
The Multimedia Internet Terminal (MINT)�

Dorgham Sisalem
GMD-Fokus, Berlin

sisalem@fokus.gmd.de

Henning Schulzrinne
Columbia University, New York
schulzrinne@cs.columbia.edu

Abstract

The Multimedia Internet Terminal (MINT)1 is a flexible multimedia tool set that
allows the establishment and control of multimedia sessions across the Internet. The
system architecture is fully distributed, with no central components. For each partic-
ipant, a coordinating application manages a set of loosely coupled media and control
agents. Using the coordinating application, session members can control the sending
and receiving of several audio and video streams, invite other users to the session and
negotiate the order in which members are allowed speak. The different components
of MINT are separate processes that are independent from one another, yet can eas-
ily communicate with each other using a simple interprocess communication protocol
based on local multicast. Individual components can be replaced without affecting the
operation of other components. The same media agents can be used in applications
ranging from media-on-demand retrieval to Internet telephony and distance learning,
simply by using different control tools.

To improve the quality of service of the multimedia sessions MINT is enhanced
with a suite of QoS control mechanisms including resource reservation based on RSVP,
adaptive media control and the ability to send video data in hierarchically layered
streams. Thus, the tool set can accommodate a range of capabilities and available
network bandwidths in heterogeneous environments.

KEY WORDS: Audio/video conferencing; floor control; session initiation; Ses-
sion Initiation Protocol (SIP); Session Description Protocol (SDP); Resource Reser-
vation Protocol (RSVP); adaptive applications; intermedia synchronization; signal-
ing; QoS control.

1 Introduction

The rapid growth, increasing bandwidth and the availability of low-cost multimedia end

systems has made it possible to use the Internet for multimedia applications ranging from

�This work was funded in part by the BMBF (German Ministry of Education and Research) and the DFN
(German Research Network) under the USMInT project.

1MINT is available free software from http://www.fokus.gmd.de/step/mint

1

telephony to conferencing, distance learning, media-on-demand and broadcast applica-

tions [30]. However, using the Internet for audio/visual communication introduces a range

of problems that were not addressed in the original design of the network, its protocols and

applications. The design of the Multimedia Internet Terminal (MINT) described here ad-

dresses some of these issues and incorporates some of the most recent proposals for solving

these problems. Handley et al. [13] summarizes some of the main issues related to the sub-

ject of multimedia communication over the Internet. Below, we describe how MINT ad-

dresses these issues. As will be discussed in more detail later, we distinguish media agents

that process continuous media streams from control agents that initialize, coordinate and

control these agents.

Intermedia interaction: In a networked multimedia application, media agents and con-

trollers have to interact on each end system so that media can be lip-synched, the

generation and reception of media streams can be controlled via floor control and

new services can be implemented. The different agents constituting MINT can com-

municate with each other using a simple control protocol, based on local multicast,

called Pattern Matching Multicast (PMM) [27]. This gives the user the impression

of having a monolithic tool, that consists, however, of separate components that can

be easily replaced, upgraded or adapted to new applications.

User location and invitation: To initiate a multimedia session, all participants need to

know a set of parameters such as the session (multicast) address and the set of me-

dia, their port numbers and their encodings. Prospective participants can either dis-

cover sessions on their own or be explicitly invited. Participant-directed discov-

ery includes listening to session announcements being distributed via mechanisms

such as a well-known multicast address [12] or web pages with listings of events

and on-demand multimedia streams. Announcements via multicast or email lists are

only appropriate for a relatively small number of pre-scheduled public sessions of

wide interest. Users could be invited explicitly via email, but the delay in delivery

and reading makes telephony-like spontaneous or private conferences difficult. Re-

cently, several proposals for sending invitations for multimedia sessions were devel-

oped [28, 15]. By locating the actual end systems the users are logged on and inform-

ing them about the session, the task of initiating multimedia sessions becomes much

easier and resembles to some extent the old but reliable telephone system. MINT in-

cludes the latest version of the session initiation protocol (SIP) [15]. Thereby, users

of MINT can invite other users in a simple way to join multimedia conferences. Af-

ter accepting an invitation MINT initiates the needed startup procedures on their be-

half, thereby minimizing the complexity of using the system.

Conference control: To simplify the task of controlling and using a multimedia confer-

ence, MINT provides each user with a conference control agent that controls all me-

dia agents the member is using in the session. The conference control agent offers

a single, consistent user interface regardless of the type of media agent used. This

is in contrast to current Internet multicast tools, where simple tasks like discover-

ing which video image belongs to the current speaker are tedious. Our approach

also reduces the number of windows the member needs to monitor and position. In

addition to the audio and video agents, MINT includes agents for floor control and

quality-of-service (QoS) control.

QoS control: The Internet currently supports only best-effort service. To allow for an

improved QoS, two different approaches are currently being discussed. The inte-

grated service model [3] has been proposed within the Internet Engineering Task

Force (IETF), the standardization body of the Internet. It allows end systems to re-

serve the amount of resources needed to fulfill their requirements. On the other hand,

various adaptation schemes [2, 5, 23] are being discussed that adjust the end system

requirements to the current congestion state of the network. MINT can benefit from

both approaches, as it implements the resource reservation (RSVP) protocol for es-

tablishing guaranteed QoS reservations and supports several adaptation schemes in

the video agents.

The paper is structured as follows. In the next section (Section 2), we describe related

work in the area of multimedia conferencing. In Section 3, we describe the architecture

of the Multimedia Internet Terminal (MINT) in detail, as well as the protocol used for the

communication between the different agents. In Section 4, we describe the different parts

of the MINT. Currently, MINT consists of a video media agent (NeViT) [36], an audio

media agent (NEVOT) [26], a session controller (ISC), and invitation, reservation and floor

control agents.

Section 5 then describes different approaches for providing quality of service, namely

resource reservation, rate adaptation and hierarchical data transmission. Finally, in Sec-

tion 6 we conclude the paper and present some of the issues we are still working on.

