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ABSTRACT
Accurately determining a user’s floor location is essential
for minimizing delays in emergency response. This paper
presents a floor localization system intended for emergency
calls. We aim to provide floor-level accuracy with minimum
infrastructure support. Our approach is to use multiple sen-
sors, all available in today’s smartphones, to trace a user’s
vertical movements inside buildings.

We make three contributions. First, we present a hybrid
architecture for floor localization with emergency calls in
mind. The architecture combines beacon-based infrastruc-
ture and sensor-based dead reckoning, striking the right bal-
ance between accurately determining a user’s location and
minimizing the required infrastructure. Second, we present
the elevator module for tracking a user’s movement in an
elevator. The elevator module addresses three core chal-
lenges that make it difficult to accurately derive displace-
ment from acceleration. Third, we present the stairway mod-
ule which determines the number of floors a user has trav-
eled on foot. Unlike previous systems that track users’ foot
steps, our stairway module uses a novel landing counting
technique.

Keywords
Floor localization, Indoor vertical location, Smartphone-
based dead reckoning

1. INTRODUCTION
The emergency call systems in the United States and

elsewhere are undergoing a transition from the PSTN-
based legacy system to a new IP-based system. The
new system is referred to as the Next Generation 9-1-
1 (NG9-1-1) system [32] in the US. We have previously
built a prototype NG9-1-1 system [18] based on the Ses-
sion Initiation Protocol (SIP) [28].
The most important piece of information in the NG9-

1-1 system is the caller’s location. The location is first
used for routing the call to a proper call center. The
emergency responders then use the caller’s location to

pinpoint the caller on site. Therefore, it is essential to
determine the caller’s location as precisely as possible
to minimize delays in emergency response. Delays in
response may result in loss of lives.
In the NG9-1-1 system, GPS can provide a user’s lo-

cation accurately when the user makes an emergency
call outdoors using a mobile phone. Indoor position-
ing, however, presents a challenge because GPS does
not generally work indoors. Moreover, unlike outdoors,
vertical accuracy is very important in indoor position-
ing because an error of few meters will send emergency
responders to a different floor in a building, which may
cause a significant delay in reaching the caller. The im-
portance of vertical positioning makes GPS not a good
solution even if GPS signals can somehow reach indoors,
since the altitudes reported by GPS are usually inaccu-
rate [21, 26].
Ladetto and Merminod [19] proposed a barometer-

based solution for vertical positioning. Barometers, how-
ever, have a critical limitation when they are used in a
vertical positioning system intended for emergency situ-
ations. Firefighters use a technique called positive pres-
sure ventilation (PPV) [16], which means blowing air
into a burning building in order to clear out smoke.
PPV will result in pressure changes in the building,
which will in turn cause large fluctuations in barom-
eter readings. In addition, parts of some buildings are
intentionally pressurized for various reasons [11], which
will also affect barometer readings.
This paper presents a proposal to augment our pre-

vious NG9-1-1 prototype system with floor localization.
We aim to provide floor-level accuracy with minimum
infrastructure support. Our approach is to use multiple
sensors, all available in today’s smartphones, to trace a
user’s vertical movements inside buildings.
When a user enters a building, the user’s smartphone

receives the information about the building and the cur-
rent floor from a beacon deployed at the entrance. The
smartphone starts tracking the user’s vertical move-
ments when she rides elevators or walks on stairs. Addi-
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tional beacons deployed sparsely throughout the build-
ing provide periodic corrections to the user’s location.
Our design is largely driven by the requirements for

emergency calls. First of all, a positioning system in-
tended for emergency calls must be immune to tran-
sient conditions or on-going changes inside the build-
ing. For example, interfering electromagnetic signals,
rearranged equipment and furniture, or the number of
current occupants should not affect the system’s oper-
ation. Because of this requirement, we had to rule out
wireless fingerprinting, an effective technique used in
many other indoor location systems [8,30,33]. Secondly,
the infrastructure should be reduced as much as possi-
ble because an extensive infrastructure requirement hin-
ders wide adoption. We chose a hybrid design, combin-
ing beacon-based infrastructure and sensor-based dead
reckoning, in order to fill the gap between sparsely de-
ployed beacons. Lastly, in an emergency call system,
a partial failure must not result in a complete system
failure. In our system, partial failures caused by power
outage or structural damage in the building result in
gradual degradation of performance.
In this paper, we make three contributions. First, we

present a hybrid architecture for floor localization with
emergency calls in mind. The architecture strikes the
right balance between accurately determining a user’s
location and minimizing the required infrastructure.
Second, we present the elevator module for tracking

a user’s movement in an elevator. The elevator mod-
ule calculates the elevator’s displacement by double-
integrating vertical acceleration. Double integration is
considered too noisy for tracking human movements in
general. However, we show that the constrained move-
ment of an elevator enables a number of error correction
techniques, making double integration a viable method.
Third, we present the stairway module which deter-

mines the number of floors a user has traveled on foot.
Previous proposals counted a user’s steps on stairs [25,
38]. This approach has a critical limitation that it can-
not account for a user walking up multiple stairs in each
step. Instead, our stairway module counts landings, the
level areas either at the top of a staircase or in between
flights of stairs.
This paper is organized as follows. Section 2 presents

our overall architecture. Section 3 describes the design
and algorithms of our three analysis modules and the
activity manager. Section 4 describes implementation
details. Section 5 provides our evaluation results. Sec-
tion 6 discusses related work. Lastly, we conclude and
discuss future work in Section 7.

2. ARCHITECTURE OVERVIEW
Figure 1 shows the overall architecture of our verti-

cal positioning system. We describe each component in
detail in the following subsections.

