower target utilization causes a lower user demand (Figure 7-

13 d), but also a correspondingly higher system price (Figure 7-13 c) at the same

o�ered load.

Figure 7-12(c) shows that at moderate loads, maximum user bene�t is obtained
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Figure 7-12: Performance of CPA and FP policies at di�erent values of target congestion control
threshold �: (a) bottleneck utilization; (b) blocking probability; (c) total network revenue; (d)
total user bene�t.
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Figure 7-13: System dynamics at di�erent values of the congestion control threshold: variation
over time of system price (a), and average user demand (b), at an o�ered load of 1.2; time-average
and standard deviation of system price (c) and average user demand (d), plotted against o�ered
load.
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for the middle value of the target utilization, 0.90. At a lower congestion threshold,

the user bandwidth demand is driven too low by the congestion pricing mechanism,

and at a higher congestion threshold, the blocking rate increases, and fewer users

are admitted. At very high o�ered loads, the e�ect of the reduced user demand

dominates, and the user bene�t is highest at the highest target utilization.

As expected, Figs. 7-13 (a) and (b) indicate that both the price and user demand

are adjusted more frequently with the decrease of the target utilization. Figs. 7-13

(c) and (d) show that a lower target utilization also results in a larger standard

deviation of the system price and bandwidth demand due to the more aggressive

congestion control.

The results in this section indicate that an appropriate target utilization should

be selected - under the simulated conditions, 0.90 appears to be a reasonable value.

The user bene�t decreases if the target utilization is either too low or too high.

Also, with too low a target, demand 
uctuations are higher, too high a targeted

level, results in a high blocking rate.

7.5.2 E�ect of Price Adjustment Step

In this section, we investigate the in
uence of the price scaling parameter � on the

network performance, for � = 0:012 , 0.06 and 0.30.

Fig. 7-14 (a) indicates that all three values are e�ective in controlling the network

load to the targeted level at heavy load. However, at the highest value, 0.30, the

network is signi�cantly under-utilized at moderate to high loads, indicating that the

pricing algorithm is too aggressive in driving down demand below the congestion

threshold. This is evident in Fig. 7-15 (c) which shows the network price to be

signi�cantly higher in the same load range for � = 0.30. Fig. 7-14 (b) shows that as

expected, the blocking probability decreases with increasing �. The small blocking
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Figure 7-14: Performance of CPA and FP at di�erent values of �: (a) bottleneck utilization; (b)
blocking probability; (c) total network revenue; (d) total user bene�t.

probability at � = 0:30 cannot compensate for the under-utilization in determining

the total user bene�t, however, and the total bene�t is signi�cantly smaller at

� = 0:30 than at the two lower values (Fig. 7-14 (d)). The opposing e�ects of a

low utilization and high network price (Fig. 7-15 (c)) at moderate to high loads for

� = 0:30 results in a slightly higher revenue compared to the two smaller values of

�, as shown in Fig. 7-14 (c).

Fig. 7-15 (a) and (b) shows that the price and user bandwidth are adjusted more

frequently with a larger �. The standard deviations of the price and average user

bandwidth demand also increase progressively with a larger � (Figs. 7-15(c ) and

(d)).

At low loads (no congestion) and very high loads, all three values of � result

in similar average levels of price and user demand, but at intermediate loads, the
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Figure 7-15: System dynamics at di�erent values of �: variation over time of system price (a),
and average user demand (b), at on o�ered load of 1.2; time-average and standard deviation of
system price (c) and average user demand (d), plotted against o�ered load.
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highest value of � results in a much higher price and lower user bandwidth demand,

corresponding also to the lower utilization at these loads (Fig. 7-14 (a)).

From the results above, we see that increasing � signi�cantly reduces the blocking

probability. Too large a value of � results in network under-utilization at o�ered

loads close to the target utilization, and also results in large network dynamics.

Under our simulations, � = 0:06 appears to be roughly optimal, and � = 0:30 is

clearly too high.

7.5.3 E�ect of Price Adjustment Threshold

(a)
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

B
ot

tle
ne

ck
 u

til
iz

at
io

n

Offered network load

FP
CPA θ = 0.5
CPA θ = 0.05
CPA θ = 0.005

(b)
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
eq

ue
st

 b
lo

ck
in

g 
pr

ob
ab

ili
ty

Offered network load

FP
CPA θ = 0.5
CPA θ = 0.05
CPA θ = 0.005

(c)
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
3

4

5

6

7

8

9

10

T
ot

al
 n

et
w

or
k 

re
ve

nu
e 

($
/m

in
)

Offered network load

FP
CPA, θ = 0.5
CPA, θ = 0.05
CPA, θ = 0.005

(d)
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
6

7

8

9

10

11

12

13

14

15

T
ot

al
 u

se
r 

be
ne

fit
 (

$/
m

in
)

Offered network load

FP
CPA, θ = 0.5
CPA, θ = 0.05
CPA, θ = 0.005

Figure 7-16: Performance of CPA and FP at di�erent values of �: a) bottleneck utilization; b)
blocking probability; c) average net user bene�t; (d) total net user bene�t.

Figs. 7-16 (a)-(d) show user and network metrics against o�ered load with �

set to 0.5, 0.05, and 0.005, corresponding to progressively smaller excess demand

thresholds before congestion control is activated. In all four �gures, the two smaller
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values of � correspond to very similar characteristics, except that � = 0:005 gives a

slightly more well-controlled utilization at very high loads. In general, reducing � to

0.005 does not result in signi�cantly di�erent performance compared to the default

value of � = 0:05 used in earlier experiments. With � = 0:5, congestion pricing and

user demand adaptation are barely initiated and utilization cannot be limited to

the target value (Fig. 7-16 (a)). Therfore, the blocking probability, revenue, and

total user bene�t are all somewhat better than the performance obtained with FP,

and much worse than that obtained with the lower values of �.
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Figure 7-17: System dynamics at di�erent values of �: variation over time of system price (a),
and average user demand (b), at on o�ered load of 0.9;

7.5.4 CPA-TAT with Partial Admission

In the CPA-TAT policy framework, a new user requests a certain bandwidth de-

pending on its utility function and the current network price. The network either
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admits or denies the request depending on the availability of bandwidth at each

link. As described in Section 4.6., RNAP also allows the users to transmit data rate

information. With respect to the sender HRN, the data rates represent the mini-

mum and maximum sending rates the sender is willing and able to transmit. With

respect to the receiver HRN, these rates indicate the minimum and maximum data

rates the receiver is willing and able to receive. The minimum and maximum data

rate from a sender indicate its demand scalability. If the user allows the network

to intercept this information, the network can admit the user reservation request

when the available bandwidth is less than the current required bandwidth, but is

greater than the user's minimum requirement. We call this kind of admission partial

admission. Since the users adapt to changes in network price continuously, after a

user has received a partial admission, it is likely to obtain its fair bandwidth share

(based on its utility function) as part of the adaptation process.

Figs. 7-18 (a)-(d) show that the CPA policy with partial admission does result

in a signi�cant decrease in the blocking probability (by about 30%) relative to

the default CPA policy, indicating that the available bandwidth is now used more

eÆciently. Consequently, there is a small but noticeable improvement in utilization,

network revenue and total user bene�t after the onset of congestion.

7.6. Packet-level Simulation of Di�Serv Classes

In this section, we present the results of Di�Serv service simulations at the packet

level, as discussed in section 7.1.. A single traÆc parameter for the AF class was

varied in each experiment, and its e�ect on CPA and FP policy performance was

studied. In the �rst and second experiments, we vary the load burstiness and average

load respectively of the AF class, and evaluate the improvements given by CPA over

FP. In the third experiment, incentive driven traÆc migration between classes is
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Figure 7-18: Performance of CPA with and without partial admission: (a) bottleneck utilization;
(b) blocking probability; (c) network revenue; (d) total user bene�t.]

shown to improve the overall system performance. In the last experiment, we show

that access control to a service class is critical in maintaining expected performance

levels. Combining access control with user service adaptation e�ectively reduces the

request blocking rate.

7.6.1 E�ect of TraÆc Burstiness

We �rst compare the performance of FP and CPA policies as the burst index of AF

class increases, at a constant average o�ered load of 60%.

Fig. 7-19 (a) shows that the average AF price increases under CPA due to the

increasing congestion price as the burst index exceeds 0.4. In response, the AF

traÆc backs o�. Fig. 7-19 (a) also shows that the standard deviation in the AF

price increases with the burst index, indicating greater 
uctuations in the price.
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Figure 7-19: System dynamics under CPA with increase in AF traÆc burst index: (a) price
average and standard deviation of AF class; (b) variation over time of AF. Performance metrics
of CPA and FP policies as a function of burst index of AF class: (c) average packet delay; (d)
average packet loss; (e) average traÆc arrival rate; (f) average user bene�t.
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Fig. 7-19 (b) shows the dynamic variation of the AF class price at three di�erent

levels of burstiness, con�rming this trend.

Fig. 7-19 (c) and (d) show that under FP policy the average packet delay and

loss of the AF class increase sharply as the burst index exceeds 0.4. As a result of

the user traÆc back-o� under CPA the delay and loss of AF class are well controlled

below the respective performance bounds of 5 ms and 10�4 up to a burst index of

0.8. The average user bene�t for CPA (Fig. 7-19 f) decreases due to the reduction

of bandwidth, but remains higher than that of the FP policy. There is also a smaller

degradation in the performance of the BE class at high burst indices. This appears

to be because the BE class operates under a relatively high load, and therefore

borrows bandwidth from the AF class when the AF class is lightly loaded. It can

no longer do so when the AF traÆc burstiness increases.

The results in this section indicate that the CPA policy takes advantage of

application adaptivity for signi�cant gains in network performance, and perceived

user bene�t, relative to the �xed-price policy. The congestion-based pricing is stable

and e�ective.

7.6.2 E�ect of TraÆc Load

In this simulation, we keep the load and burstiness of EF class and BE class and

the burst index of the AF class at their default values, and vary the o�ered load

of AF class. The average AF price under CPA is seen to increase with o�ered load

(Fig. 7-20 (a)). The standard deviation of the price shows an increase to a certain

level and then a decrease. Initially, the price deviation increases due to the more

aggressive congestion control. At heavy loads, the increased multiplexing of user

demand smooths the total demand, and therefore reduces 
uctuations in the price.

Fig. 7-20 (e) shows that the actual arrival rate of AF under CPA backs o� as users
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Figure 7-20: System dynamics under CPA with increase in AF o�ered load: (a) average and
standard deviation of AF class price; (b) variation over time of AF class price. Performance metrics
of CPA and FP policies as a function of AF o�ered load: (c) average packet delay; (d) average
packet loss; (e) average bottleneck traÆc arrival rate; (f) average user bene�t.
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adapt to the higher price.

Figs. 7-20 (c) and (d) show that the delay and loss of AF class under FP quickly

increases after the o�ered load increases above 0.6 and approaches the provisioned

capacity. As a result, the performance bounds for AF class can no longer be met.

The high AF load also degrades BE performance. This is apparently because BE

operates at a high load (0.9) and tends to borrow bandwidth from AF and EF when

the latter classes are lightly loaded.

Figs. 7-20 (c), (d), and (e) show that CPA coupled with user adaptation is able

to control congestion and maintain the total traÆc load of a service class at the

targeted level, and hence allows the service class to meet the expected performance

bounds. Similar to our observation in Section 7.6.1, if the nominal price of the

system correctly re
ect long-term user demand, dynamic pricing driven service re-

negotiation can e�ectively limits short-term 
uctuations in load. Usage price of a

class should be adjusted if persistent high user demand exist for a service.

7.6.3 Load Balance between Classes

As seen from the previous section, the performance of a class will su�er if the load

into that class is too high. In general, a user under CPA policy will select a service

class which provides it the highest bene�t based on the price and performance

parameters of a class as announced by the providers. The performance parameters

are generally based on long-term statistics. In this section, we assume that a user

can learn from network performance data received over a short period, and select

the class that would provide the highest bene�t based on the user utility function,

network performance statistics and service price, as discussed in Section ??.

In this simulation, the EF and BE classes are loaded at 30% and 80% respectively.

