
Dynamic Service Scalability in Information-Centric Networks 

 

Suman Srinivasan
1
, Dhruva Batni

1
, Volker Hilt

2
 and Henning Schulzrinne

1
 

1 
Columbia University, 

2 
Alcatel-Lucent 

sumans@cs.columbia.edu, dlb2155@columbia.edu, hgs@cs.columbia.edu, volker.hilt@alcatel-lucent.com 

 
Abstract 

 
Information- or content-centric networks have gotten a lot of interest recently, particularly due to the promise to address problems in-

herent in today’s host-based networking architecture. But while information-centric networking aims to address the concerns of net-

working which is evolving in the direction of serving content, it does not inherently address the issue of services, particularly service 

scalability, which is also an important part of networking. We present our work on dynamic service scalability in information-centric 

networking, particularly our implementation on top of the CCNx framework.  

 
1. Introduction 

Information-centric networking aims to solve a trend in computer 

networking: today, content is one of the key players in network-

ing. Information-centric networking, such as the CCNx project 

[1], aim to solve this problem by specifically addressing content, 

and rewriting the entire networking stack by focusing on content 

requests. 

However, current information-centric networking implementa-

tions fail to address the issue of services, which are at least as 

important as raw content. The popularity of services such as Fa-

cebook and Google allude to the fact that users are also interest-

ed in services. Hence we believe that a complete networking 

paradigm will focus on not only information-centric networking, 

but will involve services as well.  

In this poster, we present our architecture and current implemen-

tation of dynamic services and service scalability on top of an 

existing information-centric networking framework, CCNx. We 

present how we treat service modules as content, thus leveraging 

the existing information-centric features of CCNx, while natural-

ly allowing for service scalability and mobility. 

2. Scaling Services Dynamically in CCNx 
There has been some recent work to address the concept of ser-

vices in content networks. In this vein, “service-centric network-

ing” [2] is one of the most relevant papers. SCN aims to address 

service invocation and service scalability and mobility in the 

network through building a “superset” of CCNx. 

In our work, we attempt to implement service centric networking 

on top of CCNx, instead of building a new networking paradigm. 

Our implementation allows for a service name to be invoked 

alongside the content name. Thus, when a content name is seen 

by a content router, the content router is able to parse the name 

into the content name and the corresponding service that is to be 

invoked on it. If it does not have that service, it fetches the corre-

sponding module via CCNx and invokes the service on the con-

tent, and puts the processed content back into the CCNx 

namespace so that future requests for the content fetch this pro-

cessed content. 

3. Architecture 
In our current implementation, a “client” or a node makes a re-

quest for a content name and a service it wishes to invoke on the 

content (ccnx://video.mp4+service). This request is converted to 

a CCNx Interest packet and forward. The request is intercepted 

by any of the nodes that operate as a Content Router, and if the 

content does not exist, the Content Router looks for a service 

corresponding to the name. If it does not find a service, it fetches 

it by issuing a CCNx Interest packet for that service module. 

Once the service module is located and downloaded on the Con-

tent Router, it invokes the service module on the content, thus 

producing a processed version of the content.  

5. Future Work 
We are currently in the process of integrating our work more 

fully into the NetServ [3][4] service virtualization framework to 

get the best of two worlds – information-centric networking and 

in-network service virtualization. 

6. Conclusion 
We believe that services are central to network operations. In our 

work, we aimed to show that it is possible to integrate service 

functionality – including dynamic service invocation, scalability 

and mobility – into the core of information-centric networking, 

thus extending its features. To this end, we have a working im-

plementation of a services scaling architecture implemented on 

top of the CCNx protocol stack.  

References 

                                                 
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, R. L. 

Braynard (PARC) Networking Named Content, CoNEXT 2009, December 

2009. 

[2] T. Braun, V. Hilt, M. Hofmann, I. Rimac, M. Steiner, M. Varvello: Service 

Centric Networking, FutureNet IV workshop, Kyoto, Japan, June 2011. 

[3] Suman Srinivasan, Jae Woo Lee, Eric Liu, Mike Kester, Henning Schul-

zrinne, Volker Hilt, Srini Seetharaman, Ashiq Khan, "NetServ: Dynamically 

Deploying In-network Services", ACM ReArch '09 (CoNEXT workshop), De-

cember 2009. 

[4] Jae Woo Lee, Roberto Francescangeli, Jan Janak, Suman Srinivasan, Salman 

Abdul Baset, Henning Schulzrinne, Zoran Despotovic, Wolfgang Kellerer, "Net-

Serv: Active Networking 2.0", IEEE ICC 2011, Kyoto, Japan, June 2011. 



Details: How dynamic services in CCNx would integrate with service invocation in NetServ, a virtual 

services container. 

Dynamic Service Scalability in Information-Centric Networks 
 

Suman Srinivasan, Dhruva Batni, Volker Hilt and Henning Schulzrinne 
Columbia University, Alcatel-Lucent 

 

A processed content is obtained through CCNx and 

played in VLC media player. There is a small 

watermark with weather information at the bottom 

right of the video, showing that this is processed 

video obtained from CCNx. 

When a service request is made, the service module 

(in addition to the content) is downloaded 

dynamically from CCNx, and invoked on the 

content. 

Pseudo-Code for Implementation 
 

ccnName = “ccnx://test.mpg+weather”; 

list(service, file) = parse (ccnName); 

download (“ccnx://netserv/” +  

                 service + “.jar”); 

download (“ccnx://content/” + file); 

loadLocalJAR (service + ".jar"); 

processedFile = loadClass(“Process”). 

          getMethod (“run”).invoke(file); 

putFileIntoCCNx (processedFile); 

 

How It Works 
• Explanation 
 
Future Work 
• Integration with NetServ 
 
Conclusion 

Screenshots 


