
Reliable, Scalable and Interoperable Internet Telephony

Kundan Narendra Singh

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2006



c©2006

Kundan Narendra Singh

All Rights Reserved



ABSTRACT

Reliable, Scalable and Interoperable Internet Telephony

Kundan Narendra Singh

The public switched telephone network (PSTN) provides ubiquitous availability and very

high scalability of more than a million busy hour call attempts per switch. If large carriers are

to adopt Internet telephony, then Internet telephony servers should offer at least similar quantifi-

able guarantees for scalability and reliability using metrics such as call setup latency, server call

handling capacity, busy hour call arrivals, mean-time between failures and mean-time to recover.

This thesis presents a reliable, scalable and interoperable Internet telephony architecture for user

registration, call routing, conferencing and unified messaging using commodity hardware. The

results extend beyond Internet telephony to encompass multimedia communication in general.

The architecture presented in this thesis deals with two aspects: at least PSTN-grade re-

liability and scalability of the Internet telephony servers, and interoperable Internet telephony

services such as conferencing and voice mail using existing protocols. We describe the archi-

tecture and implementation of our Session Initiation Protocol (SIP)-based enterprise Internet

telephony architecture known as Columbia InterNet Extensible Multimedia Architecture (CIN-

EMA). It consists of a SIP registration and proxy server, a multi-party conferencing server, a

gateway for interworking SIP with ITU’s H.323, an interactive voice response system and a

multimedia mail server. CINEMA provides a distributed interoperable architecture for collabora-

tion using synchronous communications like multimedia conferencing, instant messaging, shared

web-browsing, and asynchronous communications like discussion forum, shared files, voice and

video mails. It allows seamless integration with various communication means like telephone, IP

phone, web and electronic mail.

We present two techniques for providing scalability and reliability in SIP: server redun-

dancy and a novel peer-to-peer architecture. For the former, we use DNS-based load sharing



among multiple distributed servers that use backend SQL databases to maintain user records.

Our two-stage architecture scales linearly with the number of servers. For the latter, we pro-

pose a peer-to-peer Internet telephony architecture that supports basic user registration and call

setup as well as advanced services such as offline message delivery, voice mail and multi-party

conferencing using SIP. It interworks with server-based SIP infrastructures.



Contents

List of Figures ix

List of Tables xv

Acknowledgments xvi

Chapter 1 Introduction 1

1.1 Scalability and Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Peer-to-Peer IP Telephony. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Internet Telephony Interoperability. . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Original Contributions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Failover and Load Sharing in SIP Telephony. . . . . . . . . . . . . . . 10

1.4.2 Peer-to-peer Internet Telephony using SIP (P2P-SIP). . . . . . . . . . . 10

1.4.3 Enterprise Internet Telephony and Multi-platform Collaboration .. . . . 11

1.5 Overview of the Thesis .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Background: Session Initiation Protocol (SIP) 17

I Server Redundancy 26

Chapter 3 Failover and Load Sharing in SIP-based IP Telephony 27

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

i



3.3 Availability: Failover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Client-based Failover. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 DNS-based Failover. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Failover based on Database Replication .. . . . . . . . . . . . . . . . . 31

3.3.4 Failover using IP Address Takeover . . .. . . . . . . . . . . . . . . . . 32

3.3.5 Reliable Server Pooling. . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.6 Implementation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Scalability: Load Sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Network Address Translation. . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Multiple Servers with the Same IP Address. . . . . . . . . . . . . . . . 39

3.4.3 DNS-based Load Sharing. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 Identifier-based Load Sharing. . . . . . . . . . . . . . . . . . . . . . . 41

3.4.5 Two-stage Reliable and Scalable Architecture. . . . . . . . . . . . . . . 42

3.5 Performance Evaluation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Test Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.3 Non-uniform Call Distribution. . . . . . . . . . . . . . . . . . . . . . . 50

3.5.4 Performance of Stateful Proxy. . . . . . . . . . . . . . . . . . . . . . . 51

3.5.5 Effect of DNS Lookups . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.6 Other SIPstone Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Server Architecture . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Processing Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 Stateless Proxy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.3 Stateful Proxy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.4 The Best Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.5 Effect on Load Sharing Performance . . .. . . . . . . . . . . . . . . . . 63

3.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ii



II Peer-to-peer IP Telephony 66

Chapter 4 Overview of Peer-to-Peer Internet Telephony using SIP 67

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Skype and Related Systems. . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 P2P-SIP Telephony. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 IP Telephony vs. File Sharing. . . . . . . . . . . . . . . . . . . . . . . 72

4.2.4 Robustness and Scalability. . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Design Requirements . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 SIP-using-P2P and P2P-over-SIP. . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 5 SIP-using-P2P: Using an External DHT as a SIP Location Service 80

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Background: DHT API .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Data and Service Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Logical Operations . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Deployment Scenarios .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 P2P Client . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.2 P2P Proxy . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.3 P2P Client Adaptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Security and Trust. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Implementation Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Advanced Services . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8.1 Offline Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8.2 Presence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 6 P2P-over-SIP: DHT Maintenance using SIP 104

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Background and Design Alternatives. . . . . . . . . . . . . . . . . . . . . . . . 105

iii



6.3 Architecture Overview .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 SIP Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.2 Node Startup and Peer Discovery. . . . . . . . . . . . . . . . . . . . . 110

6.3.3 User Registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.4 Node Shutdown or Failure. . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.5 User Location and Call Setup. . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Details of the DHT Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4.2 Peer Discovery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.3 Joining the DHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.4 Stabilization . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4.5 Node Shutdown (Graceful Termination) .. . . . . . . . . . . . . . . . . 127

6.4.6 Node Failure and Failover. . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5 User Registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.1 Registration Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.2 Node Shutdown (Graceful Termination) .. . . . . . . . . . . . . . . . . 135

6.5.3 Node Failure and Failover. . . . . . . . . . . . . . . . . . . . . . . . . 136

6.6 Call Setup and Message Proxy. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.6.1 Multimedia Call Setup and Instant Messages. . . . . . . . . . . . . . . 137

6.7 Advanced Services . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.7.1 Offline Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.7.2 Multi-party Conferencing . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.7.3 Device Independence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.7.4 Presence and Event Notification. . . . . . . . . . . . . . . . . . . . . . 142

6.7.5 Adaptor for Existing SIP Phones. . . . . . . . . . . . . . . . . . . . . . 145

6.7.6 NAT and Firewall Traversal. . . . . . . . . . . . . . . . . . . . . . . . 145

6.8 Inter-domain Operation: Multiple DHTs. . . . . . . . . . . . . . . . . . . . . . 146

6.9 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.10 Performance Evaluation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

iv



6.11 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

III Enterprise IP Telephony 165

Chapter 7 Background: Conferencing, Streaming and Voice Dialogs 166

7.1 Multi-party Conferencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1.1 Conferencing Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1.2 Requirements for Centralized Conferencing. . . . . . . . . . . . . . . . 172

7.2 VoiceXML: Interactive Voice Response. . . . . . . . . . . . . . . . . . . . . . 173

7.3 RTSP: Media Streaming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Chapter 8 Related Work: Internet Telephony and Multimedia Collaboration 177

8.1 Interworking Between SIP and H.323. . . . . . . . . . . . . . . . . . . . . . . 179

8.2 Unified Messaging using SIP and RTSP. . . . . . . . . . . . . . . . . . . . . . 179

8.3 Centralized Conferencing using SIP. . . . . . . . . . . . . . . . . . . . . . . . 180

8.4 Integrating VoiceXML with SIP Services. . . . . . . . . . . . . . . . . . . . . 181

Chapter 9 Multi-platform Collaboration in CINEMA 182

9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.2 Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.3 Architecture Overview .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.3.1 Web Interface . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.3.2 Personal Calendar and Address Book . .. . . . . . . . . . . . . . . . . 187

9.3.3 Events and Event-groups. . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.4 Synchronous Collaboration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.4.1 Audio Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.4.2 Video Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9.4.3 Instant Messaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.4.4 Shared Web Browsing. . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.4.5 Screen Sharing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

v



9.4.6 Conference Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.4.7 Dial-in vs Dial-out Conferences. . . . . . . . . . . . . . . . . . . . . . 196

9.5 Asynchronous Collaboration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.5.1 File Sharing . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.5.2 Discussion Forum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.5.3 Conference Event Recording. . . . . . . . . . . . . . . . . . . . . . . . 198

9.5.4 Unified Messaging and Multimedia Mail. . . . . . . . . . . . . . . . . 200

9.5.5 Notifications and Announcements. . . . . . . . . . . . . . . . . . . . . 207

9.6 Additional Services . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.6.1 Presence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.6.2 Interactive Voice Response (IVR). . . . . . . . . . . . . . . . . . . . . 211

9.6.3 Interaction among Email, Telephone and IM. . . . . . . . . . . . . . . 218

9.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Chapter 10 Scalable Centralized Conferencing 225

10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

10.2 Scalability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

10.2.1 Requirements . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

10.2.2 Performance Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 228

10.2.3 Cascaded Conference Servers. . . . . . . . . . . . . . . . . . . . . . . 238

10.2.4 Distributing Conferences. . . . . . . . . . . . . . . . . . . . . . . . . . 242

10.2.5 Handling Overload: Graceful Denial and Admission Control . . .. . . . 243

10.3 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

10.3.1 Reactive Failover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

10.3.2 Proactive Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . 245

10.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Chapter 11 Interworking Between SIP/SDP and H.323 248

11.1 Background and Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . 249

11.1.1 Protocol Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

vi



11.1.2 Translation Requirements. . . . . . . . . . . . . . . . . . . . . . . . . 250

11.2 Architecture for User Registration. . . . . . . . . . . . . . . . . . . . . . . . . 255

11.2.1 IWF Contains SIP Proxy and Registrar .. . . . . . . . . . . . . . . . . 256

11.2.2 IWF Contains an H.323 Gatekeeper . . .. . . . . . . . . . . . . . . . . 259

11.2.3 IWF is Independent of Proxy or Gatekeeper. . . . . . . . . . . . . . . . 261

11.3 Signaling Address Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . 263

11.4 Connection Establishment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

11.4.1 Using H.323v2 Fast Connect. . . . . . . . . . . . . . . . . . . . . . . . 265

11.4.2 Call Translation Without using Fast Connect. . . . . . . . . . . . . . . 265

11.5 Calculating a Common Subset of Media Capabilities. . . . . . . . . . . . . . . 272

11.6 Translating Advanced Services. . . . . . . . . . . . . . . . . . . . . . . . . . . 276

11.6.1 Multi-party Conferencing. . . . . . . . . . . . . . . . . . . . . . . . . 276

11.6.2 Call Transfer . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

11.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Chapter 12 Conclusions and Future Directions 281

12.1 Summary of the Problems and Contributions . . .. . . . . . . . . . . . . . . . . 281

12.2 Connecting Themes . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

12.3 Server-based vs. Peer-to-peer Internet Telephony. . . . . . . . . . . . . . . . . 284

12.4 Implications of this Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

12.5 Future Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Appendix A Design and Implementation of the Columbia SIP Library 289

A.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

A.2 User Agent Library . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Appendix B Two-way Replication in MySQL 302

Appendix C Data Format for SIP-using-P2P 305

Appendix D Implementation Details of SIP-H.323 Interworking Function 311

D.1 Implementation Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . 311

vii



D.2 Signaling Address Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . 320

D.2.1 Converting SIP Addresses to H.323 Addresses. . . . . . . . . . . . . . 321

D.2.2 Converting H.323 Addresses to SIP Addresses. . . . . . . . . . . . . . 323

D.3 Detailed Description of IWF Behavior. . . . . . . . . . . . . . . . . . . . . . . 324

D.3.1 SIP-originated Requests. . . . . . . . . . . . . . . . . . . . . . . . . . 324

D.3.2 H.323-Originated Requests. . . . . . . . . . . . . . . . . . . . . . . . . 328

Appendix E Glossary 332

Appendix F Bibliography 336

viii



List of Figures

1.1 An example SIP call . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 SIP network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 P2P-SIP deployment architectures. . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 CINEMA architecture . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Example SIP Message with SDP. . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Example SIP call routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Example CPL script: call routing based on time-of-day. . . . . . . . . . . . . . 24

3.1 Client-based failover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 DNS-based failover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Failover based on database replication. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 When the primary server fails. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 When the master database fails. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 co-located database and proxy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Reliable server pooling for SIP. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Failover in CINEMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Call setup latency on failover. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.10 User unavailability on failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.11 DNS-based. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.12 Identifier-based load sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.13 Two-stage reliable and scalable architecture . . .. . . . . . . . . . . . . . . . . 42

ix



3.14 Example test setup for S3P3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.15 Example message flow for S2P2: in the first stage INVITE goes via S2, whereas

ACK and BYE via S1, but in the second stage all the requests go via P2 based on

the consistent hash of the destination user identifier.. . . . . . . . . . . . . . . . 45

3.16 Server throughput inSnPm configuration (n first stage andm second stage servers.

The results show that the performance increases linearly with the number of

servers, i.e., s2p2 is twice and s3p3 is thrice that of s1p1 and s0p1 performance.) 47

3.17 Theoretical and experimental capacity for configurationSnPm . . . . . . . . . . 48

3.18 Effect of user identifier distribution among second stage servers for S2P22. Uni-

form distribution gives the best performance, i.e., success rate is close to 100%

until the peak performance (1800 CPS), whereas for non-uniform distribution the

success rate reduces as soon as one of the server is overloaded (at 1500 CPS). . . 50

3.19 Performance ofSnPm with stateful proxy in second stage. The results show that

the performance increases linearly with the number of servers, i.e., s2p2 is twice

and s3p3 is thrice that of s1p1 and s0p1 performance.. . . . . . . . . . . . . . . 51

3.20 Stateful proxy message flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.21 Performance forSnPm with registration server in second stage. The results show

that the performance increases linearly with the number of servers, i.e., s2p2 is

twice and s3p3 is thrice that of s1p1 and s0p1 performance.. . . . . . . . . . . . 54

3.22 REGISTER message flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.23 Processing steps in a SIP server. The potentially blocking operations either due

to I/O, events or locks are marked with B. . . . . . . . . . . . . . . . . . . . . 56

3.24 Performance of software architectures relative to event-based on different hard-

ware. For example, the performance of stateless proxy on 4xP hardware in the

thread pool architecture is approximately three times that in the event-based ar-

chitecture on the same hardware.. . . . . . . . . . . . . . . . . . . . . . . . . . 60

x



3.25 Two-stage thread pool software architecture: the example consists of four threads,

numbered 0 to 3, in the thread pool. Any available thread receives the message,

parses it and based on the hash of the SIP Call-ID value in the message, forwards

the message to the appropriate thread. In the example, the hash is 1, thus both

SIP INVITE request and 200 OK response go to the thread number 1. . .. . . . 61

4.1 Client-server vs peer-to-peer distributed systems .. . . . . . . . . . . . . . . . . 68

4.2 Design A: all servers store all user records on registration. . . . . . . . . . . . . 75

4.3 Design B: search for the server on call setup . . .. . . . . . . . . . . . . . . . . 75

4.4 Option 1: Only servers in DHT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Option 2: Complete P2P overlay. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Option 3: Intermediate model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Difference between SIP-using-P2P and P2P-over-SIP architectures. . . . . . . . 77

5.1 Logical operations in a SIP server. . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Data model vs service model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 P2P-SIP: SIP-using-P2P architecture. . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Example Chord network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 No REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 With REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Block diagram of a P2P-SIP node. . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Node startup and outgoing registration. . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Incoming registration . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7 Failure of a super-node in the DHT. . . . . . . . . . . . . . . . . . . . . . . . . 114

6.8 User location and call setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.9 Example Chord network with 4 nodes. . . . . . . . . . . . . . . . . . . . . . . 118

6.10 After node 7 joins the network. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.11 Offline message storage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.12 Inter-domain P2P-SIP . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xi



7.1 Types of media distribution model. . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2 Example sipvxml scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.1 SIP-based collaborative work environment. . . . . . . . . . . . . . . . . . . . . 185

9.2 Personal calendar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.3 Audio mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9.4 Possible optimization in decode-mix-encode sequence. . . . . . . . . . . . . . 192

9.5 Example SIP MESSAGE for instant messaging .. . . . . . . . . . . . . . . . . 194

9.6 File sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.7 Web-based discussion forum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.8 Web interface for conference recording. . . . . . . . . . . . . . . . . . . . . . . 200

9.9 Forwarding the call to voicemail. . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.10 CPL script for forwarding a call to voicemail . .. . . . . . . . . . . . . . . . . 203

9.11 Voice messages user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.12 SIP-based presence . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.13 Web-based presence . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

9.14 Operation of sipvxml . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.15 Method 1: Joining a conference in blind transfer mode. . . . . . . . . . . . . . 215

9.16 Method 2: Joining a conference using bridged mode. . . . . . . . . . . . . . . . 216

9.17 Email-by-phone architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

9.18 Email notification to phone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

9.19 Example translation used in email to phone system. . . . . . . . . . . . . . . . 219

9.20 SIP-CGI for IM to email translation. . . . . . . . . . . . . . . . . . . . . . . . 222

10.1 Physical configuration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10.2 Logical configuration . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10.3 Server performance with increasing number of participants in a single conference 230

10.4 Server performance with increasing number of four-party conferences . .. . . . 231

10.5 Speaker-to-listener delay for first and last participant to receive packets from the

mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

xii



10.6 Effect of packetization interval on performance .. . . . . . . . . . . . . . . . . 234

10.7 Server performance on 360 MHz Sun/SPARC as the number of participants in a

single conference increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

10.8 Relative audio codec performance in terms of CPU speed on various platforms

for processing 20 ms audio. The y-axis provides numbers in Kilo cycles (1024

cycles). For example, GSM encoder took about 300 Kilo cycles on a 900 MHz

Sparc, which means300×1024
900×1048576s ≈ 325µs. . . . . . . . . . . . . . . . . . . . . 238

10.9 Tree-based cascaded servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

10.10Full mesh cascaded servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

10.11Performance of two cascaded conference servers for a single conference .. . . . 242

11.1 H.323 call without fast-connect. . . . . . . . . . . . . . . . . . . . . . . . . . . 251

11.2 Architecture for user registration in SIP-H.323 interworking. . . . . . . . . . . 256

11.3 Initialization of SIP and H.323 terminals, and the IWF when IWF contains SIP

proxy and registrar. The registration may get stored on two independent gate-

keepers in the H.323 cloud.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

11.4 Address translation from SIP to H.323. . . . . . . . . . . . . . . . . . . . . . . 258

11.5 Address translation from H.323 to SIP. . . . . . . . . . . . . . . . . . . . . . . 259

11.6 Address translation from SIP to H.323 when IWF contains an H.323 GK .. . . . 260

11.7 Address translation from H.323 to SIP when IWF contains an H.323 GK .. . . . 260

11.8 Call setup from SIP UA to H.323 terminal with FastConnect. . . . . . . . . . . 265

11.9 Call setup from H.323 terminal to SIP UA with FastConnect. . . . . . . . . . . 266

11.10Call from SIP terminal to H.323 terminal without Fast Connect. . . . . . . . . . 267

11.11Call from H.323 to SIP terminal without Fast Connect. . . . . . . . . . . . . . . 268

11.12Call from H.323 to SIP with conversion between OLC and SDP. . . . . . . . . 271

11.13Call from SIP to H.323 with conversion between OLC and SDP. . . . . . . . . 272

11.14Ad-hoc conferencing among SIP and H.323 endpoints. . . . . . . . . . . . . . . 277

11.15Different conferencing architectures. . . . . . . . . . . . . . . . . . . . . . . . 278

11.16An example of call transfer mapping. . . . . . . . . . . . . . . . . . . . . . . . 279

xiii



A.1 Canonicalization, authentication and routing for a call. . . . . . . . . . . . . . . 290

A.2 SQL vs FastSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

A.3 Software design modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

A.4 Software library and applications. . . . . . . . . . . . . . . . . . . . . . . . . . 295

A.5 SIP transaction and client branches. . . . . . . . . . . . . . . . . . . . . . . . . 298

A.6 call control state machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

A.7 Outgoing registration state machine. . . . . . . . . . . . . . . . . . . . . . . . 300

xiv



List of Tables

1.1 Factors contributing to IP telephony scaling . . .. . . . . . . . . . . . . . . . . 3

3.1 Performance (CPS) of stateless proxy for Proxy 200 test. . . . . . . . . . . . . 58

3.2 Performance (CPS) for stateful proxy for Proxy 200 test. . . . . . . . . . . . . . 63

4.1 Different applications of P2P. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Notations used in this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 Types of conferences;M is the number of active senders andN the total number

of participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10.1 Effect of various parameters on the server performance. . . . . . . . . . . . . . 227

10.2 Comparison of various audio codecs: time taken for encoding and decoding of

20 ms of audio on Pentium 4, 3 GHz CPU running Linux 2.6.9 in our test-bed: E

means encoder, and D means decoder. G.711 and G.722 are ITU-T’s, and DVI is

Intel/IMA’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

D.1 Support for Q.931 messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

D.2 Mapping between SIP status codes andreason fields . . . . . . . . . . . . . . . 314

D.3 Support for H.245 messages.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

D.4 Audio capability mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

D.5 Video capability mapping.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

xv



Acknowledgments

I acknowledge with great pleasure the contributions of Professor Henning Schulzrinne, without

whom this work would not have been possible. Professor Schulzrinne has provided guidance,

knowledge, advice, and direction whenever it was needed. He provided opportunities for new

research and introduced me to other researchers in the field, which have proved invaluable. I

would also like to thank him for improving my writing skills, allowing me to mentor various

project students and providing support for travels to various conferences.

I thank the rest of my thesis committee members: Dr. Gail Kaiser, Dr. Vishal Misra,

Dr. Dan Rubenstein, and Dr. Milind Buddhikot. Their valuable feedback helped me improve my

dissertation and shape the direction of my research.

The work presented in this thesis was financially supported by SIPQuest, which has also

provided direction and scope for the work. In particular, I would like to acknowledge Yi Qin,

Lei Wei and Sibon Barman for insightful discussions on SIP-based enterprise IP telephony ar-

chitecture. The SIP-H.323 translator and unified messaging research were initially supported by

Sylantro Inc.

I have enjoyed the privilege of working with my fellow graduate students, particularly

the other members of the Internet Real-Time research group. They have provided spirited dis-

cussions, comments, and feedback, both in research group meetings and in one-on-one commu-

nications. In particular, Jonathan Lennox, Wenyu Jiang, Xiaotao Wu and Sankaran Narayanan

contributed in the core design and implementation of CINEMA (Columbia InterNet Extensible

Multimedia Architecture) and deserve special credit. Jonathan Lennox is the primary architect

of our SIP server,sipd, and helped with the SIPstone measurement tools. Wenyu Jiang did the

hard work in interconnecting our PBX (Private Branch eXchange) with the gateway. Xiaotao Wu

xvi



implemented the multimedia collaboration client,sipc, and helped in integrating the peer-to-peer

mode. Sankaran Narayanan implemented the SIPstone tool and the efficient database interaction

in sipd.

A number of other students have contributed to various components in the architecture

as follows. Salman Baset implemented the event notification web interface. Omer Boyaci added

the DNS NAPTR (naming authority pointer) record lookup insipd. Michael Castleman imple-

mented the anonymizer. Joseph Gagliano helped in implementing email notification to phone.