2 Background and Related Work

Two main issues need to be considered when realizing multimedia conferencing over the

Internet: the network protocols used and the available applications. In this section, we

briefly describe some of the different characteristics of Internet multimedia applications

and networking issues essential to realizing multimedia conferences and other applica-

tions.

2.1 Network Support for Multimedia Conferencing

Our work focuses primarily on the delivery of packetized multimedia in the Internet, of-

ten distributed using IP multicast. Currently, IP multicast is deployed in the Internet as

an overlay network referred to as the MBone [6, 9]. However, most local networks also

support multicast. Following convention, we refer to tools operating in this environment

as MBone tools, although they all can use any multicast-capable IP network and all can

operate in unicast mode. The protocol stack for Internet multimedia is shown in Fig. 1.

signaling quality of service media transport

li
nk

ne
tw

or
k

ph
ys

ic
al

tr
an

sp
or

t

ap
pl

ic
at

io
n

da
em

onH.323 RSVPSIP

PPP

Sonet ATM

AAL3/4 AAL5 PPP

V.34

UDP

Ethernet

TCP
ke

rn
el

RTSP

IPv4, IPv6

RTCP

RTP

(H.261, MPEG)
media encaps.

Figure 1: Internet multimedia protocol stack

Most of the current available MBone tools such as VIC[22], VAT, rat [20], or NEVOT[26]

use the real time transport protocol (RTP) [31] designed within the Internet Engineering

Task Force (IETF). RTP is now widely used for conferencing, as well as emerging appli-

cations such as Internet telephony and Internet media-on-demand services. It is also part

of ITU recommendation H.225.0 for packet-based conferencing.2

RTP is an end-to-end protocol that is often used together with other transport protocols,

in particular UDP. RTP sessions consist of two lower-layer data streams, namely a stream

of media data such as audio or video and a stream of control packets that is carried a sub-

protocol called RTCP. The data protocol offers functionality common to a range of media

types, including timing, loss detection, resequencing, payload type marking, encryption

and demarcation of application layer data units such as video frames and voice talk-spurts.

Each RTP packet also contains a random identifier that makes it possible to distinguish sev-

eral sources that traverse a single transport-level “translator” such as a firewall. A packet

may also indicate a list of “contributors”, useful for maintaining identities when mixing

audio streams or playing back recorded RTP sessions.

RTP has no notion of a connection; it may operate over either connection-oriented pro-

tocols such as ATM AAL5 or connectionless lower-layer protocols, typically UDP/IP. It

does not depend on particular address formats and only requires that framing and segmen-

tation is taken care of by lower layers. RTP offers no reliability mechanisms. It is typically

implemented as part of the application or as a library rather than integrated into the oper-

ating system kernel.

In UDP, data and control streams use separate ports, however, they may be packed into

a single lower-layer stream as long as RTCP packets precede the data packet within the

lower-layer frame. A single stream may be advantageous for systems where connections

may be costly to manage, e.g., ATM PVCs 3.

The control protocol (RTCP) allows monitoring of the received and transmitted data

rates, delay jitter and packet losses. Each session member periodically multicasts control

packets to all other session members containing information about the amount of data sent,

if any, and reception reports for each sender. Each session member also includes a globally

unique identifier and possibly other identifying information such as the member’s name

or email address. All participants share a fixed, constant control bandwidth, typically set

at 5% of the data bandwidth, with data senders getting a disproportionate share. Control

traffic is typically sent best-effort, but, since its bandwidth is small and known, it can be

figured into the resource reservation. RTCP packets also contain identifying information

that allow to connect different media streams with the same participant.

2http://www.cs.columbia.edu/˜hgs/rtp contains a listing of RTP-capable tools.
3The video engine of MINT currently uses two separate VCs for data and control packets when trans-

mitting over native ATM connections.

2.2 Architecture of Multimedia Conferencing Application

When looking at the currently available multimedia conferencing tools two different ap-

proaches can be distinguished:

� The first type of tool is a single, large, monolithic tool that support different tasks

such as video, audio and application sharing. Such tools consist either of a single

program or a tightly integrated set of applications that can only interoperate within

the set. Adding new features to such tools, applying them to new tasks or upgrading

the media agents by, say, replacing a video agent by a faster one is rather difficult.

� Secondly, loosely coupled tools such as the Internet multicast (MBone) tools listed

earlier. In this approach, each media is typically handled by a distinct media agent.

Conference control issues such as floor control, joining and leaving a conference

and starting the appropriate agents is delegated to an external conference controller.

With such an approach, the media agents can be easily replaced, updated and reused

in new applications. The main drawback of this approach is that once the conference

controller has started a media agent, this media agent is on its own and the controller

is no longer in control of it. This means that the user has to employ a different user

interface for each application, with all of the interfaces doing in part common tasks

such as initiating or terminating a service or displaying the members of the session.

A session member contributing audio and two video streams appears in three dif-

ferent places in the user interface, possibly with different name display conventions

and relative positioning. A more severe drawback of the loosely coupled tools ap-

proach is the lack of interaction between the different tools. It is also difficult to

build “embedded applications” that hide some of the underlying complexity from

the user. For example, for an “Internet TV” application, listing all other viewers is

hardly appropriate.

This rough characterization of multimedia tools indicates the basic design concepts a

multimedia tool set should follow: different agents should easily interact with each other,

yet there should be no dependencies between the different components. MINT was de-

signed to fulfill these requirements. It consists of several applications that can communi-

cate with each other using a simple communication protocol. The applications are, how-

ever, independent of each other so that they evolve independently.

Another distinguishing characteristic of multimedia applications is their approach to

session control. Light-weight (or loosely-controlled) sessions are multicast based and lack

explicit controls on session membership and centralized control of media sending and re-

ceiving. With this approach, conference control information is usually multicast to all

members. Light-weight sessions can easily scale to several million participants, covering

the whole spectrum from a two-party phone calls to Internet video broadcasts. Since any

multicast-capable Internet host can subscribe to any multicast address, light-weight con-

ferences have to rely on encryption to ensure privacy. Due to packet delays and losses, no

single member can keep a complete and current list of all participants. Multicast groups

are also subject to intentional and accidental denial of service problems. Most of the ap-

plications currently used in the MBone are based on this architecture; however, a set of

tools using the H.323 suite of protocols follows the model of tightly coupled conferences.