When the load of AF class increases, the performance of AF class degrades and
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Figure 7-21: Performance metrics of CPA and FP policies with traÆc migration between classes:
(a) variation over time of AF class price; (b) ratio of AF class traÆc migrating through class re-
selection; (c) average packet delay of all classes; (d) average packet loss of all classes;

congestion price is invoked. In response, some applications switch from the AF class

to the EF class, which provides better performance guarantee, or BE class, which

allows it more bandwidth at a cheaper price. As the result of this re-selection,

the load is better balanced across classes, and overall performance of the system

improves (Fig. 7-21 (c) and (d)). Fig. 7-21 (a) shows that with load balancing in

combination with adaptation within a single class, the congestion price needs to be

invoked much less often than with adaptation within a class only, as in Fig. 7-20

(b). The proportion of migrating traÆc is shown in Fig. 7-21 (b). We see that even

when a small portion of users select other service classes, the performance of the

over-loaded class is greatly improved.
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Figure 7-22: System dynamics under CPA with access control CPA as AF o�ered load increases:
(a) average and standard deviation of AF class price. Performance metrics of CPA and FP policies
with access control as a function of AF o�ered load: (b) user requests blocking rate; (c) average
packet delay; (d) average packet loss.
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7.6.4 E�ect of Admission Control

We have seen that the performance of a class can not be expected without any access

control. In this section, we compare the performance of FP and CPA for a network

with admission control for EF and AF class. The admission threshold for each class

is set to 1.5 times the target load to increase the eÆciency of the network.

With admission control, the performance of EF and AF classes are well controlled

(Fig. 7-22 c and d). However, due to the burstiness of the traÆc, the blocking rate

under FP is high even at a very small o�ered load (Fig. 7-22 b), and increases

almost linearly as the o�ered load increases beyond 0.6. With congestion control

and service contract re-negotiation, the blocking rate of CPA is seen to be up to 30

times smaller than that under the FP policy, and actually starts to decrease after

reaching a maximum at o�ered load 0.8. This is because the price adjustment step

is proportional to the excess bandwidth above the targeted utilization and increases

progressively faster with o�ered load at higher loads, and the user bandwidth request

decreases proportionally with the price according to the general utility function of

Section 6.1.5. Compared to Section 7.6.2, the average price under CPA (Fig. 7-22

a) is bounded to a smaller value at high o�ered loads, and has a smaller 
uctuation.

The results indicate that access control is important in maintaining the expected

performance of a class. However, admission control by itself may lead to a high

blocking rate due to the network dynamics. By combining admission control with

user traÆc adaptation, the network is more eÆciently used. With admission control,

the dynamics of the network price can also be better controlled, so that users have

a more reliable expectation of the price.
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7.7. Other Mechanisms to Reduce Network Dynamics

Other than network parameter settings, user adaptation behavior too has an e�ect

on the traÆc dynamics seen by the user, and by the network. A user can set a

minimum bandwidth adaptation increment, and communicate a new bandwidth re-

quest to the network only when the new calculated bandwidth requirement changes

the existing bandwidth requirement by more than the minimum increment. This

reduces the frequency of bandwidth adjustment at the cost of a sub-optimal band-

width (in terms of perceived value). The extreme case is when the adaptation only

occurs at the beginning, as is shown in Section 7.4.3.

A somewhat similar scenario can be envisioned in a core network, in which

bandwidth reservation is carried out by other network providers rather than by

individual users. In this case, the customer providers can change their bandwidth

requests in multiples of a large block of bandwidth, only when the user 
ow-level

demand to the customer providers changes by a certain increment. This can reduce

both network dynamics and signaling overhead in the core network, and has been

discussed in greater detail in [100].
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Chapter 8

Implementation

In this chapter, we present work from two prototype implementation projects. We

�rst describe preliminary experimental results from a simpli�ed implementation of

RNAP, based on an extension of the RSVP signaling protocol. This enables us

to demonstrate many of the important features of our work. We then describe

a stand-alone implementation of RNAP. This project was mainly concerned with

demonstrating a complete RNAP-based negotiation framework, including user in-

terfaces for interacting with the host and network RNAP agents.

8.1. RNAP over RSVP

RNAP-over-RSVP was implemented out on a test-bed consisting of two nodes con-

nected by a single 10 Mb/s link. An RNAP agent (LRN) was implemented at each

node. Two types of service were implemented - the traditional best-e�ort service,

and the IntServ Controlled Load service.

Although our implementation was simpli�ed, it allowed us to demonstrate several

features: the periodic RNAP negotiation process including resource negotiation

and pricing and charging; the stability of the usage-sensitive pricing algorithm and

its e�ectiveness in controlling congestion; the adaptation of user applications in
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response to changes in network conditions and hence in the service price; and the

e�ect of user utility functions on user adaptation and resource allocation.

The protocol implementation and test-bed setup are discussed in Sections 8.1.1

and 8.1.1.1, and results are presented and analyzed in Section 8.1.2.

8.1.1 Protocol Implementation

The RNAP Quotation, Reserve and Commit messages were implemented as embed-

ded messages in the RSVP Path, Resv and ResvErr messages. The RNAP Query

message was not implemented; this was not critical, since only a single service was

available to the user. RNAP Quotation, Reserve and Commit information were

embedded in RSVP Path, Resv and ResvErr messages. Since Commit messages

could not easily be sent periodically in this implementation framework, the Quo-

tation message carried periodic charging information (in the Price �eld) instead of

the Commit message. The RNAP negotiation period was set to be the same as the

RSVP refresh period, 30 seconds.

The sequence of messages was as follows:

1. RSVP Path messages, with embedded RNAP Quotation information are sent

periodically from the sender-LRN towards the receiver-LRN. As a Path mes-

sage passes each node, the Price �eld is updated to add the price computed

at the local node and the incremental charge for the previous period.

2. The HRN at the receiver receives the Path message and sends a RSVP Resv

request, with embedded RNAP Reserve information. The Price received from

Path is copied into the Price �eld of the Resv message, with the Price:HRN

Data �eld updated to indicate receiver information.

3. When a RSVP Resv request is rejected, an RSVP ResvErr message is sent
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to the receiver HRN, with embedded Commit information. This information

includes \bandwidth available" information in the Price:HRN Data ! Maxi-

mum Rate �eld.

RSVP daemon version 4 from ISI [101] was extended to support RNAP. Resource

reservation on a link was performed using Class-Based Queueing (CBQ) [102], as

part of the ALTQ package [103].

Pricing was done as follows. A RSVP Policy Element, called the Price Element,

was de�ned to hold the RNAP Price structure. As with other Policy Elements,

the Price Element was opaque to RSVP and only understood by policy peers. The

Price Element was embedded within the POLICY DATA objects [104][21] of Path

messages, Resv messages and ResvErr messages.

The LRN at a node was implemented as part of the Local Policy Decision Point

(LPDP) proposed in the COPS architecture [24][21]. The RNAP agent periodically

computed a set of prices (for the CL service) based on traÆc through a link, by

monitoring the CBQ states. It also maintained state information for each RNAP

session at the node. Congestion charge was levied based on the total link usage

relative to the total link bandwidth.

Since the system o�ers only a single class of service, namely CBQ, we assume

that the utility depends only on the bandwidth. In that class, delay depends on the

allocated bandwidth and there is no congestion-induced packet loss.

8.1.1.1 Experimental Setup and Parameters

The test setup consisted of 2 routers (Ra and Rb) connected by a 10 Mb/s link,

schematically represented in Fig. 8-1.

Three RNAP sessions were established end to end, and shared the same output

interface of the link. To create di�erent levels of network load, a simple data source
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Figure 8-1: Testbed setup

model was used in each session to continuously send UDP packets. The packet

generation rate was tunable to allow user adaptation.

Out of the total capacity of 10 Mb/s, 4 Mb/s was con�gured for CL service, The

congestion threshold was set to 70% of the CL capacity (2.8 Mb/s). Background

traÆc was also sent using best e�ort service.

��������
MNA MNA MNA

ISC Reservation Agent HRN
RNAP

NRN

Internet

RNB

WhiteBoardNeVot NeVit

Figure 8-2: The architecture of the extended MInT system

In addition to experiments using the simple source model to generate traÆc, one

set of experiments was performed using traÆc generated by a multimedia applica-

tion - the Multimedia Internet Terminal (MInT) [105] system. The audio and video

application components of MInT, NeVoT and NeViT, support rate adaptation. We

extended the MInT system to couple the rate adaptation process to RNAP nego-

tiation. Each application was represented by a Media Negotiation Agent (MNA).

The MNA communicated application requirements and changes in requirements to

the HRN over a Resource Negotiation Bus (RNB). The HRN was responsible for

RNAP negotiation with the LRN, as well as allocation of resources (sending rates)
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to the MNAs using the adaptation algorithm discussed in Section 6.2.3.

8.1.2 Experimental Results

We now describe a set of experiments which address the following issues: (i) the

sharing of bandwidth between competing adaptive applications with identical utility

functions; (ii) the sharing of bandwidth between competing applications with utility

functions re
ecting di�erent amounts of elasticity in bandwidth requirements; (iii)

distribution of bandwidth among applications belonging to a single-user multimedia

system so as to maximize mission-wide value; (iv) the in
uence of speci�c changes

in the utility function on the bandwidth adaptation; (v) adaptive behavior of audio

and video applications belonging to the MInT system. In each experiment, we study

the behavior of the price in response to bandwidth demand, the in
uence of the price

in driving adaptation of user bandwidth requirements, and the \bene�t" gained by

the applications in terms of the surplus (or perceived value of the service relative

to its cost). We ascertain that a stable and equitable distribution of bandwidth is

reached in each case.
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Figure 8-3: Utility functions used in the experiments of section 4.6.2 and 8.1.2.3
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Figure 8-4: Allocation of bandwidth and surplus for three competing users sharing a link. a1,
a2, and a3 show the results when the users all have the Utility 1 function from Fig. 8-3, and b1,
b2, and b2 show corresponding results when the users have the Utility 2 function from the same
�gure
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8.1.2.1 Bandwidth Sharing between Users

In the �rst experiment, we study the adaptive behavior when applications having the

same utility function and belonging to di�erent users compete for network resources.

The same experiment is performed with two di�erent utility functions, Utility1 and

Utility2, shown in Fig. 8-3.

Fig. 8-4-a1, 8-4-a2, and 8-4-a3 show di�erent aspects of adaptive behavior when

Utility1 is used. Initially, in response to the initial price, each user determines

that the optimal bandwidth (giving the maximum surplus) is 1000 kb/s. Since the

total reservation of 3000 kb/s made by the three users is higher than the congestion

threshold of 2800 kb/s, the network imposes an additional congestion price, resulting

in a gradual increase in the price.

Fig. 8-4-a1 shows the initial increase in price, from 3.9 cents/Mb, until it sta-

bilizes at 4.2 cents/Mb after about 150 seconds (corresponding to 5 negotiation

periods). Fig. 8-4-a1 also shows the variation with time of the total bandwidth

reservation, and Fig. 8-4-a2 shows the variation with time of the individual band-

width reservations, and the maximum per-user bandwidth that the user budget

permits. As the price increases, each user is constrained by its budget to decrease

its sending rate in response. As a result, the reserved bandwidth decreases smoothly,

until the link becomes un-congested, and the price stabilizes. Fig. 8-4 a3 shows a

gradual decrease in the surplus obtained by each user until the price stabilizes. All

users are observed to have nearly identical adaptation traces.

The second experiment uses Utility2 in Fig. 8-3. Utility2 di�ers from Utility1

in that the optimal bandwidth (at the initial un-congested link price) of 1000 kb/s

di�ers only slightly from the next sub-optimal bandwidth of 700 kb/s with respect

to the perceived surplus.

In Fig. 8-4b, the adaptation traces are observed to be di�erent from that shown
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in Fig. 8-4a. When the price increases, the applications are constrained by their

budget to reduce their bandwidths initially. When the price increases to a certain

value, the optimal bandwidth requirement for all the users (calculated at slightly

di�erent times) shifts to 700 kb/s, since the increase in cost for a larger bandwidth

is higher than for a smaller bandwidth. Since the two optimal points in our example

are very far apart in bandwidth, and the perceived surplus of the two bandwidths

are very close, an oscillation between 2100 kb/s and 3000 kb/s was observed in the

total bandwidth when this experiment was performed.

To avoid this problem, a proportional plus derivative (PD) controller [106] was

used to reduce the oscillation. During each negotiation period, instead of letting

the requirement jump to a new optimal bandwidth, the user shifts to a bandwidth

between the current one and the optimal one, resulting in temporarily sub-optimal

operation. The PD control law regulates the bandwidth request as follows:

ri+1 =

8><
>:

ri � �0(ri � r�)� �1(ri � ri�1); if jSP (r
�)�SP (ri)j
SP (ri)

> �

ri; otherwise
(8.1)

where r� is the desired optimal rate, ri is the rate requested for negotiation period

i, and SP (x) represents the surplus obtained by obtaining bandwidth x. Quicker

convergence is attained by making �0 large, while the overshoot is minimized by

making �1 large. In addition to the PD control, the bandwidth was allowed to be

adjusted only if the new bandwidth led to an increase in surplus of at least � %. In

the experiment, �0, �1 and � are set separately as 0.4, 0.6, and 2%, which led to

the quick convergence without large overshoot.