Tarun Kapoor installed the initial MySQL database for testing. Gaurav Khandpur implemented

the initial web-based discussion forum. Ali Khwaja integrated the high-quality codec (G.722)

and sampling rate conversion in the conference server. Anshul Kundaje added RADIUS (Remote

Authentication Dial in User Service) accounting tosipd. Jisoo Lee added experimental location

detection for emergency calls insipd. Xu Li added the ENUM (E.164 Numbering) support to

sipd. Li Liao helped in TLS (Transport Layer Security) configuration. Chin-hong Lin and Agung

Suyono implemented the conference recording feature. Daniel Liu and Naho Ogasawara imple-

mented the initial email-by-phone system using Java Servlets. Gautam Nair helped in the initial

implementation of the conference mixer. Ajay Nambi implemented some VoiceXML browser

enhancements, voice-mail access and conference joining scripts. Sankaran Narayanan added

TLS and IPv6 support. Eva Nautiyal and Manica Piputbundit helped in the implementation of

phone announcement service and integration of TRIP (Telephony Routing over IP) tosipd. Timo

Ohtonen helped in incorporating IPv6 support. Anurag Pant integrated the text-to-speech sup-

port in our media server. Mark Pimentel helped in implementing the conference timeline display.

Joe Rosen implemented automatic gain control in the server. Jeffrey Schnurmacher designed

the initial web interface layout. Naoya Seta implemented the convertor between instant mes-

sages and voice calls. Huitao Sheng helped with the initial performance measurement of the

load sharing architecture. Madhuri Shinde enhanced the user interface of our P2P-SIP monitor-

ing tool. Theodore Summe helped in adding the address book access via telephone in our test

bed. Priyanka Upadhayay experimented with integrating speech recognition to our media server.

Pimrampai Vannacharoen enhanced the email-by-phone system by using Tcl and integrated with

the rest of our test bed. Visda Vokhshoori and Sean Mandel helped in initial VoiceXML browser

xvii



implementation. Sean West enhanced the auto-attendant application. Huwei Zhang contributed

in file-sharing and conference load balancing. Thanks are due to Enlai Chu of Cisco, Keane Chin

of SIP Communications Inc., and Sarmistha Dutta of Columbia University for their help with

the Cisco gateway and departmental PBX. Thus, a number of people have helped in incremental

development of the test bed which I have used in my thesis.

I am infinitely indebted to my family without whom this work would not have completed.

In particular, my father Narendrakumar Singh and mother Nimmi Singh, who have consistently

encouraged me to continue and finish my doctorate degree. My mother’s untimely death in 2005

left me in utter shock and dismay. Words are not enough to thank my close friends, Knarig Arab-

shian and Shailendra Yede, for their moral support in difficult times like this, and for motivating

me in my research.

xviii



To my parents

xix



1

Chapter 1

Introduction

Internet telephony is defined as the transport of telephone calls over the Internet. Internet tele-

phone calls can originate from traditional phone sets through gateways, PCs using software or

embedded devices (“Ethernet phones”). Most of the interest in Internet telephony is motivated

by cost savings and ease of developing and integrating new services. Internet telephony inte-

grates a variety of services provided by the current Internet and PSTN (public switched telephone

network) infrastructure. Internet telephony employs a variety of protocols, including RTP (Real-

time Transport Protocol [1, 2]) for transport of multimedia data and SIP (Session Initiation Pro-

tocol [3, 4]) for signaling, i.e., establishing and controlling sessions. To ensure wide acceptance

of SIP among carriers, SIP servers should demonstrate service availability and scalability at least

as good as PSTN.

Decades of engineering and research have gone into providing the high availability and

scalability of the public switched telephone network (PSTN). For example, PSTN switches have

a “5 nines” reliability requirement, i.e., are available for 99.999% time or all but 5 minutes of a

year. The performance of the PSTN is measured using metrics such as call setup delay (or post-

dial delay) [5], busy hour call arrivals [6] (a measure of throughput), mean-time between fail-

ures (MTBF) and mean-time to recover (MTTR). The first two are concerned with performance,

whereas the last two are metrics for quantifying availability. Traditionally, telephony service is

perceived as more reliable than the Internet-based services such as web and email. We believe

that Internet telephony [4] will fail to completely replace classical PSTN unless it provides at



2

least similar quantifiable guarantees.

SIP is a signaling protocol for IP telephony, multimedia conferencing, instant messaging

and presence. SIP-based Internet telephony (SIP telephony) has been proposed as an alternative

to the classical PSTN and offers a number of advantages over circuit switched telephony [4]. SIP

signaling servers, like PSTN switches, help in call establishment and user location. However, un-

like closed network-centric PSTN systems, SIP provides more control to the end users. SIP uses

a number of other Internet services such as Domain Name Service (DNS) and non-guaranteed

(best effort) IP packet delivery. Secondly, SIP servers that run on commodity hardware running

Unix or Windows cannot assume strict operating system performance guarantees. SIP servers

are closer to web servers than to PSTN switches, because of their request-response nature, text-

based message format and programmable call routing behavior. However, unlike HTTP [7] which

presumes a reliable underlying transport, SIP can use UDP for transport with application level

retransmission for reliability and maintains transaction state at the proxy server. This makes the

SIP reliability and scalability problem different from classical telephony or web.

The SIP proxy servers are light-weight compared to PSTN switches because they only

route call signaling messages without maintaining any per-call state. The SIP proxy server of a

domainis responsible for forwarding the incoming requests destined for the logical address of

the formuser@domainto the current transport address of the device used by this logical entity,

and forwarding the responses back to the request sender. Consider the example shown in Fig. 1.1.

When a user, Bob, starts his SIP phone, it registers his unique identifierbob@home.comto the SIP

server in thehome.comdomain. The server maintains the mapping between his identifier and his

phone’s IP address. When another user, Alice, callssip:bob@home.com, her phone does a DNS

(Domain Name Service) lookup forhome.comand sends the SIP call initiation message to the

resolved server IP address. The serverproxiesthe call to Bob’s currently registered phone. Once

Bob picks up the handset, the audio packets are sent directly between the two phones without

going through the server. Further details [4, 8, 3] of the call are omitted for brevity.

SIP is designed to integrate with other Internet services, such as email, web, voice mail,

instant messaging, multi-party conferencing and multimedia collaboration. We have implemented

a SIP-based software suite calledColumbia InterNet Extensible Multimedia Architecture



3

(2) DNS

Alice

(3) INVITE (4) INVITE

Client
(1) REGISTER

ServerClient

Bob
Proxy/
registrar

database
SIP server (registrar and proxy)

Database or data storage

DNS DB

DB

Figure 1.1: An example SIP call

(CINEMA) for Internet telephony and used it within the Computer Science department at Columbia

University, integrating it with the existing PBX (Private Branch eXchange) infrastructure. The

architecture provides inter-operability with the PSTN, programmable Internet telephony services,

IP-based voice mail, integration with web and email for unified messaging, multi-party multime-

dia conferencing, and inter-operability with existing multimedia tools. The setup allowed us to

extend our PBX capacity and eventually replace it, while keeping our existing phone numbers.

This test-bed provides an environment where we can add new services and features, for example,

accessing emails from a regular telephone, network appliance control, and support for instant

messaging and presence. We believe that our setup can be readily used by other organizations.

1.1 Scalability and Reliability

In the example of Fig. 1.1, the SIP server, which includes the proxy and registration functions,

forms the core of the Internet telephony infrastructure. For a scalable and reliable Internet tele-

phony system, the core must be scalable and reliable. There are two components in providing

high capacity reliable IP telephony services: network and servers as shown in Table 1.1.

Network Server
1. Location of server in the network. 1. Hardware configuration.
2. Backbone network capacity. 2. Non blocking I/O.
3. Load balancing among multiple 3. Server profiling (where it spends time).
distributed servers 4. Throughput as a function of load.

Table 1.1: Factors contributing to IP telephony scaling



4

Scalabilitydetermines how well a solution to some problem works when the size of the

problem increases. For Internet telephony systems, scalability determines the performance as the

load increases. SIPstone [9] defines various metrics to measure the SIP server performance such

as registrations per second (RPS) and calls per second (CPS). It describes a series of tests with a

pre-configured workload to simulate the activities of multiple users initiating SIP calls. The tests

measure the performance of user registration and call handling, including redirect, failure and

successful call setup.

Availability is defined as the probability that the service is available to use. It depends on

the failure probability distribution and the recovery time distribution. We use the termreliability

to mean availability.

SIP [3] defines three roles for a SIP server: registration, redirect and proxy. In practice,

these roles are combined into a single entity, called the SIP server. The capacity requirement for

the SIP server depends on its role in the network (Fig. 1.2). In real implementations one would

expect to find small to medium scale corporate or enterprise proxies that provide rich integration

with voice mail, calendar or event notification, proxies co-located with NAT (Network Address

Translator) or firewall, stateless load balancing proxies managing some resources (e.g., a set of

media gateways to PSTN) and high capacity proxies at various points in a carrier network for call

routing. For example, 3GPP’s IP Multimedia Subsystem (IMS) uses SIP for Call Session Control

Function (CSCF) to support millions of users and defines different server roles such as outbound

proxy (P-CSCF) in visited network, interrogating proxy (I-CSCF) as the first point of contact for

incoming calls in the home network, and serving proxy (S-CSCF) providing services based on

subscriber’s profile [10, 11].

Reliability: The mean time between failures (MTBF) of the system can be obtained based on

historical data, but is very difficult to predict in a complex systems like ours with a number of

distributed interacting components. We focus on reducing the mean time to recover (MTTR) for

the CINEMA components such as the SIP server. A few seconds of failover latency may not

be noticeable for enterprise systems, but is undesirable for carrier proxies. A number of com-

ponents such as DNS time-to-live, ARP (Address Resolution Protocol) cache, DHCP (Dynamic



5

0
IP

01

Ethernet

ISP

MG

ISP

PSTN
subscribers

Firewall

Gateway

SIP proxy server

SIP proxy server

PSTN switch

IP router

T1 PRI/BRI

IP phones

PSTN
phones

GW

GW

MG

MG

PSTN

IP Network

Carrier network

SIP/PSTN

SIP/MGC
SIP/MGC

Chatterbox Cafe

IP

Ralph’s Pretty Good Grocery

Figure 1.2: SIP network architecture

Host Configuration Protocol) timers, and SIP registration and call setup latency affect MTTR

depending on the failover architecture. We explore this further in Section 3.3.

Scalability: SIP registration provides soft state which is periodically refreshed by registration

refreshes. With the default one hour registration refresh timeout and the server capacity to handle

one hundred registrations per second, i.e., 0.3 million registrations per hour, the server can serve

0.3 million users. A hundred registrations per second capacity roughly translates to 10 ms system

time because the server can spend 10 ms per registration on an average. The capacity is further

limited due to two registration requests using digest authentication or high registration rate for

mobile users.

A call setup and termination may involve up to six signaling messages through the SIP

proxy server. This can further increase with retransmissions or forking. 3GPP’s IMS call flow has

additional messages for early media and reliability of provisional responses resulting in about 14

messages per call. Moreover, advanced services such as programmable call routing further im-

poses additional processing demands on the server. Thus, the SIP server performance depends on

CPU, memory, I/O and network bandwidth resources with one or the other dominating depending

on the role. We tackle the reliability and scalability problems of SIP servers in Chapter 3.



6

1.2 Peer-to-Peer IP Telephony

The majority of the system cost of this server-based architecture is in maintenance and configu-

ration, typically by a dedicated system administrator in the domain. It also means that quickly

setting up the system in a small environment (e.g., for emergency communications or at a con-

ference) is not easy. On the other hand, peer-to-peer (P2P) systems [12] are self-organizing.

Moreover, they are inherently scalable to large user populations, and reliable because of the lack

of a single point of failure. P2P systems, in the purest form, have no concept of servers. All

participants are peers and communicate in a distributed, potentially untrusted environment, to

achieve a certain objective such as locating music files or users.

Peer-to-peer Internet telephony using the Session Initiation Protocol (P2P-SIP) [13, 14,

15, 16, 17] has been proposed to avoid the maintenance and configuration cost of the server-

based SIP architecture, and to prevent catastrophic failures of server-based systems. There are

two approaches for combining SIP and P2P: replace the SIP location service by a P2P protocol

(SIP-using-P2P) [16], and additionally, implement the P2P protocol itself using SIP messaging

(P2P-over-SIP). In the first case, P2P is used only for lookups and updates of SIP user’s IP

addresses, similar to LDAP (Lightweight Directory Access Protocol) or SQL (Structured Query

Language) databases used in existing SIP proxies. A scalable and global P2P location service

automatically makes the SIP lookups scalable. In the second case, the P2P maintenance protocol

can further exhibit two modes: (1) tunnel the P2P protocol messages in SIP, e.g., as a message

body or headers, or (2) reuse the semantics of some of the SIP messages and headers to convey

proximity and location information [14]. We describe our P2P-SIP architecture in Chapter 4.

The P2P deployment architecture can be another dimension to classify P2P-SIP systems.

Consider a simple server-based SIP call as shown in Fig. 1.3 (a). This is similar to the earlier

example in Fig. 1.1 except that the caller’s user agent is configured to use the outbound proxy,

which locates the callee’s proxy via DNS. Either the user agent or the proxy server can use the

P2P network for lookup as shown in Fig. 1.3 (b) and (c).P2P clientsare SIP user agents that

do not require any server and directly perform P2P lookups and updates.P2P proxiesare SIP

proxy servers that perform P2P lookups and updates, transparent to the user agent, e.g., in a zero-

configuration server farm of a VoIP provider. The tradeoffs are ease of deployment and integration



7

with existing SIP clients or proxies, and reusability of other protocols and applications. These

architectures and components should interoperate with each other.

(2) INVITE

(a) client−server SIP

(4) INVITE(3) INVITE

Outbound SIP proxy SIP server (example.net)

SIP user agent

alice@home.com bob@example.net

SIP user agent
(1) REGISTER

(c) P2P proxies(b) P2P clients

    DB

    DB    DB

    DB

    DB

    DB

    DB

Figure 1.3: P2P-SIP deployment architectures

The architecture benefits from P2P scalability and robustness against catastrophic fail-

ures. We believe that P2P file sharing systems such as Kazaa [18] and Gnutella [19] are widely

popular because they provide free music and video content without requiring maintenance of a

content server, and they automatically detect NAT and firewall settings without any user interven-

tion. Similarly, P2P-SIP has additional advantages over existing Internet telephony architectures

as follows:

No maintenance or configuration: The system works out-of-the-box without requiring any te-

dious server installation, including NAT and firewall configuration. Our work extends the

goals of the IETF Zeroconf [20] Working Group to multimedia communication and collab-

oration systems.

Interoperability: Unlike other P2P systems such as Skype [21], our architecture uses SIP mes-

sages for communicating with other peers. This readily interworks with any existing IP

telephony infrastructure such as SIP-PSTN gateways.



8

These advantages come at the cost of increasedresource lookup delay, security threats

and reliability issues. UnlikeO(1) lookup cost in a classical client-server based systems, the

P2P lookup cost can be much higher (e.g., Chord [22, 23], which is a P2P algorithm, has lookup

latency ofO(log N) whereN is the number of peer nodes in the system). A distributed P2P

architecture makes the system more prone tosecurityissues such as trust (privacy: how much

information does the untrusted peer need to know about me? and confidentiality: what if the

peer who knows my information misuses it?) and denial of service (DoS) attacks (were those

thousands of call routing requests that I received, legitimate?). A reliable framework for authen-

tication without centralized elements is a challenge. In addition, we lose some of the traditional

IP telephony services. For example, some of the programmable call routing techniques such as

SIP-CGI [24] available for SIP telephony do not work in the P2P-SIP system as we do not want to

run a potentially malicious script uploaded by some peer on our machines. Finally, thereliability

of the IP telephony system is very important. People are unlikely to use it if the probability of

successful call setup is not at par with that in the regular telephone network. Further details are

in Chapter 4.

1.3 Internet Telephony Interoperability

The architecture for Internet telephony can be extended to an interoperable multimedia collabo-

ration system using existing protocols such as SIP and RTP. Besides basic user registration and

call setup, SIP supports a number of advanced services such as multi-party conferencing and of-

fline messaging that are required in a collaboration system. Thus, SIP-based enterprise Internet

telephony infrastructure can be used to provide a comprehensive multi-platform collaboration.

There are two modes of collaboration. Asynchronousor tightly coupled collaboration is highly

interactive and requires the active presence of the other members of the group. On the other hand,

anasynchronousor loosely-coupled collaboration is part of some collective activity directed to-

wards some shared goal or common purpose, but does not require the active presence of the other

members of the group. Acomprehensivecollaboration environment provides both synchronous

and asynchronous collaboration tools and integrates the two so that users can easily alternate

between the two.



9

One reason many earlier collaboration systems have not succeeded is that they were hard

to use for people when the teams and groups span organizational boundaries. Also, they often

require installing a lot of software, usually only available for limited set of platforms such as

Windows, or work for only one vendor’s tools, or one application such as collaborative software

development [25]. On the other hand, a comprehensive multi-platform collaboration architecture

such as ours, provides building block tools for any type of multimedia collaboration based on

existing protocols, instead of focusing on specific types. It supports platform heterogeneity and

device-transparency. For example, consider an IP telephony conference with some participants on

phone, and some others using desktop multimedia clients. Late-arriving participants can browse

through the past meeting proceedings, and non-participating group members can be automatically

notified of meeting minutes and other important document locations via email. Users can access

and interact even if they temporarily have only a phone or email. Two important requirements

relevant to this thesis are summarized below:

Multi-party conferencing: The system should allow multi-party audio, video and text confer-

encing. Additionally, it should allow shared white-board, shared applications and screen

sharing. It should be possible to record, and later playback, the proceedings of a confer-

ence.

Unified messaging:Traditional answering machines and voice mail services of PSTN can be

enhanced in the Internet telephony by providing multimedia mail, and integration with web

and email. This gives an opportunity to reuse the existing protocols for an interoperable

unified messaging architecture. Programmable interactive voice response dialogs can be

used to allow access and control from telephones.

1.4 Original Contributions

This chapter has described the high-level requirements for scalable, reliable and interoperable

Internet telephony. In this section, I describe my explicit contributions to this topic.



10

1.4.1 Failover and Load Sharing in SIP Telephony

Consider the example of Fig. 1.1 (p. 3). If the server fails for some reason, the call initiation

or termination messages cannot be proxied correctly. We can improve the service availability

by adding a second server that automatically takes over in case of the failure of the first server.

Secondly, if there are thousands of registered users and a single server cannot handle the load,

then a second server can work along with the first server such that the load is divided between the

two. We apply some of the failover and load sharing techniques to SIP servers. In particular, we

evaluate DNS-based redundancy for user registration and call setup messages among multiple SIP

servers that use SQL databases to maintain user records. We present a two-stage SIP server farm

architecture where the first stage statelessly proxies the request to one of the several second stage

servers. These techniques apply beyond telephony, for example, for SIP-based instant messaging

and presence that use the same SIP servers for registration and message routing.

Earlier work showed that our SIP server,sipd, supported about 300 registrations and 90

call requests per second [26]. In this thesis, I further improved the system performance by dis-

tributing load among multiple redundant servers and using an event-based software architecture.

My main contribution is to show that the two-stage architecture scales linearly with the number

of servers.

1.4.2 Peer-to-peer Internet Telephony using SIP (P2P-SIP)

To avoid the maintenance and configuration costs of a server-based architecture, we developed a

peer-to-peer (P2P) architecture for Internet telephony using SIP. We identify differences between

rendezvous systems such as Internet telephony and traditional file sharing systems in P2P context.

We analyzed various design alternatives and present a detailed design for both P2P-over-SIP and

SIP-using-P2P, based on our implementation. The P2P-over-SIP implementation has a built-in

Chord [22] as the underlying distributed hash table (DHT), whereas the SIP-using-P2P uses an

external DHT, in particular OpenDHT [27]. Our work is the first published attempt to apply P2P

concepts to SIP-based systems in the P2P-over-SIP architecture. Our novel hybrid architecture

allows both traditional SIP telephony as well as user lookup on P2P network if the local domain

does not have a SIP server. In P2P-over-SIP, we show that SIP can be used to implement various



11

DHT functions such as peer discovery, user registration, node failure detection, user location and

call setup by replacing DNS [28] and the SIP server database with P2P for the next hop lookup in

SIP. For SIP-using-P2P, we provide an XML-based data format for storing SIP information such

as user contact location and security keys, so that different implementations can interoperate in

a global P2P-SIP network. We also provide guidelines for advanced services such as offline

message notification and multi-party conferencing in P2P-SIP. We identify the tradeoff in using

P2P-SIP in terms of increased call setup delay and security threats.

1.4.3 Enterprise Internet Telephony and Multi-platform Collaboration

We identify the requirements for an enterprise Internet telephony infrastructure and describe our

server-based Columbia InterNet Extensible Multimedia Architecture (CINEMA). It also serves

as a corporate or campus infrastructure for existing and future services like instant messaging,

presence, video mail and streaming media.

CINEMA consists of a set of SIP-based servers that provide a pathway to a post-PBX

era of communications. It provides a comprehensive environment for creating and deploying rich

Internet multimedia services including programmable Internet telephony services, audio/video

conferencing, IP-based voice mail, and unified messaging. Fig. 1.4 shows the architecture, the

interaction among the components and my contribution. (Appendix A further describes some of

the software tools I implemented in CINEMA.)

SIP server: Jonathan Lennox is the primary architect of our SIP proxy, redirect and registration

server,sipd. It receives user registration messages from user agents and proxies or redirects

the incoming calls for registered users thus acting as a call router. I have further improved

on the reliability and scalability aspects ofsipd, as mentioned earlier.

SQL database: sipd uses the MySQL [29] database for storing the current network addresses

and phone numbers where a user can be reached. Other per-user information and server

configuration related to voice mail and conferences are also stored in the database.

PSTN gateway: A Cisco 2600 router with SIP/PSTN capability is connected to the telephone



12

Figure 1.4: CINEMA architecture

switch (PBX) with a T1 trunk and to the departmental LAN. This could be any SIP-

speaking gateway.

User agents: We use Columbia software SIP user agent (sipc [30, 31]) and Ethernet phones

from Cisco, Pingtel and 3Com in our test bed.

Media server: We developed a general-purpose RTSP [32] streaming media server,rtspd, which

we use for the storage and delivery of announcements and voice mail messages [33].

I am the primary author of the unified messaging server, conference server, SIP-H.323

translator and interactive voice response (IVR) module, which are described next.



13

Multi-Party Conferencing

Our collaboration architecture supports both synchronous collaboration such as multimedia con-

ferencing, instant messaging (IM), shared web-browsing, and asynchronous collaboration such

as discussion forums, shared files, voice and video mails, and allows seamless integration of the

two. For example, the same group of people can be addressed by video conference, IM and email,

with appropriate archival of the transactions.

I developed a multi-party multimedia conference server,sipconf [34], that forms the core

of synchronous collaboration in CINEMA. I also evaluated the performance of our conference

server and showed that it can support large scale conferences with thousands of simultaneous

participants, using a two-layer cascaded conferencing architecture.

Unified Messaging

Traditional answering machines and voice mail services are closed systems, tightly coupled to a

single end system, the local PBX or local exchange carrier. It is hard to perform simple operations,

like forwarding voice mail outside the local PBX, filtering or sorting messages. Configuration is

tedious, e.g., one can not readily switch between a set of outgoing messages. Moreover, voice

mail and call answering services are implemented as stand-alone proprietary systems. The service

must be provided by the PBX, local phone company or the local handset or one must obtain a

separate voice mail number.