2.1 Sensor array
The sensor array includes different kinds of sensors

available in most of today’s smartphones. The Iner-
tial Measurement Unit (IMU) integrates a three-axis
accelerometer, a three-axis gyroscope, and a three-axis
magnetometer. Thus, the IMU provides motion sensing
with a total of nine degrees of freedom. The accelerome-
ter measures linear accelerations along the three spatial
axes. The measured accelerations can be used to detect
whether a user is moving, and if so, the user’s veloc-
ity or traveled distance can be derived from them. The
gyroscope measures the angular velocities of rotations
around the three spatial axes. The orientation of the de-
vice can be derived from the gyroscope measurement.
The magnetometer is a digital compass that measures
the strength of the Earth’s magnetic field. The com-
pass provides the heading of the device. Heading refers
to the angle which the device forms with the magnetic
north on a level plane.
GPS provides the device’s location in the geographic

coordinates using satellite signals. GPS cannot be used
indoors but it can help detect when a user moves from
outdoors to indoors.

2.2 Analysis modules
The analysis modules collect data from the sensor

array and compute a user’s location. There are three
analysis modules in our architecture: the elevator mod-
ule, the stairway module, and the escalator module.
The elevator module calculates the vertical displace-

ment of an elevator by measuring its linear acceleration.
The linear acceleration is measured using the device’s
accelerometer. Integrating the linear acceleration twice
with respect to time yields the distance that the elevator
has traveled.
The stairway module determines the number of floors

a user has traveled by counting the number of landings
in stairways. Our landing detection algorithm is based
on an intuitive fact that there is less vertical movement
on landings than on steps. The stairway module utilizes
the accelerometer, the gyroscope, and the magnetome-
ter. We describe the details in Section 3.2.
The escalator module also calculates the vertical dis-

tance that a user has traveled by double-integrating the
vertical component of the acceleration measurements,
as we did in the elevator module. In both escalator
and elevator modules, the vertical distance is converted
to the number of floors by looking up the floor-to-floor
heights. The user’s smartphone receives the floor height
information from the infrastructure components. We
describe the infrastructure in Section 2.4.

2.3 Activity manager
The activity manager coordinates the interactions be-

tween the sensor array and the analysis modules. The
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Figure 1: Architecture overview.

activity manager monitors the sensors to detect changes
in a user’s activity, such as indoor-outdoor transitions,
riding an elevator, or walking on a stairway. Once the
user’s activity is identified, the activity manager selects
the proper analysis module to process the data from the
sensor array.

2.4 Infrastructure
As we will show in Section 5, the elevator, stair-

way, and escalator modules perform well within lim-
ited ranges, but the modules cannot reliably capture the
user’s movement over longer vertical distances. More-
over, the sensor-based components can only report rela-
tive location, i.e., the number of floors that the user has
traveled. Therefore, the initial anchor location must be
provided in order to obtain the absolute location.
These problems can be solved by deploying an in-

frastructure for indoor positioning. Densely deployed
infrastructure, such as beacons installed every floor and
every entrance, can provide accurate location, but the
high cost of such installation is a hindrance to ubiqui-
tous deployment, which is an important consideration
for an emergency call system. On the contrary, sparsely
deployed infrastructure will not be able to provide the
required level of accuracy.
Our architecture combines sensor-based dead reck-

oning with minimum and practical beacon-based in-
frastructure. First, the infrastructure includes location
beacons deployed at each entrance of a building. The
beacons provide the location of a user’s entry to the
building. The floor of entry becomes the anchor for
all subsequent calculations of the user’s vertical loca-
tion. In addition to the floor of entry, the beacons also
provide other building information which is needed by

the analysis modules. The additional building informa-
tion includes the floor-to-floor height and the number
of landings between each pair of floors. User devices in-
clude the infrastructure monitor, which interacts with
the location beacons.
Second, for the buildings that are not equipped with

these beacons, we propose that central authorities such
as local governments maintain well-known building data-
base servers. When a user enters a building not equipped
with the beacons, the infrastructure monitor sends the
last known GPS location to the building database server
to retrieve the same building information that the lo-
cation beacons would have provided. This GPS-based
entrance detection is not as reliable as the beacon-based
approach, especially in urban canyons. Thus, we only
use it as a fallback.
Lastly, the limited range of the sensor-based compo-

nents can be overcome by sparsely deploying location
beacons at the edge of the range. For example, if the
location tracked by the elevator module is reliable up to
20 floors, beacons can be placed at elevator entrances
every 20 floors.
One advantage of our hybrid architecture is that par-

tial failures caused by power outage or structural dam-
age result in gradual degradation of performance rather
than a complete system failure. If an entrance beacon
fails, the smartphone will not have the initial anchor
location and other building information, but it can still
keep track of the user’s relative location. If some lo-
cation beacons are unavailable to provide periodic cor-
rections, the system simply produces less accurate loca-
tions. This is an important characteristic of an emer-
gency call system because even incomplete information
can be helpful to first responders.
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3. SYSTEM DESIGN AND ALGORITHMS