Fig. 8-4b-2 shows that the bandwidth requirement of all three users stabilized

within seven negotiation periods, with di�erent users having di�erent bandwidth

shares. This is partly because of the asynchronous user negotiation behaviors, and

partly because of the possible sub-optimal bandwidth (within � % of optimal) choice

169



of some users. All three users end up with �nal surplus values very close to each

other (within 2 %). This is important since we consider the perceived surplus, rather

than the bandwidth, as a measure of the user satisfaction.

8.1.2.2 Bandwidth Sensitivity and Demand Elasticity
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Figure 8-5: Utility functions with di�erent bandwidth sensitivities
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Figure 8-6: Bandwidth reservation a) and perceived surplus b) when the users have di�erent
demand elasticities

In this experiment, we study the e�ect of di�erent elasticities in user demand

on user bandwidth sharing and adaptation, using di�erent utility functions (Fig.

8-5) for di�erent users. An utility function with a smaller slope re
ects a higher

elasticity in the bandwidth requirement of the user. Fig. 8-6-a shows that the user

with the more elastic requirement is more sensitive to price changes and reduces his

resource requirement faster when the network price increases. Correspondingly, Fig.
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Figure 8-7: Network charges for di�erent users a) and the total network bandwidth demand and
price b) when the users have di�erent demand elasticities

8-7-a shows that as a reward for elastic behavior, the average network charge for

the more elastic user is lower, while the three users have similar perceived surplus

(Fig. 8-6-b).

Thus, users with less stringent bandwidth requirements express this 
exibility

through a less bandwidth-sensitive utility function, and bear a greater share of re-

ductions in bandwidth for congestion-control. Users with more bandwidth-sensitive

requirements have to pay a higher charge during congestion to maintain their band-

widths at current levels.

8.1.2.3 Adaptation Across Media

a)
0 500 1000 1500 2000 2500

500

1000

1500

2000

2500

3000

Time (seconds)

B
an

dw
id

th
 r

es
er

va
tio

n 
(k

b/
s)

session1                  
session2                  
session3                  
system                    
affordable total bandwidth

b)
0 500 1000 1500 2000 2500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (seconds)

U
se

r 
su

rp
lu

s 
($

/m
in

)

session1
session2
session3
system  

Figure 8-8: Bandwidth reservation a) and perceived surplus value b) for adaptation across media
sessions in a system, all sessions having the same utility
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In this section, we look at how utility functions guide the distribution of band-

width across di�erent media which are part of a multimedia system belonging to a

single user. The results of two experiments are presented.

In the �rst experiment, the system consists of three media sessions, all of which

have the same utility function, Utility1 shown in Fig. 8-3. When the system bud-

get is exceeded due to congestion, the HRN adjusts the application bandwidths

downwards according to the adaptation algorithm described in Chapter ??. Since

all the applications have identical utilities, the total system bandwidth is equally

distributed between them at all times, as seen in Fig. 8-8a.
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Figure 8-9: Resource reservation a) and perceived surplus value b) among sessions of a system
with di�erent bandwidth sensitivity

The second experiment is similar except that the three media sessions have

di�erent utility functions shown in Fig. 8-5. Fig. 8-9a shows that when the total

optimal bandwidth requirement for all the media sessions in the system exceeds the

system budget, the media session with the more elastic resource demand will be

assigned relatively less bandwidth so as to maximize the overall perceived value.

This is a similar result to that obtained in section 8.1.2.2 for multiple competing

user applications. In e�ect, the system regards a media session with more elastic

requirements as being more able to absorb bandwidth reductions, and \borrows"

bandwidth from this session to give to other sessions.
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8.1.2.4 Linear Operations on Utility Functions

a)
0 200 400 600 800 1000 1200 1400 1600

0

0.5

1

1.5

2

2.5

3

3.5

Bandwidth (kb/s)

U
se

r 
ut

ili
ty

/C
os

t (
$/

m
in

)

utility (α = 1)  
utility (α = 1.1)
utility (α = 1.2)
minimum cost          

b)
0 200 400 600 800 1000 1200 1400 1600

0

0.5

1

1.5

2

2.5

3

3.5

Bandwidth (kb/s)

U
se

r 
ut

ili
ty

/C
os

t (
$/

m
in

)

utility1 (β = 0)          
utility2 (β = −7.8 c/min) 
utility3 (β = −15.6 c/min)
minimum cost                  

Figure 8-10: Equivalent utilities under multiplicative scaling a) and additive shifting b)

In Chapter 6, we qualitatively discussed how the shape of the user utility func-

tions in
uences bandwidth selection and distribution. We now experimentally study

the impact of two linear operations on the utility function, multiplicative scaling by

a weight �, and additive or subtractive shifting by an amount �. The experiment

studies bandwidth distribution between multiple sessions in a system belonging to

a single user, though similar results have also been observed with applications be-

longing to di�erent users.

Consider three media sessions belonging to a system, all with the same basic

(un-scaled) utility function (we use utility1 of Fig. 8-5). Sessions 1, 2, and 3 are

assigned scaling factors of 1, 1.1, and 1.2 respectively. The resulting scaled utilities

are shown in Fig. 8-10a.

Fig. 8-11 shows the variation of individual and system bandwidth allocations and

perceived surpluses. Expectedly, when the adaptation is constrained by the system

budget, an application with a higher � gets a larger bandwidth share because of its

lower elasticity of demand.

We now consider the e�ect of an o�set applied uniformly to the utility over all

bandwidths. In Fig. 8-12b, the utility1 function (which is the same as utility1

in Fig. 8-5a is shifted downwards and form utility2 and utility3. Three di�erent
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Figure 8-11: Bandwidth reservation and perceived surplus for utilities scaled multiplicatively by
di�erent amounts
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Figure 8-12: Bandwidth reservation and perceived surplus for utilities shifted additively by
di�erent amounts
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sessions are assigned di�erent utility functions.

The results shown on Fig. 8-12a shows that all three sessions are allocated the

same bandwidth though Fig. 8-12b shows that the allocation results in di�erent

values of perceived surplus. This is because utility function represents the relative

preference of the user for di�erent bandwidths. The absolute value of the utility is

not important - the adaptation algorithm only searches for the bandwidth with the

maximum perceived value relative to its cost.

8.1.2.5 Adaptation in MInT
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Figure 8-13: a) Audio and video utility functions used for adaptation by MInT b) Price and
total bandwidth variation in the same experiment

a)
0 500 1000 1500 2000 2500 3000 3500

0

200

400

600

800

1000

1200

Time (seconds)

B
an

dw
id

th
 r

es
er

va
tio

n 
(k

b/
s)

session1  
session2  
session3  
mint audio
mint video
mint total

b)
0 500 1000 1500 2000 2500 3000 3500

100

200

300

400

500

600

700

Time (seconds)

U
se

r 
su

rp
lu

s 
($

/m
in

)

session1  
session2  
session3  
mint audio
mint video
mint total

Figure 8-14: Individual bandwidth reservations and perceived surplus in the adaptation of MInT
applications

Finally, we examine the adaptive behavior of the audio (NeVoT) and video

175



(NeViT) applications in the MInT video conference system. The utility functions

for the audio and video applications are shown in Fig. 8-13a.

At the un-congested link bandwidth price, the optimal audio bandwidth for

MInT is 64 kb/s, and the optimal video bandwidth is 384 kb/s. The MInT appli-

cations compete for bandwidth with three single media applications belonging to

di�erent users. The applications use the utility functions of Fig. 8-5. The three user

applications are started �rst, and reach stability at time 630 seconds with bandwidth

allocations of 712 kb/s, 994 kb/s, and 994 kb/s respectively.

At time 2000 seconds, the MInT video conference system is started, and it �rst

requests optimal bandwidth allocation (64 kb/s + 384 kb/s). The total requested

bandwidth exceeds the link congestion threshold, forcing the price up. It is observed

the NeVoT bandwidth remains unchanged, and the NeViT bandwidth is reduced to

342 kb/s. The bandwidth share of the three competing user application drops to

700 kb/s, 800 kb/s and 907 kb/s respectively. User 1 has the most elastic bandwidth

requirement between 700 kb/s and 1000 kb/s, and therefore initially gets a smaller

share. But it is less elastic above 700 kb/s, and after the MInT applications are

started, user 2, which has a relatively greater elasticity near its current allocation,

reduces its requirement the most. The above experiment demonstrates the eÆcacy

of the adaptation framework in allowing new sessions to join gracefully even when

the network is highly loaded.

8.2. Stand-alone RNAP

In this section, we describe the prototyping of the negotiation framework by im-

plementing the RNAP protocol stand-alone, instead of embedding it in another

signaling protocol such as RSVP. The purpose of this prototyping is to demonstrate

the functionality of a complete resource negotiation framework, including RNAP,
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the proposed pricing model, and user adaptation model.

8.2.1 Architecture

Figure 8-15: Testbed setup for stand-alone RNAP implementation

Fig. 8-15 represents the prototype set-up. A tele-conference system runs on

each end user site, and a Host Resource Negotiator (HRN) negotiates with the

network on its behalf using RNAP. The network supports Di�Serv with EF and a

few AF classes. A Local Resource Negotiator is implemented at each router. We

now describe the system components in more detail.

8.2.1.1 Host System Architecture

The host teleconference system consists of the Mbone tools VIC (Video Conferencing

Tool, version 2.8) and RAT (Robust Audio Tool, version 4.2.6) [107]. The HRN

communicates with VIC and RAT through a Message Bus (Mbus)[108]. It allocates
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total the user bandwidth among the applications, and directs them to adapt sending

rates based on allocated bandwidth.

RAT is an open-source audio conferencing and streaming application that allows

users to participate in audio conferences over the Internet. These can be between

two participants directly, or between a group of participants on a common multicast

group. RAT is based on IETF standards, using RTP above UDP/IP as its transport

protocol, and conforming to the pro�le for an audio and video conference with

minimal control. RAT features a range of di�erent rate and quality codecs, receiver

based loss concealment to mask packet losses, and sender based channel coding in

the form of redundant audio. The codecs supported by RAT include: G.711 PCM

�-Law (64kb/s), G.711 PCM A-Law (64kb/s), Wide-Band ADPCM (64kb/s), G.726

ADPCM (16-40kb/s, DVI ADPCM (32kb/s), Variate Rate DVI ADPCM ( 32kb/s),

Full Rate GSM (13kb/s), LPC (5.6kb/s), etc.

The UCB/LBNL video tool, VIC, is a real-timemultimedia application for video

conferencing over the Internet. VIC was designed with a 
exible and extensible

architecture to support heterogeneous environments and con�gurations. In high

bandwidth settings, multi-megabit full-motion JPEG streams can be sourced us-

ing hardware assisted compression, while in low bandwidth environments like the

Internet, aggressive low bit-rate coding can be carried out in software. Vic also

runs on top of RTP, supporting both point-to-point and multiparty conferencing

applications.

The Mbus is an enabling technology for modular system design. It is intended

for eÆcient communication between multimedia conferencing software components

and coordination of several system models.
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8.2.1.2 Network Infrastructure

The network uses FreeBSD based routers, with ALTQ v2.2 [103] was used for traÆc

management, and CBQ extended for Di�Serv support. An LRN is implemented

at each router. It interfaces and controls the traÆc control module of the ALTQ

system. The RNAP protocol is used to establish 
ows through the network. RNAP

messages are sent by the HRN with router alert[14][24] IP option turned on. Inter-

mediate routers pick up the router alert packet, process them, and update the price

information contained in RNAP packets.

In this section, we describe how network resources are managed by an LRN, and

discuss resource partitioning, Di�Serv support, admission control, and price and

charge computation.

Resource Partitioning

Multiple service classes with di�erent QoS speci�cations are supported by the

network. Shared resources such as link bandwidth and router bu�er space are

partitioned among the multiple service classes. In the experiment, we only consider

link bandwidth. For a router with N output interfaces supporting M service classes,

we denote a service at an interface i with service class j as sij.