On the other hand, Internet protocols, such as electronic mail for Internet messaging

and SIP (Session Initiation Protocol [3, 4]) for Internet telephony, have an open architecture.

Configuration is simpler compared to the PSTN and the protocols are extensible. There can be a

separation between the internet service provider and the messaging or telephony service provider.

Internet telephony is replacing the old telephone systems (PSTN), particularly in corporate and

institutional environments. So, it is important to design a voice mail system for Internet telephony,

addressing some of the shortcomings.

Unified messaging extends the classical voice mail system to more Internet-based mes-

saging service, integrating voice, video, web and electronic mail. We developed a novel and

modular unified messaging architecture for multimedia mail using existing Internet protocols, in



14

particular, SIP and RTSP (Real-Time Streaming Protocol [32]), that allows users message access

from any Internet connected device using standard media players or user agents. SIP is used

for setting up multimedia calls over the Internet. RTSP controls the delivery of streaming media

and provides facilities to play back, record, or perform other operations on multimedia content.

I developed a centralized answering machine and voice mail system [33],sipum, based on this

unified messaging architecture that usesrtspd media server for recording and playback.

Our approach differs from other traditional answering machines. We use the standard SIP

forking proxy behavior that does not require modifying the proxy server or the user’s phone. Use

of an external media server helps in keeping the voice mail system out of the media path. Use of

RTSP enables the recording of the message once and the use of the pointer or URL (Universal

Resource Locator) when forwarding the message without actually forwarding the multimedia

file. This is desirable for low bandwidth situations where downloading a whole video mail is

very expensive, particularly if the recipient decides that she doesn’t want to listen to the message

after hearing the first few seconds. Moreover, the multimedia mail can be accessed with any

RTSP based media player, e.g., Apple’s QuickTime.

Integrating VoiceXML with SIP Services

People are familiar with traditional interactive voice response (IVR) systems found in voice mail

access, dial-in conferences, phone-based customer support and tele-banking. VoiceXML is an

XML-based language developed by the W3C [35] to create voice dialogs that feature synthesized

speech, digitized audio, recognition of spoken and touch tone key input and recording of audio

for telephony applications. It enhances the traditional proprietary and closed IVR systems to an

open programmable architecture. It brings the advantage of web technologies to a telephony user

by providing programmable dialogs, similar to HTML forms or CGI scripts.

A SIP-based VoiceXML (or SIP-VoiceXML) browser allows a SIP user to take part in

application-specific IVR systems, e.g., voice mail or tele-banking. It also brings the advantage

of VoiceXML technology to a regular telephone user via a SIP-PSTN gateway. I implemented

the first SIP-VoiceXML browser,sipvxml [36], to enhance the services of our CINEMA test-bed.

In particular, we have extended our multimedia conferencing server,sipconf [34], and unified



15

messaging (voicemail) server,sipum [33] to provide enhanced services and convenience to a

telephone user.

Interworking between SIP/SDP and H.323

The International Telecommunication Union (ITU-T) Recommendation H.323 [37] defines packet-

based multimedia communication systems and is based heavily on previous ITU-T multimedia

protocols. In particular, H.323 call signaling is inspired by H.320 [38] for ISDN (Integrated

Services Digital Network), and call control by H.324 [39] for GSTN (General Switched Tele-

phone Network) terminals. SIP [3], developed in the IETF, builds on a simple text-based request-

response architecture similar to other Internet protocols such as HTTP [7] and RTSP [32]. SIP

provides a similar set of basic services as H.323 [40, 41].

We developed a translation mechanism for interoperability between SIP and H.323. I

developedsip323, the first implementation of a signaling gateway [42] between SIP and H.323.

This allows once popular H.323 clients such as Microsoft NetMeeting to interwork with our SIP-

based CINEMA infrastructure. However, with the gradual disappearance of H.323 systems, the

research interest in SIP-H.323 translator has faded. H.323 systems are still used particularly by

carriers who have already made huge investments in H.323-based infrastructures, and by vendors

such as Polycom developing room-based conferencing systems. Thus, there is still a need for

interworking between SIP and H.323.

1.5 Overview of the Thesis

This thesis is organized as follows. After this introduction, I give background information on SIP

in Chapter 2. Then, the thesis is divided into three parts: server redundancy, peer-to-peer and

enterprise IP telephony.

1. In the server redundancy part, I describe our failover and load sharing architecture for SIP

telephony and evaluate its performance in Chapter 3.

2. In the peer-to-peer part, I give an overview of related work and design choices for P2P



16

Internet telephony using SIP in Chapter 4. Then, I describe our SIP-using-P2P and P2P-

over-SIP architectures in Chapters 5 and 6, respectively.

3. In the enterprise IP telephony part, I provide background on different conferencing mod-

els, VoiceXML and media streaming in Chapter 7. Chapter 8 presents the related work on

Internet telephony and multimedia collaboration. Chapter 9 describes our multi-platform

collaboration architecture in CINEMA. Subsequent chapters 10 and 11 give details on con-

ference server scalability and SIP-H.323 translation, respectively.

I present some general conclusions and observations in Chapter 12. Implementation aspects of

various components such as Columbia SIP library and related tools, MySQL replication, P2P-SIP

data format and SIP-H.323 translation are presented in appendices A, B, C and D, respectively. A

glossary of terms and bibliography of references can be found in appendices E and F, respectively.



17

Chapter 2

Background: Session Initiation

Protocol (SIP)

For an Internet voice call, it is sufficient for a participant to know the audio codecs supported

by the other participant and the IP address and port number to which audio packets should be

sent. The problem with this is that IP addresses are hard to remember and may change if the

user is mobile or uses more than one device. SIP allows use of a higher level address of the form

user@domainfor user mobility. For instance, a user can callbob@office.comno matter what

communication device, IP address or phone number Bob is currently using. The current locations

of the users are maintained by the SIP registration servers, also known as registrars. The user’s

communication devices register with registrar servers periodically by providing the address at

which he/she can be reached. A more detailed description of SIP can be found in [3, 43, 4]. In

this chapter, we give an overview of the features relevant for this thesis.

SIP message: request and response

SIP is a client-server and request-response protocol, similar to the Hyper Text Transfer Protocol

(HTTP) [7]. A user agent client (UAC) generates a request, and sends it to the user agent server

(UAS). The server processes the request and sends the response back to the client. There can

be zero or more intermediate provisional responses, followed by a final response to a request. A



18

request and its responses constitute atransaction.

SIP defines methods for session establishment, control and termination. The methods

are invoked by the UAC for a resource identified by an uniform resource identifier (URI) [44]

on the UAS. As shown in Fig. 1.1 (p. 3), when Bob’s user agent is powered up, it (UAC) sends

the REGISTER method to the server (UAS) atexample.net to update the contact location of

Bob, identified with URIsip:bob@example.net. The server updates the contact location in its

database. Alice’s user agent (UAC) sends theINVITE method forsip:bob@example.net to

Bob’s server to initiate a call to Bob. The server locates the current contact of Bob and proxies

the message to Bob’s user agent (UAS). Since a SIP user agent (or end system) sends as well

as receives the SIP request, it contains both UAC and UAS. Similarly, the server contains both

UAC and UAS. TheBYE request terminates the call, and can be invoked by the user agent of

either Alice or Bob. Alice may cancel a pending call usingCANCEL before Bob accepts the

INVITE. ACK requests are used for reliability ofINVITE responses [3] because, unlike HTTP,

which runs on TCP, the SIP message can go over UDP also. There is anOPTIONS method

to get the capabilities of the remote party without actually initiating a call. Additional methods

have been defined to extend SIP for instant messaging (MESSAGE), presence (SUBSCRIBE,

NOTIFY, PUBLISH), call transfer (REFER), etc.

An exampleINVITE message is shown in Fig. 2.1. Similar to HTTP, it is text-based

with a request line containing the resource identifier asrequest-URI, sip:bob@example.net,

followed by a list of headers and finally a body. TheTo header contains the callee. TheFrom

header contains the caller. TheSubject identifies the subject of the call similar to an email

subject. TheCall-ID contains a unique call identifier to identify this association between the

caller and callee. A SIPdialog is uniquely identified using the two end points (To andFrom) and

Call-ID. INVITE andSUBSCRIBE are two methods that can create a new SIP dialog. Within

a dialog, subsequent SIP requests have increasingCSeq header values in each direction, i.e.,

caller-to-callee and callee-to-caller.

The SIP response is similar to the request, except that the first line is a response line

containing a response code and a reason phrase. SIP reuses HTTP’s response codes and adds

some new responses. In particular, a200 response code indicates a success response.



19

INVITE sip:bob@example.net SIP/2.0
Via: SIP/2.0/UDP pc33.home.com;branch=z9hG4bKnashds8
Max-Forwards: 70
To: Bob <sip:bob@example.net>
From: Alice <sip:alice@home.com>;tag=1928301774
Call-ID: a84b4c728ca8@mypc.home.com
CSeq: 613 INVITE
Contact: <sip:alice@pc33.home.com>
Content-Type: application/sdp
Content-Length: 148

v=0
o=user1 53655765 2353687637 IN IP4 192.1.2.3
s=Weekly conference call
c=IN IP4 192.1.2.3
t=0 0
m=audio 8080 RTP/AVP 0 8
m=video 8082 RTP/AVP 31

Figure 2.1: Example SIP Message with SDP

SIP requests and responses may carry message bodies using MIME (Multipurpose Inter-

net Mail Extension [45]) types. The body carries additional information such as a multimedia

session description in theINVITE request and its success response, or presence state in theNO-

TIFY request.

The SIP session negotiates media capabilities of the caller and callee using the Session

Description Protocol (SDP) [46]. SDP contains the various media types (e.g., audio, video),

supported codecs for these media types, and the transport addresses (i.e., IP address or host

name, port number and protocol) for receiving packets for these sessions. The caller offers a

media session inINVITE’s message body, and the callee answers it in the successful response’s

message body [47]. For example, the offer in Fig. 2.1 indicates that the caller can support one

audio session with G.711µ-law or A-law codec (payload types 0 and 8, respectively), and one

video session with H.261 codec (payload type 31). The callee can select a subset of this media

capability and indicate it in the response. Alternatively, if it does not want to support, say, video

session, it can reset the transport address for the video session. After the call is set up, either party

may change the session description by sending anotherINVITE method, known as re-INVITE.



20

Locating SIP servers

A SIP UAC uses DNS [28] to locate the SIP server for a URI. For example, if therequest-URI is

sip:bob@example.net, the client uses a DNS query forexample.net to locate the SIP server for

that domain. In particular, the DNS Naming Authority Pointer (NAPTR) record forexample.net

is queried. If this query fails, the service record (SRV) is queried forsip. udp.example.net

assuming the transport as UDP. The DNS NAPTR and SRV records have priority and weights

to allow failover and load sharing. In the absence of these records, the client can fall back to

querying the A and AAAA records for the IPv4 and IPv6 addresses, respectively.

SIP functions and states

A SIP server contains different functions: registrar, proxy and redirect. Theregistrar function

deals with incomingREGISTER messages. Theproxy function proxies the incoming non-

REGISTER requests to the current contact location of the destination. The current location

can be learned in various ways, including explicit update by the user agent viaREGISTER. A

redirect server responds with the list of current locations to the caller, so that the caller can di-

rectly re-initiate the request to one or more of those locations. Typically, a single application

implements all these functions.

A SIP server typically destroys all transaction state after the transaction is over. Soft

state is used to maintain transaction state. Typically, all transaction state is maintained for up to

approximately 32 seconds after the final response is sent, during which the server can respond

to any retransmitted request if the earlier response got lost. SIP also defines astatelessproxy

function which does not even maintain any transaction state. SIP transactions can complete even

if a server crashes and reboots in the middle, losing all transaction state. SIP messages have

sufficient information to allow a rebooted server to treat the message correctly. This also means

a server can safely clean up old state which has collected due to unusual failures or cases where

the caller lets the phone ring for a long time.

Multiple locations can be registered for a single user, for instance, if the user has many SIP

phones. The SIP server, in proxy mode, forwards the call request to all the registered locations.

If the user picks up one of the phones, the server cancels branches to all the other phones. This



21

behavior is known asforking proxy mode. On the other hand, a sequential proxy mode tries the

registered locations sequentially.

The media path for audio and video is different from the SIP signaling path because media

is exchanged directly between the user agents typically using the Real-time Transport Protocol

(RTP [1, 2]) using the session parameters derived from SDP. A SIP server does not maintain any

dialog or call state. Thus, it treats individual requests such asINVITE andBYE as independent

transactions. Subsequent request in a dialog (or call) can directly be sent between the two end-

points instead of going through the server. However, a server can use theRecord-Route header

to remain in the signaling path for subsequent transactions of the call, e.g., for call accounting.

Figure 2.2: Example SIP call routing



22

An example call routing in SIP

It is possible to encounter multiple SIP servers (either in redirect or proxy mode) in a given call

attempt. Fig. 2.2 shows a more complex call routing scenario in SIP.

1. Bob (bob@home.com) tries to reach Alice (alice@office.com).

2. The server atoffice.com redirects Bob, indicating that Alice can be reached atal-

ice@school.edu.

3. Bob’s user agent tries the new location.

4. Alice has registered four contacts, with one of them (her desk phone) as her preferred

location. Thus, the server atschool.edu tries the more preferred location for Alice at her

desk phone.

5. The phone is idle, and sends a “ringing” response. However, since it is not picked up, the

server times out.

6. The server then forks the call request to all the remaining three locations simul-

taneously. The locations areAlice.Cueba@intern.com, alice@columbia.edu and

ac114@hostel.school.com.

7. The phone atintern.com responds back saying that the user is not available.

8. The server atcolumbia.edu forwards the call to Alice’s desktop computer.

9. A pop-up window appears on Alice’s machine indicating an incoming call from Bob. She

accepts the call by clicking on the “Accept” button of the user interface.

10. The server atcolumbia.edu forwards the response to the upstream server atschool.edu.

11. The server atschool.edu on receiving the successful response, cancels out all the other

pending call requests. In this example, it cancels the call request branch sent tohos-

tel.school.com. The phone athostel.school.com stops ringing at this time.



23

12. The server ofschool.edu then forwards the successful response to the upstream host

(Bob’s user agent).

13. At this point, the call is successfully established. Now media (audio and/or video) can be

exchanged between the two endpoints. The call termination message is not shown.

In the above example we assume a wide-area network composed of a variety of environ-

ments such as campus, corporate and enterprise running SIP servers.

Programmable call handling

When receiving an incoming call request, the SIP server finds the current user location and either

proxies (forks if multiple contacts), redirects or rejects the call initiation message. Although

this simple model satisfies most user’s needs, some advanced users may want a more complex

scenario. For example, “reach me at my office phone during office hours and call me at my home

after office hours, or don’t disturb me when a tele-marketer calls.” This can be implemented by

uploading a piece of software on the server, which governs its behavior based on the time-of-

day or caller identification. SIP allows many different ways to achieve this, for example, via the

XML-based Call Processing Language (CPL [48, 49]) and SIP-CGI [24].

The Call Processing Language (CPL) is a language that can describe and control Internet

telephony services. It is implementable on either network servers or user agent servers. It is

simple, extensible, easily editable by graphical clients, and independent of operating system or

signaling protocol. It is suitable for running on a server where users may not be allowed to execute

arbitrary programs, as it has no variables, loops, or ability to run external programs. Fig. 9.10

shows an example CPL script for time-of-day based call routing. The idea is to proxy the call to

the registered location during office hours and forward the call to voicemail otherwise.

SIP-CGI is similar to HTTP-CGI and can be written in any language. It has the same

potential security problem as HTTP-CGI, and it should be allowed only in a trusted environment

since users are allowed to execute arbitrary code. The SIP server can run the script as an external

process passing all the parameters needed by the script (e.g., caller URI, subject headers, etc.)

and reading back the response from the standard output of the process. The response indicates

how to handle the call, for example, to proxy, redirect or reject it.



24

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<time-switch tzid="America/New_York"
tzurl="http://zones.example.com/tz/America/New_York">

<time dtstart="20000703T090000" duration="PT8H" freq="weekly"
byday="MO,TU,WE,TH,FR">

<lookup source="registration"><success><proxy /></success></lookup>
</time>
<otherwise>

<location url="sip:jones@voicemail.net"><proxy /></location>
</otherwise>

</time-switch>
</incoming>

</cpl>

Figure 2.3: Example CPL script: call routing based on time-of-day

More than just a voice call

One advantage of SIP over PSTN (Public Switched Telephone Network) based tele-conferencing

is that it allows creating new flexible services including traditional PSTN services such as interac-

tive voice response (IVR), call transfer, music-on-hold as well as more Internet-specific services

like presence-enabled calls and integration of voice-mails and emails. Multimedia conferences on

the Internet [50] can be created using SIP. Using SIP for instant messaging allows easy integra-

tion with other SIP-based telephony components. Various components such as media streaming

server, call-routing engines and user location server can be combined in various ways to create

new service architectures.

Sipc is the Columbia SIP user agent that can be used for Internet telephony calls, mul-

timedia conferences, presence, instant messaging, and shared web browsing. It supports a range

of media types, such as audio, video, text and white board, and can be easily extended to handle

additional media types. It uses external media tools such as vic [51] for video, Robust Audio Tool

(RAT [52]) for audio and wb [53] as a shared white board. Beyond multimedia communication,

it can also perform network appliance control, or act as Session Announcement Protocol (SAP)-



25

based Internet radio or television [54]. It also supports emergency services such as E911 [55].

After this brief introduction to SIP, I present the first part of the thesis on SIP server

redundancy.



Part I

Server Redundancy

This part describes our failover and load sharing architecture to achieve carrier-grade reliability

and scalability of SIP servers using commodity hardware.

26



27

Chapter 3

Failover and Load Sharing in

SIP-based IP Telephony

3.1 Introduction

In this chapter, we apply some of the existing web server redundancy techniques for high ser-

vice availability and scalability to the relatively new IP telephony context. In particular, we

consider SIP [3] server failover techniques based on the clients, DNS (Domain Name Service),

database replication and IP address takeover, and load sharing techniques using DNS, SIP identi-

fiers, network address translators and servers using the same IP address, in Sections 3.3 and 3.4,

respectively. These techniques also apply beyond telephony, for example, for SIP-based instant

messaging and presence that use the same SIP servers for registration and message routing.

We describe our two-stage reliable and scalable SIP server architecture in which the first

stage proxies the request to one of the second stage server group based on the destination user

identifier. We quantitatively evaluate the performance improvement of the load sharing architec-

ture using our SIP server in Section 3.5. We also quantitatively compare the effect of SIP server

architecture such as event-based and thread pool on server performance in Section 3.6. This

further improves the performance using the event-based architecture for a single server. Addi-

tionally, we present an overview of the failover mechanism we implemented in our test-bed using

the open source MySQL database. Next, we give an overview of related work in reliability and



28

scalability of SIP-based IP telephony.

3.2 Related Work

SIP servers are similar to web servers. Failover and load sharing for web servers is a well-

studied problem [56, 57, 58, 59]. TCP connection migration [60], process migration [61], IP

address takeover [62] and MAC address takeover [63] have been proposed for high availability.

Load sharing via connection dispatchers [64] and HTTP content or session-based request redi-

rection [65, 66, 63] are available for web servers. Some of these techniques such as DNS-based

load sharing [67, 68] also apply to other Internet services like email and SIP. Some of the load

sharing techniques such as dynamic load balancing [69] can also be applied to SIP, but we have

not investigated this. Although SIP is an HTTP-like request-response protocol, there are certain

fundamental differences that make the problem slightly different. For example, SIP servers can

use both TCP and UDP transport, the call requests and responses are usually not bandwidth in-

tensive, caching of responses is not useful, and the volume of data update (REGISTER message)

and lookup (INVITE message) is often similar, unlike common read-dominated database and web

applications.

Unlike call stateful PSTN switches, the SIP proxy servers are only transaction stateful [3].

Thus, if the server fails during a transaction, only that transaction needs to be restarted without

affecting the existing call to which the transaction belongs. Some work has already been done in

the context of SIP server availability [70, 71]. In particular, Ohlmeier [70] presents the require-

ments for high availability SIP servers and proposes failover using anycast and data replication.

For SIP server failover, IP anycast does not work well with TCP and the backend database re-

quires synchronization between the primary and backup servers for authentication, thus making

the design complicated. To reduce the session setup time in case of server failure, IETF’s Reliable

Server Pooling (Rserpool) has been proposed for call stateful SIP servers [71]. Although this is

useful for sharing call state between the primary and secondary server, a failed transaction still

needs to be restarted. In Section 3.3.5, we describe how to apply the Rserpool [72, 73]) archi-

tecture for SIP telephony. The primary disadvantage of Rserpool is that it requires new protocol

support in the clients. Mid-call failover [74] and server selection policy [75] for call stateful SIP



29

servers to improve the call success rate are proposed, but these proposals do not apply to the call

stateless SIP proxy servers which are more scalable. We have implemented SIP server failover

using database replication.

SIP-based telephony services exhibit three bottlenecks to scalability: signaling, real-time

media data and gateway services. The signaling part requires high request processing capacity

in the SIP servers. The data part requires enough network bandwidth and capacity (CPU and

memory) in the end systems. The gateway part requires optimal placement of media gateways and

switching components [76]. This thesis focuses only on the signaling part. SIP allows redirecting

a request to a less loaded server using the 302 response, or transferring an existing call dialog to

a less loaded endpoint or gateway [3, 77]. An overloaded SIP server can respond with the 503

response to signal the upstream sender to reduce the request rate when this downstream server is

overloaded. However, this mechanism suffers from load amplification and oscillation problems in

a cluster [78]. The SIP server can utilize the failover and load sharing research done in databases.

For example, the MySQL SQL database allows replication and clustering [29, 79].

Identifier-based load balancing has been used for emails. We combine this with DNS-

based server redundancy for a two-stage reliable and scalable architecture. Novelty of our work

lies in the application of existing techniques to relatively new Internet telephony, and quantitative

performance evaluation of the architecture for SIP-based telephony. We also present an overview

of our implementation of failover and describe some practical issues.

SIP server performance can be quantified using metrics such as calls per second and reg-

istrations per second. SIPstone [9] defines such metrics and provides a benchmarking technique

for SIP proxy and registration servers, which we use in our measurements. Optimizations such

as memory pool, counted strings and lazy parsing have been proposed for SIP servers [80, 26].

These optimizations can further improve our load sharing performance. Event and thread-based

architectures, particularly for web servers, are well known in systems research [81, 82, 83, 84, 85].

We study the effect of server architecture on SIP server performance using commodity hardware

and standard POSIX (Portable Operating System Interface) threads in Section 3.6.



30

3.3 Availability: Failover

High availability is achieved by adding a backup component such as the SIP server or user record

database. Depending on where the failure is detected and who does the failover, there are various

design choices: client-based, DNS-based, database failover and IP address takeover.

3.3.1 Client-based Failover

P1

(2) REGISTER

P2

(1) REGISTER

BobAlice

(4) INVITE

(3) INVITE

Figure 3.1:Client-based failover

P2

P1

Bob

(1) REGISTER

(2) REGISTER

(4) INVITE

(5) INVITE

(3)
Alice

example.com
_sip._udp SRV 0 0 p1.example.com

          SRV 1 0 p2.example.com

DNS

Figure 3.2:DNS-based failover

In the client-based failover (Fig. 3.1), Bob’s phone knows the IP addresses of the primary

and the backup servers,P1 andP2. It registers with both, so that either server can be used to

reach Bob. Similarly, Alice’s phone is also preconfigured with the addresses of the two servers.