3.1 Elevator module
There are three challenges in accurately measuring

the vertical distance that a user has traveled in an el-
evator. The three challenges are how to extract the
vertical component in the accelerometer measurement,
how to subtract Earth’s gravitational acceleration, and
how to eliminate noise and errors.
The accelerometer returns linear accelerations along

the three axes. Those three axes are not aligned with
the world coordinate system. Instead, they are aligned
with the frame of the device. Thus, the axes in the
device coordinate system keep changing as the orienta-
tion of the device changes. One way to extract vertical
acceleration is to combine the accelerometer measure-
ment with the gyroscope measurement. In fact, we do
this in the stairway and escalator modules. In the el-
evator module, however, we take advantage of the fact
that, in the elevator, the dominant movement of the de-
vice is in the vertical direction. We simply assume that
the measured acceleration is close to vertical, and ap-
proximate the vertical projection with the vector itself.
Thus, the vertical acceleration is calculated as follows:

avertical ≈ |−→a | =
√

x2 + y2 + z2 (1)

where x, y, and z are three-axis accelerometer measure-
ments. We do not need a gyroscope in this calculation.
We justify our approach by making the following two
observations. First, a user’s sudden movements in the
elevator will be filtered out by the low-pass filter, which
we will describe shortly. Second, users typically stand
still in the elevator, and when they move, the accelera-
tions of the movements are small compared to the verti-
cal acceleration of the elevator. The consequence of this
approximation is that whenever there is non-vertical ac-
celeration, we overestimate the vertical acceleration by

1

cos θ
, where θ is the angle that the measured acceler-

ation vector makes with the vertical axis. This over-
estimation is small, and we compensate it by applying
zero velocity update (ZUPT), which we describe later.
Our measurement shows that the approximation does
not affect the resulting distance calculation.
The vertical acceleration calculated above includes

the gravitational acceleration (g), which we need to sub-
tract before computing the traveled distance. In theory,
g should be constant at 9.8m/s2, but we found slight
variations in our experiments. We measured g by sam-
pling the accelerations of smartphones sitting still on
a desk. The measured values deviated slightly from g,
and moreover, the variations were different on different
devices. Smartphone SDKs provide APIs returning g-
free acceleration, but they exhibited the same deviation.
We eliminate the effect of the deviation in g as follows.
We take advantage of the fact that, if we take g out of
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Figure 2: Comparison of the distance calcula-
tions with and without ZUPT.

the acceleration, the integral of the acceleration taken
over the duration of the trip must be zero because the
elevator is not moving at the end of the trip. Thus we
can deduce that the value of g measured by the device
is the mean of the acceleration samples taken over the
trip.
The output from the accelerometer contains a signifi-

cant amount of noise. We apply two existing techniques
to tackle this problem. First, we apply a low-pass fil-
ter to the accelerometer output. This filters out the
user’s sudden movements and the accelerometer’s inher-
ent noise which we refer to as drift. Second, we apply
a technique called zero velocity update (ZUPT) [14] to
eliminate accumulated errors. Integrating the acceler-
ation yields the velocity of the elevator. We reset the
velocity to zero during the period when the acceleration
is zero and the velocity is within a predefined thresh-
old. The threshold value we choose is small compared
to the speed of the elevator, so that we do not mistak-
enly zero out the velocity of an elevator moving at a
constant speed. The accuracy of the distance calcula-
tion is improved in that, at each stop, ZUPT has an
effect of wiping out the accumulated errors due to the
drift and the user’s non-vertical movements.
Figure 2 demonstrates the effectiveness of ZUPT. We

compare the computed velocities and distances when an
elevator traveled from the first, to the second, and then
to the third floor. Without ZUPT, the accumulated
acceleration errors result in non-zero velocities when the
elevator is at the second and the third floor. This in
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Figure 3: Overview of the stairway module.

turn results in an error of approximately one meter in
the distance calculation at the end.
In general, double integration is considered too noisy

for tracking human movements. In our case, however,
an elevator moves only in the vertical axis, making it
easy to extract the vertical component of the accelera-
tion. An elevator also comes to a zero velocity when it
stops at a floor, making it possible to apply ZUPT to
eliminate the accumulated errors.

3.2 Stairway module
The stairway module determines the number of floors

a user has traveled using our landing counting algo-
rithm. To the best of our knowledge, landing detection
has not been used for vertical positioning systems.
Figure 3 illustrates how the stairway module works.

First, the stairway module calculates vertical acceler-
ation from the accelerometer and gyroscope measure-
ments. Unlike an elevator’s movement, a user’s move-
ment on a stairway is more complex. A gyroscope is
needed to transform the acceleration in the device co-
ordinate system to the world coordinate system. We
convert the accelerometer measurements in the device
coordinate system to the world coordinate system using
a rotation matrix as shown below:

−→a ′ = R−→a (2)

where −→a ′ is the acceleration in the world coordinate
system, −→a is the acceleration in the device coordinate
system, and R is the rotation matrix. Most smartphone
platforms provide an API to obtain R. We then take
the resulting z-axis acceleration in the world coordinate
system and subtract g from it. We calculate g in the
same way as in the elevator module.
The landing counting algorithm compares the ampli-

tude of vertical acceleration between steps and landings.
The algorithm is based on the intuitive fact that the am-
plitude of the vertical acceleration is much smaller on
landings than on steps because there are less vertical
movements on landings.
Figure 4(a) shows a measurement of a user’s verti-

cal acceleration when she walks down four floors pass-
ing eight landings. The amplitude difference between
steps and landings is clearly observed. Figure 4(b) is
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Figure 4: (a) Vertical acceleration measure-
ment; (b) Spectrogram of vertical acceleration;
(c) pwalk(t) extracted from (b)

the magnitude spectrogram |X(t, f)| in dB scale, trans-
formed from Figure 4(a)’s acceleration data. The re-
gions of small amplitude in Figure 4(a) manifest as re-
duced magnitude in the frequency range between 0.5 to
2Hz, which corresponds to human walking.
We define pwalk(t) to extract human walking activity

from the magnitude spectrogram:

pwalk(t) =
∑

0.5Hz<f<2Hz

10 log
10

|X(t, f)| (3)

where t is time and f is frequency. Figure 4(c) shows
pwalk(t), where we can clearly observe the dips at land-
ings.
Our landing counting algorithm traces the pwalk level

shown in Figure 4(c) to count the number of landings.
Figure 5(a) illustrates this process. Each landing is
characterized by a dip below its mean value. The fall
and rise of the level crossing the mean value indicate
the beginning and end of a landing, respectively. The
beginning and end of a landing are shown as the bumps
of the “Landing detection” line in Figure 5(a).
In addition to vertical acceleration, the stairway mod-

ule uses heading information from the magnetometer to
improve the accuracy of landing detection. Most of the
time, users turn around 180 degrees on landings. We
use such heading changes to correct errors in landing
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Figure 5: Three landing detection cases.