Tightly coupled conferences use explicit conference membership mechanisms and often

have an explicit conference control mechanism regulating who can send data into the con-

ference. They often use a hub-and-spoke model, with a multipoint control unit (MCU)

serving as a rendezvous point and possibly replicating media streams from a sender to all

participants. Conferencing applications used in ISDN environments also usually rely on

this approach.

For small groups, tightly coupled conferences avoid the need for multicast, which is

not yet widely available in the Internet. An MCU, if used, also offers access-based secu-

rity, restricting who can readily listen or send media data to the conference. Billing is also

simplified. However, tightly coupled conferences introduce difficult state synchronization

problems, have single points of failure and may provide a false sense of security in the ab-

sence of strong encryption.

Since we want our set of tools to span the whole range of Internet multimedia applica-

tions, MINT follows the light-weight conference model.

3 Local Conference Control Architecture

The previous section discussed the flexibility of loosely coupled tools. However, this flex-

ibility comes at the cost of complicating the interaction between the different applications

used within the conference.

Intermedia synchronization, for example, requires that audio and video agents interact.

Audio and video streams arrive at the destination nodes out of synchronization due to the

different delay jitter they experience within the network. The delay incurred by audio en-

coding and decoding also typically differs from that for video. Other examples include

quality of service control, automatically displaying the video from those conference par-

ticipants that are currently talking or using the display coordinates of video windows to

control artificial spatial placement of the audio from individual speakers (artificial stereo,

holophony) [7, 19, 21].

Internet

Session ID: Reserve/PATH: Address : Port : Prameters

RSVP

PMM Reservation Message

User Site

bus
conference

RSVP
Daemon

vic

NeVoT

NeViT

isc

Reservation
Agent

API

Figure 2: Example multimedia conferencing control architecture

In [27], a communication protocol called Pattern Matching Multicast (PMM) is intro-

duced that can be used to start and terminate media agents. PMM can exchange session

parameters such as a unique session identifier and the email addresses of the participants

and change parameters of media agents during a session, such as bandwidth and frame

rate of a video source or the compression algorithm. The messages used in this protocol

are sent as ASCII text and are formatted to be directly interpretable by a standard Tcl in-

terpreter [25].

An agent sends a PMM message to indicate a change in state or to initiate an action in an-

other agent. The name “PMM” derives from the property that messages are not addressed

to a particular agent, but rather to a group of agents that have expressed interest in partic-

ular commands or events. Just as in the IP host group model [8], senders do not need to be

aware which, if any, agent is interested in processing the PMM message. A single message

may trigger actions in zero or more agents. There are a number of possible implementa-

tions for such a replication mechanism, including a centralized message replicator agent

or host-local multicast. The only assumption is that messages are distributed reliably. We

have chosen the configuration depicted in Fig. 2, in which messages are exchanged using

host-local IP multicast. That is, agents send packets to a well-known multicast group with

the time-to-live (ttl) value set to zero, which indicates that data should not be sent outside

the host. In another approach, a replicator process listens to a well known TCP port for

messages and sends them to all media agents and controllers that have expressed interest

in that particular type of message. This latter method has the advantage that only the pro-

cesses that have expressed interest in a certain message type are woken up instead of all

processes subscribed to the multicast address. However, this adds another process, which

also needs to keep track of which client processes are still alive.

session s/video/1

s/video/1 statistics?

Controller Videotool

s/video/1 max_bandwidth 500

s/video/1 close

s/video/1 closed {}

 s/video/1 created

{actual_bandwidth 980} {actual_frame_rate 25}
statistics {ssrc 854} {cname dor@fokus.gmd.de}

Figure 3: Example for using the conferencing protocol

Fig. 3 shows a simple example for such an interaction between a central conference con-

trol agent and a video agent. Each message contains a hierarchical session identification

and the message body. The identifier s/video/1 used in Fig. 3 denotes the conference s, the

media type video and the instance of the media, 1. The first message “session” creates a

blank media session and starts an appropriate media application, in this case a video tool.

The application responds with a “created” message. With the “statistics” message the ap-

plication is asked to respond with some of the measured values such as the data rate of out-

going or incoming video streams or the loss rate. Receiving a message with the parameter

“max bandwidth” set to 500, the video agent sets its transmission rate limit to 500 kb/s. Fi-

nally, the “close” message concludes the media session. In PMM, media agents announce

when members join or leave a media session, change their RTCP SDES information or

start transmitting data.

The controller application does not need to know if a video agent is handling one or

several video sessions. If the session creation message does not elicit a response within a

time-out interval, the message sender starts the application and re-issues the request.

Since all parameters of a media agent are controllable through PMM messages, media

agents do not need any user interface. All user interaction is handled through a single in-

terface in the session controller. The idea of remote-controlled applications is similar to

Microsoft ActiveX controls, except that the PMM mechanism is text-based and the set of

receivers is unknown to the sender. Tcl also has a “send” mechanism that allows to exe-

cute Tcl commands in Tcl applications using the same X display. However, it is limited to

Tcl applications and is, again, restricted to addressing one particular instance of a named

application.

Currently, we do not have a mechanism that allows a controller to discover the param-

eters that are setable for a particular media session. However, this facility could be added

readily as part of the “created” response.

4 The Internet Multimedia Terminal (MINT)

In MBone conferences, much of the participant information and control is duplicated across

several media agents. Rather than a participant-centric view, i.e., which user is using which

media, MBone tools encourage a media-centric view, with each media agent displaying a

separate list of participants, often using different ways of identification. It is also diffi-

cult to integrate media agents into new, domain-specific applications with their own user

interface.