It first triesP1, and if that fails it switches toP2.

All failover logic is built into the client. The servers operate independent of each other.

This method is used by the Cisco IP phones [86]. Configuring phones with the two server ad-

dresses works well within a domain. However, DNS is used to allow adding or replacing backup

servers without changing the phone configurations as described next.

3.3.2 DNS-based Failover

DNS provides two record types, naming authority pointer (NAPTR) and service (SRV), relevant

to SIP requests. A SIP client can use the priority parameters of these DNS records to determine

the primary and secondary servers. DNS-based failover using NAPTR and SRV records is the

most clean and hence, preferred way, to failover [28]. For instance, Alice’s phone can retrieve the



31

DNS SRV [67] record forsip. udp.example.comto get the two server addresses (Fig. 3.2). In the

example,P1 will be preferred overP2 by assigning a lower numeric priority value toP1.

Alternatively, dynamic DNS can be used to update the A-record forhome.comfrom the

IP address ofP1 to P2, whenP1 fails. P2 can periodically monitorP1 and update the record when

P1 is dead. Setting a low time-to-live (TTL) for the A-record bindings can reduce the failover

latency due to DNS caching [87].

3.3.3 Failover based on Database Replication

D2

(4)

replication
(3)

(2)

database
D1

P1

P2

Alice Bob

(6) INVITE

(1) REGISTER(5) INVITE

Slave
Master

Figure 3.3:Failover based on database replication

Not all SIP phones are capable of registering with multiple servers. Moreover, to keep

the server failover architecture independent of the client configuration, the client can register with

only P1, which can then propagate the registration toP2. If a database is used to store the user

records, then replication can be used as shown in Fig. 3.3. Bob’s phone registers with the primary

server,P1, which stores the mapping in the databaseD1. The secondary server,P2, uses the

databaseD2. Any change inD1 is propagated toD2. WhenP1 fails, P2 can take over and use

D2 to proxy the call to Bob. There could be small delay beforeD2 gets the updated record from

D1.



32

3.3.4 Failover using IP Address Takeover

If DNS-based failover cannot be used due to some reason (e.g., not implemented in the client),

then IP address takeover [62] can also be used (Fig. 3.4). This only works if both the primary and

secondary servers are in the same subnet. BothP1 andP2 have identical configuration but run

on different hosts on the same Ethernet. Both servers are configured to use the external master

database,D1. The slaveD2 is replicated fromD1. The clients know the server IP address asP1’s

10.1.1.1 in this example.

P1

P2

10.1.1.1

10.1.1.1
D2

D1

10.1.1.3

10.1.1.4
10.1.1.2

Master

Slave

Figure 3.4: When the primary
server fails

P1

10.1.1.1

P2

10.1.1.2

D1

D2

10.1.1.3

10.1.1.4
Slave

Master

Figure 3.5: When the master
database fails

10.1.1.2

D1

P1

P2

D2

10.1.1.1

10.1.1.1

Master

Slave

Figure 3.6: co-
located database and
proxy

P2 periodically monitors the activity ofP1. WhenP1 fails, P2 takes over the IP address

10.1.1.1. Now, all requests sent to the server address will be received and processed byP2. When

D1 fails, P1 detects and switches toD2 (Fig. 3.5). IP takeover is not used byD2 since the SIP

servers can be modified to switch over whenD1 fails. The ARP cache may introduce additional

latency in failover.

The architecture is transparent to the rest of the network including the clients and DNS,

and can be implemented without external assumptions. However, if the replication is only from

the master to the slave, it requires modification in the SIP server software to first tryD1, and if

that fails useD2 so that all the updates are done to the master server. To avoid replicating the

database,P1 can propagate theREGISTER message also toP2.

Alternatively, to avoid the server modification, the server and the associated database can



33

be co-located on the same host as shown in Fig. 3.6. If the primary host fails, bothP2 andD2

take over.P1 always usesD1, whereasP2 always usesD2.

3.3.5 Reliable Server Pooling

The IETF’s Reliable Server Pooling (Rserpool) working group is developing architecture and pro-

tocols for the management and operation of server pools to support highly reliable applications,

and for client access mechanisms to a server pool. In the context of Rserpool architecture [73, 71],

Fig. 3.7 shows the client phone as the pool user (PU),P1 andP2 as the pool elements (PEs) in

theSIP server pool, andD1 andD2 as PEs in thedatabase pool. P1 andP2 register with their

home name server,NS 2, which supervises them, and informs the other name servers about these

PEs. Similarly,D1 andD2 also register with the name server (NS). The SIP servers are the pool

users of the database pool. A pool element is removed from the pool if it is out of service.

SIP server pool

Database pool

Name Servers

name resolution register server
in the pool

register

access server pool

access server poo

Client (PU)

Pool elements

Pool elements

P1 P2

NS1 NS2 DB2DB1

Figure 3.7: Reliable server pooling for SIP

When the client wants to contact the SIP server pool, it queries one of the name servers,

NS1, to get the list ofP1 andP2 with relative priority for failover and load sharing. The client

chooses to connect toP1 and sends the call invitation. IfP1 fails, the client detects this and sends

the message toP2. For stateful services,P1 can exchange state information with another server,

P2, and return the backup server,P2, to the client in the initial message exchange. This way



34

the client knows which backup server to use in case of failure.P1 can also give a signed cookie

similar to HTTP cookie to the client, which sends it to the new failover server,P2, in the initial

message exchange. This is needed for call stateful services such as conferencing, but not for SIP

proxy servers.

The SIP server,P1, queries the NS to get the list,D1 andD2, for the “database pool”.

D1 andD2 are backed up and replicated by each other, so they can return this backup server

information in the initial message exchange.

The primary limitation of this architecture is that this requires new protocol support for

name resolution and server access in the clients. A translator can be used to interoperate with the

clients that do not support reliable server pooling. However, this makes the translator a single

point of failure between the client and the server, hence limiting the reliability. Secondly, the

name space is flat unlike DNS hierarchy, and is designed for a limited scale (e.g., within an

enterprise), but may be combined with wide area DNS based name resolution, for example.

3.3.6 Implementation

I have used some of the above techniques in our Columbia InterNet Extensible Multimedia Ar-

chitecture (CINEMA). The architecture [88, 89] consists of our SIP server,sipd and a MySQL

database for user profile and system configuration. The configuration and management are done

via a web interface that accesses various CGI (Common Gateway Interface) scripts written in Tcl

(Tool Command Language) [90] on the web server. All the servers may run on a single machine

for an enterprise setup.

For failover, I use two sets of identical servers on two different machines as shown in

Fig. 3.8. The database and SIP server share the same host. The databases are replicated using

MySQL 4.0 replication [29] such that bothD1 andD2 are master and slave of each other. MySQL

propagates the binary log of the SQL commands of the master to the slave, and the slave runs these

commands again to do the replication. The details of two-way replication is in Appendix B.

MySQL 4.0 does not support any locking protocol between the master and the slave to

guarantee the atomicity of the distributed updates. However, the updates from the SIP server are

additive, i.e., each registration from each device is one database record, so having two devices for



35

SRV 0 0 5060 phone.cs
SRV 1 0 5060 sip2.cs

D1

_sip._udp

P1 P2

D2
Web
scripts

phone.cs.columbia.edu sip2.cs.columbia.edu

REGISTER proxy1=phone.cs

backup=sip2.cs

Master
/ Master

Web

Slave
/ Slave

scripts

Figure 3.8: Failover in CINEMA

the same user register with two database replicas does not interfere with the other registration.

For example, ifbob@home.comregistersbob@location1.comwith D1 andbob@location2.com

with D2, bothD1 andD2 will propagate the updates to each other such that bothD1 andD2 will

have both of Bob’s locations. There is a slight window of vulnerability when one contact is added

from D1 and the same contact is removed inD2. Then, after the propagation of updates the two

databases will be inconsistent with different contacts for the user. It turns out that this does not

occur for the simple failover as I describe next. We can safely use the two-way replication as long

as updates are done by only the SIP server.

For a simple failover case, the primary serverP1 is preferred over the secondary server

P2. So all theREGISTER requests go toP1 and are updated inD1. The replication happens

from D1 to D2, not the other way. Only in the case of failure ofP1, will the update happen

to D2 throughP2. But D1 will not be updated by the server in this case. By making sure that

database becomes consistent before the failed server is brought up, we can avoid the database



36

inconsistency problem mentioned above.

Web scripts are used to manage user profiles and system configuration. To maintain

database consistency, the web scripts should not be allowed to modifyD2 if D1 is up. To facilitate

this I modified the MySQL-Tcl client interface to accept a list of connection attributes. For

example, ifD1 andD2 are listed, then the script tries to connect toD1 first, and if that fails then

triesD2 as shown in Fig. 3.8. For our web scripts, the short-lived TCP connection to MySQL is

active as long as the CGI script is running. So the failover at the connection setup is sufficient.

For long-lived connection, the implementation should be modified to provide failover even when

the TCP connection breaks.

3.3.7 Analysis

The architecture provides high reliability due to redundancy. Assuming the reliability of primary

and backup sets of servers asR, i.e., the probability that the server is running isR, 0 ≤ R ≤ 1,

the overall reliability is(1− (1−R)2).

Server failure affects thecall setup latency(since the client retries the call request to

the secondary server after a timeout) and theuser availability(the probability that the user is

reachable via the server given that her SIP phone is up). If the primary server is down for a longer

duration, the DNS records can be updated to promote the secondary server to primary. Fig. 3.9

shows that the client retries the call after a timeout,TR, to the secondary server if the primary

server does not respond. If the individual server reliability isR, client retry timeout isTR, and

DNS time-to-live (TTL) isTD, then the average call setup latency increases byTR(1−R)P[tM <

TD] (assuming no network delay andR ≈ 1), whereP[tM < TD] is the probability that the time,

tM (random variable), to repair the server is less than the DNS TTL. For example, if the repair

time is exponentially distributed with meanTM , thenP[tM < TD] = 1 − e
− TD

TM assuming that

the mean time to failure is much larger than the mean time to repair (i.e.,(1 − R)TM ≈ 0). If

an explicit failure feedback such as ICMP “host unreachable” is received by the client, the client

tries the secondary server immediately instead of waiting for the timeout,TR.

User availability is mostly unaffected by the primary server failure, because most regis-

trations areREGISTER refreshes. Fig. 3.10 shows that if the primary server fails after refreshing



37

INVITE

DNS

D2

Caller
P2

R

D1

T

P1

100 Trying

INVITE

/ Master
Master Slave
/ Slave

Figure 3.9: Call setup latency on failover

Tc

Tc
Tr

RT
(available)

(available)

Callee

refresh

200 OK

REGISTER

REGISTER

refresh

SQL replicate
refresh

200 OK
REGISTER

Tc

D1

P1

D2

P2
/ Master

Master Slave
/ Slave

Figure 3.10: User unavailability on failure

the database with the user record, then the user record is still available on the secondary server.

However, if the primary server fails after the phone registers a new contact for the first time, but

before the registration is propagated to the secondary server, then the phone contact location is

unreachable until the next registration refresh. In this case, assuming that the server uptime is

exponentially distributed, and given the memoryless property, the time-to-failure has the same

distribution. Suppose the mean-time-to-failure isTF and the database replication latency isTd,

then the probability that the server goes down before the replication is completed (given that it is

up att = 0) is P[lifetime < Td] = 1 − e
− Td

TF . For example, ifTF is one week, andTd is ten

seconds, then this probablity is0.0000165 ≈ 0. If this happens, the user record is unavailable

for at mostTr + TR, whereTr is the registration refresh interval (typically one hour), andTR is

client retry timeout, which is about 10 s for Cisco phones. After this time, the client refreshes the

registration and updates the secondary server making the user record available.

We use an in-memory cache of user records inside the SIP server to improve its perfor-

mance [88, 26]. This causes more latency in updating the user registration fromP1 to P2. If the

failure happens before the update is propagated toP2, then it may have the old and expired record.

However, in practice the phones refresh registrations much before the expiry and the problem is

not visible. For example, suppose the record expires every two hours and the refresh happens

every 50 minutes. SupposeP1 receives the registration update from a phone and fails before



38

propagating the update toD1. At this point, the record inD2 has 70 minutes to expire soP2

can still handle the calls to this phone. The next refresh happens in 50 minutes, before expiration

of the record inD2. If a new phone is setup (first time registration) just before failure ofP1, it

will be unavailable until the next refresh. SupposeTd andTF are defined as before, andTc is the

database refresh interval, then the probability that the server goes down before the replication is

completed is1− e
−Td+Tc

TF .

Since, most of the time, the same contact information is conveyed in registration refreshes,

we can reduce the number of database transactions. For example, the expiration time can be kept

in memory instead of propagating to the database. When the registration is deleted, expired or

changed in the memory, the information is propagated to the database. Thus, the database traffic

is reduced considerably. This mechanism can be used forN + 1 servers where one server can act

as a backup forN primary servers. Since the load on the backup server is considerably lower, this

works well. One disadvantage is that if the server fails, the database will still have the expired

user registrations, because the expiration is not stored in the database. We have not implemented

this mechanism.

With the Cisco phone [86] that has the primary and backup proxy address options (Sec-

tion 3.3.1), the phone registers with bothP1 andP2. BothD1 andD2 propagate the same contact

location change to each other. However, since the contact record is keyed on the user identifier

and contact location, the secondwrite just overrides the firstwrite without any other side effect.

Alternatively, the server can be modified to perform an immediate synchronization between the

in-memory cache and external database if the server is not heavily loaded.

The two-way replication can be extended to more servers by using circular replication

such asD1-D2-D3-D1 using the MySQL master/slave configuration [29]. Thus, if each server

reliability is only 98%, a three-way replication gives the total reliability of1−0.023 = 0.999992,

i.e., “5 nines”. To provide failover of individual servers (e.g.,D1 fails but notP1), the SIP server

P1 should switch toD2 if D1 is not available.



39

3.4 Scalability: Load Sharing

In failover, the backup server takes over in the case of failure whereas in load sharing all the

redundant servers are active and distribute the load among them. Some of the failover techniques

can also be extended to load sharing.

3.4.1 Network Address Translation

A network address translator (NAT) device can expose a unique public address as the server

address and distribute the incoming traffic to one of the several internal private hosts running

the SIP servers [91]. Eventually, the NAT itself becomes the bottleneck making the architecture

inefficient. Moreover, the transaction-stateful nature of SIP servers require that subsequent re-

transmissions should be handled by the same internal server. So the NAT needs to maintain the

transaction state for the duration of the transaction, further limiting scalability.

3.4.2 Multiple Servers with the Same IP Address

In this approach, all the redundant servers in the same broadcast network (e.g., Ethernet) use the

same IP address. The router on the subnet is configured to forward the incoming packets to one

of these servers’ MAC address. The router can use various algorithms such as “round robin” or

“response time from server” to choose the least loaded server.

To avoid storing SIP transaction states in the subnet router, this method is only recom-

mended for stateless SIP proxies that use only UDP transport and treat each request as indepen-

dent without maintaining any transaction state.

In Section , we describe our two-stage architecture. In the absence of DNS SRV and

NAPTR, we can use the same IP address method for the first stage (Fig. 3.13) in the two stage

architecture. The same IP address method is less efficient since the network bandwidth of this

subnet may limit the number of servers in the cluster. Moreover, this method does not work if the

network itself is unreachable. Hence, DNS-based load sharing is recommended.



40

3.4.3 DNS-based Load Sharing

The DNS SRV [67] and NAPTR [68] mechanisms can be used for load sharing using the priority

and weight fields in these resource records [28], as shown below:

example.com

_sip._udp 0 40 a.example.com

0 40 b.example.com

0 20 c.example.com

1 0 backup.somewhere.com

The above DNS SRV entry indicates that the serversa, b, c should be used if possible (priority 0),

with backup.somewhere.com as the backup server (priority 1) for failover. Within the three

primary servers,a andb are to receive a combined total of 80% of the requests, whilec , presum-

ably a slower server, should get the remaining 20%. Clients can use weighted randomization to

achieve this distribution.

write

D=2

D1

P1

P2

P3

D2

Figure 3.11:DNS-based

P1

a−h

i−q

D=3

r−z
P3

P2

stateless
proxy

D3

P0

D1

D2

Figure 3.12:Identifier-based load sharing

However, simple random distribution of requests is not sufficient since the servers need

to access the same registration information. Thus, in the example above, each server would have

to replicate incomingREGISTER requests to all other servers or update the common shared and

replicated database(s). In either case, the updates triggered byREGISTER quickly become the

bottleneck. The SIP phones typically doREGISTER refresh once an hour. Thus, for a wireless

operator with one million subscribers, it has to process about106

3600 = 280 updates per second.



41

Fig. 3.11 shows an example with three redundant servers and two redundant databases.

For everyREGISTER, it performs oneread and onewrite in the database. For everyINVITE-

based call request, it performs oneread from the database. Everywrite should be propagated to

all theD databases, whereas aread can be done from any available database. Suppose there are

N writes andr · N reads, and if the same number ofINVITE andREGISTER are processed

thenr = 2. Suppose, the databasewrite takesT units of time, and databaseread takest · T
units. Total time per database will be( tr

D + 1)TN . This shows that no matter how many servers

are used, the performance is limited by thewrite capacity of one database. For example, even

with very largeD, the total time is at leastTN for N writes, limiting the cluster performance to

1
T registrations per second.

The architecture in Fig. 3.11 also provides high reliability due to redundancy. Assuming

that the mean-time-to-repair is much less than mean-time-to-failure, and the reliability of indi-

vidual proxy server isRp and database server isRd, and suppose there areP proxy servers and

D database servers, the reliability of the system becomes(1− (1−Rp)P )(1− (1−Rd)D). The

reliability increases with increasingD andP .

3.4.4 Identifier-based Load Sharing

For identifier-based load sharing (Fig. 3.12), the user identifier space is divided into multiple

non-overlapping groups. A hash function maps the destination user identifier to the particular

group that handles the user record. The example in Fig. 3.12 uses the hash function based on the

first letter of the user identifier. For example,P1 handlesa-h , P2 handlesi-q andP3 handles

r-z . A high speed first stage server (P0), proxies the call request toP1, P2 andP3 based on the

destination user identifier without contacting any database. If a call is received for destination

bob@home.comit goes toP1, whereassam@home.comgoes toP3. Each server in the second

stage has its own database and does not need to interact with the others. To guarantee almost

uniform distribution of call requests to different servers, a better hashing algorithm such as SHA1

can be used or the groups can be re-assigned dynamically based on the load.

SupposeN , D, T , t andr are as defined in the previous section. Since eachread and

write operation is limited to one database and assuming uniform distribution of requests to the



42

different servers, total time per database will be( tr+1
D )TN . With increasingD, this scales better

than the previous method. Since thewrites do not have to be propagated to all the databases and

the database can be co-located on the same host with the proxy, it reduces the internal network

traffic.

However, because of lack of redundancy this architecture does not improve system reli-

ability. Assuming that the mean-time-to-repair is much less than mean-time-to-failure, and the

reliability of the first stage proxy, second stage proxy and database server asR0, Rp andRd,

and suppose there areD groups, then the system reliability becomesR0 · (Rp)D · (Rd)D. The

least reliable component affects the system reliability the most and the reliability decreases asD

increases.

The only bottleneck may be the first stage proxy. We observed that the stateful perfor-

mance is roughly similar to stateless performance (Section 3.5), hence a single stateless load

balancing proxy may not work well in practice. We use a cluster of proxies in the first stage as

described next.

3.4.5 Two-stage Reliable and Scalable Architecture

a1.example.com, a2.example.com

s1.example.com

s2.example.com

s3.example.com

a.example.com
_sip._udp SRV 0 0 a1.example.com
          SRV 1 0 a2.example.com

b.example.com
_sip._udp SRV 0 0 b1.example.com
          SRV 1 0 b2.example.com

sip:bob@example.com

b1.example.com, b2.example.com

b*@example.com

a*@example.com

sip:bob@b.example.com

_sip._udp SRV 0 0 s1.example.com
          SRV 0 0 s2.example.com
          SRV 0 0 s3.example.com

Figure 3.13: Two-stage reliable and scalable architecture

Since none of the mechanisms above are sufficiently general or infinitely scalable, we

propose to combine the two methods (Fig. 3.11 and 3.12) in a two-stage scaling architecture



43

(Fig. 3.13) to improve both reliability and scalability. The first set of proxy servers selected via

DNS NAPTR and SRV performs request routing to the particular second-stage cluster based on

the hash of the destination user identifier. The cluster member is again determined via DNS.

The second-stage server performs the actual request processing. Adding an additional stage does

not affect the audio delay, since the media path (usually directly between the SIP phones) is

independent of the signaling path. Use of DNS does not require the servers to be co-located,

thus allowing geographically distributed cluster. This provides availability even if the networks

of some of the servers in the cluster is unreachable.

Note that the first stage server uses the destination user identifier to select the second

stage server only for an inbound request to an user in this domain. In a SIP call setup, an optional

outbound proxy may be used by the provider to apply policy decisions such as billing to all the

outbound calls by the users in the domain. If the two-stage cluster is acting as an outbound proxy

of the domain, then the first stage server selects the second stage server based on the hash of the

source user identifier instead of the destination user identifier.

Suppose there areS first stage proxy servers,P clusters in the second stage, andB

proxy and database servers in each cluster. The second stage cluster has one primary server and

B − 1 backups. All the databases in a cluster are replicated using circular replication. Suppose

theREGISTER message arrivals are uniformly distributed (because of the uniform registration

refresh rate by most user agents) with meanλR and INVITE (or other requests that need to be

proxied such asMESSAGE) arrivals are Poisson distributed with meanλP , such that the total

request rate isλ=λR+λP . Suppose the constant service rates of first stage server beµs, and the

second stage server beµr andµp for registration and proxying, respectively. We assume a hash

function so that each cluster’s arrival rate is approximatelyλ
B . Note that Fig. 3.8 is a special case

whereS=0,P=1 andB=2. Similarly, Fig. 3.12 is a special case whereS=B=1.

The goal is to quantitatively derive the relationship between different service parameters

(µ), system load (λ), and redundancy parameters (S, B, P ). We want to answer the questions

such as (1) when is first stage proxy needed, and (2) what are the optimal values for redundancy

parameters to achieve a given scalability. Our goal is to achieve carrier grade scalability (10

million BHCA) using commodity hardware. I provide our performance measurement results for



44

scalability parameters (S andP ) and system load (λ) in the next section.

Suppose each server isR =99% reliable, andS = P = B = 3, then overall system

reliability is (1− (1−R)S) · (1− (1−R)B)P = 99.9996%, i.e., “five nines”.

We do not consider the case of load sharing by different proxies in the same cluster,

because load sharing is better achieved by creating more clusters. For handling sudden load

spikes within one cluster, the DotSlash on-demand rescue system [92] is more appropriate where

a backup server in the same or another cluster temporarily shares the load with the primary server

of the overloaded cluster.

3.5 Performance Evaluation

In this section, I quantitatively evaluate the performance of our two-stage architecture for scala-

bility using our SIP registration and proxy server,sipd, and SIPstone test suite [9].

3.5.1 Test Setup

I performed the SIPstoneProxy 200 tests, over UDP. The SIPstone test suite hasloadersandcall

handlers, to generate SIP requests and to respond to incoming requests, respectively. The server

under test (SUT) is a two-stage cluster of our SIP servers,sipd, implementing the reactive system

model [26]. An example test setup is shown in Fig. 3.14. Each instance ofsipd was run on a

dedicated host with Pentium 4, 3 GHz CPU, on a 800 MHz motherboard, with 1 GB of memory,

running Redhat Linux 2.4.20. The hosts communicated over a lightly loaded 100base-T Ethernet

connection. A single external MySQL database, running version 3.23.52 of the MySQL server

was shared by all thesipd instances. But this is not an issue because theProxy 200 test does not

modify the database, but uses the in-memory cache ofsipd [88].