detection, specifically to remove incorrectly identified
landings. Since we are only interested in 180 degree
turns, our magnetometer reading does not require cali-
bration.
Figure 5(b) shows a case where our algorithm removes

two incorrectly identified landings using the heading
information from the magnetometer. The dotted line
labeled “Heading” shows the heading changes reported
by the magnetometer. The heading largely stays the
same from 15 sec to 25 sec, and changes from 220◦ to
40◦ in the next two seconds. This 180◦ turn, combined
with the bumps on the landing detection line, confirms
a landing. Note that the seeming discontinuity in the
heading from 20◦ to 330◦ at 37 sec is in fact a steady
change from 20◦ to −30◦, wrapping around. The two
rectangles in the figure highlight two incorrectly iden-
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(b) Walking down

Figure 6: Velocity measurements of a user walk-
ing on a stairway.

tified landings being removed because the heading did
not change during the period.
This heading-based verification of landings makes it

unlikely that our algorithm produces false positives. If
the acceleration-based landing detection misses a land-
ing to begin with, however, the heading information
does not help recover it. Figure 5(c) shows this case.
Therefore, our algorithm produces a conservative esti-
mate of the number of landings.
We determine whether a user is moving up or down

by comparing the average vertical velocity on steps and
landings. Figure 6 shows the vertical velocity measure-
ments when a user walks up and down two floors passing
four landings. The figure clearly illustrates the differ-
ence in the velocity patterns between the up and down
cases. We determine that the user is ascending if the
velocity on steps is higher than the velocity on landings,
and vice versa. In theory, the average vertical velocity
should be zero on landings, positive when the user walk-
ing up steps, and negative when walking down. But in
practice, the velocity values can shift due to the noise
and errors that have been introduced while extracting
vertical acceleration and subtracting g.
The stairway module returns a relative location which

is the number of floors the user has traveled from the
initial floor. Like the elevator module, the stairway
module relies on the information from the infrastructure
monitor to get the initial anchor location. The infras-
tructure monitor also provides the number of landings
between each pair of floors. There are typically two
landings per floor but the number can vary depending
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Figure 7: Acceleration of elevator and walking.

on the design of a building. In some buildings, for ex-
ample, there are more landings between the lobby and
the second floor.

3.3 Escalator module
The escalator module combines the elements of both

elevator and stairway modules. The escalator module
uses double integration like the elevator module. How-
ever, the user’s movement on an escalator is not verti-
cal, so we use the gyroscope measurements to extract
the vertical component from the measured acceleration,
as we did in the stairway module.

3.4 Activity manager
The activity manager classifies a user’s movements as

one of the following activities: elevator riding, walking,
and standing. The classification is based on the user’s
vertical acceleration. The current version of the activ-
ity manager does not identify escalator riding. Vertical
acceleration does not work well for escalators because
of the complexity of a user’s movement. We are in-
vestigating other ways to detect escalators, such as the
technique of magnetic field variance proposed by Wang
et al. [34].
Figure 7(a) depicts the pattern of a user’s vertical ac-

celeration when she is riding an elevator. The elevator
starts with zero acceleration (1), accelerates to a steady
velocity (2), moves at a constant speed (3), decelerates
(4), and stops (5). When the activity manager detects
this pattern, the sensor measurements during that pe-
riod are passed to the elevator module.

Figure 7(b) shows a user’s vertical acceleration when
the user walks a few steps, stops for a bit, and then
resumes walking. The activity manager detects human
steps by identifying local extrema of amplitude in ver-
tical acceleration. One step contains exactly one max-
imum and one minimum in a short time interval. The
period (1) and (3) in Figure 7(b) contain human steps
so they are walking periods.
The period (2) in Figure 7(b), where the vertical ac-

celeration is under a threshold, is classified as a standing
period. The activity manager uses the standing period
to partition the sensor measurements.
Each walking period, separated by the standing peri-

ods, is passed to the stairway module. A single walking
period can be either walking on the stairway (stairway
walking) or walking on the same floor (same-floor walk-
ing). Ideally, the activity manager should detect all pe-
riods of same-floor walking, and filter them out, so that
they do not get passed to the stairway module. The
current version of our activity manager does not imple-
ment this filtering. Thus, the stairway module needs to
handle not only stairway walking (as described in detail
in Section 3.2), but also same-floor walking.
To detect same-floor walking, the stairway module

calculates the total distance that a user has traveled
during the walking period, and see if the distance turns
out to be close to zero. If so, the walking period is
considered to be an instance of same-floor walking.
Normally, a single walking period does not contain

both stairway and same-floor walking. A user would
typically stop to open a door to the stairway, producing
a standing period which separates them into two walk-
ing periods. It is possible, however, that both stairway
and same-floor walking are included in a single walking
period if the user avoids stoppage in the middle. In this
case, the same-floor walking portion will be detected
as a landing by the stairway module, assuming that the
user has made a significant change in the heading during
the same-floor walking. The only case that the stairway
module will not be able to handle is the one where the
user walks a long straight corridor between two flights
of stairs without stoppage. Our stairway module will
not identify this as a landing due to the lack of any
heading change.