Based on these observations we designed MINT as consisting of several media agents,

each having a minimal graphical interface or even none at all. All agents can either work

independently or interact with each other using PMM. In addition, a control entity was

added to manage and control the different agents by sending PMM messages. This archi-

tecture gives the user the impression of using a monolithic tool.

Figure 4: A snapshot of the MINT conferencing tool

Fig. 4 shows a snapshot of some of the of the features of MINT. A central controller

called ISC displays the session members and the joined sessions. It provides the user with

a graphical interface to start and control the different media agents. The figure shows also

the audio and video panels. We will discuss each component in the following sections.

4.1 The Integrated Session Controller (ISC)

The integrated session controller (ISC) is the central control entity in MINT. It provides

the user with the necessary interface for initiating and terminating a session. It provides

the controls that govern rendering or ignoring the media data received from a participant.

It also has control panels for choosing the appropriate parameters for the different media

agents. Each user interaction with ISC results in the sending of a PMM message describing

the desired action. ISC also displays the names of all session members, the sessions they

are listening to and if they are sending or receiving any data. Any media agent that uses

the PMM conference bus can be controlled by ISC.

Integrating the configuration panels of the different tools into ISC gives the user a bet-

ter overview and thereby a better control of the different agents used. Also, as the differ-

ent procedures of creating, controlling and terminating the different agents integrated in

MINT are rather similar, the learning time needed for starting multimedia sessions with

MINT is shorter than that needed to learn all the different tools used currently in the In-

ternet multimedia conferences.

4.2 The Network Video Tool (NEVIT)

The first MBone video tools were the Xerox PARC Network Video tool (nv) [11] and the

INRIA video Conferencing System (ivs) [38]. While both of these tools were intended

for supporting low bit-rate multicast over the Internet, they choose different compression

algorithms and video representations. As extending any of the two tools to support the

other’s compression style was a non-trivial task, both tools were non-interoperable. More

recent tools such as VIC [22] support both hardware and software compression engines and

offer better performance.

VIC supports a limited form of interaction with the VAT [1] audio tool: VAT can signal

speaker activity through a mechanism similar to the conference bus. The speaker activity

indication then selects which site is displayed in full size. There has also been some work

concerning synchronizing audio and video based on VIC and VAT [20].

We built a new video media agent, NEVIT, that lets us explore the user interaction fea-

tures of MINT. NEVIT has no graphical user interface at all. Instead, all functions of the

tool, including establishing and terminating sessions, configuring the encoding used and

setting the transmission parameters are controlled by ISC using the PMM messages sent

on the conference bus. Through the messages NEVIT can either communicate with the

conference controller or with any other media agent listening to the local conference bus

and capable of interpreting the messages.

While our video tool supports different compression algorithms, multicasting and the

ability of handling a variable number of video streams, our main goal was to produce a

flexible tool that can easily be extended to achieve intermedia synchronization, automatic

quality of service control and interaction with other media agents without necessarily be-

ing dependent on those agents. The tool can be roughly divided into three parts: routines

that process messages arriving on the local conference control bus, routines dealing with

network protocols including RTP and video compression/decompression routines.

4.2.1 PMM Implementation Issues

In implementing the conference control bus, some care is necessary to avoid locking out

commands from the bus during high-rate video processing. This lock-out is possible due

to the use of event-based programs in Unix and X11. More precisely, Unix applications

using X11 or processing data from several sources typically use the select() event

multiplexer as their main loop. When one or more sockets have data waiting to be read,

select() returns a bit mask with the indices of sockets with data waiting. If the event

handler always checks first for the socket on which video data arrives and the CPU can

barely keep up with the compression or decoding of the data, the conference control bus

socket may never be read as there is always video data waiting. Thus, the conference con-

troller looses control over the application. Unfortunately, with most event handling pack-

ages such as the Tcl or Xlib routines, the programmer cannot predict the order of event

processing, so that experimentation is required to ensure that the socket handling the con-

ference control bus is always checked first for messages. Alternatively, a threads-based ap-

proach can be used, but requires greater care in managing concurrent access to data struc-

tures.

4.2.2 Network Interface

NEVIT is based on the real time transport protocol. It uses as a transport protocol uni-

cast or multicast UDP over IP. As an additional feature, NEVIT supports native ATM by

sending data directly using AAL5/ATM. This is supported using the application program-

ming interface provided for the FORE ATM-adapter cards based on SPANS. Updating this

interface to UNI 4.0 will be one of our future tasks.

4.2.3 Video Handling

Currently, NEVIT only supports the SunVideo card for capturing and compressing video

images. The card supports JPEG, MPEG, CellB and YUV video [37] in hardware. NEVIT

on the other hand, provides the appropriate algorithms for decompressing and displaying

JPEG, MPEG and YUV video images.

The JPEG decoder was ported from the VIC video tool. It is based upon the JPEG de-

compression code provided by the Independent JPEG Group and enhanced with condi-

tional replenishment. With conditional replenishment, only those parts that have changed

in consecutive frames are actually decoded, resulting in a faster decoder and lower process-

ing overhead. On a Sun SPARC 20/712, we manage to receive, decompress and display

JPEG frames at the full rate of 30 frames/s. The user-level handling consumes around 70%

of the available processor capacity. The network data rate is about 1.3 Mb/s.

YUV denotes the uncompressed video signal consisting of luminance and subsampled

chrominance values (4:2:2), requiring four bytes for two pixels. While the rendering of

YUV data is simple, a YUV-coded video with 30 frames of 240 by 320 pixels per sec-

ond generates about 30 Mb/s, making it suitable mainly as a test load for ATM networks.

(Compressing this video stream into JPEG frames with a quality factor of 50 yields a data

rate of about 1-1.5 Mb/s.)

In addition to that, NEVIT is capable of sending and receiving MPEG-1 video streams

using the hardware codec on the SunVideo card for compression and the Berkeley MPEG

library to handle the decompression.