To focus on only the scalability aspects I used one server in each group of the second stage

(Fig. 3.13,B=1). I use the conventionSnPm to representn first stage servers, andm second stage

groups with one server per group.S0P1 is same as a single SIP proxy server without any first

stage load balancer.

On startup, a number of call handlers (in our tests, four) register a number of destination



45

L=4
Call handlersLoaders

H4

H3

L2

L3

H2

H1

L4

L1

H=4

λ

0.4λ

L

n
Load= λ

0.3

Second stage servers
m=3

λ

First stage servers
n=3

0.3

A1000−A1024

user identifiers

A1025−A1049

A1050−A1074

A1075−A1099

Generate load λ

Load= λ

P3

P2

P1

S2

S1

S3

SIPstone controller

Figure 3.14: Example test setup for S3P3

180 Ringing

200 OK
200 OK

INVITE

Call handlerLoad generator

H2L1

second stage (stateless)first stage (stateless)

200 OK200 OK
200 OK

BYE
BYE

ACK

BYE

ACKACK

200 OK

180 Ringing

INVITE INVITE

180 Ringing

S1 S2 P1 P2

Figure 3.15: Example message flow for S2P2: in the first stage INVITE goes via S2, whereas
ACK and BYE via S1, but in the second stage all the requests go via P2 based on the consistent
hash of the destination user identifier.

locations (from non-overlapping user identifier sets as shown in Fig. 3.14) with the proxy server.

Then for theProxy 200 test, a number of loaders (in our tests, four) send SIPINVITE requests

using Poisson distribution for call generation to the SUT, randomly selecting from among the

registered addresses as shown in Fig. 3.15. If there is more than one first stage server (n > 1), then



46

the loader randomly selects one of the first stage servers. The first stage server proxies the request

to one of the second stage servers based on the destination user identifier. The second stage

server forwards each request to the appropriate call handler responsible for this user identifier.

The call handler immediately responds with180 Ringing and200 OK messages. These are

forwarded back to the load generators in the reverse path. Upon receiving the200 OK response,

the load generator sends anACK message for the initial transaction and aBYE request for a new

transaction. TheBYE is similarly forwarded to the call handler via the two-stage servers to reflect

therecord-route behavior in real operational conditions [9]. The call handler again responds with

200 OK. If the 200 OK response is not received by the loader within two seconds, or if any other

behavior occurs, then the test is considered a failure. The loader generates the request for one

minute for a given request rate. The server is then restarted, and the test is repeated for a higher

request rate. I used an increment of 100 calls per second (CPS).

This process is repeated until 50% or more of the tests fail. Although [9] requires 95%

success, I measured until 50% to show that the throughput is stable at higher loads. There is no

retransmission on failure [9]. The complete process is repeated for different values ofn andm in

the cluster configuration,SnPm.

3.5.2 Analysis

Fig. 3.16 compares the performance of the differentSnPm configurations. It shows the average

of three experiments for each configuration at various call rates. A singlesipd server handles

about 900 calls/second (CPS) (seeS0P1 in Fig. 3.16), which corresponds to about three million

BHCA. When the load is more than the server capacity, the throughput remains almost constant

at about 900 CPS. When the throughput is same as load, i.e., 100% success rate, the graph is a

straight line. Once the throughput reaches the capacity (900 CPS), the graph forS0P1 flattens

indicating lower success rate for higher load. At a load of 1800 CPS, the system gives only 50%

success rate (i.e., throughput is half of load), and the experiment stops. Note that for all practical

purposes, success rate of close to 100% is desired.

When the server is overloaded, the CPU utilization is close to 100%. Introducing an extra

server in the second stage and having a first stage load balancing proxy puts the bottleneck on



47

the first stage server which has a capacity of about 1050 CPS (S1P2 in Fig. 3.16). An additional

server in the first stage (S2P2) gives the throughput of approximately double the single second

stage server capacity. Similarly,S3P3 has capacity of approximately 2800 CPS which is about

three times the capacity of the single second stage server, andS2P3 has capacity of 2100 CPS

which is double the capacity of the single first-stage server.

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 0  400  800  1200  1600  2000  2400  2800  3200  3600  4000

T
hr

ou
gh

pu
t -

 c
al

ls
/s

ec
on

d

Load - calls/second

s0p1s1p1

s1p2

s2p2

s2p3

s3p3

Figure 3.16: Server throughput inSnPm configuration (n first stage andm second stage servers.
The results show that the performance increases linearly with the number of servers, i.e., s2p2 is
twice and s3p3 is thrice that of s1p1 and s0p1 performance.)

The results show that we can achieve linear scaling by putting more servers in the first

and second stages in our architecture. Below, I present the theoretical analysis for the two-stage

architecture.

Suppose the first and second stage servers inSnPm have capacity ofCs andCp, respec-

tively (usually,Cs ≥ Cp). The servers are denoted asSi andPj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, for

the first and second stage, respectively. Suppose the incoming calls arrive at an average rateλ,



48

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 0  400  800  1200  1600  2000  2400  2800  3200  3600  4000

T
hr

ou
gh

pu
t -

 c
al

ls
/s

ec
on

d

Load - calls/second

s1p2

s2p2

s2p3

s3p3

Figure 3.17: Theoretical and experimental capacity for configurationSnPm

with exponential inter-arrival time. Suppose the load is uniformly distributed among all then first

stage servers, so the each first stage server gets a request rate ofλ
n . Suppose the hash function

distributes the requests to the second stage server such that theith server,Pi, gets a fraction,fi,

of the calls (Note that
∑

fi = 1). Assuming that all the users are equally likely to get called,

and the hash function uniformly distributes the user identifiers among the second stage servers,

then allfi will be same (i.e.,fi = 1
n ). However, differences in the number of incoming calls for

different users will cause non-uniform distribution.

The throughput,τ , at a given load,λ, is the combined throughput of the two stages. The

throughput of the first stage isλ′ = min(λ, nCs), which is load (input) to the second stage. The

server,Pj , in the second stage has throughput ofmin(λ′fj , Cp). Thus,

τ(λ) =
m∑

j=1

min(fj min(λ, nCs), Cp)

Without loss of generality, we assume thatfi ≥ fj for i > j. The resulting throughput



49

vs load graph is given bym + 1 line segments,Li: (λi, τi) → (λi+1, τi+1), for i=0 tom, where

(λk, τk) is given as follows:

(0, 0) for k = 0

(Cp

fk
, τk−1 + (λk − λk−1)Fk) for 1 ≤ k ≤ m; fk ≥ Cp

nCs

(nCs, τk−1 + (λk − λk−1)Fk) for 1 ≤ k ≤ m; fk <
Cp

nCs

(∞, τm) for k = m + 1

where Fk = (1−∑m
i=k fi)

The initial line segment represents 100% success rate with slope 1. Note that the region

beyond 100% success rate is not of practical interest. At the request load ofCp

f1
, serverP1 reaches

its capacity and drops any additional request load. So the capacity increases at rate equal to the

remaining fraction of requests that go to the other non-overloaded servers,Pk, k = 2, 3, ..., m.

This gives the slopeF1 = (1− (f2 + f3 + ... + fm)) for the second line segment. Similarly,P2

reaches its capacity at loadCp

f2
, and so on. When all the second stage servers are overloaded the

throughput remains constant, giving the last line segment. At the request load ofnCs, all the first

stage servers,Si, reach their capacity limit. If the second stage serverPj ’s capacity,Cp is more

than the load it receives at that time,fj(nCs), then the system throughput is not limited byPj .

I used a set of hundred user identifiers for test. The hash function I used distributed these

identifiers as follows: form = 2, f is roughly{0.6, 0.4}, and form = 3, f is roughly{0.4,

0.3, 0.3}. Note that with 1000 or 10,000 user identifiers, the same hash function distributed the

set more uniformly as expected, but our skewed distribution of hundred identifiers helps us verify

the results assuming a non-uniform call distribution for different users. The capacity ofCs and

Cp are 900 CPS and 1050 CPS, respectively. The resulting theoretical performance is shown

in Fig. 3.17 forS1P2, S2P2, S2P3 andS3P3 with a system capacity of 1050, 1740, 2100 and

2700 CPS, respectively. AlthoughS2P2’s second stage can handle900 × 2 = 1800 CPS, the

throughput of the first stage is only1050× 2 = 2100, out of which 60% (i.e., 1260 CPS) goes to

P1 which drops1260− 900 = 360 CPS. So the system throughput is2100− 360 = 1740 CPS.

Our experimental results are plotted as data points (not average, but individual throughput values)

in the same graph for comparison.



50

3.5.3 Non-uniform Call Distribution

If the call requests to the user population among the different second stage servers is non-

uniformly distributed, then the system starts dropping the call requests at a load lower than the

combined capacity of the second stage servers. To prevent this, the user data should be redis-

tributed among the second stage servers to provide an uniform distribution on an average, e.g., by

changing the hash function. Fig. 3.18 compares the two experiments for theS2P2 configuration:

one with the earlier skewed hash function that distributed the user identifiers in ratio 60:40 and

another hash function (Bernstein’s hash [93]), that distributed the user identifiers in ratio 50:50.

For uniform call distribution, the graph shows 100% success rate until about the peak capacity of

1800 CPS, followed by a flat throughput. This is the ideal behavior for uniform call distribution.

 0

 400

 800

 1200

 1600

 2000

 0  400  800  1200  1600  2000  2400  2800  3200  3600  4000

T
hr

ou
gh

pu
t -

 c
al

ls
/s

ec
on

d

Load - calls/second

skewed hash
uniform hash

Figure 3.18: Effect of user identifier distribution among second stage servers for S2P22. Uniform
distribution gives the best performance, i.e., success rate is close to 100% until the peak perfor-
mance (1800 CPS), whereas for non-uniform distribution the success rate reduces as soon as one
of the server is overloaded (at 1500 CPS).



51

If the number of second-stage groups changes frequently, e.g., due to failure or mainte-

nance, then a consistent hashing function [94] is desirable as it avoids large redistributions of the

user identifiers among the servers.

3.5.4 Performance of Stateful Proxy

So far I have shown the test results using the stateless proxy mode. A SIP request over UDP that

needs to be proxied to only one destination (i.e., no request forking), can be proxied statelessly.

Our SIP server,sipd, can be configured to try the stateless mode, if possible, for every request

that needs to be proxied. If a request couldnot be proxied statelessly,sipd falls back to the

transaction stateful mode for that request. Stateful mode requires more processing and state in

the server, e.g., for matching the responses against the request.

 0

 400

 800

 1200

 1600

 2000

 0  400  800  1200  1600  2000  2400  2800

T
hr

ou
gh

pu
t -

 c
al

ls
/s

ec
on

d

Load - calls/second

s0p1
s1p1
s1p2
s2p2
s2p3
s3p3

Figure 3.19: Performance ofSnPm with stateful proxy in second stage. The results show that the
performance increases linearly with the number of servers, i.e., s2p2 is twice and s3p3 is thrice
that of s1p1 and s0p1 performance.



52

I ran one experiment by disabling the stateless proxy mode in the second stage. Fig. 3.19

shows the experimental results along with the theoretical throughput using the earlier hash func-

tion. The first and second stage server capacities areC=800 andC ′=650 CPS, respectively. The

first stage server capacity is less if the second stage is stateful (800 CPS) compared to the case

when the second stage is stateless (1050 CPS), because the stateful second stage server generates

two additional100 Trying SIP responses forINVITE andBYE in a call that increases the number

of messages handled by the first stage server (See Fig. 3.20 and 3.15). If a fraction,fs, of the

input load needs to be handled using stateful mode (e.g., due to request forking to multiple callee

devices), then the effective server capacity becomes(1− fs)C + fsC
′.

200 OK

ACK
ACKACK

200 OK
200 OK

Call handler

H2
Load generator

L1

first stage (stateless)

100 trying BYE100 trying
BYEBYE

100 trying

INVITE INVITE
100 trying INVITE

180 Ringing
200 OK

180 Ringing
180 Ringing

second stage (stateful)

200 OK200 OK

P2P1S2S1

Figure 3.20: Stateful proxy message flow

Our more recent optimizations enhance the single second stage server throughput to 1200

CPS and 1600 CPS for stateful and stateless proxy, respectively, as shown in Section 3.6.

3.5.5 Effect of DNS Lookups

In some of our initial experiments not reported in this thesis, the call handler registered the DNS

host name with the proxy server so that the server performed a DNS lookup for locating the call

handler host. We observed comparatively poor performance, e.g., a single proxy server capacity

with DNS was 110 CPS on the same hardware, compared to 900 CPS without DNS. There were

two problems in our implementation: (1) it used a blocking DNS resolver that waits for the query



53

to complete so the internal request queue builds up if the DNS latency is more than the average

interarrival duration; and (2) it did not implement any host-cache for DNS, so the second stage

server did DNS lookup for every call request. We also observed some fluctuations in throughput

even before the server reached its capacity. This was due to the fact that the DNS server was not

in the same network, and the DNS lookup procedure took between 10 to 25 ms for each call. In

our tests,sipd sent about 28 DNS queries for each call due to multiple resolver search domains

(six in our tests) and DNS records (e.g., sipd tries NAPTR, SRV and A records, falling back in

that order) used in the implementation.

For example, if the destination domain isexample.com, DNS query is sent for (1)

NAPTR record forexample.com, (2) SRV record forsip. udp.example.com, (3)

SRV record forsip.udp.example.com, and finally (4) A record forexample.com,

in that order in our implementation. Since the Linux machine used for testing had six

different search domains, seven queries are sent sequentially for each type of record,

resulting in 28 queries. For example, if search domains arecolumbia.edu, and

cs.columbia.edu, then a query forexample.com generates three DNS queries for

example.com, example.com.columbia.edu, andexample.com.cs.columbia.edu,

sequentially if the previous query fails. Thus, if NAPTR and SRV records do not ex-

ist for example.com, this results in six wasted queries, before a successful query for

DNS A record ofexample.com.

I implemented a simple DNS host-cache insipd and observed same performance as that without

DNS (i.e., 900 CPS for single second stage server). In practice, the first-stage servers access

records for the second-stage servers within the same domain, thus, doing localized DNS queries

in the domain. It will be interesting to measure the host-cache performance for the real callee host

names by the second-stage servers, instead of a few call handler host names that were cached after

the first lookups until the end of the test run in our tests. One can use an event-based DNS resolver

such asadns [95] to improve the performance and eliminate the potential bottleneck due to DNS

access. Another common technique is to use a local resolver that implements a DNS cache.



54

3.5.6 Other SIPstone Tests

We also performed one experiment withRegistration test without authentication. The perfor-

mance is shown in Fig. 3.21 along with the expected throughput values. We used capacity values

asCs=2500 registrations/second (RPS) andCp=2400 RPS for first and second stage servers, re-

spectively. Authentication requires two transactions, thus reducing the capacity to half. Thus, the

S3P3 configuration will be able to support more than 10 million subscribers assuming one hour

registration refresh interval.

 0

 800

 1600

 2400

 3200

 4000

 4800

 5600

 6400

 7200

 0  800  1600  2400  3200  4000  4800  5600  6400  7200  8000  8800

T
hr

ou
gh

pu
t -

 r
eg

is
tr

at
io

ns
/s

ec
on

d

Load - registrations/second

s0p1
s1p1
s1p2
s2p2
s2p3
s3p3

Figure 3.21: Performance forSnPm with registration server in second stage. The results show
that the performance increases linearly with the number of servers, i.e., s2p2 is twice and s3p3 is
thrice that of s1p1 and s0p1 performance.

Note that the second stage registrar is always stateful. Moreover, we used the database re-

fresh rate to be more than the test duration, thus, removing the database synchronization variable

from the results. The first stage proxy server capacity for the registration test is more because the

number of messages per transaction that it handles is two in the registration test compared to six



55

in theProxy 200 test (see Fig. 3.22 and 3.15).

L1
Load generator

200 OK 200 OK

first stage (stateless)
REGISTER REGISTER

second stage: registrar
S2 P2

Figure 3.22: REGISTER message flow

TheProxy 200 test determines the BHCA (busy hour call attempts) metric, whereas the

registration test determines the number of registered subscribers for the system.

3.6 Server Architecture

There are two components in providing high capacity IP telephony services: network-related

components such as bandwidth, server location and load sharing, and server-related components

such as server hardware (CPU, memory), features vs. performance tradeoff, non-blocking I/O and

software architecture. In general, scaling any Internet service involves individual server perfor-

mance enhancements and load distribution among multiple servers. We described and evaluated

SIP load sharing in Sections 3.4 and 3.5. This section deals with performance enhancements on

an individual SIP server on commodity server hardware. In particular, we evaluate the effect of

software architecture - events, threads or processes - for the SIP proxy server. We try to answer

the following questions: (1) For a SIP-style server, which of the basic architectures is likely to

perform better in a given situation? (2) Does performance scale with CPU speed or is it memory

dominated? (3) What can be done to improve the performance on a multiprocessor machine?

We built a very basic SIP server in different software architectures using the same set

of libraries for SIP processing. This helps us in understanding the effect of the server architec-

ture on performance. The server includes a parser module and has many simplifications such

as memory-only lookups without any database write-through, no SIPRoute header handling,

minimal configuration, only UDP transport (i.e., no TCP or TLS), no programmable scripts, and

no user authentication. We used standard POSIX threads, which map to kernel-level threads on



56

Solaris and Linux. On a multi-processor hardware, concurrency is utilized via multi-threading

and multi-processing software architecture. Our goal is to use commodity hardware without any

custom tweaks, hence optimized user-level threads and CPU scheduler reconfiguration are not

investigated.

Database
lookup

TCP

UDP

recv

recvfrom

accept

Response

Proxy

First stage proxy

stateless proxy

other

Request other messages

sendmsgdatabase
Update

response

matching
Request

modify

(B)

(B)

(B)

(B)(B)

(B)

(B)

(B)(B)

Stateful

Stateless proxy

matching
Branch

Found
REGISTER

reject

Redirect/

Next server

lookup

response
Build 

DNSrequest
modify

Initial
Parsing

Figure 3.23: Processing steps in a SIP server. The potentially blocking operations either due to
I/O, events or locks are marked with B

3.6.1 Processing Steps

Figure 3.23 describes the steps involved in processing a SIP request in any SIP server. It includes

both transaction stateless and stateful processing. The server receives a message on a UDP or TCP

socket. We use only UDP in our tests. The message is parsed using our unoptimized SIP parser.

If the message is a SIP request, it is matched against the existing transactions. If a matching

transaction is found, the request is a retransmission and the last response, if any, in the transaction

is returned for the request. If a match is not found, and the request is a SIPREGISTER request,

then the user contact records are updated for this registration and a response is sent. For any

other request, the user record is looked up. Depending on the policy chosen, the call is then

proxied, redirected or rejected. In the proxy mode, the server looks up the callee’s current contact

locations, forwards the request and waits for the response. During this process, the server may

need to perform additional retransmissions for reliability. When receiving a response, the server

looks up the appropriate matching transaction for this response and forwards the response. If the

policy decides to redirect the request instead of proxying it, the server sends the response to the



57

caller listing the new contact location(s). The first stage load balancing server selects the next

stage server based on the destination user identifier, without doing any database query. The steps

are based on our SIP server implementation, but are likely to be similar for other implementations.

These processing steps can be implemented in various software architectures for both

stateless and stateful proxy modes.

3.6.2 Stateless Proxy

A stateless proxy does not maintain any transaction state, and has a single control flow per mes-

sage. That means that once a message has been received, it can be processed to the end without

interfering with other messages. We used only UDP transport for our tests and did not perform

any DNS lookups. As shown in Figure 3.15, a singleProxy 200 test involves six messages.

In Figure 3.23, for an incoming call request, the steps performed arerecvfrom, initial parsing,

database lookup, modify request andsendmsg. Similarly, for an incoming call response the

steps performed arerecvfrom, initial parsing, modify response andsendmsg. A first stage load

balancer proxy is also a stateless proxy, but it does not include the database lookup stage. The

processing steps can be implemented in different software architectures as follows:

Event-based: A single thread for the whole system listens for incoming messages and processes

it to the end. There is no locking or mutual exclusion (mutex). This does not take advantage

of the underlying multiprocessor architecture. If DNS is used, then the same thread also

listens for events such as the DNS response and timeout.

Thread per message:A main thread listens for incoming messages. A new parsing thread is

created to do the initial parsing. Then another processing thread is created to perform the

remaining steps depending on whether the message is a request or a response. This archi-

tecture performs independent logical operations in separate threads, making the program

easy to understand. The thread terminates after the steps are completed. DNS lookups, if

any, are performed synchronously in the processing thread. Locks (i.e., mutexes) are used

for accessing shared data such as the database. Potentially blocking operations include

DNS, sendmsg, and database lookup.



58

Pool-thread per message:This is similar to the previous method, except that instead of creating

a new thread, it reuses a thread from a thread pool. A set of threads are created in the

thread pool on server initialization and persist throughout the server lifetime. This reduces

the thread creation overhead and is the original architecture of our SIP server, sipd [26]. To

further reduce lock contention, the user data can be divided into multiple sets (say, 100),

each with its own transaction tables or user records. Thus, access to user records in different

sets do not contend for the same lock.

Process pool:On server initialization, a pool of identical processes is created, all listening on

the same socket. When a message is received, the OS gives the socket message to one of

the listening processes and that process performs all the processing steps for that message.

Shared memory is used for sharing the database among multiple processes. This is the

architecture of the SIP express router [96].

Thread pool: This is similar to the previous method, but it uses threads instead of processes.

Only one thread can callrecvfrom on the listening socket. If a thread has calledrecvfrom,

then another thread is blocked from calling this function until the first thread finishes re-

ceiving the next socket message.

Software architecture /Hardware 1xP 4xP 1xS 2xS
Event-based 1550 400 150 600
Thread per message 1300 500 100 500
Pool-thread per message (sipd) 1400 850 110 600
Thread pool 1500 1300 152 750
Process pool 1600 1350 160 1000

Table 3.1: Performance (CPS) of stateless proxy for Proxy 200 test

We ran our tests on four different platforms as follows: (1xP) Pentium 4, 3 GHz, 1 GB

running Linux 2.4.20, (4xP) four-processor Pentium 450 MHz, 512 MB running Linux 2.4.20,

(1xS) ultraSparc-IIi, 300 MHz, 64 MB running Solaris 5.8, and (2xS) two-processor ultraSparc-

III+, 900 MHz, 2 GB running Solaris 5.8. The results of our tests are shown in Table 3.1. The

numbers presented in this section are different from earlier load sharing experiments ofsipd



59

in Section 3.5, because these tests were done after some optimizations such as per-transaction

memory pool to reduce memory deallocation and copy [26]. We used a small pool size for both

process pool and thread pool, because the performance degraded if the pool size was more than

two times the number of processors. The performance of different architectures relative to the

event-based model on different platforms is shown in Figure 3.24 (a).

For a single processor system (1xP and 1xS), the performances of event-based, thread

pool and process pool are roughly similar. We found that the thread pool model had a higher

number of context switches compared to process pool. In the process pool model the same pro-

cess keeps getting scheduled for handling subsequent requests. This resulted in the slight dif-

ference in the performance. The process pool model performs the best. The thread-per-message

and pool-thread-per-message models have many fold higher context switches resulting in much

poorer performance. This is because every message processing must involve at least two context

switches. One interesting observation is that both the single processor systems (1xP and 1xS)

took approximately 2 MHz CPU cycle per CPS (call per second) load.