Di�Serv Support

The testbed network supports Di�Serv with EF and two AF classes. We im-

plemented only two AF service class for simplicity, as the results are independent

of the number of service classes. The LRN at the edge of a domain performs traf-

�c monitoring and marking using the contracted service parameters. A multi-�eld

classi�er is used to distinguish between 
ows from di�erent users. The Monitoring

of 
ows and the marking of 
ow-packets are speci�c to the service class, and are

described in Section 8.2.1.3.
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Internal routers do not maintain per-
ow states, and apply forwarding rules

to behavior aggregates based on packet markings. Internal routers also measure

aggregate traÆc for admission control and price computation.

Admission Control

To perform admission control for new arrivals, a LRN needs to estimate the

amount of bandwidth being used by existing 
ow-aggregates. A time-window scheme

is used to measure and predict the bandwidth usage. In an interval or a window of

T seconds, L samples are taken for the actual bandwidth usage of the active 
ows,

with sampling interval of q = T=L seconds. If the sampling interval is too small,

the estimation may not be accurate when the traÆc is too bursty. TraÆc is esti-

mated every T seconds based on the L samples of the corresponding interval and the

bandwidth prediction of the previous interval. Let uij1 (k); u
ij
2 (k); :::; u

ij
l (k); :::; u

ij
L(k)

represent the L samples of the bandwidth usage of service sij at interval k, and

bwij
p (k) represent the predicted bandwidth, the predicted bandwidth for interval

k + 1 can be decided using the following steps:

1. Look for the upper bound of the load during interval k, and �nd the moving

average of the measured traÆc upper bound and the bandwidth prediction of

interval k.

bwij
p (k+1) =

8><
>:

�ijbwij
p (k) + (1� �ij)max[uij1 (k); u

ij
2 (k); :::; u

ij
L(k)]; 0 � �ij � 1 if k � 1

0; ifk = 0

(8.2)

2. When the actual sampled bandwidth is greater than the predicted bandwidth

at an interval, the predicted bandwidth will be corrected and set to the actual

sampling bandwidth. During an interval k + 1, if any sample uijl (k + 1) >
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bwij
p (k + 1); 1 � l � L, set bwij

p (k + 1) to uijl (k + 1).

Whenever a RNAP Reserve request arrives, the LRN performs an admissibility

test to decide whether the 
ow can be admitted without a�ecting QoS guarantees

provided to the existing 
ows. The bandwidth availability test is based on the

predicted utilization, and the new 
ow's traÆc pro�le. Various algorithms [4][23]

exist to compute the bandwidth to be reserved for the new 
ow based on its traÆc

pro�le. We use the approach adopted by measured sum. If r is the resource request

from a new arrival during interval k, the 
ow will be accepted if r + bwij
p (k) �

bwij
t , with bwij

t representing the targeted bandwidth admission threshold for service

service sij. The target bandwidth can be as high as the total allocated bandwidth

for service sij, but a lower target is usually used to protect against traÆc bursts.

Price and Charge Computation

The pricing strategy of Chapter 5 was implemented at each router. Price pa-

rameters can be set independently for di�erent interfaces and routers. Assuming

pbasic be the basic rate for fully used bandwidth, and �ij be the expected load of a

service sij , the usage price piju for service sij is given by pbasic=�ij . The holding price

pijh can then be represented as:

pijh = �ij(piju � pij�1u ) (8.3)

With the targeted congestion control bandwidth for service sij set as bwij
c , con-

gestion price is applied whenever the predicted bandwidth bwij
p exceeds bwij

c . The

congestion price for an interval k is calculated as:

pijc (k) = min[fpijc (k � 1) + �ij(bwij
p ; bw

ij
c ) � (bw

ij
p � bwij

c )=bw
ij
c ; 0g

+; pijmax] (8.4)
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Users do not need to understand the pricing structure, and only the total price

is communicated to the users. The total data volume transmitted during an interval

is measured at the entry point to the network by the corresponding border LRN,

and used to calculate the charge for the interval.

8.2.1.3 Testbed Setup

The testbed setup consists of two routers (Ra and Rb) connected by a 10 Mb/s link,

schematically represented in Figure 8-15. The output bandwidth of routers Ra and

Rb are partitioned into the three service classes, EF, AF1x, and AF2x. For di�erent

experiments, the network traÆc consists of the output of the end host multimedia

systems, and/or traÆc consisting of multiple UDP packet-
ows generated by multi-

ple instances of a simple data source model. Each 
ow is established end-to-end by

its own RNAP session, and share the same output interface of the link. The packet

generation rate was tunable to allow user adaptation. Out of the total capacity of

10 Mb/s, 15% was set-aside for Expedited Forwarding, and 30% each for AF2x and

AF1x. The congestion threshold was set to 60%, 65% and 70% for EF, AF2x and

AF1x respectively. A two-rate token bucket meter was used to police the EF classes

at edge routers. The marking action was to mark the EF packets with the EF code

point for con�rming 
ows, and dropping them for non-con�rming 
ows. For the AF

classes, a two-rate three-color maker was used for conditioning and policing. Three

di�erent code points were used to mark the AF traÆc. Re-negotiation is carried out

once every 60 seconds. Each 
ow is assumed to last for a period of 20 negotiation

sessions. If a 
ow is rejected, the user waits for a random amount of time (uniformly

distributed between 1 to 10 seconds), before retrying. Background best-e�ort traÆc

is also generated. An average of 30 
ows for each service class is targeted over the

entire experiment duration.
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8.2.2 User Interface Design

User interfaces have been implemented at the user site and at a network site. The

interface at user site allows a user to set up and modify its pro�le, and monitor the

performance of its applications. The interface at the network site allows a provider

to monitor the states of di�erent routers. In this section, we show some of the

interfaces in the prototyping.

8.2.2.1 GUI at User Site

Main Window

Figure 8-16: The main window for user pro�le con�guration

The main window summerizes the state of all the user applications, VIC and

RAT in these experiments. It indicates the current price, accumulated charge, and

average bandwidth of all the applications.

User Pro�le Windows
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The pro�le con�guration windows allow a user to distribute its budget among

all the applications in a system, con�gure the parameter individually for its appli-

cations. For an audio application, the rate adaption is through changing codecs,

and hence the user indicates preferences by setting appropriate codecs. For a video

application, the rate can be adjusted smoothly between user minimum required rate

and maximum con�gured rate.

Figure 8-17: The user budget distribution window

The Network and Application State Window

Figure 8-20 lists the price and statistics of di�erence services supported by the

network, and the states for active user applications. The price and service statistics

will facilitate a user to select the service that provide it the highest perceived value.

User Application Running State Window

Figure 8-21 shows the variation of resource allocation, price, and user charges

with time.
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Figure 8-18: The audio pro�le window

Figure 8-19: The video pro�le window
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Figure 8-20: The service and application list window

Figure 8-21: The application state window
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8.2.2.2 GUI for the Network

Information for Di�erent Services

Figure 8-22: Con�guration of di�erent services

Figure 8-23: Service statistics

Fig. 8-22 shows the con�guration parameters and policing behavior for di�erent

services and Fig. 8-23 shows service states, for all the router interfaces of a domain.

Flow States

Figure 10-5,8-25,8-26 show the active 
ow states, including service contract,

statistics, and charging information, at the edge of the domain.

States of Output Interfaces of a Router

Fig. 8-27 shows the resource provision and parameter con�guration for di�erent

service classes at a router interface. The resource usage is monitored and the price

is updated, as shown in Fig. 8-28.
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Figure 8-24: Flow pro�le

Figure 8-25: Service statistics of a 
ow

Figure 8-26: Accumulated charging information for a 
ow
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Figure 8-27: Service con�guration at an interface

Figure 8-28: Service statistics at an interface

8.2.3 Results

In this section, we show some of the experimental results.

Fig. 8-29 shows the traÆc utilization for AF1x. We see that the target utilization

has been successfully achieved at various traÆc loads.

Fig. 8-31 shows the behavior of non-adaptive applications with the variation of

network load. As network load increases, the user request blocking rate is very high.

Fig. ?? shows several aspects of adaptive behavior. As more 
ows are added to

the system, the measured usage increases. When the measured usage exceeds the

targeted rate, the system applies the congestion price. Initially, the blocking rate is

high until the user responds to the congestion. Eventually, the blocking rate reduces

and can even be zero as users adapted their sending rate in response to increased

prices. After the network reaches a stable state, the utilization of the system is

maintained at the target level, and price is seen to be stable.
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Figure 8-29: Measured traÆc as compared with target utilization

Figure 8-30: Service statistics when applications are not adaptive
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Figure 8-31: Service statistics when applications are adaptive
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Chapter 9

Conclusion

We have proposed a dynamic resource negotiation framework incorporating a re-

source negotiation and pricing protocol RNAP, a rate and quality of service adap-

tation model for adaptive applications, and a pricing model that considers both

the long-term user demand and short-term congestion. In the framework, users re-

spond actively to changes in price signaled by the network by dynamically adjusting

network resource usage by the application, so as to maximize the perceived utility

relative to the price, subject to user budget and QoS constraints. At the same

time, the framework provides suÆcient 
exibility to support users with limited ne-

gotiation capability, or with a requirement for very static and predictable service

speci�cations.

We have demonstrated the functionality of the framework through two proto-

types: RNAP is implemented stand-alone or embedded in RSVP.We have performed

simulations to compare the performance within the framework of a congestion-price

based adaptation model (CPA) and a �xed-price, non-adaptive model (FP). We

have also used simulations to study the stability of the adaptation process, and

nature of network dynamics.

We now summarize the di�erent parts of the framework.

192



9.1. Resource Negotiation and Pricing Protocol - RNAP

RNAP has been designed to enable network service negotiation for multiple delivery

services and environments. The RNAP protocol enables service negotiation between

user applications and the access network, as well as between adjoining network do-

mains. The protocol permits negotiation and communication of QoS speci�cations,

user traÆc pro�les, admission of service requests, and pricing and charging infor-

mation for requested services.

A pair of alternative protocol architectures has been described. The RNAP-D

architecture is based on a distributed, per-node model, while the RNAP-C architec-

ture concentrates the negotiation functionality at a centralized entity, the NRN. The

�rst architecture is tailored to delivery services with relatively strict 
ow control and

\hard", or quantitative QoS speci�cations. The second architecture may be better

suited for delivery service models dealing with service negotiations with a coarser

granularity (multiple 
ows or 
ow-aggregates) and providing statistical or qualita-

tive speci�cations. The two architectures use the same set of RNAP messages, and

can co-exist and inter-operate across multiple administrative domains.

The protocol and architectures provide mechanisms for the collation of local

prices end-to-end. Several price and charge collation mechanisms have been de-

scribed for the distributed and centralized architectures, and end-to-end pricing

and charging across several administrative domains has also been discussed. We

now summarize some important features of RNAP.

Flexibility in Service Negotiation: RNAP supports service negotiation by the

sender, receiver, or both. The protocol is generic and 
exible to support

multiple delivery services and environments (including IntServ, Di�Serv, and

best e�ort services), service negotiation at di�erent levels of granularity (
ow-

and aggregate-based), negotiation by both sender and receiver, and \in-band"
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and \out-of-band" resource reservation mechanisms. In addition, it can be can

be embedded other existing QoS signaling protocol, or can be implemented

stand alone.

Dynamic Resource Re-negotiation Capability: The periodic nature of the RNAP

message sequence provides a natural way for the customer and service provider

to re-negotiate services. This enables dynamic, usage sensitive adaptation

of service parameters and pricing by the network, if required, and also en-

ables user adaptation. Possible re-negotiation scenarios include periodic re-

negotiation, in which the service contract expires after a period and is re-

negotiated, and triggered re-negotiation initiated either by the customer or by

the network provider.

Service Predictability: Predictability includes the quality expected from a ser-

vice type, and the price charged for it. The periodic price and service quotation

mechanism of RNAP provides predictability by keeping the price constant and

committing the resources to a user during a negotiation period.

Scalability: To reduce the overhead of per-
ow RNAP message processing and

storage, we design a sink-tree based aggregation scheme. The RNAP mes-

sages and state information are aggregated in the core networks, allowing

data measurement and charging to be at much larger granularity. While the

aggregation was proposed for CPA-TAT, a similar scheme can be made to

work with CPA-AUC if several user bids lie within a certain range.

Stability: Since the re-negotiation of network services will generally be driven by

price changes, we have proved the stability of the negotiation process with

a greater focus on pricing. The proposed CPA framework is intended for

periods in the unit of minute or longer, and hence the transmission delay is
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not an important factor in determining stability. To reduce the oscillation

of the resource allocation due to frequent re-negotiation, resource negotiation

between domains can occur with a larger granularity, at the cost of slightly

lower bandwidth utilization. The end host can also reduce oscillations by

re-negotiating only when the service price change is greater than a certain

threshold.