4.3 The Network Voice Terminal (NEVOT)

NEVOT [26] is an audio tool that allows the user to join different audio sessions simul-

taneously. It has only a minimal control interface and is mainly configured using ISC. It

supports audio qualities ranging from communication-quality at about 4 kb/s to high fi-

delity, CD-quality audio at more than 1.5 Mb/s (16 bit stereo at 44.1 kHz or 48 kHz sam-

pling rates). It currently operates over UDP/IP, but can be easily modified to use ATM

directly, should that be desirable. The transmission quality of NEVOT can be changed by

switching audio encodings during a transmission, with different participants being able to

use different encodings at the same time. Just as with NEVIT, NEVOT is based on the

RTP/RTCP protocol. Also, it supports the vat protocol which ensures its interoperability

with the VAT audio tool from the Lawrence Berkeley Laboratory (LBL).

4.4 The Session Floor Controller (IFLOOR)

In conferences with long latencies and low-frame-rate video, participants lack the visual

and auditory cues to negotiate who gets to talk. Experience has shown that in these ses-

sions, turn-taking becomes difficult, with multiple participants jumping in at the same time

after a speaker finishes. Participants also have no way to subtly let the current speaker

know that they want to speak up, without rudely interrupting. Thus, there tends to be less

back-and-forth and more long monologues. In addition, on bandwidth-limited links, mul-

tiple simultaneous speakers may well lead to packet loss, rendering them all incompre-

hensible. For these reasons, floor control is needed even for small discussion groups. It

is particularly important for large groups often found in teleteaching applications, as one

cannot afford to transmit video for each participant, and thus both the instructor and mem-

bers of the audience lack any visual cues as to who would like to speak.

We have enhanced MINT with a floor controller that coordinates who is allowed to

speak. The controller is designed to work in a decentralized fashion so it could easily scale

to support sessions of hundred or more participants. Each participant runs a copy of the

floor controller and has the ability to push buttons to “raise or lower her hand”. Floor con-

trollers send messages via multicast to all other floor controllers. User interaction triggers

the local floor controller to send a time-stamped request to speak or a request to cancel an

earlier speaking request. The message also includes the identity of the requesting host and

the session identity. A reliable multicast protocol should be used to mitigate the effect of

packet losses. Currently, we still rely on a simple multiple-transmission scheme but are

working on adding a more robust approach.

IFLOOR Coordination
Media Agent Control
Audio / Video Data

Host A

IFLOOR

PMM Message
(indicate active speaker)

Internet

Agents

IFLOOR

Host B

speakerlist

Agents

speakerlist

Figure 5: Session floor control architecture

We can distinguish between two modes in which the controller may be used:

Conference-style sessions: In a conference-style session, all conference participants have

the same priority. Floor controllers maintain a time-ordered request list. We assume

that time is synchronized across session participants to within a few seconds, as is

easily accomplished using NTP [24]. Thus, each participant can decide indepen-

dently that it is her turn to speak.

Moderated sessions: In a moderated session, there is a central moderator that assigns the

right to speak to all the requesting members in a centralized way. A teleteaching

scenario might use such a configuration with the students requesting the right to ask

questions and the teacher deciding whom to take questions from. The request to

speak reaches the moderator site via multicast, or is sent to it via TCP. The latter may

be preferable in this case, as it avoids lost requests. The moderator can select any

of those waiting in line to speak by sending a message indicating his choice. Simi-

larly, the floor is withdrawn with another message. A moderator might be selected

through the conference control protocol, e.g., a session directory or conference in-

vitation protocol (SIP) [15].

As Figure 5 shows, the floor controllers involved in a session negotiate which member

receives the right to speak. Based on the state indicated by either the moderator or the

locally maintained list, the floor controller application sends PMM requests to the local

audio and video applications to enable and disable sending and receiving. More precisely,

the floor controller disables reception from all members except the speaker and disables

sending unless its local list or the moderator indicate that it has the right to speak. To main-

tain a more interactive mode, we could imagine the case in which the the floor controller

does not simply disable the reception of audio data from other receivers but reduces the

volume with which their data is being played out. In this manner, a session participant that

ignores the advice of its local floor controller intentionally or because of a malfunction

cannot disrupt the whole conference, except by injecting excessive traffic into bandwidth-

limited links. Note that the media agents are not aware that a floor controller instead of

ISC governs sending and receiving.

4.5 Session Initiation Agent

Currently, to invoke a multimedia session with other members, the session initiator would

need to contact all the members either by calling them on the phone, sending them email or

posting the session information using a global session directory such as the sdrmulticast

directory session tool commonly used in the MBone. The first two methods are cumber-

some particularly for large groups, the third requires that listeners know in advance about

the existence of the session. Multicast announcements also have scaling problems, as al-

most all announcements end up being sent to the world at large. Currently, sdr typically

advertises on the order of twenty upcoming and on-going sessions; with commercial use,

the number could well be larger than the number of TV and radio stations, measured in the

thousands.

The Session Initiation Protocol (SIP) [16, 29] being standardized within the IETF de-

scribes a method for inviting users to join a session. It also conveys the necessary infor-

mation to the end system to configure the local media agents. Unlike some of the currently

available conferencing applications that require knowledge of the current login address of

a participant, the SIP invitation agent uses the email address of the user to be invited to

locate his whereabouts and sends them an invitation to join the session. Figure 6 sketches

the method used for this location service. Given the email address of the user to be invited,

the domain name service (DNS) provides the address of the mail server for the invitee’s

domain. To start a session, the conference initiator’s SIP agent sends a SIP-message to

the SIP daemon residing on that mail server. That daemon only needs to locate the invi-

tee within its local domain. There are a number of possible approaches to locating users:

A data base updated at login time or periodically can track which host a particular user

is currently logged in at. Alternatively, the daemon can multicast a search request on the

local network or might use an existing protocol such as the finger protocol [40]. (We have

experimented with a recursive version of that protocol, making use of the fact that the fin-

ger protocol returns the host where the user last logged in from and following that lead.)

Many other methods are conceivable, depending on system capabilities.

Having located the host where the invitee is currently logged in, the daemon on the mail

server forwards the invitation to that address. The invited user can then join the session,

reject the invitation or just forward the call to some other site.