For a multiprocessor system, the performance of the process pool implementation scales

linearly with the number of processors. The performance of the pool-thread-per-message model

is much worse than process pool because the former does not fully utilize the available concur-

rency of multiprocessor hardware. The processor running the main listening thread becomes the

bottleneck.

3.6.3 Stateful Proxy

Unlike the stateless proxy, a transaction stateful proxy needs to maintain the SIP transaction state

for the duration of the transaction. We used only UDP transport for our tests and did not perform

any DNS lookups. As shown in Figure 3.20, a singleProxy 200 test involves six incoming

and eight outgoing messages. In Figure 3.23, compared to the stateless proxy, the stateful proxy

performs additional steps such as transaction (or client branch) matching. The transactions data

structures are locked for exclusive access in a multi-threaded system. The processing steps can

be implemented in different software architectures as follows:

Event-based: Most of the blocking operations are made non-blocking using events. A single



60

Figure 3.24: Performance of software architectures relative to event-based on different hardware.
For example, the performance of stateless proxy on 4xP hardware in the thread pool architecture
is approximately three times that in the event-based architecture on the same hardware.

thread for the whole server handles events from a queue (e.g., timer events) as well as

messages from the listening socket. There is no locking or mutexes. There are only two

operations that remain blocking: listening for incoming message on the socket, and lis-

tening for events on the event queue. A single threaded event-based system does not take

advantage of the underlying multiprocessor architecture. Having multiple threads serving

events results in lock contention while accessing the same transaction structures.

Thread per message (or transaction):A main thread listens for incoming messages. If the

message is a request not matching any previous transaction, then a new thread is created

to handle the new transaction associated with this message. The thread persists as long as

the transaction exists. Similarly, a process-per-message model can be defined that creates



61

a new process for each incoming connection and message.

Thread pool: This is similar to the previous method, except that instead of creating a new thread,

it reuses a thread from the thread pool. This reduces the thread creation overhead. Locks

are used for accessing shared data. Potentially blocking operations include DNS lookup,

sendmsg, request matching and database access. This is the original architecture of our

SIP server, sipd [26].

(Two-stage) thread pool: A pool of identical threads is created. Each thread handles a specific

subset of the user population based on the hash value of the user identifier as shown in

Fig. 3.25, similar to the second stage of our load sharing architecture. A request is pro-

cessed in two stages. The first stage thread listens for incoming messages, does minimum

parsing, and chooses the second stage thread based on the destination user identifier. The

message is then handed over to the particular second stage thread. The second stage is

purely event-based with no other locking. Since a single thread handles the requests for the

same set of users, we do not need to lock the database or transaction data structures. The

number of threads in the thread pool is determined by the number of processors.

INVITE

200 OK

Thread pool

10

32

socket

thread

thread

thread

thread

Figure 3.25: Two-stage thread pool software architecture: the example consists of four threads,
numbered 0 to 3, in the thread pool. Any available thread receives the message, parses it and based
on the hash of the SIP Call-ID value in the message, forwards the message to the appropriate
thread. In the example, the hash is 1, thus both SIP INVITE request and 200 OK response go to
the thread number 1.



62

The models can be further extended to processes as follows. We have not evaluated these exten-

sions yet:

Process pool:A pool of identical processes is created, each listening on the same socket. When

a message is received, the server performs all the processing steps for that message. Shared

memory is used for sharing the transaction and user contacts among multiple processes.

This is the architecture of the SIP express router [96].

Two-stage event and process-based:This is similar to the two-stage thread pool model, but

using processes instead of threads. The operating system delivers an incoming message

to any of the first stage processes listening on the UDP port. That process forwards the

message to one of the second stage processes using pipes or Unix sockets, based on the

hash of the SIPCall-ID in the message. Thus, all the messages in a transaction always go

to the same second stage process, and that process does not need to share state with any

other process. Multiple first stage processes can be used to allow more concurrency.

A generic design of thread-per-message is easy to understand and implement. However,

this model suffers from poor performance at higher load [82]. As the load increases the number

of threads in the system also increases. If the thread blocks waiting for a network response, the

maximum number of simultaneous requests active in the system is small. Transaction lifetime

further reduces the system capacity. For example, if the operating system supports 10,000 threads,

and the SIP transaction lifetime is about 30 seconds, then there can be at most 10000/30 = 333

transactions/second processed in the system. Unlike a web server, this is further exacerbated in

a SIP server by the fact that about 70% of calls are answered within roughly 8.5 seconds [97]

while unanswered calls ring for 38 seconds. Thus, a bad design results in insufficient number of

threads. This leads to higher call blocking or call setup delays at high call volume. Thus, we need

to use a true event-driven architecture which requires the threads to be returned to the free-threads

pool whenever they make a blocking call.

Table 3.2 and Figure 3.24 (b) compare the performance of stateful proxy in different

architectures on the same set of hardware, except that 1xS is replaced by a single-processor

ultraSparc-IIi, 360 MHz, 256 MB, running Solaris5.9. Event-based system performs best for sin-



63

gle processor machine. For anN -processor machine, the thread pool performance is much worse

thanN times the single-processor performance due to memory access contentions.

Software architecture /Hardware 1xP 4xP 1xS 2xS
Event-based 1150 300 160 400
Thread per message 600 175 90 300
Thread pool (sipd) 850 340 120 300
2-stage thread pool 1100 550 155 500

Table 3.2: Performance (CPS) for stateful proxy for Proxy 200 test

3.6.4 The Best Architecture

The two-stage thread pool model for the stateful proxy and the thread pool model for the stateless

proxy combine the event and thread pool architectures. They provide an event-loop in each thread,

and has a pool of threads for concurrency on multiprocessor machines. The lock contention is

reduced by allowing the same thread to process all the steps of a message or transaction after

initial parsing. For a multi-threaded software architecture this seems to give the best performance

as per our tests. We have not yet evaluated the stateful proxy in process pool model.

The stateless proxy performance is usually limited by the CPU speed, whereas the mem-

ory utilization remains constant. On the other hand, the stateful proxy may be limited by either

CPU or memory depending of various transaction timers. By default a SIP transaction state is

maintained for about 30 seconds. Thus, a load of 1000 CPS creating 2000 transactions per second

will require memory for about 60 thousand transactions. Assuming 10 kB for storing each trans-

action state, this requires 600 MB. In our tests, we have reduced the timer values significantly so

that memory is not the bottleneck.

3.6.5 Effect on Load Sharing Performance

The software architecture choice of the SIP server further enhances the load sharing results since

the best single stateless proxy capacity is about 1600 CPS on a 3 GHz Pentium 4 with 1 GB

memory running Linux 2.4.20. In addition, we have achieved about 4000 CPS throughput for the



64

first stage proxy in a simplified implementation. This means even S1P2 in stateless proxy mode

can achieve close to 3200 CPS, i.e., 11 million BHCA on this hardware configuration. Similarly,

S3P3 in stateful proxy mode can achieve close to 13 million BHCA.

3.7 Conclusions

We have shown how to apply some of the existing failover and load sharing techniques to SIP

servers, and propose an identifier-based two-stage load sharing method. Using DNS is the pre-

ferred way to offer redundancy since it does not require network co-location of the servers. For

example, one can place SIP servers on different networks. With IP address takeover and NATs,

that is rather difficult. This is less important for enterprise environments, but interesting for voice

service providers such as Vonage. DNS itself is replicated, so a single name server outage does

not affect operation. We combine DNS, server redundancy and the identifier-based load sharing

in our two-stage reliable and scalable server architecture that can theoretically scale to any ca-

pacity. A large user population is divided among independent second stage servers such that each

server load remains below its capacity.

We have also described the failover implementation and performance evaluation of our

two-stage architecture for scalability using the SIPstone test suite in our test bed. Our results

verify the theoretical improvement of load sharing for call handling and registration capacity. We

achieve carrier grade scalability using commodity hardware, e.g., 2800 calls/second supported

by our S3P3 load sharing configuration roughly translates to 10 million call arrivals per hour,

using six servers. Lucent’s 5E-XCTM switch, a high-end 5ESS, can support four million BHCA

for PSTN. This is further increased to 16 million BHCA in our memory pool and event-based

architecture. We also achieved the 5-nines reliability goal even if each server has only uptime of

99% (3 days/year downtime) using the two-stage architecture. Other call stateful services such as

voicemail, conferencing and PSTN interworking need more work to do failover and load sharing

in the middle of the call without breaking the session.

Detection and recovery of wide area path outages [98] is complementary to the individual

server failover. Adaptive load sharing based on the workload of each server is not investigated

in this thesis. It is not clear how useful this will be for Internet telephony because the call dis-



65

tribution is more uniform unlike Zipf distribution of web page popularity. Therefore, a good

static hash function can uniformly distribute the call requests among the servers. Instead of stati-

cally configuring the redundant servers, it will be useful if the servers can automatically discover

and configure other available servers on the Internet, e.g., to handle temporary overload [92].

This gives rise to the service model where the provider sells its SIP services dynamically by be-

coming part of another customer SIP network. The SIP servers in a VoIP provider network can

automatically discover, self-organize and configure themselves as first and second stage servers.

A peer-to-peer approach for SIP service extends this idea to serverless VoIP infrastructure and

proves to be promising for scalability and robustness as we describe in the next part of this thesis.



Part II

Peer-to-peer IP Telephony

This part describes our peer-to-peer Internet telephony architecture using SIP. The goal is to

build a self-organizing, robust and scalable peer-to-peer network for Internet telephony using

open interoperable protocols.

66



67

Chapter 4

Overview of Peer-to-Peer Internet

Telephony using SIP

P2P systems inherently have high scalability because the capacity scales with user population,

and robustness and fault tolerance because there is no centralized server and the network self-

organizes itself. This is achieved at the cost of higher signaling latency for locating the resources

of interest in the P2P overlay network. Internet telephony can be made as an application of the

P2P architecture where the participants form a self-organizing P2P overlay network to locate and

communicate with other participants. We propose a P2P architecture for the Session Initiation

Protocol (SIP)-based IP telephony systems. Our P2P-SIP architecture supports basic user reg-

istration and call setup as well as advanced services such as offline message delivery, presence,

voice and video mails, and multi-party conferencing. We also provide an overview of practical

challenges for P2P-SIP such as firewall and NAT traversal, and discuss security.

4.1 Introduction

Existing Internet telephony client-server architecture based on IETF’s Session Initiation Protocol

(SIP [4, 3]) or ITU-T recommendation H.323 [99] typically employ a registration server for every

domain. The user agents (or IP phones) of the users in the domain register their IP addresses

with the server so that the other users can reach them. Scalability and reliability of such server-



68

based systems are achieved using traditional redundancy and failover methods as described in

Chapter 3. The majority of the system cost is in maintenance and configuration, typically by a

dedicated system administrator in the domain. It also means that quickly setting up the system in

a small environment (e.g., for emergency communications or at a conference) is not easy.

N

N

N

N
= server

= client

C

C

Client−server

C

C

C

PN

= node

= super node
P

P

P

P

N

(Pure) peer−to−peer(Kazaa−like) peer−to−peer

= peerP

S

S

S

S

S

S

C

Figure 4.1: Client-server vs peer-to-peer distributed systems

On the other hand, peer-to-peer (P2P) systems [12] are inherently scalable and reliable

because of the lack of a single point of failure. P2P systems, in the purest form, have no concept of

servers as shown in Fig. 4.1. All participants are peers and communicate in distributed, potentially

untrusted environment, to achieve a certain objective such as locating music files or users. Some

file transfer systems with central index server such as the old Napster are hybrid P2P systems.

However, for the purpose of this thesis we use the definition thatpureP2P systems do not have

any centralized control. Accordingly, existing SIP and H.323-based systems that have centralized

user location lookup but end-to-end media transport arenotP2P.

Peer-to-peer Internet telephony avoids the maintenance and configuration cost of the

server-based SIP architecture, and prevents catastrophic failures of server-based systems. There

are five major components that can be made peer-to-peer:

User location storage: User location information contains a list of current contact host names or

IP addresses of the user. In client-server SIP, theREGISTER message conveys the contact

location to the registrar. The user location binding information is updated by the user and

read by other prospective callers.

Configuration storage: A user may need to store some configuration information such as his

friends list.



69

Multimedia mail and offline storage: If the user is not available to pick up his phone call, the

call may get forwarded to voice mail. Such offline messages are written by the caller, and

read and deleted by the recipient.

Media relay discovery: Traversing NATs requires use of external media relays in the public In-

ternet. Such components may be distributed in the P2P network, and discovered as needed

by the clients that are in a network with a private address space.

PSTN gateway discovery:A number of VoIP gateways may be available in the Internet to reach

the same telephone subscriber. We need to select a gateway for making a call from IP to

PSTN using a selection criterion such as lower call cost, lower network latency on IP, less

number of hops, same PSTN or IP provider network, or same PSTN area code.

The first three components nicely fit in the hash table data structure, whereas the last two require

some notion of proximity. We use distributed hash table (DHT) as the P2P network in our Internet

telephony architecture.

There are two approaches to combine SIP and P2P: replace the storage of SIP data by a

P2P protocol (SIP-using-P2P), and additionally, implement the P2P protocol itself using SIP mes-

saging (P2P-over-SIP). In this part, we describe our P2P-SIP architecture using both approaches.

We analyze various design alternatives and present the detailed design of our P2P-over-SIP end-

point that uses Chord [22] as the underlying DHT and our SIP-using-P2P endpoint that uses

OpenDHT [27] as the external DHT. Chord or OpenDHT can be replaced by any other DHT in

our implementation without affecting the architecture as long as the DHT APIs are similar. In ad-

dition to the basic call setup and registration, we also outline advanced services such as “missed

call” notifications, presence and multi-party conferencing in P2P-SIP.

Our novel hybrid architecture allows both traditional SIP telephony as well as user lookup

on P2P network if the local domain does not have a SIP server. For P2P-over-SIP, we show that

SIP can be used to implement various DHT functions in P2P-SIP such as peer discovery, user

registration, node failure detection, user location and call setup by replacing DNS [28] with P2P

for the next hop lookup in SIP without changing the semantics of SIP messages.

We summarize the related work in Section 4.2. Section 4.3 lists the goals for a P2P



70

architecture for IP telephony. Section 4.4 compares the SIP-using-P2P and P2P-over-SIP archi-

tectures. The detailed design and evaluation of SIP-using-P2P and P2P-over-SIP architectures

are presented in Chapters 5 and 6, respectively.

4.2 Related Work

A number of studies have been done to analyze and understand different peer-to-peer (P2P) sys-

tems [12, 100]. P2P systems can be broadly classified into unstructured networks such as Kazaa

and Gnutella with no structure of how the nodes store files, and structured networks such as those

using a distributed hash table (DHT). The unstructured systems have concentrated on practical

problems such as NAT and firewall traversal but search is typically performed by flooding the re-

quest to all the neighboring peers. On the other hand, structured systems such as Chord [22, 23],

Content Addressable Network (CAN) [101] and Pastry [102] focus on optimizing the P2P over-

lay for lookup latency and join or leave maintenance cost [103] instead of using inefficient blind

search by flooding. DHTs are well suited for Internet telephony application because the user

contacts can be stored and looked up based on the user identifier as the hash key. NAT traversal

has not been explored in detail for structured P2P networks.

DHTs provide distributed implementation of hash tables with two sets of high level API:

data access (get, put andremove) and service (join, leave andfind). Our peer-to-peer Internet

telephony architecture uses this API of the underlying DHT. Chord is a DHT that has a ring-based

topology where each node stores at mostlog(N) entries (or state) in itsfinger tableto point to

other peers. Lookup is done inO(log(N)) time. Theiterative and recursivelookup styles in

Chord [22] directly map to theredirectandproxybehavior, respectively, in SIP. Research in DHT

is complementary to our work, since our architecture can use innovations and optimizations in

the underlying DHT.

4.2.1 Skype and Related Systems

Skype [21, 104] is a free P2P application based on Kazaa [18] architecture that allows making

calls over the Internet to any other Skype user. Skype has the following problems:



71

1. The protocol is proprietary unlike open standards such as SIP.

2. It provides a single service, making calls or sending instant messages, and not an architec-

ture for new services.

3. Most importantly, it has centralized elements for login authentication [104] which means

that if this element fails, the system may not work.

In a way, the Skype’s architecture is no different from the classical SIP telephony archi-

tecture, except that Skype’s Global Index Server assigns asuper-nodefor a new joining node.

The super-node, similar to the SIP registrar, proxy and presence server, maintains the presence

information for this node, and locates other users by communicating with other super-nodes. A

node that has enough capacity and availability can become a super-node. We believe that the

lookup is based on some variation of flooding, similar to Kazaa, instead of using the more effi-

cient DHT-based lookup.

The main advantage of Skype is that it implements the equivalent of STUN [105] and

TURN [106] servers in the node itself to handle NAT [107], unlike explicit server configura-

tion in existing SIP applications. We use the super-node and ordinary node distinction in our

architecture, too.

Others have developed various P2P multimedia communication applications such as flooding-

based text chat [108] and peer-to-peer collaboration systems [109, 110, 111] for small groups with

centralized components and limited scalability.

4.2.2 P2P-SIP Telephony

SIP-based IP telephony can be treated as a P2P system with static set of super-nodes (SIP servers)

where the lookup is based on DNS instead of a hash key. However, using a pure P2P architecture

instead of static set of SIP servers improves the reliability and allows the system to dynamically

adapt to node failures.

There are some recent P2P Internet telephony applications such as NimX [112] and Pee-

rio [113], but the architectures are not open. Earthlink’s experimental SIPshare [114] provides



72

SIP-based P2P file sharing. It uses SIP messages,SUBSCRIBE and NOTIFY, to build and

maintain P2P overlay, file search and content transfer.

Our work is not related to the peer-to-peer third-party call control (3PCC [115]) work in

the SIP community, as the latter focuses on using the SIPREFER message to do call control

directly between the participating user agents in the client-server SIP architecture, whereas our

work focuses on defining a P2P architecture for user location in SIP.

We published our initial architecture of P2P-SIP in 2004 [14]. Since then, P2P-SIP has

been discussed extensively in the IETF with a number of internet-drafts submitted on various

aspects of P2P-SIP [15, 16, 17]. In particular, [17] is similar to our P2P-over-SIP architecture [14,

116]. Our work on using an external DHT (SIP-using-P2P) is inspired by [16], but fills in details

to design and implement such system securely.

4.2.3 IP Telephony vs. File Sharing

There are three broad categories of P2P applications: file sharing, directory service and ren-

dezvous systems. A rendezvous or meeting system initiates communication with users or groups

of users and actively synchronizes different activities such as audio and video communications

and floor control. For example, a user can send a SIPINVITE message to many potentially no-

madic users to invite them to a conference by creating one-to-many bindings. On the other hand,

a directory service provides a structured (e.g., hierarchical) repository of information on people or

resources [117]. Usually the directory information does not change frequently and slightly stale

information is also useful. However, user contact location (i.e., the IP address of her multimedia

rendezvous client) may change frequently. SIP is often labeled as a rendezvous system, but uses

server-based user lookup. Table 4.1 summarizes the similarity and differences among these types.

In particular, for rendezvous systems such as Internet conferencing, data storage is not an issue.

A single P2P-SIP node can handle many more requests than a file sharing node due to the low

data volume. Caching of location information is not useful because compared to the file access

pattern, which often follows the Zipf distribution [118], call access patterns are more uniformly

distributed. Moreover, most residential users are likely to get a new DHCP IP address every time

they connect to the Internet making the cache entry for this user location stale. The file sharing



73

Table 4.1: Different applications of P2P

Properties/Types File sharing directory rendezvous systems
(for user lookup)

Data storage Yes No No
Caching Yes Yes No
Delay sensitive No No Yes
Reliability Having multiple independent Only the intended

copies of data helps user must be found

and directory lookup-based systems can tolerate high lookup latency due to the fact that the user

does not need to wait for the file to download, and the actual file download time tends to be larger

than the lookup latency. On the other hand, an IP telephony caller actively waits for the phone

on the other side to ring. For file sharing applications, multiple almost-exact copies of a popular

file may be available (e.g., independently ripped by different peers). So node reliability does not

matter. On the other hand, in the case of IP telephony, we want to talk to the right person, and not

some similarly named person!

4.2.4 Robustness and Scalability

The primary advantage of P2P is robustness and scalability. Load sharing techniques can be

applied to DHT to provide better performance [119]. DNS-based [67, 68] or same IP address-

based [58] redundancy techniques are not good for P2P because they require significant main-

tenance on join and leave, are server-based or do not work when the nodes are distributed over

the Internet. Load sharing techniques such as those based on load or available capacity with a

central dispatcher do not work well for P2P systems due to heterogeneity of the peer nodes and

absence of central dispatcher [120]. Our work on integration of SIP and P2P also benefits from

the robustness and scalability research in P2P overlays.



74

4.3 Design Requirements

Based on the review of existing P2P systems such as Skype [21] and Chord [22], we propose the

following goals for our P2P-SIP telephony architecture.

Zero configuration: The system should be able to automatically configure itself [20], e.g., by

detecting NAT and firewall settings, discovering neighboring peers and performing initial

registration.

Heterogeneous nodes:It should be able to adapt to available resources and distinguish between

peers with different capacity and availability constraints. This favors the distinction be-

tween nodes and super-nodes as in Kazaa.

Efficient lookup: Blind search based on flooding is inefficient [100]. The system should use

an underlying DHT to optimize lookup. We choose Chord as the underlying DHT for our

P2P-over-SIP system because of its robustness and efficiency in the case of concurrent node

joins and leaves [103].

Multiple systems: Unlike a single global system such as Skype, it should support multiple sys-

tems, e.g., with multiple user identity providers, and interoperate among them.

Advanced services:It should support advanced telephony services such as offline voice messag-

ing, multi-party conferencing, call transfer and call forwarding as well as advanced Internet

services such as presence and instant messaging.

Interoperability: It should easily integrate with existing protocols and IP telephony infrastruc-

ture. We choose SIP [3] as the signaling protocol for interoperability.

Besides these explicit goals, there are some implicit scalability and robustness benefits in the P2P-

SIP architecture compared to the client-server SIP architecture. To incrementally build the P2P-

SIP architecture and to illustrate some design choices, we start from the server-based architecture.



75

Replicate Registrations vs Search on Call Setup

Going back to the simple call setup example of Fig. 1.1 (p. 3), the single server can become the

bottleneck for reliability. It can be improved by having multiple redundant servers. There are two

alternatives:

1. replicate all user location information to all the servers, as shown in Fig 4.2, or

2. search for the correct server holding the destination user location when a new incoming

call is received, as shown in Fig 4.3.

In the first case, although Fig. 4.2 shows multiple registrations, one can alternatively do database

replication to ensure consistent user records among multiple server databases in the cluster. In

the second case, either the caller retries all the servers in some order or the first contacted server

can do the search.

(1) REGISTER

(2) INVITE

Figure 4.2: Design A: all servers store all user
records on registration

(1) REGISTER

(2) INVITE

Figure 4.3: Design B: search for the server on
call setup

The disadvantage of the first approach is that it involves synchronization overhead for

each registration. There is a danger of stale user location record on some servers for a brief

interval after the update is done but before all the servers get the updated registration. With

registration refreshes every hour per user, this architecture may limit the total number of users

supported by the system as the synchronization traffic will soon become a bottleneck. In the

second case, the call setup latency is higher due to the sequential search steps. A parallel search

will increase the bandwidth requirement. Both the approaches of Fig. 4.2 and 4.3 tend to fail

when the number of servers is very large. The first approach and its variations are described in

Chapter 3.