9.2. Pricing Model

We have proposed a pricing structure for di�erent service classes in Di�Serv based

on their relative performance, long-term demand, and short-term 
uctuations in

demand. The congestion price can be calculated either through two methods. The

�rst method is a tâtonnement process in which the congestion price is proportional

to the excess demand relative to the target utilization. The second method is based

on a M -bid, second-price auction model. Compared to other auction models de-

scribed in the literature, the M -bid auction model provides greater predictability

and availability of service, by allowing users to express their willingness to pay for a

number of levels of bandwidth in advance of the auction. Submitting multiple bids

simultaneously also reduces signaling traÆc during auctions by avoiding multiple or

more frequent bid submissions. We have also proposed an intermediate admission

scheme to reduce setup delay.

CPA-TAT vs. CPA-AUC

The experiments in Section 7.2. indicate that both CPA-TAT and CPA-AUC can

e�ectively perform the role of congestion control. Since CPA-TAT has to act pro-

actively to limit network usage, its congestion pricing policy is more aggressive, and

it cannot achieve as high a network utilization as CPA-TAT. Consequently, CPA-

AUC performs better with respect to some performance metrics, particularly per-
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ceived user bene�t, and network utilization. The main drawback of CPA-AUC rela-

tive to CPA-TAT is the higher implementation complexity, particularly if auctioning

is implemented per-node, instead of centralized auctioning per-domain. From the

user perspective, the drawbacks are the potentially high set-up delay for new connec-

tions (even if immediate, inter-auction admission is allowed, the experiments show

that up to 40% of the user requests received delayed admission), the need to reveal

user preferences to the network, and the need to divide the user willingness-to-pay

for a particular bandwidth among multiple nodes or domains, in order to obtain

end-to-end resource reservation. In our experiments, we assume that the user bids

the same price at all the nodes/domains, that is, it divides its willingness-to-pay

equally. However, if users can determine the bottleneck node(s), they will tend to

bid higher at these auctions, and correspondingly lower at the other auctions. This

makes the resource allocation less predictable, and may result in unfair resource

distributions.

9.3. User Adaptation Model

We have proposed mechanisms for rate and QoS adaptation by an application or

multi-application system, based on the utility (de�ned as user-perceived value) of a

given combination of transmission parameters, relative to the (congestion-sensitive)

cost of obtaining the corresponding service from the network. The adaptation sys-

tem takes into account constraints imposed by the minimum application require-

ments and the budget speci�ed by the user, and responds actively to changes in price

signaled by the network by dynamically adjusting network resource usage by the ap-

plication. In a multi-application system such as a video-conference application, the

framework allows the system budget to be distributed among the component media

so as to maximize the overall perceived value relative to cost. Some heuristics are
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discussed to simplify this process. The system budget is dynamically re-distributed

among applications in response to changes in price, as well as changes in the relative

utilities with time or under di�erent application scenarios. We have also modeled

the demand behavior of adaptive users based on a perceptually reasonable user

utility function.

9.4. Performance of the Proposed Negotiation Framework

We have studied the performance of the proposed negotiation framework in detail

through simulations. In general, the CPA policy takes advantage of application

adaptivity for signi�cant gains in network availability, revenue, and perceived user

bene�t (in terms of the user utility functions), relative to the �xed-price policy. The

congestion-based pricing is stable and e�ective in limiting utilization to a targeted

level. If the nominal (un-congested) price is set to correctly re
ect long-term user

demand, the congestion-based pricing should e�ectively limit short-term 
uctuations

in load.

Our simulation results also show that the di�erent Di�Serv classes provide dif-

ferent levels of service only when they operate at di�erent target utilization. In

the absence of explicit admission control, a service class loaded beyond its target

utilization (under either sustained or bursty loads) no longer meets its expected

performance levels. Under these conditions, a congestion-sensitive pricing policy

(CPA) coupled with user rate adaptation is able to control congestion and allow a

service class to meet its performance assurances under large or bursty o�ered loads.

Users see a reasonably stable service price and are able to maintain a very stable

expenditure. Allowing users to migrate between service classes in response to price

increase and network performance further stabilizes the individual service prices

while maintaining system performance.
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When admission control is enforced beyond a threshold load for each class, per-

formance bounds can be met with a �xed service price. However, in this case, the

CPA policy provides a greatly reduced connection blocking rate at high loads by

driving down individual bandwidth requests, resulting in a higher overall user sat-

isfaction. Compared to the CPA policy without admission control, the service price

is further stabilized in this case.

We have also investigated the impact of various network control parameters on

the network and user metrics. The user bene�t decreases if the target utilization is

set either too low or too high. Also, with too low a target, demand 
uctuations are

higher, while too high a targeted level results in a high blocking rate. Increasing the

price scaling factor � (which a�ects the speed of reaction to congestion) signi�cantly

reduces the blocking probability. However, too large a value of � results in network

under-utilization at o�ered loads close to the target utilization, and also results in

large network dynamics. If the price adjustment threshold parameter � is set too

high, there is no meaningful price adjustment and adaptive action. Below a certain

level, further reductions in � do not give performance bene�ts or disadvantages.

Users with di�erent demand elasticity are seen to share bandwidth fairly, with

each user having a bandwidth share proportional to its relative willingness to pay

for bandwidth. The results also show that even a small proportion of adaptive users

may result in a signi�cant performance bene�t and better service for the entire user

population - both adaptive and non-adaptive users. The performance improvement

given by the CPA policy further improves as the network scales and more connections

share the resources.
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9.5. Future Work

Many issues remain open for further work. Some of these issues involve the pricing of

network resources. There is currently little work on understanding the distribution

of costs in providing network services. Also, this thesis focuses on reducing resource

contention primarily on a medium time scale. If the congestion lasts a long time,

and occurs very often, network resources are under-provisioned. This is a problem

involving optimal resource provisioning on a longer time scale. There are potentially

interesting issues involved in the interaction of the medium-time scale congestion

control and long-time scale resource provisioning, for instance in terms of response

speed, stability, and the relaxation of a long-term provisioning change.

An e�ective user valuation model will allow user to obtain the best value from the

network transmission. The optimal user rate is based on the demand elasticity, total

budget, perception of QoS and monetary value, and possibly personal preferences.

The host resource negotiator can be designed to be more intelligent, and learn the

preferences of the user over time.

In this thesis, we restrict ourselves mainly to a particular path, and study the

dynamics of pricing and user adaptation among competing users due to a bottleneck

on this path. There are a couple of related issues that we do not include in the

scope of the current work. One issue is that of pricing in the presence of competing

networks with dynamic pricing, and also user adaptation when multiple paths with

di�erent prices (from competing networks) are available to the same user. In general,

we believe that if a user receives a reasonably stable and satisfactory QoS and price,

there will be little incentive for it to switch networks unless there is a large price

advantage to be gained. The other issue is that congestion pricing can help to

balance the network traÆc, by raising the price along a path with heavy load, and

making an alternate route more attractive. Pricing and service negotiation in the
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presence of alternative data paths or competing networks can be applied on a longer

timer scale, and co-exist with the proposed mechanism.

The proposed framework will be very eÆcient in supporting data transmission

in a resource-scarce network environment, such as wireless networks. In order to

extend the current work into wireless networks, the characteristics of the wireless

channels must be taken into account.
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Part II

Measurement and Analysis of

LDAP Performance
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Chapter 10

Measurement and Analysis of LDAP Performance

10.1. Introduction

The Lightweight Directory Access Protocol (LDAP) is being used for an increas-

ing number of directory applications. Applications include personnel databases for

administration, tracking schedules [109], address translation databases for IP tele-

phony, network databases for storing network con�guration information and service

policy rules [110][111]qosschema, and storage of authentication rules [112],[113].

In many of these cases, such as using LDAP directories for storage of personnel

information and authentication rules, the data is relatively static, so that caching can

be used to improve performance. In some situations, the database information needs

to be updated frequently. For example, in IP telephony, every time a subscriber uses

a di�erent terminal or is at a di�erent location, his account information may need

to be updated. Despite the growing importance of LDAP services, there has been

little work on how LDAP servers behave under di�erent workloads, and in di�erent

operating environments. In particular, the performance of LDAP in a dynamic

environment with frequent searches has not been looked at closely.

In this paper, we report on the development of a tool to benchmark LDAP

server performance, and analyze results derived using this tool. In addition, we
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have instrumented detailed pro�ling at the server and LDAP client API codes.

These results include the contribution of various system components to the overall

performance in terms of latency and throughput, the scaling of performance with

directory size, entry size, and session re-use, and the importance of various factors in

determining scalability. We also investigate modi�cations and usage patterns which

lead to an improvement in server performance.

Given the growing use of LDAP in applications, it is useful and convenient

to carry out the performance experiments using data based on an existing LDAP

schema proposed for a real directory application. In this work, we use a schema

proposed in [111][114] for the administration of Service Level Speci�cations (SLSs),

which are used to con�gure networks for supporting di�erent levels of services. In

this application, it is envisioned that the administrative policies embodied in the

LDAP schema will be stored on directories and downloaded to devices such as hosts,

routers, policy servers, proxies, etc. If the SLS is allowed to be dynamically nego-

tiated [22], the LDAP service must deal with frequent directory queries. In these

respects, this application is representative of many current or proposed LDAP ap-

plications [110][112]Bartz9710:LDAProle. The results reported in this work should

be generally applicable to many of the applications cited earlier; aspects of the work

that are speci�c to SLS administration will be pointed out where appropriate.

The rest of this paper is organized as follows. In Section 2, we �rst provide a

general background on the LDAP directory service, and then provide a very brief

introduction to di�erentiated service networks and service level Speci�cations, as

well as the LDAP schema proposed for this application. The experimental set-up is

discussed in Section 3, followed by a discussion of the test methodology in Section

4. Experiments are described, and the results are presented and analyzed in Section

5, and related work is presented in Section 6. Finally, we summarize our results and
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present some conclusions in Section 7.

10.2. Background

In this section, we �rst provide a brief introduction to the LDAP directory service.

We then provide a background on the use of LDAP in administration of di�erentiated

services networks. In this context, we also describe the LDAP directory structure

used in our experiments.

10.2.1 The LDAP Directory Service

A directory service is a simpli�ed database. Typically, it does not have the database

mechanisms to support roll-back of transactions. Directories allow both read and

write operations, but are intended primarily for high-volume, eÆcient read opera-

tions by clients.

LDAP is a distributed directory service protocol. LDAP is based on a client-

server model and runs over TCP/IP. It can be used to access stand-alone directory

servers or X.500 directories. Today, LDAPv2 is an Internet standard as de�ned by

the IETF standards process. The standards document, RFC 1777 [115], dates back

to March 1995. A newer speci�cation, LDAPv3 [116], is currently a draft in review

that is expected to become a new standard soon.

Information is stored in a LDAP directory in the form of entries arranged in

a hierarchical tree-like structure (Figure 10-1). An LDAP entry is a collection of

attributes, for example, an entry corresponding to a person may have as its attributes

the name of the person, organization, email-address. Each attribute has a type,

which is an identifying mnemonic (for example, the email attribute may have type

\mail") and the attribute takes one or more values (the email attribute might have

\foo@cs.columbia.edu" as a value).
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LDAP de�nes operations for querying and updating the directory. Operations

are provided for adding and deleting an entry from the directory, changing an exist-

ing entry, and changing the name of an entry. Most of the time, though, LDAP is

used to search for information in the directory. The LDAP search operation allows

some portion of the directory to be searched for entries that match some criteria

speci�ed by a search �lter. Information can be requested from each entry that

matches the criteria.

cn: foo

cn = foo

mail: foo@cs.columbia.edu

c=US

 

o=IBM

fax:(914)784-7000

mail:info@ibm.com

o=Columbia Univ

c=DE

Figure 10-1: An example of organization of data in a LDAP directory

10.2.2 Using LDAP for SLS Administration

As mentioned earlier, although we assume a LDAP directory intended for storage

of SLS policies, most of the experimental results presented in this work apply to

LDAP services in general, and a detailed understanding of di�erentiated service

networks and Service Level Speci�cations is not required to follow the rest of this

paper. However, a brief background may be of interest to some readers.

10.2.2.1 Service Level Speci�cations

The current Internet operates on a best-e�ort basis, in which all packets are treated

equally. Recently, there has been much interest in network service models with

mechanisms to provide multiple service levels to users. The two main approaches

under discussion are the integrated service model, which supports QoS levels by
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allowing per-
ow resource reservation using RSVP [18] signaling, and the di�erenti-

ated service model [72][22], which provides multiple service classes which are served

using di�erent per-hop behaviors. In either model, the network provider negotiates

a service level speci�cation with a customer, de�ning aspects of network behavior

such as the type of service user packets will receive, and the constraints the user traf-

�c must adhere to. The SLS may be dynamically re-negotiated, based on changes

in the customer requirements or network conditions.