The invitation messages contain a description of the session using, for example, the Ses-

sion Description Protocol (SDP) [14]. This protocol is used to describe the media types

involved in the session, which coding styles to be used, some QoS parameters and addi-

tional information such as when to automatically invoke the session in the future. Having

accepted an invitation, the SIP agent contacts ISC and invokes the appropriate tools to join

the session based upon the session description messages.

ISC

ISC

Audio / Video Data
SIP Response

Daemon
Invitation

Daemon
Invitation

Domain B

Domain A

Internet

SIP Request

Mail Server B

Figure 6: Invitation and initiation of multimedia sessions using SIP

5 Quality of Service Control in MINT

Multimedia conferencing applications have two characteristics in terms of their quality-

of-service requirements. On the one hand, audio and video transmissions require a mini-

mal guaranteed bandwidth and, for interactive sessions, an upper bound on the end-to-end

delay. On the other hand, video media agents, in particular, can adapt to a wide range of

available bandwidths to provide increased perceptual quality. This section discusses some

of the QoS control mechanisms added to MINT that provide the user with a better QoS than

the best effort QoS level currently supported in the Internet.

5.1 Resource Reservation using RSVP

Bandwidth reservation is essential for multimedia conferencing to guarantee a minimal

level of uninterrupted service throughout the session. The IETF has recently standardized

RSVP [39, 4] as the protocol for setting up reserved sessions. When using RSVP as a QoS

signaling protocol, participating end systems establish a closed control loop. The senders

inform the network and receivers about their traffic characteristics by sending PATH pack-

ets. The actual reservation is triggered by the receivers who send their reservation requests

back towards the sender in RESV messages, based on the traffic profiles announced.

The current approach for using RSVP is to have the application invoke RSVP function-

ality via an API, as in Fig. 7(a). This API interacts with an RSVP daemon that sends and

receives PATH and RESV messages. Additionally, to allow for flexible control of RSVP,

the user interface of the application needs to be enhanced as well. While this might work

fine for applications available in source code and for users familiar with the applications,

it is rather difficult for ordinary users and impossible for applications only available in bi-

nary format. In this case, a user wishing to benefit from RSVP would need to wait until a

next release of the application is available that supports RSVP.

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

PATH/RESERVERSVP
Daemon

RSVP
API

Audio Conferencing

Application Sharing

API
RSVP

Video Conferencing

API
RSVP

RSVP
USER
Control

Interface

(a) Current approach for integrating RSVP

RSVP Agent

PATH/RESERVE

Audio Conferencing

Video Conferencing

Application Sharing
Control

RSVP
USER

API
RSVP

Interface

RSVP
Daemon

(b) Using RSVP with the reservation agent

Figure 7: Usage of the reservation agent

To avoid this restriction, we added a reservation agent to MINT that allows a user to

specify the resources it wishes to reserve and which session it wishes to make the reser-

vation for. This is an independent application that is controlled through ISC and offers the

user a graphical interface that allows him to specify different RSVP parameters such as

filtering types, traffic characteristics, session address and resources to be reserved. Ap-

plications that are integrated in MINT can directly communicate their session and QoS

parameters to the reservation agent using PMM. Otherwise, for applications wishing to

use RSVP but are not integrated in MINT, the user can specify those parameters using the

interface of the agent, see Fig. 7(b).

The data flow of reservation requests is illustrated in Figure 8. The session controller

sends a “reserve” PMM message containing flow specifications on the local conference

bus, which is picked up by the reservation agent. Through a library interface, the reserva-

tion agent communicates with the local RSVP daemon, which then forwards RSVP mes-

sages into the network.

Applications can announce over the local PMM conferencing bus their traffic descrip-

tion to be used in the PATH messages. The user can, additionally, manually change these

RouterHost 1 Host 2

reserve
message

Packet Filter

RSVP Daemon

Agent
Reservation

Agent
Packet Filter

Reservation

RSVP Daemon
RSVP Daemon

Packet Filter

RSVP Packets

reserve
message

iscisc

conference
bus

RSVP Packets

Figure 8: Reservation scheme using RSVP with MINT

characteristics if required. At the receiver sites reservations can be made based on those

characteristics.

5.2 Adaptive Applications

For a number of years, reservation will not be supported in large parts of the Internet, in

particular since bandwidth reservation requires new charging and settlement mechanisms.

Additionally, as it is usually rather difficult to anticipate the exact characteristics of a cer-

tain stream in advance one would tend to over-reserve resources to guarantee the requested

QoS level. This would, however, lead to under utilizing the network and would get costly

if one has to pay for the reserved but unused resources.

With no reservation available, the conference participants or at least the conference or-

ganizers have to manually set the appropriate bandwidths for the different media streams,

currently with little guidance from the media agents. Instead of guessing at the appropri-

ate bandwidth setting and then suffering or causing unnecessary packet loss, applications

should adapt themselves to the available network bandwidth. Also, even if resource reser-

vation is available, it may be desirable to attain the best possible quality of service given

current network load and fair sharing of bottleneck bandwidth.

Adaptation schemes are particularly attractive for video streams. Video usually con-

sumes more bandwidth than audio and is of less importance, especially for the cases of

teleteaching and personal communication for which MINT was initially designed for. Video

is also more flexible in its bandwidth needs and thus lends it self more readily to adaptation.

Our video media agent (NEVIT) is enhanced with a bandwidth adaptation algorithm that

tunes the video frame rate to achieve different transmission data rates. Adapting band-

width to current network conditions requires the exchange of state information between

the source and the network nodes or the receivers. The first approach is used for the ATM

available bit rate service [33]. The approach we are using is based on the RTP control pro-

tocol which, as pointed out earlier, provides periodic loss feedback from the receivers to

all members. Note that the reporting intervals for each receiver range from five seconds

to a minute or more. Thus, load spikes can lead to sustained packet losses or unfairness

in bandwidth usage. On the other hand, the bandwidth of audio and video sources should

only be adjusted over longer time periods to avoid perceptually annoying rapid quality

changes, e.g., rapidly changing frame rates.