76

What Nodes form the DHT?

We can achieve some combination of the two designs using a DHT such as Chord [22] so that the

registration is done on onlyO(log N) servers instead of all theN servers, and the search is done

for only O(log N) servers instead of all theN servers. There can be three alternative designs

for using a DHT. On one extreme, we can limit the DHT to the server farm as shown in Fig. 4.4.

In this case, each client or phone connects to one of the servers. The servers implement a DHT

or a scalable distributed data structure [121] to locate the correct user record. The architecture

is still client-server. The client needs to discover at least one server, preferably lightly loaded,

and connect to it. On the other extreme (Fig. 4.5), a client also acts as a server and implement

a “pure” P2P overlay with all the other clients. The first option does not require modifying the

clients, but provides a scalable and reliable server farm architecture. But it still has some of the

server maintenance and configuration problems, unlike the second option.

Clients

Servers

Figure 4.4:
Option 1: Only
servers in DHT

65a1fc

Route(d46a1c)

d13da3

d4213f

d462ba

d467c4

d471f1

d46a1c

 = user phone

Figure 4.5: Option 2: Com-
plete P2P overlay

Super−nodes in DHT

ordinary nodes

Figure 4.6: Option 3:
Intermediate model

One problem with the pure P2P overlay of all nodes is that not all nodes have equal

capacity and availability. For example, a node with low bandwidth connection to the Internet or

those behind a firewall or NAT may not be able to fully function in a DHT because it may need

in-bound connections, significant bandwidth for forwarding P2P messages or significant memory

or CPU for maintaining DHT state. This problem can be solved by adopting an intermediate

design as shown in Fig. 4.6. Some of the nodes with high capacity (bandwidth, CPU, memory)

and availability (uptime, public IP address) are made super-nodes. Only the super-nodes form a

DHT. An ordinary node just connects to one of the available super-nodes, similar to Kazaa. This



77

is similar to the first option except that there is no distinction between clients and servers, and

any node can be a super-node or ordinary node, depending on the capacity and availability. Our

goal is to allow a P2P-SIP node to work in any of the above configurations.

The decision to become an ordinary node or a super node is usually local. When a node

starts up it will become an ordinary node. When the ordinary node detects enough capacity and

availability (public IP address and uptime), then it can become a super-node. A node with enough

capacity and availability may be forced to become a super-node when an existing super-node is

leaving or has reached the capacity limit. However, some nodes that are known to have enough

capacity and availability can immediately transition to super-node upon startup.

Having two levels, super-nodes and ordinary nodes, does not affect the search latency

bounds. The search latency is stillO(log N). However, it improves the performance in practice

because the DHT maintenance traffic is reduced if the nodes in the DHT are more stable.

The DHT is logically separate from the SIP operations as described next.

4.4 SIP-using-P2P and P2P-over-SIP

There are two architectures for P2P-SIP: SIP-using-P2P and P2P-over-SIP. These are fundamen-

tally similar because there is a clear separation between the DHT layer and the SIP layer as

shown in Fig. 4.7. The difference is that in P2P-over-SIP the P2P maintenance protocol is also

implemented using SIP. In this section, we compare the two architectures.

(P2P 

(b) P2P−over−SIP

SIPSIP

(a) SIP−using−P2P

SIP SIP

maintenance)

 lookup)
(P2P

SIP

regular SIP node P2P−SIP node P2P−SIP node regular SIP node
P2P−SIP node P2P−SIP node

(e.g., OpenDHT)

protocol

P2P

DHT API
(put,get,remove)

    DHT
node

    DHT
node

    DHT
node node

    DHT    DHT    DHT     DHT

Figure 4.7: Difference between SIP-using-P2P and P2P-over-SIP architectures



78

Transport and transaction overhead

In the SIP-using-P2P architecture, the system can use the optimizations and enhancements done

in the external DHT. For example, the message overhead can be reduced for the DHT mainte-

nance. However, the algorithmic overhead of number of messages remains the same and depends

on the particular DHT (e.g., Chord) in use.

Some SIP specific timers (e.g., retransmission timeout) may not be acceptable for some

DHT-based applications, especially if the timers translates to long DHT lookup and update la-

tency.

Choice of DHT

In the P2P-using-SIP architecture, the node needs to implement the particular DHT connector.

If multiple DHTs can be used then such implementations need to potentially implement all such

DHT connectors.

Today, there are multiple P2P protocols that do not interoprate and are not meant to inter-

operate (e.g., Kademlia, Chord, OpenDHT). Moreover, there is no single protocol or mechanism

to talk to any DHT. Thus, the SIP-over-P2P architecture gives us an opportunity to build such an

interface using SIP.

Feature reuse from SIP

Using SIP to build the DHT allows us to reuse the existing naming, routing, and security issues

from SIP. Moreover, the NAT and firewall traversal mechanisms in SIP can also be used to allow

a node behind a NAT to become a super-node. More work is needed for this.

Secondly, SIP features such as redirect and proxy modes are readily reusable in a DHT’s

iterative and recursive modes. Moreover, we can transparently reuse the existing SIP-based com-

ponents such as voicemail and conferencing servers without having them to understand the DHT

protocol to update the DHT indicating that they provide the service.



79

SIP specific protocol

If the DHT interface (lookup and update) is implemented using SIP, (e.g.,REGISTER andIN-

VITE methods), then any other application that wants to use the DHT needs to implement the SIP

protocol stack. This is an undesirable implementation complexity. However, for the use case of

Internet telephony, SIP-based DHT protocol is acceptable since the implementation will already

have a SIP stack.

Security

Using SIP for P2P maintenance burdens the SIP protocol with additional security issues of han-

dling malicious nodes. On the other hand, having a separate DHT simplifies the problem and in

some instances (such as managed OpenDHT) solves the problem.

Service model

The SIP-using-P2P architecture promotes free-riding of SIP endpoint on the external DHT. To

prevent this, the P2P-SIP nodes themselves should form the DHT and use a well-defined DHT

protocol to perform P2P-SIP operations. If the same node implements both SIP and DHT, it is

better to use a single protocol to simplify the implementation.

In summary, we need a clear separation between the SIP and DHT layers, but whether to

use SIP for the DHT maintenance is not yet clear. Either way the gain or loss is not much com-

pared to the advantages of using P2P-SIP versus centralized SIP. Once we have a clear interface

between the SIP and DHT layers, the exact protocol for the DHT maintenance can depend on the

deployment scenario, e.g., use SIP if all the nodes in the DHT are only P2P-SIP nodes, but use

something else if the DHT is an externally managed P2P network.

We describe details of the SIP-using-P2P architecture in the next chapter.



80

Chapter 5

SIP-using-P2P: Using an External DHT

as a SIP Location Service

5.1 Introduction

In this chapter, we describe the SIP-using-P2P architecture that uses an external P2P network for

storing SIP location data. Since the user agents and proxies use a shared P2P network, we need

to define the precise data format for such operations for interoperability, i.e., contacts updated

by one user agent are readable by another. For storing user contact locations, a distributed hash

table (DHT) is enough instead of a full P2P database with various SQL-style search commands.

We provide an example data format for such a DHT-based SIP location service, and guidelines

for implementing a SIP-using-P2P architecture with a managed external DHT based on our im-

plementation experience. We describe what DHT keys and values should be used and how to

sign and encrypt data for P2P-SIP using pseudo-code and examples. We also describe the P2P

presence and offline messaging. We do not propose any new algorithms but just apply existing al-

gorithms to P2P-SIP clients and proxies. The assumption is that the DHT nodes are not malicious

and correctly perform DHT operations. One example of an external DHT is OpenDHT [27, 122]

run on PlanetLab.

We provide background on the DHT API in Section 5.2. Then, we describe the logical

operations such as contact management and key storage in Section 5.4. Section 5.3 gives the



81

motivation for the service model. We explain the P2P-SIP deployment scenarios such as client

and proxy with pseudocode in Section 5.5. Section 5.7 presents some implementation issues.

Security consideration, advanced services and evaluation are presented in Sections 5.6, 5.8 and

5.9 respectively. We present our proposed XML-based data format in Appendix C.

H(v) SHA-1 ofv.
MD5(v) MD5 hash ofv.
{v}K v is encrypted using RSA private keyKS or public keyKP .

[v]s, [v]s The subscript encryptsv using shared secrets and the superscript decrypts it.
now the current timestamp.

δ a small value for time, e.g., few seconds.
v|u concatenation of two parameters,v andu, possibly using a delimiter

(v, u) a tuple containingv andu in that order, possibly stored in XML
a[..] a list or vector variable,a

v ← u assignment fromu to v
/ ∗ ... ∗ / is used as a comment or remark similar to C

Table 5.1: Notations used in this chapter

5.2 Background: DHT API

The current interface of OpenDHT is described in [27], and summarized here. Theput(k, v, H(s), t)

method is used to store a valuev associated with a keyk. The value expires after time-to-live (ttl),

t, and can be removed before that time using the secrets. The value for the keyk can be retrieved

usingget(k). It returns a list of tuples,(v, H(s), t), wheret is the remainingttl. The value for

the key,k, can be removed usingremove(k, H(v), s, t), wheret is more than the remainingttl.

We use the existing interface as the basis to build P2P-SIP services. The interface allows

putting multiple values under the same key, i.e., both(k1, v1) and (k1, v2) can be stored. For

example, if Bob has many SIP phones, each phone can store its own contact IP address under

Bob’s key, and Alice’s phone can retrieve all these contacts when making a call. The interface

also allows putting the same value under the same key using different secrets. For example, both

(k1, v1, H(s1)) and(k1, v1, H(s2)) can be stored. The secret controls who can remove the value

associated with that key. Finally, aput with same key, value and secret, just updates the time-to-

live (ttl). The ttl can be mapped to theExpires header in SIPREGISTER request for expiry of



82

contact bindings.

An authenticated DHT interface [27] is required for protection against malicious users of

the DHT and to filterget results at the DHT node. This is a planned future work in OpenDHT.

5.3 Data and Service Models

In a server-based SIP architecture, the SIP server performs three logical operations: registration,

proxy (or redirect) and location service, as shown in Fig. 5.1. In addition to storing the contact

bindings, the location service includes service logic such as programmable service scripts. Real

implementations usually combine all these logical operations into a single server such as oursipd.

The protocol for accessing the location service is currently not standardized. A interoperable

location service access protocol allows decomposing the server implementation, and helps in

implementing P2P communication between two users without going through the SIP server.

REGISTER

200 OK

INVITEINVITE

may use

LDAP

Service logic
who, finger,...
Active badge
Location sensors

DNS (ENUM)

proxy
SIP

service
Location

registrar
SIP

DB

Figure 5.1: Logical operations in a SIP server

There are two approaches to perform location service in P2P-SIP: any user directly up-

dates the DHT (called asdata model) or forwards the request to the service node responsible for



83

that user key (service model).

Alice

[1] put

12=>192.1.2.3 Bob => 192.1.2.3

DHTDHT

[3] REGISTER

[4]lookup(k)

[2] get(k)

k=H(Bob) = 12k=H(Bob) = 12

stored registrationstored data

(nodeid=12)
[1] join

(a) Data model (b) Service model

Alice

[2]lookup

[3] INVITE

[5] INVITE

[5] INVITE

Figure 5.2: Data model vs service model

Data Model

In this model the DHT is used as a shared data storage and the P2P-SIP operations are performed

by the user by directly updating the corresponding DHT data. For example, a user stores his

contact information and a caller stores the offline messages in the DHT. Similarly a P2P proxy

updates the data in the DHT on behalf of the user to provide transparent SIP service to non-P2P

users.

There are several limitations to this approach. For example, presence composition [123]

or programmable call routing [49] arenot easy to implement. Moreover, the node needs to dis-

cover STUN and TURN servers anyway, but the service discovery does not work well with the

data model as we describe in Section 5.4. An alternative service model solves this problem as

described below.

Service Model

In this model, every P2P-SIP client or proxy joins the DHT for thep2p-sip service. Thep2p-sip

service includes SIP registrar, presence agent, offline message storage, and STUN and TURN

servers at the minimum.



84

When a user, Alice, wants to send a SIP message to, saysip:bob@example.net, she

looks up the DHT to find the service node responsible for this user identifier, and sends SIP

request to that node. The service node acts as the proxy, registrar and presence server for all the

users for which it is responsible. The service node also does any safe programmable call handling

scripts [49] and presence composition [123].

For signed or encrypted data such as contact information, there are two approaches: either

the user sends the signed contacts in the SIP message or the user authorizes the service node

to sign the contacts on his behalf. The first approach requires changes in existing SIP clients,

whereas the second approach just uses a chain of certificates for verification of signed contacts.

The service model is more extensible than the data model. A P2P-SIP service node readily

interworks with any non-P2P clients who just happen to know one or more service node addresses.

The service mode readily extends to P2P-over-SIP architecture since only the service interface

(join andlookup) is used in the DHT, instead of the data interface (get andput). Note however

that the ReDiR interface of OpenDHT is in fact built on top of the data interface and resides purely

on the client side without any change in the DHT node implementation. In particular, a balanced

tree of service node identifiers is built and embedded on to the DHT. This prevents overloading a

single DHT node with all the service node identifiers, and optimizes the lookup cost to O(1) on

average. Thus, the service model is suitable for both P2P-over-SIP and SIP-using-P2P, though

we describe only SIP-using-P2P in this chapter.

The rest of the chapter describes only the data model. The service model can be built

using the underlying data model, because the service nodes also use the specified data format for

storage in the DHT.

5.4 Logical Operations

In this section, we identify the logical operations that can be made peer-to-peer for SIP-based In-

ternet telephony. The P2P-SIP design consists of logical operations such as key storage, location

service, NAT and firewall traversal, presence and offline message storage.



85

Location Service (Contact Management)

The DHT interface is used to store the user contact information. For example, Bob stores his

contacts under the DHT key,k=H(sip:bob@example.net). This simple scheme allows multiple

users to register under the same SIP identifier, saybob@example.net. So it is the responsibility

of P2P-SIP to verify the correct identity of the callee. Any public data such as user contacts on

the DHT should be signed by the owner so that others can verify its validity.

A P2P client signs the data on behalf of the user. The user should be able to use another

client and update his contact information. This mode allows the user to pick his own SIP identifier,

as long as he can prove that the identifier belongs to him via certificate(s). There is no dependency

on a SIP server. For example, if the user’s identifier isbob@example.net, then the domain

example.net need not be a valid DNS name or need not have any associated SIP server.

A proxy in a P2P server farm (Fig. 4.4) authenticates the user, and then signs the data put

on the DHT. For example, when useralice@home.com registers with the P2P proxy of domain

home.com, the proxy signs her contacts using the signer identity ashome.com. To allow other

proxies in the farm to change or remove the contacts, all proxies ofhome.com should use the

same key for signing. This allows the user to transparently use any of the proxy in the farm.

The caller verifies that the contacts retrieved from the DHT forbob@example.net are

signed either by the user identity,bob@example.net, his domainexample.net, or a mutually

trusted certificate authority (CA) such as VeriSign.

Cryptographic Key Storage

To avoid any central server, the certificates, cryptographic keys, and any user configuration such

as “friends list” are also stored on the DHT. For example, Bob can store his certificate on the

DHT with k=H(certificate:bob@example.net). Multiple certificates of Bob from different CAs

can be put under the same DHT key. Since the information needs to be available to any potential

caller, the value is unencrypted. There is a danger of other malicious users polluting the DHT

values for this key. However, chained verification of the certificates can be used to retrieve the

correct certificate.

The user can also store his private configuration information such as his private key on the



86

DHT. Thus, he can share the same configuration among multiple clients. However, this sensitive

information must be stored encrypted on the DHT. For example, Bob can store his encrypted

private key withk=H(private:bob@example.net:secret). In addition to encrypting the private key

with a secret, the secret is also used by Bob to generate the DHT key, so that other malicious

users can not pollute the values fork. Since the user chosen secret password is much easier

to remember for the user than his private key, storing the encrypted private key on the DHT is

helpful.

Presence

Presence data of a user contains three pieces of information: (1) watcher list: the list of users

interested in knowing the presence status of this user, (2) friends list: the list of users whose

presence status is being watched by this user, and (3) watcher authorization list: the authorization

information about the users in the watcher list. The separation allows any one to update this user’s

watcher list, but only this user can update his friends and authorization lists.

Presence data is handled differently because, unlike the contact information, which needs

to be available to all the potential callers, the watcher list should be visible only to the pre-

sentity (the entity being watched). We use a generic DHT key format to store the subscription

request, i.e., watcher list for any event including presence. The DHT key is formatted as “sub-

scribe:event:user”. For example, if Alice wants to subscribe to the presence status of Bob, she

puts her signed identity in Bob’s watcher list withk=H(subscribe:presence:bob@example.net).

The value is encrypted using Bob’s public key so that only Bob can decrypt the watcher identity.

This mechanism also works for events other than presence.

Additionally, Alice can store her encrypted friends and authorization lists on the DHT

similar to the private key storage described earlier. If a new user Sam appears in the watcher

list, but is not present in the authorization list, then Alice is prompted to authorize or deny the

subscription by this new user, Sam. The result is stored in Alice’s watcher authorization list.



87

Offline Messages

When Alice calls Bob, and Bob is not registered or does not pick up the phone, Alice can store

an offline message (text or multimedia) under keyk=H(offline:bob@example.net). When Bob

comes back, he can retrieve his offline messages. The signing and encryption is similar to the

watcher list.

The difference between storage of watcher list (presence data) and offline message is that

the watcher list is periodically refreshed by the individual watchers, whereas the offline message

is usually removed by the recipient after retrieval.

NAT and Firewall Traversal

Although NAT and firewall traversal is not a generic P2P-SIP logical operations, we believe that

NAT and firewall traversal is required for successful deployment of P2P-SIP. Hence, we include

this as a basic P2P-SIP operation.

Inbound SIP messages to a client behind a NAT (Network Address Translator) require

connection reuse [124] and symmetric response routing [125]. Additionally, SIP phones use

mechanisms such as STUN (Simple Traversal of UDP through NAT [105]), TURN (Traversal

Using Relay NAT [106]) and ICE (Interactive Connectivity Establishment [107]), to allow me-

dia traversal through NATs and firewalls. This requires publically available STUN and TURN

servers. Our P2P-SIP node implements both STUN and TURN, and provides these services to

other users.

The existing DHT interface of OpenDHT [27] is not sufficient for such service discovery.

Consider the trivial approach where every STUN server stores its IP address underk=H(stun).

This requires modifying existing STUN servers, or some other centralized entity to register ex-

isting STUN servers’ IP addresses in the DHT. Secondly, this is not scalable because the DHT

node storing this key,k, will soon become overloaded with potentially millions of clients ad-

vertising as STUN servers. There are two alternatives: DHT’s service interface and hierarchical

location-based key. OpenDHT provides additional API (ReDiR [27]) that addresses this scal-

ability problem to join and lookup for a service. Thus, a P2P-SIP node joins OpenDHT for

“stun” and “turn” services. Alternatively, if a node detects its location as “New York” and au-



88

tonomous system (AS) number of his service provider as 1234, it can store its IP address with

k1=H(stun:geo:us.ny.newyork) andk2=H(stun:as:1234). The use of AS number is useful be-

cause users in the same AS are likely to have good connectivity.

Next, we describe the details of P2P-SIP implementation to perform these logical opera-

tions such as contact management and key storage in different deployment scenarios.

5.5 Deployment Scenarios

As mentioned earlier, a P2P-SIP node can run in different scenarios such as the P2P client, proxy

or an adaptor for the existing SIP phones as shown in Fig. 5.3. In this section, we illustrate these

scenarios using pseudo-code and examples.

(SIPc)

adaptor
(sippeer)

bob@example.net

bell@phone.net

SIP

SunRPC

XML RPC

SIP user agent

SunRPC
SIP

P2P proxy
(sippeer)

home.com

alice@home.com

joe@home.com

SIP user agents

NAT/
firewall

P2P client behind NAT does
STUN server discovery on DHT

sam@office.com

P2P client

P2P client

(e.g., OpenDHT)
Managed public DHT

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

Figure 5.3: P2P-SIP: SIP-using-P2P architecture

5.5.1 P2P Client

Consider a user Bob who picks his identifier,i=bob@example.net. For the first time use, he

also picks a secret,s=“mypass”, and generates his RSA public and private keys, (KP , KS). The

user’s X.509 certificate [126], either self-signed or signed by some trusted authority, is put on

the DHT under the key H(certificate:bob@example.net) (see procedure 5.5.1). Other users can

get Bob’s certificate and hence the public key using his identifier. Bob then encrypts his private

key usingmypass and puts it in the DHT key, H(private:bob@example.net:mypass). Using the



89

password in the DHT key prevents someone else from polluting the value under this DHT key.

Procedure5.5.1: on-startup(identifier:i, password:s)

global: id=n, keys=(KP , KS)
n← i
if k ← get(H(private:i:s) failed then

(KP , KS)← generate RSA keys
put(H(certificate:i), cert(KP )) /* no H(s)⇒ never remove */
put(H(private:i:s), [KS ]s)
/* [a]b means encrypta using secretb */

else
KS ← [k]s /* [a]b ⇒ decrypta usingb */
KP ← extractKey(get(H(certificate:i)) verified withKS

If Bob knows that his certificate issuer’s identity may not be known to the prospective

callers, he can also put his issuer’s certificate on the DHT, say under the key H(certificate:example.net),

if the issuer isexample.net. Any caller should acquire the chain of certificates until she can trust

the issuer.

Procedure5.5.2: put-contact(id:i, contact:c, ttl: t, password:s)

global: private-key:KS of signer:n
e← now + t and σ ← {H(i|c|e)}KS

v ← (c, e, n, σ) /* n = i for P2P client */
r ← H(i|c|e|s) /* password in put */
put(H(sip:i), v, H(r), t)

Procedure5.5.3: remove-contact(id:i, contact:c, password:s)

global: keys:(KP , KS) of signer:n
(v, H(r), t)← get(sip:i) and (c, e, S, σ)← v
if S = n and {σ}KP

= H(i|c|e) then
v ← (c, e, n, σ) and r ← H(i|c|e|s)
remove(H(sip:i), H(v), r, t + δ)

Now, when Bob wants to register his contact location, saysip:bob@192.1.2.3:5060, he

creates an RSA digital signature of this contact. He then creates a value containing his contact,

signer’s name (which is his own identifier in this case), and the signature. This value is put on



90

the DHT under the key H(sip:bob@example.net). One problem is that a malicious user can fetch

the contacts and signature of Bob, and when Bob’s registration expires, registers him again with

the old signed contact. Alternatively, the malicious user can use this signed contact to register for

some other user, thus messing up with other user’s call routing.

To prevent this problem, one can use the authenticated interface of OpenDHT [27]. We

use the similar signing procedure on top of the existing interface, until OpenDHT implements the

authenticated interface. The signed data includes an absolute expiry time of the registration, the

user’s identifier and the signer’s identifier in addition to the contacts. This will guarantee that the

signature can not be used for another user or after it expires. The pseudo-code to add and remove

a SIP contact is shown as procedures 5.5.2 and 5.5.3, respectively.