4. IMPLEMENTATION

4.1 Hardware platform
For the implementation and evaluation, we used the

Apple iPhone 4 and 4S, running iOS version 6. The
iPhone 4 contains an accelerometer, a gyroscope, and
a magnetometer. The accelerometer in iPhone 4 can
measure acceleration from −2 g to +2 g, where 1 g is
9.8m/s2 [29]. The sampling rate can be adjusted from
0.5Hz to 1 kHz. We used 30Hz for our measurements.
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(a) iPhone app for data collection. (b) Foil-wrapped Mac mini as Bluetooth
beacon.

{ 

 "name”: "CEPSR", 

 "addr”: "530 W 120 ST New York NY 10027", 

 "entrances": [ 

    { 

      "access": "public", 

      "floor": 2, 

      "location": "40.809784,-73.9607261" 

    } 

  ] 

} 

(c) Web interface to the building data-
base server.

Figure 8: Prototype implementation.

The gyroscope measures angular velocity from -250 de-
gree/sec to +250 degree/sec [29]. We also read the gy-
roscope at 30Hz. The magnetometer is a three-axis
electronic compass manufactured by Asahi Kasei [10].
According to the specification from the manufacturer,
the measurement range is ±1,200µT.
Most smartphones based on Google’s Android plat-

form are also equipped with the same set of sensors with
comparable specifications. Both iOS and Android offer
APIs to access the sensors.

4.2 Data collection from sensor array
In our current prototype, an application running on

iPhone collects data from the sensor array. Figure 8(a)
shows the screenshot. Table 1 provides the list of data
types we collect on iPhone. The measurements from
the accelerometer and gyroscope in iPhone can be ac-
cessed using the Core Motion framework in iOS. The
Core Motion framework provides APIs to retrieve the
raw data such as the timestamp and three-axis acceler-
ations shown in Table 1. The framework also provides
processed motion data, such as attitude, which is de-
rived from both the accelerometer and gyroscope. Atti-
tude refers to the spatial orientation of the device with
respect to the world coordinates, and can be obtained
either as a rotation matrix or as a quaternion. We use
the rotation matrix in our implementation of the stair-
way module.
The heading information from the magnetometer can

be accessed using the Core Location framework in iOS.
The framework provides two headings: magnetic head-
ing and true heading. Magnetic heading points to the
magnetic north pole, and true heading points to the geo-
graphic north pole. We use the magnetic heading in our
implementation. Both types of heading will satisfy our
need to detect a user turning around on landings, but
using magnetic heading avoids additional processing to

Data Unit Source

Timestamp ms System clock
X-axis acceleration g Accelerometer
Y-axis acceleration g Accelerometer
Z-axis acceleration g Accelerometer
Rotation matrix N/A Accel. & Gyro.
Heading degree Magnetometer
Latitude & Longitude degree GPS

Table 1: Data types collected on iPhone.

calculate the true heading from the current location,
which may consume more energy.
We collect GPS traces outdoors. The Core Location

framework provides an API to obtain the device’s loca-
tion. Normally the framework determines the locations
using various sources including GPS, Wi-Fi, and cellu-
lar network, but a flag can be passed to indicate that
we are only interested in GPS locations.

4.3 Data collection from infrastructure
In this section, we describe the infrastructure monitor

running on the user’s smartphone, the location beacons
deployed in the building, and the central building data-
base server.
We chose Bluetooth technology for location beacons

because Bluetooth is available on most smartphones.
The infrastructure monitor and the beacon communi-
cate using service discovery protocol (SDP) [6]. SDP al-
lows Bluetooth devices to discover available services and
their characteristics without initiating a pairing process.
Currently, iOS does not provide APIs for Bluetooth

communication. We implemented the infrastructure mon-
itor using BTstack [2], an open source Bluetooth stack
for iOS. Installing BTstack requires jailbreaking iPhone.
We used a Mac mini computer wrapped in aluminum

foil to prototype a Bluetooth beacon as shown in Fig-
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Data item Default

Floor of entry 1
Number of landings between floors 2
Floor-to-floor height 3.5m

Table 2: Predefined default values for building
information.

ure 8(b). The foil wrapper decreases the Bluetooth
signal strength so that it does not reach the adjacent
floors. The Bluetooth beacon is written as a Java appli-
cation using BlueCove [1], an open source Java library
for Bluetooth.
The beacon interacts with the smartphone’s infras-

tructure monitor in the following sequence. First, the
infrastructure monitor scans for nearby Bluetooth de-
vices by sending periodic inquiry messages. Second, the
infrastructure monitor sends an SDP request to all the
discovered Bluetooth devices. The request includes a
unique identifier defined for location beacon service, so
the request is ignored by all devices that are not location
beacons. Lastly, the infrastructure monitor receives an
SDP response from a location beacon. An SDP response
contains the building’s address, the floor where the bea-
con is located, and for each pair of floors, the height and
the number of landings.
The infrastructure monitor falls back on a central

building database server when a building is not equipped
with location beacons. While a user stays outdoors,
the infrastructure monitor tracks the user’s location us-
ing GPS. When GPS signal is lost, the infrastructure
monitor assumes that the user has entered a building,
and sends the last known GPS coordinates to the build-
ing database server. The building database server finds
the nearest entrance from the user’s last GPS location,
and returns the same information that the location bea-
con returns. Figure 8(c) is the web admin interface
to the building database server that we have built for
testing, displaying the information about a building in
Columbia University campus.
Table 2 shows the default values for building informa-

tion when the infrastructure monitor fails to obtain the
information specific to a building. The default value for
the floor-to-floor height is the average value for commer-
cial and residential buildings reported by the Council on
Tall Buildings and Urban Habitat [9].