The network access points and internal routers implement the classi�cation, re-

source control, and administrative policies associated with SLSs. Researchers in the

Di�Serv community have proposed storing these policies in a central or distributed

policy repository administered and accessed using a directory service such as LDAP

[111][114][117]. In the proposed scenario, the policy repository is updated when

the network provider negotiates new SLSs, or re-negotiates existing contracts, and

also when the policies need to re
ect changes in network topology or traÆc levels.

Network elements frequently access the policy database, and download the current

set of rules according to which customer traÆc is served.

In addition, the network provider provisions the network in order to provide the

service contracted to customers. The provisioning is physical (adding or removing

network elements) and logical (partitioning or con�guring network elements). The

network con�guration information may be maintained in LDAP directories, and

downloaded periodically by routers. This allows the network provider to adjust

con�gurations (for example, bu�er space, or packet drop precedences) with a �ner

granularity in response to network usage feedback.
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10.2.2.2 Architecture of Network QoS Control Using LDAP

A preliminary schema using LDAP for con�guration of Di�Serv networks has been

proposed in [111]. The various aspects of a service, such as the traÆc pro�le the user

traÆc must conform to in order to receive the service, and the forwarding rules for

conforming traÆc, are captured in a set of policies. The generic architecture that

is envisioned consists of a management tool, a policy repository, a policy decision

entity, and a policy enforcement entity. Figure 10-2 shows the functional relations

between these di�erent entities, and it does not restrict where these functional en-

tities should be located.

Management Tool 
LDAP Client 

Policy Decision

LDAP Client 
Policy Enforcement

Policy Repository

LDAP Server

Figure 10-2: An architecture for network QoS control using LDAP

In the context of the service environment under consideration, the management

tools are used by the network administrator to populate and maintain the LDAP

directory with policies. Management tools may or may not reside on the same host

as the directory server. Enforcement entities apply policy rules.

A decision entity and enforcement entity are usually assumed to reside at each

edge device, or network access point. The edge device is referred to by its location

and would most likely be placed at the access point between a local subnet and the

backbone network, or at the boundary between backbone networks of two service

providers. The decision entity downloads policy rules from the repository, through

a LDAP client. The enforcement entity queries rules from the decision entity and

carries out packet handling and monitoring functions. The decision entity may

either download the entire policy repository all at once, or may query the directory

when needed - for instance, when triggered by events such as an RSVP message or

an IP packet bearing a TCP connect request.
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A customer attaches to the network at one or more interfaces belonging to an

edge device. Each interface is identi�ed by an IP address. At each interface, one or

more policies may be de�ned, and customer packets are monitored and processed

according to these policies. Each policy is associated with a service level which de-

�nes actions on the part of network elements in handling customer packets. A policy

may be applied on the basis of source/destination IP addresses, transport protocols,

source/destination ports, and other parameters such as default port, URL's, etc.

Policy rules are stored in the LDAP directory as SLSPolicyRules objects (de-

rived from the Policy class described in [111]). SLSPolicyRules objects may have

attributes specifying the policy name, priority level of the rule, and the network

interfaces to which the rule may be applied, as well as references to objects which

specify the traÆc pro�le, period of validity of the rule, type of RSVP service or

Di�Serv action, etc.

At initialization, the edge device identi�es its interface addresses. It determines

the set of policies required for these interfaces, and downloads the corresponding

classi�cation policy rules from the LDAP server, as well as the service speci�cations

referred by the policies. Subsequently, the edge device may poll the server peri-

odically to learn of modi�cations to the directory, and download its set of policy

rules if the directory is modi�ed. If asynchronous mode operations are supported by

the directory service, the downloading of policy rules could also be triggered upon

changes in the policy rules.

10.2.2.3 LDAP Directory Structure Used in the Experiments

The LDAP directory structure used in our tests is a simpli�ed version of the direc-

tory used to develop the LDAP schema for supporting SLS [111][114][117], and is

shown in Figure 10-3. Each Customer entry has a set of associated Interface en-
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tries. The Policy entry directly under the Customer speci�es policy rules common

to multiple interfaces belonging to the customer, while the Policy entry for each

Interface speci�es the policy rules speci�c to customer traÆc at that Interface. In

general, the Policy entry refers to one or more of the Service entries in the directory

to specify the service to be received by the corresponding traÆc. The other entries

shown in the LDAP directory include Channel and Pacer entries. A channel is a

virtual pipe between an ingress edge-device and an egress edge-device. A pacer is

the abstraction that limits the total amount of traÆc that can be sent out into the

backbone network at an access-point.

Local Topology

Interface

Pacers

Policy

Policy

Channels

Operator

Services Customer

Figure 10-3: LDAP tree structure in tests

10.3. Experimental Setup

In this section we describe our experimental testbed, including the hardware we

use, the LDAP server software structure, the LDAP client load generation and the

benchmarking setup.

10.3.1 Hardware

The LDAP server ran on a dual-processor Ultra-2 machine equipped with two 200

MHz Sun, UltraSPARC CPUs, 256 MB main memory. The LDAP server process

was bound to one of the two CPUs. The LDAP clients ran on a couple of Sun

209



Ultra 1 models with 170 MHz CPU, 128 MB main memory, and one Sun ultra 10

machine with 299 MHz CPU and 256 MB main memory. The server and clients

were connected via 10 Mb/s Ethernet.

10.3.2 LDAP Server

There are a number of commercial LDAP servers, including Netscape Directory

Server, and Novell LDAP Services. We chose OpenLDAP 1.2 [118]. OpenLDAP

is a complete open source suite of client and server applications derived from Uni-

versity of Michigan LDAP v3.3. The main reasons for our using OpenLDAP is its

open source model, and its rapidly increasing user population. The open source

model allowed us to perform detailed pro�ling of individual server modules and ex-

amine some modi�cations of the basic implementation instead of treating the server

as a black box. The server is based on a stand-alone LDAP daemon (slapd) for

directory service. Replicated service is also supported through a UNIX daemon

slurpd. In this work, the goal is to study the performance and scalability of the

server, and we restrict the LDAP clients to connect to one slapd. Slapd consists of

two distinct parts: a front end that handles protocol communication with LDAP

clients; and a backend that handles database operations. Slapd comes with three

di�erent backend databases to choose from. They are LDBM, a high-performance

disk-based database; SHELL, a database interface to arbitrary UNIX commands or

shell scripts; and PASSWD, a simple password �le database. The LDBM backend

relies on a low-level hash or B-tree package for its underlying database. In this work,

we used an LDBM backend, namely the Berkeley DB version 2.4.14 package [119]

hash database.

LDBM has two important con�guration parameters: cachesize, the size in entries

of an in-memory cache that holds LDAP directory entries, and dbcachesize, the
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size in bytes of the in-memory cache associated with each open index �le. In our

experiments, dbcachesize was set equal to 10 MB, suÆciently large to keep all index

�les in-memory. The cachesize varied according to speci�c experiments.

10.3.3 LDAP Client

The overall client-server architecture used in our experiments is shown in Fig. 10-4.

A collection of client machines are connected to a server machine. There can be

more than one LDAP process running on a client or server machine. The client

machines used had suÆcient CPU capability that the delay at client sites could be

ignored in measuring server performance.

A Bench Master process coordinates the client processes and generates an overall

performance report. The setup parameters are de�ned in con�guration �les. The

Bench Master constructs the command-line arguments for LDAP client processes

based on the con�guration �les. The Bench Master is also responsible for spawning

the LDAP clients remotely on the designated machines. Each of the LDAP clients

reads the command line and starts up communication with the Bench Master. After

all the LDAP clients have been initialized, the Bench Master instructs the LDAP

clients to commence the benchmarking. It then waits for the end of the experiment

when it receives all the statistics from all the LDAP clients. Each LDAP client

queries the LDAP directory periodically, with the query starting time for each client

randomized to prevent synchronization. In most of our experiments, the workload

of the LDAP server was changed by varying the query interval of the LDAP clients.

The Bench Master organizes the data from the clients into the benchmark report.
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LDAP Client

LDAP Client

LDAP Client

LDAP Client

Bench Master

Config/control Parameters

Statistics

Request

Response

LDAP Server

Config 

Files

Figure 10-4: LDAP benchmarking testbed architecture

10.4. Test Methodology

Common LDAP operations aremodify, add, delete, compare and search. In the direc-

tory application considered for our experiments, the service speci�cations should re-

main relatively static during normal operation, while the policies de�ned by customer-

provider SLSs would be updated much more often, as customers negotiate new SLSs

and re-negotiate old SLSs. Search operations are therfore likely to dominate the

server load. In general, this is true for most LDAP applications. Accordingly, for

most of our experiments the server workload consisted of search requests for down-

loading of policy rules (SLSPolicyRules objects) from the LDAP directory (Fig.

2).

The search �lter for the search operation was constructed from the Interface

address of interest, and the corresponding Policy object. The default entry size for

most experiments was 488 bytes, and the default directory size was 10,000 entries.

A simple LDAP search involves a sequence of 4 operations: ldap open, ldap bind,

one or more ldap search operations, and ldap unbind (Figure 10-5). ldap open ini-

tializes the LDAP library, opens a connection to the directory server, and returns

a session handle for future use. The ldap bind operation is responsible for client

authentication. The bind operation allows a client to identify itself to the directory

server by using a Distinguished Name and some authentication credentials (a pass-
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1. Initializes the LDAP library 
 connects to a directory server
returns a session handle

Client Server

session_handle ld

bind_success

2. Initializes a LDAP bind operation to 
authenticate to the directory server
using a Distinguished Name (DN) and
passwd

relative to the base object
from the portion of the tree

3. Searches for directory entries

unbind success Freeing all associated resources

4. Disposes of a LDAP session

ldap_open(host, port)

ldap_bind (ld, DN, passwd)

ldap_search (ld, base, scope, filter, attr, atrronly, result)

search result
ldap_unbind (ld)

Figure 10-5: Sequence of steps in a simple LDAP search operation

word or other information). LDAP supports a variety of authentication methods.

In our experiments, password authentication was used. When a bind operation is

successfully completed, the directory server remembers the new identity until an-

other bind is done or the LDAP session is terminated by calling ldap unbind. The

identity is used by the server to make decisions about what kind of changes can

be made to the directory. The ldap search operation initiates a LDAP search by

specifying the criteria that entries �tting in the associated �lter could be returned.

The search �lters were randomized in our experiments to avoid search results being

cached. Finally, an LDAP session is disposed of by using ldap unbind.

Referring to Fig. 10-5, we de�ne the following latency measures: the connect

time is de�ned as the time from the sending of ldap open request until ldap bind

operation is successful. The processing time is de�ned as the time required for the

ldap search operation as well as the data transfer time for the retrieved results to

be returned to the clients. The total time required for an LDAP search operation,

from ldap open to ldap unbind, is de�ned as the response time. The measures that

re
ect the performance of the LDAP service are the connect, processing and response

latencies, and the throughput of the server, represented by the average number of

requests served per second.

In our experiments, each search operation involved all four of the above steps,
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ldap open, ldap bind, ldap search, and ldap unbind. In a real application, a client

performing multiple searches may prefer to leave the connection open and only do

an unbind at the end. In this sense, the total response time data in the experiments

represents a worst-case scenario. In Section 10.5.4, we consider the e�ect of leaving

the connection open for multiple searches or for the duration of the experiment on

performance.

In addition to the search experiments, the performance of the LDAP server for

database updates is studied in Section 10.5.5, using a workload consisting of ldap add

requests for adding SLSPolicyRules objects. In this case, the client must construct

a new entry with a set of attributes before calling the ldap add routine.

10.5. Result Analysis

Our experiments have three main purposes: identify the contributions of various

system components towards the overall LDAP performance; suggest measures to

improve performance; and study the limits of LDAP performance, and what deter-

mines these limits. We organize the experimental results as follows. The overall

performance with respect to throughput and latency is introduced in Section 10.5.1.

The various components of the total search latency are studied in Section 10.5.2,

followed by measures to improve LDAP performance. Some important limitations

on LDAP performance are studied in Section 10.5.3. We then discuss the e�ect

of session re-use on server performance in Section 10.5.4. Finally, performance of

update operations is compared to the performance of search operations in Section

10.5.5.
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Figure 10-6: Average connection time, processing time and response time (a) and average server
throughput (b) shown as a function of the average request rate at the server. The directory had
10,000 entries and each entry size was 488 bytes.