Using the loss information sent within the RTCP packets, a sender can estimate the con-

gestion state in the network. Whenever the loss rate reported in the RTCP packets is above

a predefined threshold, the source reduces its rate by a multiplicative reduction factor. If

the loss rate drops below some predefined threshold, the source increases its rate addi-

tively. A detailed description for such an approach and some results for different network

topologies can be found in [5]. We have also been considering other approaches that are

less oscillatory [34] and others that are more friendly towards TCP connections [35].

Currently, the adaptation schemes we are working on are only implemented in NEVIT.

To use these schemes with video agents other than NEVIT without having to include the

schemes in the other applications, we are working on an adaptation agent that receives the

RTCP messages, takes the adaptation decisions and informs the video agents about the

appropriate transmission rate to send with using the PMM interface.

5.3 Hierarchical Data Transmission

With the application control approach a sender determines the appropriate transmission

rate based upon the congestion information arriving from the network or the receivers.

As IP-based networks such as the Internet traverse paths of widely ranging bandwidths

and load factors, such an adaptation approach would, however, perform poorly. In such

a heterogeneous environment the conflicting bandwidth requirements cannot be satisfied

with one transmission rate. Therefore, the rate is usually adapted to the worst receiver

requirements, thereby reducing the quality of the data received at all receiving sites.

To avoid these problems, various proposals have been made for hierarchical data distri-

bution, for example [17, 23]. Those proposals are based on partitioning a data stream into

a base layer, comprising the information needed to achieve the lowest quality representa-

tion and a number of enhancement layers. The different layers are then sent to different

multicast sessions. Based on their capacities, receivers can determine how many sessions

to join and thereby adapting the quality of the received data to their own requirements.

As video streams are usually the most demanding type of data in terms of bandwidth a

wide range of hierarchical video encodings have already been proposed [32]. In NEVIT,

we have implemented a simple layering scheme based on partitioning the frame rate among

the available layers. This is the simplest form of data layering that entails only little added

complexity to the end systems. Joining or leaving a session can either be controlled man-

ually or using an approach similar to that described in [17] based on reserving enough re-

sources for each layer before actually joining it.

6 Summary and Future Work

In the work presented here, we described a multimedia tool (MINT) based on loosely inte-

grated media agents with a central control entity. The different agents communicate with

each other and with the control agent using a simple communication protocol called PMM.

The tool supports audio and video conferencing and offers the user some other conferenc-

ing control agents such as reservation, invitation and control agents as well as QoS moni-

toring capabilities.

To improve the QoS of the conferencing sessions MINT supports the RSVP protocol for

making resource reservations. The video part of the tool (NEVIT) can adjust its transmis-

sion rate in accordance with the network congestion state based on the feedback messages

sent with the RTCP protocol. Finally, to accommodate heterogeneous receivers, video

streams can be sent in separate layers, allowing the receivers to join the number of lay-

ers suitable for their capacities.

Among our future tasks we are planning a voting agent, with which a user can distribute

a proposal among the session members and collect their votes on the proposal. This agent

must naturally handle data transfer reliability and security issues. All members of a ses-

sion must receive the entire proposal and all the votes must be correctly collected. Also,

proposals as well as votes should not be falsified resulting thereby in taking the wrong de-

cisions.

To extend the supported video encodings of MINT we have integrated the VIC video tool

into MINT. By stripping VIC of its user interface and replacing it with a PMM message

handling interface, we can use VIC as an integral part of MINT.

We are also working on integrating MINT with a video conference recording tool called

the MBone video conference recording on demand (MVCRoD) [18]. This would give the

user the possibility of recording the audio and video streams generated during a confer-

encing session and playing them out later.

A major issue that we have not been able to handle yet, is the support of application

sharing. For the distribution of slides and joint editing we are still using the WB [10] white

board from LBNL. As the application is only available in binary format we are not able of

integrating it into MINT. However, the task of supporting application sharing will be one

our major future goals.

MINT is currently being used for testing various aspects of multimedia conferencing

such as reliability and usability in various scenarios ranging from project meetings to teleteach-

ing.

7 Acknowledgments

We would like to thank all those who participated in implementing the different parts of

MINT: Stefan Hoffman for implementing the invitation agent, Frank Emanuel for his work

on the integration of VIC, Ilona Schubert for the implementation of the floor controller and

Krzysztof Samp who implemented the reservation agent. We also appreciate the work and

comments of Henning Sanneck and all participants in the USMInT project. Finally, we

would like to acknowledge the anonymous reviewers, who provided many comments that

were valuable in revising an earlier version of the paper.

References

[1] S. Baker. Multicasting for sound and video. Unix Review, 12(2):23–29, Feb. 1994.
[2] J.-C. Bolot, T. Turletti, and I. Wakeman. Scalable feedback control for multicast video dis-

tribution in the internet. In SIGCOMM Symposium on Communications Architectures and
Protocols, pages 58–67, London, England, Aug. 1994. ACM.

[3] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architecture: an
overview. Technical Report RFC 1633, Internet Engineering Task Force, June 1994.

[4] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation proto-
col (RSVP) – version 1 functional specification. Technical Report RFC 2205, Internet Engi-
neering Task Force, Sept. 1997.

[5] I. Busse, B. Deffner, and H. Schulzrinne. Dynamic QoS control of multimedia applications
based on RTP. Computer Communications, 19(1):49–58, Jan. 1996.

[6] S. Casner and S. Deering. First IETF Internet audiocast. ACM Computer Communication
Review, 22(3):92–97, July 1992.

[7] M. Cohen and N. Koizumi. Exocentric control of audio imaging in binaural telecommuni-
cation. IEICE Transactions on Fundamentals, E75-A(2):164–170, Feb. 1992.

[8] S. E. Deering. Multicast routing in a datagram internetwork. PhD thesis, Stanford University,
Palo Alto, California, Dec. 1991.