4.4 Analysis modules
The current version of our iPhone application does

not include the analysis modules. The collected sensor
data is sent to a central repository. Using this data,
we have tested our algorithms for the analysis modules
prototyped in MATLAB.
We are currently developing the analysis modules run-

ning on iPhone. It is desirable to run all analysis locally

Building Reference Average Error-to-height
name floor height error ratio

CEPSR 4.65m 0.08m 1.6%
Mudd 3.67m 0.06m 1.7%
Pupin 3.48m 0.09m 2.7%

Table 3: Errors in one floor distance calculated
by elevator module.
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Figure 9: Distance errors of elevator module
measured in Mudd building.

on the user’s device whenever possible, so that the user’s
privacy is preserved as much as possible.

5. EVALUATION
First, we evaluate the algorithms of our elevator, stair-

way, and escalator modules individually. The individual
evaluation scenarios assume that the activity manager
correctly identifies the user’s activity and selects the
proper analysis module. Then, we present a combined
case where the user’s travel involves multiple types of
movements including riding an elevator, walking on a
stairway, and walking around on the same floor, which
are all detected by the activity manager.

5.1 Elevator module
We evaluated the elevator module in three different

research and classroom buildings at Columbia Univer-
sity: CEPSR, Mudd, and Pupin. They have 10, 15,
and 13 floors, respectively. Table 3 shows the reference
floor-to-floor height of each building, which we mea-
sured using a tape measure, followed by the error of the
result from the elevator module. The error is the dif-
ference between the reference height and the distance
calculated by the elevator module when a user moves
one floor in an elevator in each building. The error is
an average of ten trials, five moving up and five moving
down.
Errors are small in all three buildings, indicating that

the elevator module can provide accurate vertical loca-
tion up to a reasonable number of floors. We can extend
the range by strategically deploying location beacons.
For example, in the Pupin case in Table 3, the error
is under 3%, so the elevator module will be accurate
up to about 15 floors. Thus, location beacons can be
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Figure 10: Stairway module measurements of 50
trials of walking four floors. The heading-based
correction eliminated all miscounted landings in
both buildings.

deployed conservatively in every 10 floors to cover the
entire building.
Figure 9(a) shows distance errors from the elevator

module as we increase the number of floors traveled in
an elevator without stopping. The graph shows that
the errors accumulate as the elevator travels farther.
The error of 0.82m when the user traveled nine floors
is about 22% of the floor-to-floor height, which is well
within the margin of error for accurately determining
the destination floor.
Figure 9(b) plots the distance errors of traveling nine

floors in an elevator as we vary the number of stops
that the user has made during the travel. The graph
shows that the error decreases as the user makes more
stops. This shows the effectiveness of applying ZUPT
in the distance calculation. At each stop, ZUPT elim-
inates accumulated errors by removing residual veloc-
ity. Therefore, if the elevator makes stops during the
trip, the elevator module’s distance estimation becomes
much more accurate, extending the upper bound of the
elevator module’s distance limitation.

5.2 Stairway module
We evaluated the stairway module in two buildings.

One was an office building and the other was a residen-
tial building. Both buildings have two landings between
each pair of floors.
Figure 10 shows our stairway module measurements.

In each building, we performed 50 trials of walking four
floors. The graph compares the landing counting re-
sults with and without our heading-based correction al-
gorithm described in Section 3.2. Our heading-based
correction was able to eliminate all miscounted landings
in both buildings, producing the correct landing count
in all 50 trials. Without the heading-based correction,

only 44 and 32 trials produced the correct landing count
in the residential and the office building, respectively.
The graph shows the number of trials that produced
one or more miscounted landings in each building. For
instance, two trials in the office building miscounted
four landings, which would have resulted in an error of
two floors, if the heading-based correction had not been
applied.
Figure 10 also shows that, without the heading-based

correction, the stairway module performs better in the
residential building than in the office building. We at-
tribute this difference to the steeper stairs in the resi-
dential building. The difference in the vertical acceler-
ation between steps and landings is more pronounced
on the steeper stairs. In general, our landing detection
works better when the amplitude difference in the ac-
celeration is pronounced. This is also in line with our
observation that the waveforms are generally cleaner in
the walking-down cases than in the walking-up cases.
Human steps are typically a bit bouncier when walking
down.
We note that, in all trials in Figure 10, the user moved

at a normal walking speed. If the user walks very fast or
very slowly, the amplitude difference of the accelerom-
eter reading between steps and landings is much less
pronounced. We can address this issue by giving more
weight to the heading information from the magnetome-
ter. In the extreme case, we can reverse the roles of
the accelerometer and the magnetometer, i.e., instead
of using the magnetometer to make adjustments to the
landings identified by the accelerometer, we can use the
magnetometer first to identify landings. The relative
weights of the two sensors can be dynamically deter-
mined depending on how pronounced the amplitude dif-
ference is.
The iPhone’s magnetometer readings, however, often

showed large fluctuations in our experiments even when
the user did not change direction. For this reason, we
chose to use the magnetometer conservatively, i.e., only
for correcting false positives. In order to see the ef-
fectiveness of the magnetometer-first approach, we con-
ducted the same experiment with the user walking very
fast and very slowly, and selected the measurements
that did not contain incorrect magnetometer readings.
We confirmed that the magnetometer-first approach,
when the magnetometer readings are reliable, can cover
a wider range of human walking speed.