10.5.1 Overall LDAP Performance

The general variation in the LDAP latency and throughput as a function of server

load are shown in Fig. 10-6. The load was generated by 1000 clients querying peri-

odically, with each client request retrieving a 488 byte SLAPolicyRules entry from a

database with 10,000 entries. Fig. 10-6 (a) shows the variation in connect, process-

ing, and response latencies as a function of the average request rate at the LDAP

server, and Fig. 10-6 (b) shows the variation in throughput, or number of queries

served per second, as a function of the average request rate. Below a load threshold

corresponding to a request rate of 105 per second, response latency remains fairly

constant at approximately 64ms, and is dominated by the processing time of 60ms.

Above this threshold, the response time increases rapidly with increasing load. In

this region, the connect time is seen to be the main bottleneck; the processing time

also increases with load, but its e�ect is less signi�cant. Corresponding to the la-

tency characteristics, Fig. 10-6 (b) shows that the server throughput saturates at a

rate of approximately 105 requests per second. We now consider various aspects of

this performance in more detail.
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10.5.2 Improving the LDAP Search Performance

In this section, we �rst investigate the various components of the search and con-

nect latency. We then consider two important measures to improve e�ective search

latency and throughput: disabling the Nagle algorithm [120] implemented in TCP,

and the caching of LDAP entries.

10.5.2.1 Components of LDAP Search Latency

6. Disposes the LDAP session
Freeing all associated resources

1.666 ms
3.261 ms
0.195 ms

 1.163 ms
0.172 ms
0.238 ms

0.179 ms 0.175 ms

0.172 ms
0.237 ms

0.135 ms
1.663 ms

0.193 ms
1.163 ms

7.375 ms 4.125 ms

no cache full cache
ldap_search_s (ld, base, scope, filter, attr, atrronly, result)

authenticate to the directory server
using a Distinguished Name (DN) and
passwd

1. Initializes the LDAP library ldap_open(host, port)

session_handle ld

search data entry

search status

ASN.1 decoding 

no cache    full cache

3  . Searches for directory entries
from the portion of the tree
relative to the base object

0.218 ms0.218 msbuild search request 

result construction 
0.213 ms 0.213 ms

     8.2 ms          5 ms

unbind success

ldap_unbind (ld)5. Unbind request 

Client Server

    Initializes a LDAP bind operation to 

build search filter 
find candidate IDs
retrieve entries
filter matching
ASN.1 encoding
send search result
send search status

   Total server search  latency 

4.   Execute search operations

ldap_bind (ld, DN, passwd)

bind_success

send open request 
2. Open a new connection, initialize states

0.05 ms 0.8 ms

Binding result processing 

Prepare binding request    

1.781 ms3 msTotal connect time   

Total processing time

0.235 ms

0.195 ms

( )LDAP library functions

Figure 10-7: Latency associated with the various server and client process modules in a LDAP
search operation

We now consider the components of the search latency in more detail. These

results were obtained by adding monitoring code to the various process modules

in the slapd daemon. Fig. 10-7 shows the major components that contribute to

the server and client search latency, under a load of 105 search requests/second, at

which the server is not yet saturated. Surprisingly, while the processing time as

measured at the client is approximately 60 ms, results obtained from tcpdump and

from the monitoring code in slapd show that out of 60 ms, approximately 50 ms is

a waiting time arising from the Nagle algorithm implemented in TCP. We discuss
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this in greater detail in Section 10.5.2.3, and consider the components of the actual

search latency in this section.

At the server, the LDBM back-end uses an index mechanism to store and retrieve

information. Each entry is assigned a unique ID, used to refer to the entry in the

indexes. A search for entries �rst returns a list of IDs of entries that have the value

being searched; the IDs are then used to retrieve the corresponding entries. The

candidate ID lookup and the data entry retrieval are seen to take up around 5 ms,

60% of the total search latency of 8.2 ms.

The main front-end operations at the server are building the search �lter, testing

a search �lter against an entry, ASN.1 encoding of the result entry, sending the search

result, and sending the search status. The client-side LDAP library processing

includes building the search request, ASN.1 decoding, and construction of the �nal

search result. In all, the front-end operations take around 3.16 ms, 40% of the

total response latency. 36.8% of the front-end latency is contributed by ASN.1 data

encoding, followed by sending status information, 7.5%, building the search request,

7%, ASN.1 decoding, 6.7%, testing a search �lter against an entry, 6.2%, forming the

search �lter, 5.7%, and sending the search result, 5.4%. The remaining operations,

including the ASN.1 encoding and decoding of the query and other information,

occupy the remaining 25% of the front-end latency. Pro�ling of the slapd daemon

also showed that at heavy loads, the increase in the total response time is due to

the CPU contention among competing threads.

10.5.2.2 Components of LDAP Connect Latency

The connect latency has two components, corresponding to the ldap open and

ldap bind steps of the LDAP search operation shown in Fig. 10-5. ldap open ini-

tializes the LDAP library, opens a connection to the directory server, and returns
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a session handle for future use. Thus, the open time mainly consists of the session

set up time and the TCP connection time, as shown in Fig. 10-7.
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Figure 10-8: Variation of the open time and bind time components of the average connection
time with average request rate at the server. The directory had 10,000 entries and each entry size
was 488 bytes.

In version 2 of the LDAP protocol, the ldap bind step (client authentication)

is a mandatory requirement. As mentioned previously, LDAP supports di�erent

authentication methods, and simple password-based authentication was used in the

experiments reported here. Fig. 10-7 shows that the server takes 80% of the binding

time, and the client takes 20% of the time.

Fig. 10-8 shows the open time and authentication time components of the con-

nect time, as a function of the request rate. At small loads, the authentication

time is more than twice the open time and dominate the connect latency, which is

consistent with the pro�ling results. The increase in connect time beyond a request

rate of 105 per second is largely dominated by the increase in open time.

10.5.2.3 E�ect of the Nagle Algorithm on Search Latency

The Nagle algorithm restricts sending of packets when the segment available to send

is less than a full MTU size, in order to reduce transmission of small packets and thus

improve network utilization. The algorithm works as follows: if all outstanding data

has been acknowledged, any segment is sent immediately. If there is unacknowledged

218



(a)
10

0
10

1
10

2
10

3
10

0

10
1

10
2

10
3

Average request rate at server (requests/s)

T
im

e 
(m

s)

response time with Nagle     
connect time with Nagle      
processing time with Nagle   
response time without Nagle  
connect time without Nagle   
processing time without Nagle

(b)
0 50 100 150 200 250 300 350

0

20

40

60

80

100

120

Average request rate at server (requests/s)

T
hr

ou
gh

pu
t (

co
nn

s/
s)

throughput with Nagle   
throughput without Nagle

Figure 10-9: Comparison of the server performance with and without Nagle algorithm: (a)
average connection time, processing time and response time; (b) average server throughput. The
directory had 10,000 entries and each entry size was 488 bytes.

data, the segment is only transmitted if it is a full MTU size. Otherwise, it is queued

in the hope that more data will soon be delivered to the TCP layer and then a full

MTU can be sent. Fig. 10-9 shows that when the Nagle mechanism is disabled by

enabling the TCP NODELAY socket option, the LDAP search time is reduced from

60 ms to around 8 ms, while the throughput remains unchanged.

slapd responds to a search request from the client side ldap library functions in

two steps: it �rst returns the data entries; it then sends the search and transmission

status. The client side ldap library functions then construct the �nal results and send

to the LDAP client. The results from tcpdump indicated that the sending of search

status information (14 byte) was delayed about 50 ms until an acknowledgement

message was received from client side.

Researchers have presented evidence [121][122] that the Nagle algorithm should

be disabled in order to reduce latency and to protect against unforseen interactions

between TCP and HTTP with persistent connections. We believe Nagle algorithm

should also be turned o� in the LDAP application, since the delay of the last segment

of the response was shown to be unnecessary from the tcpdump results. To avoid

consequent extra packets on the network, functions such as writev() can be used as

have been used in WWW servers such as Flash and JAWS.
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10.5.2.4 E�ect of Caching LDAP Entries
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Figure 10-10: Comparison of the performance when the server is con�gured with 0 and 10,000
entry caches: (a) the response latency; (b) the throughput.

The LDBM backend can be con�gured to keep a cache for each index �le (db-

cachesize) and a cache of entries (cachesize) in memory. We compared the server

performance with two di�erent sizes of the index cache, 100 KB and 10 MB. The

backend search time was almost identical for either case, although at the smaller

cache size there was a large increase in the time required to populate the directory.

This indicated that the index cache was large enough to hold the index �les in either

case.

We studied the impact of the entry cache size on the server performance by

varying the cache size from 0 entries (out-of-memory directory without any cache)

to 10,000 entries (in-memory directory with full cache) while keeping the index cache

size at 10 MB. For a directory with 10,000 entries, a cache with 10,000 entries results

in a reduction in the back-end entry retrieval latency (shown in Fig. 10-7) from 5

ms to 1.8 ms, with little change in the other latency components. Consequently, the

total processing time reduces from 8.2ms to 5ms, and the contribution of the back-

end processing time to the total latency reduces from 60% to 36%. When the latency

is plotted as a function of load, we see a 40% reduction in search processing time

due to caching over nearly the entire range of loads, as shown in Fig. 10-10 (a).
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Correspondingly, the throughput increases 25% and reaches 140 requests/second,

as shown in Fig. 10-10 (b). The relatively smaller improvement in throughput

compared with the improvement in processing time is because at high loads, the

connect latency is the dominant component in the total response latency. Memory

usage was observed to increase 9% with the above increase in cache size.

Since we are primarily interested in the performance of the LDAP server, in the

experiments in the remainder of this paper, the Nagle algorithm was disabled to

eliminate the unnecessary wait before returning search results to the client. Unless

otherwise speci�ed, an LDBM index cache of size 10 MB, and entry cache equal

to the size of the directory were used. Before an experiment, the cache was �rst

�lled up to avoid the extra overhead due to cache misses at the beginning of the

experiment.

10.5.3 Performance Limitations

In this section, we study the limitations of the LDAP server performance in three

important areas: server CPU capability, the scaling of the LDAP directory, and

the scaling of LDAP entry size. An useful point to consider is that in some cases

network connectivity may signi�cantly in
uence the perceived server response. In

our case, since clients were connected to the server over a high-speed LAN, this

e�ect could be neglected.

10.5.3.1 Server Processor Capability: Single vs Dual Processors

In this section, we consider the importance of processing capability in determining

the server performance. As mentioned earlier, all our experiments were carried

out on a dual processor server, but by binding the slapd process to one of the two

CPU's, it was used in single-processor mode for the experiments in other sections.
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To determine the in
uence of processor capability, we performed some experiments

to compare the performance in single-processor mode with the performance in dual-

processor mode.

Fig. 10-11 (a) shows the comparison of latency versus connection rate charac-

teristics for the two cases, using a load generated by search operations. The dual

processor server shows similar performance at low loads, and the advantage increases

to give roughly 40% smaller latency at higher loads for the total response time. The

reduction in latency is observed mainly due to the reduction in connect time. The

processing time due to search actually increases slightly at heaviest load, which may

be due to the memory contention between the two processors.
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Figure 10-11: E�ect of using a dual processor server on the response time and throughput, with
a directory containing 10,000 entries, entry size 488 bytes: (a) connect, processing and response
latencies versus request rate; (b) throughput versus request rate

Fig. 10-11 (b) shows the comparison of throughput characteristics for single

and dual processors. As seen earlier, the throughput of the single processor server

starts to saturate beyond a load of 105 requests per second, and saturates at 140

requests per second. The dual processor server starts to saturate beyond a load

of 155 requests per second, and does not saturate completely even at a load of

194 requests per second. Also, at the highest load, CPU utilization in the single-

processor server reached 98%, while CPU utilization in the dual processor remained

less than 50%.
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The above results suggest that the improvement given by the dual processor

server would continue to increase at higher loads than those used in the experiment.

Higher loads were obtained in an experiment with each client generating requests

continuously (a new query upon completion of the previous query) instead of at

periodic intervals. Read and write throughput characteristics were generated using

LDAP search and add operations respectively. The results are shown in Fig. 10-12.

Consistent with trends observed in Fig. 10-11 (a), at low loads the throughput

characteristics are similar for dual processor and single processor servers. Beyond

a threshold load of about 8-10 clients, the write throughput saturates at around 60

connections per second for the single processor server and 85 connections per second

for dual processor operation, an improvement of roughly 40%. A similar e�ect is

observed in the read throughput, which reaches saturation with just 4 clients and

gives 150 connections per second for single processor server and 211 connections

per second for dual processor server, an improvement of roughly 40%, the same

improvement rate as the write operation.