[9] H. Eriksson. MBone – the multicast backbone. In Proceedings of the International Net-
working Conference (INET), pages CCC–1 – CCC–5, San Francisco, California, Aug. 1993.
Internet Society.

[10] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. Reliable multicast framework
for light-weight sessions and application level framing. In SIGCOMM Symposium on Com-
munications Architectures and Protocols, pages –, Cambridge, Massachusetts, Sept. 1995.

[11] R. Frederick. Experiences with real-time software video compression. In Sixth International
Workshop on Packet Video, Portland, Oregon, Sept. 1994.

[12] M. Handley. SAP: Session announcement protocol. Internet Draft, Internet Engineering Task
Force, Nov. 1996. Work in progress.

[13] M. Handley, J. Crowcroft, C. Bormann, and J. Ott. The internet multimedia conferencing
architecture. Internet Draft, Internet Engineering Task Force, July 1997. Work in progress.

[14] M. Handley and V. Jacobson. SDP: Session description protocol. Internet Draft, Internet
Engineering Task Force, Mar. 1997. Work in progress.

[15] M. Handley, H. Schulzrinne, and E. Schooler. SIP: Session initiation protocol. Internet Draft,
Internet Engineering Task Force, July 1997. Work in progress.

[16] M. Handley, H. Schulzrinne, and E. Schooler. SIP: Session initiation protocol. Internet Draft,
Internet Engineering Task Force, Mar. 1997. Work in progress.

[17] D. Hoffman and M. Speer. Hierarchical video distribution over internet-style networks. In
ICIP’96, Lausanne, Switzerland, Sept. 1996.

[18] W. Holfelder. Interactive remote recording and playback of multicast videoconferences. In
4th. International Workshop on Interactive Distributed Multimedia Systems and Telecom-
minication Services (IDMS ’97), Darmstadt, Germany, Sept. 1997.

[19] N. Kanemaki, F. Kishino, and K. Manabe. A multi-media teleconference terminal controlling
quality of flow in packet transmission. In W. A. Pearlman, editor, Visual Communications
and Image Processing IV, volume 1199, pages 259–266, Philadelphia, Pennsylvania, Nov.
1989. Society of Photo-Optical Instrumentation Engineers.

[20] I. Kouvelas, V. Hardman, and A. Watson. Lip synchronization for use over the internet: Anal-
ysis and implementation. In GLOBECOM’96, London, UK, Nov. 1996.

[21] S. Masaki, T. Arikawa, H. Ichihara, M. Tanbara, and K. Shimamura. A promising groupware
system for broadband ISDN: PMTC. ACM Computer Communication Review, 22(3):55–56,
Mar. 1992.

[22] S. McCanne and V. Jacobson. vic: A flexible framework for packet video. In Proc. of ACM
Multimedia ’95, Nov. 1995.

[23] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered multicast. In SIGCOMM
Symposium on Communications Architectures and Protocols, Palo Alto, California, Aug.
1996.

[24] D. L. Mills. Network time protocol (version 3) specification, implementation. Technical
Report RFC 1305, Internet Engineering Task Force, Mar. 1992.

[25] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, Massachusetts, 1994.
[26] H. Schulzrinne. Voice communication across the Internet: A network voice terminal. Tech-

nical Report TR 92-50, Dept. of Computer Science, University of Massachusetts, Amherst,
Massachusetts, July 1992.

[27] H. Schulzrinne. Dynamic configuration of conferencing applications using pattern-matching
multicast. In Proc. International Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV), Lecture Notes in Computer Science (LNCS), pages
231–242, Durham, New Hampshire, Apr. 1995. Springer.

[28] H. Schulzrinne. Simple conference invitation protocol. Internet Draft, Internet Engineering
Task Force, Feb. 1996. Work in progress.

[29] H. Schulzrinne. A comprehensive multimedia control architecture for the Internet. In Proc.
International Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV), St. Louis, Missouri, May 1997.

[30] H. Schulzrinne. Re-engineering the telephone system. In Proc. of IEEE Singapore Interna-
tional Conference on Networks (SICON), Singapore, Apr. 1997.

[31] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a transport protocol for real-
time applications. Technical Report RFC 1889, Internet Engineering Task Force, Jan. 1996.

[32] N. Shacham. Multipoint communication by hierarchically encoded data. In Proceedings of
the Conference on Computer Communications (IEEE Infocom), volume 3, pages 2107–2114
(9A.4), Florence, Italy, May 1992. IEEE.

[33] S. S. Shirish. ATM Forum traffic management specification version 4.0. Technical Report
94-0013R6, ATM Forum, June 1995.

[34] D. Sisalem. End-to-end quality of service control using adaptive applications. In IFIP Fifth
International Workshop on Quality of Service (IWQOS ’97), New York, May 1997.

[35] D. Sisalem, H. Schulzrinne, and F. Emanuel. The direct adjustment algorithm: A tcp-
friendly adaptation scheme. Technical report, GMD-FOKUS, Aug. 1997. Available from
http://www.fokus.gmd.de/usr/sisalem.

[36] D. Sisalem, H. Schulzrinne, and C. Sieckmeyer. The network video terminal. In HPDC
Focus Workshop on Multimedia and Collaborative Environments (Fifth IEEE International
Symposium on High Performance Distributed Computing), Syracuse, New York, Aug. 1996.
IEEE Computer Society.

[37] Sun Microsystems. SunVideo User’s Guide. Sun Microsystems, Mountain View, California,
Aug. 1994.

[38] T. Turletti. H.261 software codec for videoconferencing over the Internet. Rapports de
Recherche 1834, Institut National de Recherche en Informatique et en Automatique (INRIA),
Sophia-Antipolis, France, Jan. 1993.

[39] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: a new resource reser-
vation protocol. In Proceedings of the International Networking Conference (INET), pages
BCB–1, San Francisco, California, Aug. 1993. Internet Society.

[40] D. Zimmerman. The finger user information protocol. Technical Report RFC 1288, Internet
Engineering Task Force, Dec. 1991.