5.3 Escalator module
We evaluated the escalator module in a building where

the escalator connects the second and the fourth floor.
We used a tape measure to obtain the reference height
between the two floors: 7.3m.
Figure 11 shows the CDFs of the error in the distance

reported by the escalator module. The figure compares
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Figure 11: CDF of error in the distance mea-
surement by the escalator module.

two cases. In one case, the user stood still while riding
the escalator. In the other case, the user was also walk-
ing during the ride. For each case, the user took the
escalator 50 times.1

In the case without walking, the 50% and 80% of the
results are within 0.75m and 1.5m, respectively. In the
case with walking, 50% and 80% are within 1.1m and
2.1m, respectively. As we expected, walking on the es-
calator generates more noise in the vertical acceleration,
causing larger errors in the distance calculation.
The 2.1m error–the 80th percentile in the case with

walking–is about 29% of the reference height between
the 2nd and 4th floors. This error-to-height ratio is
large compared to the elevator cases. This is because,
unlike an elevator where the movement starts and ends
at a standstill, the user steps on and off an escalator
that is constantly moving, making it harder to separate
the acceleration purely due to the escalator.
However, an escalator typically covers no more than

2-3 floors, so the error in the distance measurement will
still not cause an error in determining the number of
floors. If a user rides a series of escalators one after
another, the error from one ride will not carry over to
the next one because we can apply ZUPT at landings.

5.4 Combined case
Figure 12 shows our evaluation scenario of a case in-

volving multiple types of movement: elevator up/down,
stairway up/down, and same-floor walking. The activ-
ity manager detects each activity and sends the sensor
measurements to the corresponding modules.
The travel scenario consists of seven steps. First, a

user takes an elevator on the 7th floor (0), and gets

1Out of the 50 walking trials, the user walked during the
entire ride 20 times, only the first half 15 times, and only the
second half 15 times. We do not show these cases separately
because there was no significant difference between them.
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Figure 12: A person’s travel between 7th and
10th floor including elevator riding, stairway
walking, and same-floor walking.

# of
(0) (1) (2) (3) (4) (5) (6) (7)

trials
8x 7 10 10 8 8 10 10 7
2x 7 10 10 8 8.5 10.5 10.5 7.5

Table 4: Floor levels reported at each stage.

off on the 10th floor (1). The user then walks on the
10th floor to the door to the stairway (2). She walks
down the stairway from the 10th to the 8th floor (3).
On the 8th floor, she comes out of the stairway, walks
to the other side of the floor to enter another stairway
(4). She walks up the stairway from the 8th back to
the 10th floor (5). On the 10th floor, she comes out of
the stairway, and walks to the elevator entrance in the
middle of the floor (6). Finally, she takes the elevator
on the 10th floor and goes down to the 7th floor, back
to where she started (7).
Table 4 shows the floor levels reported at each stage

in Figure 12 when we repeated the travel ten times. In
eight out of the ten trials, the correct floor was reported
at every stage. In the two remaining trials, the stairway
module failed to recognize the walking period between
(3) and (4) as same-floor walking. The module incor-
rectly reported one landing instead of zero. This caused
an error of 1

2
floor in the subsequent stages.

The evaluation results show that our system can suc-
cessfully track the user’s complex movements in general.
At the same time, the errors in the two trials reveal the
weakness in our system: it may fail to distinguish be-
tween stairway walking and same-floor walking. This
is indeed a difficult problem that remains as an active
research area. At the time of this writing, other activity
recognition systems have similar success rates [37].
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6. RELATED WORK

6.1 Fingerprinting
Fingerprinting identifies signals that have long-term

stability at each location. During the offline phase,
the signal strengths at different location coordinates
are recorded to build a fingerprinting database. Dur-
ing the online phase, the real-time signal measurement
is looked up in the fingerprinting database to find a
matching location.
Many kinds of signals have been used for fingerprint-

ing systems. RADAR [5], Place Lab [20], Horus [40],
FindingMiMo [30], and Ekahau [3] use ubiquitous Wi-
Fi signals. WALRUS [7] and Centaur [23] combine Wi-
Fi and acoustic localization. SkyLoc [33] uses GSM
signals. MoteTrack [22] is based on RF signals gener-
ated by low-power radio transceivers. There are also a
number of systems that use the distortions of Earth’s
magnetic field caused by the steel structure of a build-
ing [4, 8, 13].
Some of the fingerprinting-based systems consider ver-

tical location. SkyLoc [33] was in fact the first floor lo-
calization paper. SkyLoc was also motivated by the im-
portance of floor localization in emergency situations,
and it tackled the problem using GSM fingerprinting.
Shin et al. [30] and Chung et al. [8] also considered
floor-level vertical localization as part of their system
using Wi-Fi signals and geo-magnetism, respectively.
One disadvantage of fingerprinting is the effort re-

quired to conduct offline surveys. To achieve an accept-
able accuracy, signals should be sampled at every meter,
and on top of that, at least toward four different direc-
tions at each location [5], which generates an enormous
amount of data.
Moreover, fingerprinting-based approaches are vul-

nerable to transient conditions like interfering electro-
magnetic signals, or on-going changes like rearranged
equipment and furniture. This characteristic makes fin-
gerprinting an unsuitable approach for emergency call
systems.

6.2 Dead reckoning
Systems based on dead reckoning typically measure a

user’s acceleration, and calculate the distance by dou-
ble integration. The main disadvantage of double inte-
gration is that the accumulation of errors degrades the
accuracy of the distance estimation over time. For this
reason, many indoor location systems instead count hu-
man steps to estimate the distance traveled. A step-
based system usually requires an initial training pe-
riod to determine the length of a user’s stride. Yet
another way to implement dead reckoning is to mea-
sure the travel time. The traveled distance can then
be calculated from the predetermined velocity, which is
commonly obtained through training.