There is a second load threshold in write throughput of about 36 clients for single

processor and 48 clients for dual processors beyond which the throughput decrease

with increase in load, while the read throughput remains constant within the load

range of the experiments. The reduction in throughput of write operations may be

due to the increasing contention of system resources among children processes and

the increase in the network delay when the server loads increase. These experiments

also show the throughput of search operations is roughly 2.5 times that of add

operations in both the single processor and dual processor case.

Overall, processor capability plays a major role in limiting system performance

for an in-memory directory, and using a dual processor server gives a signi�cant

performance bene�t.
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Figure 10-12: Throughput of search and add operations for single and dual processor servers,
with a varying number of LDAP clients generating queries continuously

10.5.3.2 Scaling of Directory Size

In this section, we study the scaling of LDAP performance with the directory size,

and discuss the limitations on performance at large directory sizes.
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Figure 10-13: E�ect of directory size on the server connect and processing times (a) and the
server throughput (b).

We �rst consider the scaling up of the directory when the directory is in-memory.

Fig. 10-13 (a) shows the comparison of response latency of a directory with 50,000

entries and 50,000 entry cache, with a directory with 10,000 entries and 10,000 entry

cache. The increase in the total response with directory size is mainly due to the

increase in the processing time, which increases by 60%, from 5ms to 8ms. Pro�ling

at the server shows that the increase in the processing time is, as expected, due to

increase in back-end processing. Speci�cally, it is mainly due to the increase in the
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entry retrieval time (by 2.6 ms), and a slight increase in the ID search time (by 0.2

ms). Fig. 10-13 (b) shows that the throughput decreases 21% and saturates at 110

requests/second with the increase in directory size.

As the directory size increases, the database cache size is eventually limited by

the available system RAM, and the directory can no longer be kept in-memory.

In our system, when the cache size was increased beyond 50,000, performance de-

graded progressively due to lack of memory. When the directory is out-of-memory,

performance scaling is limited both by the database search time, and by the disk

access time. Fig. 10-13 shows that further increasing the number of directory en-

tries from 50,000 to 100,000 while keeping the cache size at 50,000 entries causes

the response time to increase another 7ms (87.5%) and the total processing time

reaches 15ms. Correspondingly, the throughput reduces from 110 requests/second

to 85 requests/second (23%). Since the connect latency dominates the response at

high loads, the reduction in throughput is relatively small compared to the increase

in processing time.

To summarize, there was a moderate deacrease in latency and throughput with

directory scaling up to 50,000 entries, due to an increase in database search time.

Further scaling was constrained by system memory leading to an out-of-memory

directory, and the deterioration in processing latency was signi�cantly sharper, due

to increasing disk access time and database search time.

10.5.3.3 Scaling of the Directory Entry Size

In this section we study the scaling of performance with the size of the LDAP entry.

In our experiments, we compared the performance for LDAP directories with 488

byte entries, and with 4880 byte entries. For the larger entry size, the availability

of system RAM limited the maximum database cache size to 5000 entries, beyond
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Figure 10-14: E�ect of directory entry size on the server connect and processing times (a) and
the server throughput (b) for 5000 entry directory and 5000 entry cache

which the performance degraded rapidly. We �rst performed the comparison for an

in-memory directory, using a 5000 entry directory and 5000 entry cache for both

entry sizes. Fig. 10-14 (a) shows the processing latency, and Fig. 10-14 (b) the

throughput, as a function of load. At light and moderate loads, the total response

latency increases by about 8 ms with increase in entry size, while the throughput

remains the same. Pro�ling at the server shows that the increase in response time

comes mainly from the increase in the ASN.1 encoding time, from 1.2 ms to 7 ms.

In addition, the �lter matching step took around 0.8 ms at the higher entry size, up

from 0.2 ms at the lower entry size. These results are understandable, since both

ANS.1 encoding and the �lter matching process depend on the number of attributes

in the LDAP entry, which increases as the entry size increases. The latency of the

other front-end processing steps, and back-end processing steps increase by much

smaller amounts. Under heavy loads, when the server saturates, Fig. 10-14 (b)

shows the maximum throughput at 4880 bytes is 30% smaller.

The comparison between the two entry sizes was also performed with a directory

of 10,000 entries, the cache size remaining at 5,000 entries. Fig. 10-15 (a) shows the

processing latency, and Fig. 10-15 (b) the throughput, as a function of load. The

increase in total response time with increase in entry size is now 40 ms at low and
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Figure 10-15: E�ect of directory entry size on the server connect and processing times (a) and
the server throughput (b) for a 10,000 entry directory, 5000 entry cache

moderate loads. The much larger detrioration in response time with entry size is due

to the increased data transfer time from the disk in addition to the the increased

front-end processing time. The increase in front-end processing time remains at

about 8 ms, con�rming that the front-end processing is not in
uenced greatly by

the increase in directory size, and the increase in data handling time at the back-end

is 32 ms. Also, for the larger entry size, the processing time is comparable with the

connect latency even at high loads (unlike previous experiments in which the connect

latency dominated the total response at high loads). Consequently the increase in

processing time with entry size strongly in
uences the maximum throughput, which

decreases sharply from 110 requests/second to 30 requests/second.

To summarize, for an in-memory directory the scaling of the total processing

latency with entry-size is determined by the front-end processing, speci�cally, by

the ASN.1 encoding and �lter matching. For out-of-memory operation, the increase

in processing latency is dominated by the increased back-end data retrieval time.

The maximum throughput also decreases sharply in this case.
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10.5.4 Session Reuse

In the experiments so far, the client requested a single search or add operation, and

then closed its connection. We now study the change in performance when a client

performs multiple searches in a LDAP session. We varied the degree of session reuse

from 0 to 100%, with 0% corresponding to a new connection being established for

every search, and 100% corresponding to the connection being left open during the

duration of the experiment.
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Figure 10-16: E�ect of session reuse rate on the server processing times (a) and the server
throughput (b).

Fig. 10-16 (a) shows that the search time increases at heavy loads as the session

reuse rate increases from 0% to 100%. This is because the actual server load for

searching operations increases with the increase in session reuse, while the total

connect latency decreases because fewer connect requests are received. At the same

time, the total response time decreases as can be deduced from the increase in the

throughput shown in Fig. 10-16 (b) from 105 request/second to 155 requests/second

at the onset of congestion., and from 140 requests/second to 223 requests/second

under the heaviest load, an improvement of 60%.
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Figure 10-17: Comparison of latency and throughput characteristics for search and add opera-
tions: variation of connect, processing and response latency with server load (a), and variation of
server throughput with server load (b). (Directory had 10,000 entries, entry size 488 bytes)

10.5.5 Performance under Update Load

The experiments described so far measured the performance under loads generated

by search requests. In order to compare these results with the performance under

update operation, a set of experiments was performed with clients each periodically

querying the server with add requests. Fig. 10-17 shows that the processing time

for add operations dominates the total response time not only at low loads, but also

when the server saturates. This is unlike the search scenario, in which the connect

time dominates the total response time when the server is under heavy load. This is

probably because the latency due to locks generated by competing write() requests

becomes signi�cant under heavy load. At low loads, the add latency is about four

times the search latency, and the di�erence between the two decreases at high loads,

as the connect latency becomes more important. Fig. 10-17 (b) shows that the

add throughput begins to saturate beyond a threshold of 60 requests per second

and �nally saturates at 65 requests per second, about 55% less than the search

throughput.

The LDAP modify operation was not directly investigated. A modify operation

involves searching and retrieving an existing entry, modifying it, and then writing it
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back to the LDAP directory. Consequently, one would expect the processing latency

in this case to be roughly the sum of the search and add processing latencies.

10.6. Related Work

Benchmarking of LDAP server performance has been reported recently by Mind-

craft [123]. The purpose of Mindcraft's work is to compare the performance of

three servers: Netscape Directory server 3.0 (NSDS3), Netscape Directory Server

1.0 (NSDS1) and Novell LDAP Services (NDS). In their work, the performance for

a 10,000 entry personnel directory was measured on a 200 MHz Intel Pentium Pro

with 512 MB RAM. The throughput for NSDS3, NSDS1, and NDS were found to

be 183 requests/second, 38.4 requests/second and 0.8 requests/second respectively.

The size of the LDAP entry was not speci�ed. The directory was in-memory in all

cases, and the performance with larger, out-of-memory directories (or large entry

sizes) was not considered. Since the directory was in-memory, CPU capability was

found to be the bottleneck.

In the above work, the LDAP server was generally treated as a black box. Our

work di�ers signi�cantly in our objectives and approach. We have determined the

scalability of the performance particularly with respect to directory size and entry

size, determined the contribution of di�erent system components and parameters

to the server performance and scalability, and provided suggestions for improving

system performance. The detailed nature of this work also dictated the choice of

OpenLDAP instead of a commercial server, as explained earlier.
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10.7. Conclusions

In this paper, we have discussed the performance of the LDAP directory service in

a dynamic, distributed environment, with frequent directory accesses. The LDAP

directory structure used in the experiments is based on a proposed LDAP schema for

administration of Service Level Speci�cations in di�erentiated service networks, and

a brief explanation of the use of LDAP in this context has been provided. However,

the experimental results are applicable to LDAP directory applications in general.

We have shown that under our normal operating conditions - a directory with

10,000 488 byte entries, and a cache size of 10,000 entries - the LDAP server has

a response latency of 8 ms at loads up to 105 search requests per second, and a

maximum throughput of 140 search requests per second. Out of the total response

latency of 8 ms, 5 ms comes from the processing latency, 36% of which is con-

tributed by back-end processing (entry retrieval from the database), and 64% by

front-end processing. In general, at high loads, the connect latency increases sharply

to dominate the overall response, and eventually limits the server throughput. Con-

sequently, a change in the processing time due to changes in system parameters has

a relatively smaller e�ect on the maximum throughput.

In addition to this basic performance speci�cation, we have obtained a detailed

pro�le of contributions of various system components to the overall performance;

studied the scaling of performance with directory size, entry size, and session re-use;

and determined the relative importance of various factors in determining scalabil-

ity, namely front-end versus back-end processing, CPU capability, and available

memory. We have also identi�ed an important required modi�cation to the basic

OpenLDAP implementation in order to obtain the above performance. We now

brie
y summarize our important �ndings.

� Disabling of Nagle algorithm. The Nagle algorithm was observed to contribute
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an additional wait time of roughly 50 ms to a search operation. Disabling the

Nagle algorithm results in a reduction in response time by a factor of 7 under

normal operation.

� Entry caching. For a directory with 10,000 entries, an in-memory directory

(cache-size 10,000) has a 40% improvement in processing time and 25% im-

provement in throughput over a directory without a cache.

� Scaling with directory size. The scaling of performance with the number of en-

tries in the directory is determined by the back-end processing. Up to 50,000

directory entries can be kept in-memory in our system, and the server pro-

cessing time and throughput deteriorate by about 60% and 21% respectively

when directory size increases from 10,000 to 50,000. Beyond this limit, the

directory is out-of-memory due to system RAM constraints, and increasing

the directory size from 50,000 to 100,000 entries results in a sharper increase

in processing time of another 87.5%, and a decrease in throughput by 23%.

� Scaling with entry size. The scaling of performance with the entry size in

the directory is determined by the front-end processing, mainly an increase in

the time for ASN.1 encoding of the retrieved entry, as long as the directory

is in-memory. An increase in entry size from 488 bytes to 4880 bytes for

a 5,000 entry directory results in an increase in processing time of 8 ms at

moderate load, 88% of which is due to the increased ASN.1 encoding time,

and a throughput deterioration of about 30%. However, for a directory with

10,000 entries, the cache size is still limited to 5,000 by the systemRAM, and a

similar increase in entry size results in a much larger throughput deterioration

of about 70%, mainly due to the increase in data transfer latency from the

disk.
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� CPU capability. For an in-memory directory, the CPU is a signi�cant bottle-

neck. Using dual processors improves performance by 40%.

� Session re-use. In general, higher session re-use leads to improved perfor-

mance. A 60% gain in performance is obtained when the session is left open

during the duration of the experiment, relative to when a connection is opened

and closed for each search request.

In conclusion, we believe that the results show that OpenLDAP slapd is a po-

tential candidate for supporting policy administration in the di�erentiated service

environment as well as in other network applications that need dynamic directory

access support. In future, we plan to evaluate other LDAP servers based on the

criteria developed in this paper, which may run on di�erent platforms and with

di�erent implementations.
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