IPv6 Addresses as Content Names in Information-Centric Networking

Suman Srinivasan, Henning Schulzrinne Columbia University

{sumans, hgs}@cs.columbia.edu

The architecture diagram of our IPv6 content addressing system. In our system, the regular browser makes a HTTP request through a proxy, which translates HTTP requests to an IPv6 content addressing system. The request is sent out over the network, until a router on path that has the content responds to the request. The proxy then translates the retrieved content back into a HTTP response to the user's browser.

IPv6 Features That Are Useful for Content Networking

- IPSec: security
- Multicasting: streaming video
- No packet fragmentation
- Better mobile support
- Jumbograms
- IPv6-over-IPv4 bridging mechanisms: use of our IPv6 content naming proposal in archaic or today's networks

Sample Name to IPv6 Mappings

- 8079:1b37:2650:3af8:1d78:a723:dee0:2522 http://TheEpochTimes.com/content/video.mp4
- **8079:1b37:2650:3af8:***eacf:331f:ffc:35d4* http://TheEpochTimes.com/index.html

Currently implemented

- Content address registry as a web service (built in PHP) connected to a MySQL database.
- Requests to set/get content names and their corresponding IPv6 address mapping are done through simple put and get requests. We do plan to make this more scalable and hierarchical in the future.

Current/Future Work

- Starting work on the full implementation of the IPv6 content naming architecture.
- Use netfilter, particularly libnetfilter_queue and its Python language bindings, to handle and serve IPv6 content naming and addresses.