Among the systems based on double integration, two
systems [12,24] use foot-mounted IMU. Mounting a sen-
sor on the user’s foot enables ZUPT to achieve a signif-
icant reduction of errors. Xuan et al. [36] and Shanklin
et al. [29] use smartphones to develop indoor positioning
systems. Both systems do not reach the accuracy of the
foot-mounted systems because of the lack of adequate
mechanisms to handle the accelerometer drift.
Our elevator module calculates the elevator’s displace-

ment by double-integrating vertical acceleration cap-
tured by smartphones. Unlike the other smartphone-
based systems, we are able to apply ZUPT and other
error correction techniques because an elevator moves
only in the vertical axis, and its velocity becomes zero
when it stops at a floor.
Step-based systems [15,17,31] detect human steps by

identifying the local maximum and minimum of vertical
acceleration. A pair of local maximum and minimum
within a short time period identifies one human step.
Our activity manager uses this approach to detect the
act of walking, but it does not need to count the steps.
Our stairway module similarly monitors the ampli-

tude of vertical acceleration. The difference is that, in-
stead of trying to identify each and every step by scruti-
nizing vertical acceleration, we detect landings by focus-
ing on large amplitude changes in acceleration, which
are easier to identify.
Two systems [25,38] implement floor localization us-

ing the time-based approach. Both systems track a
user’s movement in elevators and on stairways. In [25],
a user’s current activity is classified into one of four
classes, elevator up/down and stairs up/down, using the
smartphone’s real-time accelerometer data. The system
then estimates the number of floors that the user has
traveled simply by dividing the total travel time by the
time it takes to travel one floor. This system requires
a training period to build a classifier for each activity
and to calculate the average times needed to travel one
floor. FTrack [38] takes a similar approach, but uses a
novel crowdsourcing technique to construct a mapping
from the starting floor and travel time to the destina-
tion floor. Crowdsourcing, however, requires the willing
participation of a large number of users, which may not
be feasible. In addition, there is still a privacy concern
during FTrack’s offline map construction phase.
The main disadvantage of the two time-based ap-

proaches is that it cannot take account of speed vari-
ations. Different elevators can have different speeds.
Users may walk at different speeds on stairs, or may
even climb up multiple stairs in each step. Our sys-
tem do not have such limitations. Our elevator and
escalator module is distance-based, rather than time-
based. Our stairway module works by counting land-
ings, rather than counting individual steps or measuring
the travel time.

12



6.3 Hybrid systems
Hybrid systems combine infrastructure and dead reck-

oning in order to overcome the shortcomings associated
with taking a single approach. The estimated locations
from dead reckoning are periodically adjusted by the
information from the infrastructure, such as RFID bea-
cons [39] or Wi-Fi fingerprinting [27, 35]. Beacons in
this case can be deployed in much coarser granularity
compared to the systems purely based on infrastructure.
Woodman and Harle [35] proposed a hybrid indoor

localization system that uses dead reckoning and Wi-
Fi fingerprinting to track a pedestrian through multi-
ple floors. Their system tracks the user’s movement
using a foot-mounted IMU, and aligns the user’s path
with the floor plan of the building. Wi-Fi fingerprint-
ing constrains the possible initial locations into a par-
ticular region of the building, which in turn reduces the
complexity of the alignment algorithm, and resolves the
ambiguity arising from the symmetries in the floor plan.
Zee [27] also combines dead reckoning and Wi-Fi finger-
printing, but for a different purpose. Zee aims to elim-
inate the calibration effort required to build the Wi-Fi
fingerprinting database.
Our system can be viewed as a hybrid system because

we primarily rely on dead reckoning, but we anchor the
user’s location using the information from the entrance
beacon. The user’s location is also checked and adjusted
by the location beacons sparsely deployed throughout
the building.

7. CONCLUSION AND FUTURE WORK
This paper makes three contributions toward improv-

ing vertical accuracy of indoor positioning. First, we
present a hybrid architecture for floor localization with
emergency calls in mind. The architecture combines
beacon-based infrastructure and sensor-based dead reck-
oning, striking the right balance between accurately de-
termining a user’s location and minimizing the required
infrastructure. Second, we present the elevator module
for tracking a user’s movement in an elevator. The ele-
vator module addresses three core challenges that make
it difficult to accurately derive displacement from accel-
eration. Third, we present the stairway module which
determines the number of floors a user has traveled on
foot. Unlike previous systems that track users’ foot
steps, our stairway module uses a novel landing count-
ing technique.
We recognize that there are many hurdles to overcome

before our system can be deployed in the real world. For
instance, our elevator module assumes that the acceler-
ation inside an elevator is mostly vertical. This will not
be the case if a user happens to pace back and forth
during the ride. Similar shortcomings also exist in the
stairway module. The stairway module can produce
false positives in some unusual cases. For example, a

user can stop in the middle of a stairway, slowly turn
around 180 degrees, and walk the rest of the stairway
backward. This is highly unlikely, but it illustrates the
general limitation of our approach that relies on behav-
ioral norms. As future work, we plan to study the ef-
fects of various unusual behaviors, and explore possible
solutions to address them.
We also plan to improve activity detection using am-

bient signals. For example, an entry to a building can be
detected using the RFID signals from anti-theft gates,
which are typically installed at the entrances of libraries
and retail stores. Identifiable magnetic signatures can
be detected around elevators and escalators. Even though
we have argued against relying on a barometer for verti-
cal location, a barometer can be useful as an additional
input to distinguish between stairway and same-floor
walking.
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