When the registration is refreshed, the planned authenticated interface [27] just updates

the TTL of the existing contact record. However, with the existing DHT interface, a registration

refresh creates a new record under the key instead of replacing, since the expiration and hence the

value is changed. Unless the old record is expiring soon, it is recommended that the old record

be explicitly removed to prevent storing dangling contact information in the DHT.

When Alice wants to call Bob, she looks upsip:bob@example.net in the DHT. If

Alice knows Bob’s public key, from earlier communication, she can use that to verify Bob’s

signature. Otherwise, she does another DHT lookup for the signer’s certificate with DHT key,

H(certificate:bob@example.net). If the certificate is found and issuer is trusted, the signature is

verified. Otherwise, the issuer’s certificate is looked up and the process repeats. Any unverified

contact is discarded (procedure 5.5.4). The existing DHT interface may return the same contact

multiple times with different expiration, if the old contacts were not removed by the user on regis-

tration refresh. After removing such duplicate entries, Alice can call one or more contact location

in sequence or parallel. After successfully talking to the right person, Alice remembers his public

key, or at least H(public-key), for future communication. This is like theknown hosts file in

OpenSSL [126].

Bob may store certificates from multiple issuers in the DHT, in the hope that the caller

will recognize at least one of the issuers, and minimize the number ofget operations on the DHT.

This leads to a friend-to-friend trust model, where after successfully communicating with Bob,



91

Procedure5.5.4: get-contacts(id:i)

V [..]← get(H(sip:i)) /* get all contacts */
ret← ()
for all u in V do

(v, H(s), t)← u and (c, e, S, σ)← v
if e > now and S is i or domain ofi then

KP ← get-public-key(S) /* procedure 5.5.5 */
if σ = {H(i|c|e)}KP

then
appendv to ret

return ret

Procedure5.5.5: get-public-key(id:i)

if C ← get-certificate(i) then
return public key fromC

Alice may herself issue a certificate to Bob. The certificate indicates that Bob is the owner of the

private key corresponding to the signed public key of the certificate. Thus, other users who know

Alice can verify Bob’s certificate.

The keys and certificates areput without any TTL indicating that they should not expire,

where as the TTL in the contact data is derived from the desired registration TTL, e.g., usually

one hour for SIPREGISTER.

Procedure5.5.6: get-certificate(X.509 subject’s common name:i)

Q.enqueue(i) /* queue of id’s to query */
L← {} /* list of certificates */
repeat

j ← Q.dequeue()
for all c in get(H(certificate:j)) do

L.append(c)
if c.issuer isnot knownand c is not self-signedthen

Q.enqueue(c.issuer)
until Q is emptyor chainL is not verified
if L can be verified based on our trusted certificatesthen

return certificate ofi from L



92

5.5.2 P2P Proxy

When a SIP proxy wants to use the DHT as a location service, it performs similar operations as

the client. If there are multiple proxies in the server farm for domainhome.com, all of them use

the same set of secret (s), public (KP ) and private keys (KS). The proxy can store the domain’s

RSA key and X.509 certificate,C, on the DHT (procedure 5.5.1), so that other proxies in the

farm can retrieve them. When signing a user contact, the signer’s identity is set tohome.com.

The proxy also stores the appropriate authentication credentials for the users in the do-

main for authenticating SIPREGISTER requests. For example, it may store Alice’s credentials

in DHT key H(digest:alice@home.com:mypass) as shown in procedure 5.5.7. Since most digest

authentication [127] implementations use MD5, procedure 5.5.7 stores the MD5 hash of the user

credentials, which is sufficient for digest authentication by the proxy.

Procedure5.5.7: signup-user(identifier:i, password:p)

global: domain=n, secret=s
h←MD5(i:n:p) and put(digest:i:s, [h]s)

When Alice registers with the proxy, the proxy authenticates her using the stored cre-

dentials. If the authentication succeeds, it updates the contacts using procedure 5.5.2 like a P2P

client (procedure 5.5.8). Similarly, procedure 5.5.3 is used to unregister. Since the contacts are

signed over the absolute expiration time, a SIPREGISTER refresh causes one more contact to

be added in DHT. The proxy should then remove the old contact using the expiration value of the

old registration.

A proxy associated with a domain,home.com, may require that all the incoming regis-

trations belong to its own domain, i.e., user identifier of the form*@home.com. This prevents

users having their contacts certified by unrelated third party, e.g.,home.com proxy will not

certify the contacts ofbob@example.net.

Alternatively, there can be hosted VoIP services where the proxy may allow any user

identifier as long as they signup for the service. In such cases, the service provider should verify

that the user is the owner of the identifier, e.g., by sending the signup confirmation on an email to

thatuser@domain identifier.



93

Procedure5.5.8: on-register(SIP message:R)

global: domain=n, secret=s, keys=(KP , KS)
let i be user id from request-URI ofR
h← get(digest:i:s)
if R not authenticated usingh then

send response401 Unauthorized
realm isn, user isi

else
A← get-contacts(i) /* existing contacts */
let B ← beR.contacts/* B := A if “Contact: *” */
for all (c,ttl:t) in B do

if t > 0 then
put-contact(i, c, now + t, s) /* add new */
if c exists inA as (c, e, S, σ) then

v ← (c, e, S, σ) and r ← H(i|c|e|s)
remove(H(sip:i), H(v), r, e− now + δ) /* old */

else
remove-contact(i, c, s) /* remove expired */

When the proxy receives a SIPINVITE or other request, it looks up the existing contacts

for the destination user and proxies or redirects the call. The lookup is same as that done by P2P

clients (procedure 5.5.4).

5.5.3 P2P Client Adaptor

A SIP proxy may also be used as aP2P client adaptorfor existing SIP phones that do not support

P2P-SIP. In that case, the P2P proxy (adaptor) runs along with the SIP phone in P2P clients

scenario, e.g., on the same host or within the same trusted network. The adaptor is logically part

of the user’s phone except that the functionality is split between the phone and adaptor.

It should not be necessary to keep two different passwords, one fordigest authentication

by the phone to the adaptor and the other by the adaptor to sign the contacts in DHT. To solve

this, the adaptor usesbasic authentication instead ofdigest and learns the user’s password on the

fly on REGISTER. The adaptor behaves like a P2P client instead of a P2P proxy, but implements

SIP registrar and proxy. There are two common authentication modes:basic anddigest. While

digest authentication never transfers the password, basic send password asbase64 encoded text.



94

Although,basic authentication is not supported in SIP,basic over TLS is considered safe and

in some case better thandigest if the server stores the hashed user credential fordigest without

encryption. In procedure 5.5.8, the secrets is obtained from the SIPREGISTER request’s

Authorization header,n is obtained from theFrom header, and keys (KP , KS) are obtained

using procedure 5.5.1.

5.6 Security and Trust

In general, DHT provides some protection against malicious nodes since they cannot subvert a

specific user identifier, but just the (random) user identifiers that happen to land on their node. In

our architecture, we assumed that the DHT is managed, nodes are trusted, and the system will

eject bad nodes with reasonably high probability.

Since anyone can pick any user identifier and store the contacts and keys for that identifier

on the free public DHT such as OpenDHT, there is some risk of talking to the wrong person. On

Unix systems, theknown hosts file contains an encodedssh fingerprint for each host that this

machine has contacted throughssh. Similarly, the P2P-SIP node can store the fingerprint of the

user after initial communication. The fingerprint contains the user’s identity and public key. The

encrypted fingerprint can be put on the DHT for future verifications. If storing the public keys of

all the contacted users is not space efficient, SHA-1 is used (procedure 5.6.1). When making a

call, the user gets the public key from the DHT and verifies it with the hash stored in his mapping

(procedure 5.6.2). The fingerprints can be used as a “friends” list similar to those maintained in

popular IM clients such as Yahoo and MSN.

Procedure5.6.1: sign(identifier:i, public-key:P )

global: private key=KS of signer
put(H(i), {H(i|P )}KS

)

If the callee can certify his identifier, the caller can decide which one to trust based on the

certifying authority in the certificate chain stored on the DHT. For example, if two users signed up

for the identifierbob@example.net, where the first is certified byexample.net and the second

by free-service.com, the caller can pick the first one with high probability of being the correct



95

Procedure5.6.2: verify(identifier:i, public-key:P )

global: public key=KP of signer
for all c in get(H(i)) do

if [c]KP
= H(i|P ) then

return true
return false

one.

Alternatively, the DHT may provide a service model in which every user first signs up

with the DHT providing the mapping between the identifier and his public key. The DHT guaran-

tees that there will be only one user with the given identifier at any time, and can verify his public

key when requested. This can be implemented using the existing OpenDHT interface as shown

in procedure 5.6.1 and 5.6.2, but requires a signer to sign every new user identifier. We assume

for scalability that the new identifiers are not created very often. Also, the signer verifies that the

user owns the identifier of the formuser@domain, e.g., by requesting confirmation from that

email address as mentioned earlier.

One important difference between our approach and Skype [21] is in the use of central

servers. Skype uses centralized login server(s) to authenticate the user every time the client is

started. On the other hand, centralized certifying authority (CA) in our architecture are contacted

only for issuing the initial user or domain certificate. Subsequent user logins just use the DHT

without contacting the CA. Thus, this is more scalable than the central login server architecture.

In particular, the system can operate even if it is separated from the global Internet.

5.7 Implementation Issues

I have implemented the OpenDHT-based SIP contact management and key storage for P2P client

and adaptor modes in our P2P-SIP implementation, SIPPEER[116]. Additionally, with the help

of Xiaotao Wu, I have implemented the SIP contact management, key storage, service advertise-

ment and discovery of STUN servers for NAT/firewall traversal, presence, and offline instance

message (IM) storage for the P2P client mode in Columbia SIP user agent,sipc [30]. The mod-

ule that connects to OpenDHT, is calledsippeer-connector, and can be replaced by other similar



96

DHT connectors in future.

The connector connects to the DHT nodes and uses theget, put andremove interface

to perform P2P-SIP operations described in this chapter. In this section we describe some of the

implementation highlights of SIPPEER[116] andSIPc. The SIPPEERimplementation is done

in C++, using Sun RPC as the OpenDHT interface [122], whereasSIPc is in Tool Command

Language (Tcl), using XML-RPC as the OpenDHT interface. Both use OpenSSL [126] for cryp-

tographic routines. SIPPEERruns on Linux, but can be easily ported to other Unix platforms, and

also to Windows, using our portability libraries.SIPc runs on both Unix and Windows platforms.

Redundant Connections

Our implementation periodically downloads the list of OpenDHT nodes from

http://www.opendht.org/servers.txt and connects to two or more nodes. It selects the

closest node, defined as the one to which theconnect socket call takes the least time, from a

random subset of the nodes list. It periodically does null RPC calls to check liveness. The list of

N (≤ 8) closest nodes is maintained and periodically updated in the host cache.

Alternatively, we can use the DNS lookup foropendht.nyuld.net, which fetches the IP

addresses of any two OpenDHT nodes close to the client [122].

Data Format

In the current implementation of SIPPEER, RSA keys are generated using 1024-bit modulus and

exponent as 65537. All certificates and RSA keys are currently stored in ASCII PEM (privacy

enhanced mail) format. Appendix C describes a better format based on the W3C’s recommenda-

tions.

In SIPPEER, when a collection of data such as in a tuple or a list needs to be evaluated

in a scalar context, e.g., in procedure 5.5.2 for the tuples being put or hashed, the elements in the

tuple or list are concatenated together and delimited by nul character. To prevent the ambiguity if

the actual data has nul character, data may be base64 encoded before concatenating.

We propose an XML-based data format for interoperability among various P2P-SIP im-

plementations. The details are in Appendix C.



97

Data Size

One of the restrictions of OpenDHT is that the data size for everyput is limited to 1024 bytes.

The X.509 certificates sometimes exceed the limit. We wrote another interface layer to put larger

data, by splitting it into chunks of no more than 1024 bytes. The original DHT key stores the

index containing DHT keys to the individual chunks. Assuming, a 20-byte index (SHA1), a one

level indirection can store index of other 50 blocks of 1 kB each, thus giving a total of 50 kB of

data under a key. This is more that sufficient for storing user keys, contacts or presence data in

P2P-SIP.

We use some ugly hack as shown in procedure 5.7.1 and 5.7.2. If the first byte of the

data is the nul character, then the data is assumed to be index of other chunks separated by nul

characters.

Procedure5.7.1: put-large(k,v,H(s),t)

i = ()
for all u chunk inv of size<= 1024 bytesdo

put(H(u), u, H(s), t) and i.append(nul+H(u))
put(k, i)

Procedure5.7.2: get-large(k)

list a[..]← get(k)
for all (v, H(s), t) in a do

if v.first isnul then
w = ()
for all i in v tokenized bynul do

if u← get(i) and H(u) = i then
w.append(u)

replacev by w in a
return a

Data Expiration

OpenDHT has a maximum TTL of one week for any data item. Although most user contacts

have much lower TTL, semi-permanent data such as certificates and RSA keys are limited to



98

a maximum of one week. To continue using the system the P2P clients and proxies should

periodically refresh the certificates and keys on the DHT. Alternatively, there can be service

nodes that walk the DHT and slowly refresh all the data.

Storing Time

All expirations and absolute times should be stored in GMT (Greenwich Mean Time) format,

because the data, such as contact information containing expiration may be read by a user in a

different timezone, e.g., contact information.

Fairness

OpenDHT allocates space quota fairly to different clients, identified by IP addresses. This is

achieved by defining a maximum time-to-live (one week) and size (1024 bytes) for stored data,

and rate limiting the put for data internally. This means a single proxy handling a lot of users and

storing a lot of data, may fail if the quota exceeds. Thus, the current OpenDHT fairness policy

favors the P2P client and adaptor modes.

Privacy

Another scenario for the centralized SIP proxy is to use the DHT just as a replacement for back-

end database. This is not a P2P mode, as lookup in this client-server mode is still done via DNS

and SIP [28]. In this case, the proxy encrypts the data stored on the public DHT, so that others

cannot use the data directly. Unlike a P2P proxy, in this mode the proxy works in the server-

based architecture. Our SIPPEER, in this mode, encrypts all user contacts on the DHT using a

password. This mode does not require signing and verification of the user contacts, since the data

is encrypted and not visible to others in the DHT.

Authenticated Interface

Once the authenticated interface is implemented in OpenDHT, some of the procedures of P2P-

SIP can be simplified. In particular, the two stepput-remove process of register refresh (proce-

dure 5.5.8), will be done using a singleput. Also, aget request will return only the desired data



99

if the public key of the creator is specified. Similarly, certificate and key verification can specify

the public-key inget to avoid getting unnecessary data and becomes a single step process.

With the authenticated interface, a caller can invokeget(i, H(KP )) if she knowsH(KP )

from previous communication. It is desirable that the SIP phone sendsH(KP ), if known, of the

intended callee in the outgoing SIPINVITE or other requests to the P2P proxy. For example, the

SIPrequest-URI can carry this as an URI parameter,fingerprint.

5.8 Advanced Services

In addition to the user contact locations and keys, configuration such as “friends” list and media

such as voicemails may be stored on the DHT. Any configuration needs to be accessed only by the

owner, hence can be encrypted. On the other hand, subscription requests and offline messages are

stored and retrieved by two different users, but not accessible by any other users. Thus, the P2P

client or proxy encrypts the signed subscription request or offline message using the recipient’s

public key so that only the recipient may read the request or message.

5.8.1 Offline Messages

The details for offline messages are shown in procedure 5.8.1 and 5.8.2. It allows the caller

to store a message and the recipient to read and delete the message. The message,M , is in

email format and may have voice attachments. One must be careful in storing large values in

the DHT, since the data size may exceed 50 kB now. Using a Merkle tree [128] instead of the

one-level indirection we described earlier, solves the problem. The idea is to split a large data

into a number of smaller pieces, hash those pieces, and then iteratively combine and rehash the

resulting hashes in a tree-like fashion until a single root hash is created.

Procedure5.8.1: put-offline(caller:(a, AS), callee:(b, BP ), M )

k ← H(offline:b) and t← 1 week
u← (a, b, now + t, M) and σ ← {H(u)}AS

r ← randomand v ← ([(u, σ)]r, {r}BP
)

put(H(offline:b), v, H(H(r)), t /* secret is H(r) */



100

Procedure5.8.2: get-offline(user:(b, BS)

for all (v, t) in get(offline:b) do
(w, p)← v and r ← {p}BS

and ((a, b, e, M), σ)← [w]r

AP ←get-public-key(b)
if H(a, b, e, M) = {σ}AP

and e > now then
/* M is valid; read or replayM */

remove(H(offline:b), H(v), H(r), t + δ)

Alternatively, the caller may store the message,v=(a, b, M ), signed and encrypted under

any DHT key,H(v), and notify the recipient of the key via email, for example. This method is

preferred to avoid congesting the same DHT key for a given user. Another alternative is to build

a P2P event notification service to notify the recipient of offline messages when he logs in.

5.8.2 Presence

Subscription request for user’s presence is signed and encrypted similar to an offline message,

but stored in the DHT key, H(subscribe:presence:alice@home.com), and value as the subscriber’s

identity, e.g.,bob@example.net, if Bob wants to watch Alice.

5.9 Evaluation

In this section, we compare the different deployment scenarios (client, proxy and adaptor) in SIP-

using-P2P architecture using the data model. We also describe the performance and reliability of

using OpenDHT as an external DHT for P2P-SIP.

Comparison of Deployment Architectures

We consider the number and size of lookups and updates in a typical message flow for different

deployment architectures. In our implementation, the lookups for certificates and keys are cached,

hence reducing the number of actual DHT lookups for registration refreshes, and outgoing calls

to the same destination.

A P2P client typically performs oneput operation for every registration refresh, whereas

a P2P proxy does oneget, put andremove on an incoming SIPREGISTER. Additionally, new



101

registrations for which there is no cache entry, causes oneget for getting the user’s private key in

a P2P client, and for getting the user’sdigest credentials in a P2P proxy. In OpenSSL, the RSA

private key includes the public key, so there is no need to explicitly fetch the public key once

the private key is known on startup of a P2P client. For unregistration, the client and server both

make oneremove call, and the server additionally makes aget call to get the list of contacts. For

signup or first time registration of the user identifier, a P2P client invokes two additionalput for

RSA keys, whereas a P2P proxy invokes one additionalput for the user’sdigest credentials.

An outgoing call typically involves oneget for the contacts and one for the signer’s public

key, assuming that there is no intentional collision of the signer’s public key. The signer is either

the callee or the domain of the callee’s identifier.

If certificates are used and assuming that a user uploads his own certificate as well as that

of the domain he belongs to, and a proxy uploads the domain certificate, then the user signup

typically takes twoputs by the client. The proxy uploads its certificate once for its domain. An

outgoing call to a unknown callee but known domain may involve one extraget for the callee

certificate, and to an unknown domain may involve two extraget for both user and domain

certificates. In OpenDHT, a singleget andput for a certificate resolves to three calls because the

data size typically exceeds the limit of 1024 bytes.

Suppose the user’s login rate is Poisson distributed with meanλ logins per second, and

he remains online with duration that is exponentially distributed with mean intervalton seconds.

Suppose the registration refreshes are periodically done everytr seconds, and the maximum TTL

allowed in the DHT istmax seconds. Suppose, out of the total call rate ofc calls per second by

the user agent, a fractionβ of the calls is to unknown user and domains with user certificates and

α of the calls to unknown users with domain certificates plus unknown users but known domain

with user certificates. Suppose, the user has on an averagek contacts. The rate of DHT calls by

a P2P client and proxy can be given as follows:



102

client proxy

get λ + kc(1 + 2α + 2β) 3λ + S(ton, tr) + kc(1 + 2(α + β))

put λ + S(ton, tr) + 8/tmax λ + S(ton, tr) + 4/tmax

rm λ 2λ + S(ton, tr)

where S(ton, tr) = 1 +
∑∞

n=1 P(ton > ntr) =
∑∞

n=0{e−ntr/ton}

Typically, tmax is very large (one week for OpenDHT) andtr is one hour in SIP. A mobile

user with highλ generates three times moreget and two times moreremove for registrations

and unregistrations when using a P2P proxy instead of a client. This is because a proxy needs

to return a list of current contacts inREGISTER response, andremove the old contacts after

put, whereas a client does not generate response andputs just before the old contact expires for

registration refreshes, hence it does not have to remove the old contact. An office phone which

remains always on typically generates an extraget and remove per hour when using a proxy

instead of a client since a registration refresh causes an extraget andremove by a proxy. The

rate of DHT calls by an adaptor is similar to that by a proxy.

Performance Evaluation

The maximum request rate is determined by both the number of DHT calls and the data size.

Most data sizes are small and less than 1 KB in OpenDHT. Moreover, the network bandwidth

also depends on the particular DHT algorithm in use.

If authenticated interfaces are implemented in OpenDHT, then noremove needs to be

done for SIP registration by a P2P proxy. However, major benefit of authenticated interfaces is in

get bandwidth since the DHT will not return unnecessary or polluted data.

The OpenDHT itself gives a low average latency of few hundred milliseconds, and 95th

percentile latency of less than 10 seconds [27]. We found similar performance in our quick test of

OpenDHT latency. This is reasonable for a SIP call setup. However, doing DHT lookup for every

instant message (IM) is not desirable. Instead, only the first IM in the session invokes DHTget

for remote contact information, and subsequent IMs reuse the cached value. Similarly, the IM



103

sent to the user in friends list can reuse the contact address of the user obtained on last presence

notification.

When the client starts up, it gets the presence information of all the users in the friends

list, because this user is more likely to call or send IM to one of the users in his friends list.

The actual performance depends on three important parameters: how often the user changes his

contact information, how many friends the user has in his friends list, and how often the user

sends a message or call request to another user who is not in his friends list.

Reliability

OpenDHT does data replication for reliability. This means the P2P-SIP node itself does not have

to do any replication. The redundant connection (Section 5.7) takes care of fail-over to the next

DHT node if the closest DHT node dies. The service discovery module for locating STUN servers

also fails over to the next serving node if the first looked up server does not respond.

Thus, the SIP-using-P2P architecture provides secure, scalable and robust P2P-SIP with

tolerable call setup latency. We describe the P2P-over-SIP architecture in the next chapter.



104

Chapter 6

P2P-over-SIP: DHT Maintenance using

SIP

6.1 Introduction

Unlike in SIP-using-P2P, the P2P-over-SIP architecture implements the underlying DHT using

SIP. Our P2P-over-SIP architecture supports basic user registration, lookup and call setup as well

as advanced services such as offline message delivery, voice/video mails and multi-party confer-

encing. It uses SIP as the underlying protocol so that it interoperates with existing infrastructure

such as SIP-PSTN gateways and server-based IP PBX such as Asterix and FWD (Free World

Dialup).

A P2P-SIP node can also act as an adaptor that allows existing or new SIP user agents to

connect to the P2P-SIP network without modifying the user agent. For example, it can run on the

same host as the PC-based SIP user agent and act as the outbound proxy for the SIP user agent. It

can also act as a standalone SIP user agent, proxy or registration server. We have implemented a

command line user interface based P2P-SIP node, SIPPEER, using the algorithms described here.

We describe the design and implementation of SIPPEER for basic user registration and

call setup using pseudo-code and example messages. We also describe how to extend it for ad-

vanced services such as presence and event notifications, firewall and NAT traversal and interdo-

main operations. The modular design allows reusable and replaceable components. For example,



105

Chord could be replaced by another distributed hash table (DHT) without affecting the rest of the

implementation. The open architecture allows installing new services without affecting the ex-

isting design. For example, a new voice mail module can be added to the existing node. Finally,

we discuss the security aspects and advanced services such as firewall and NAT traversal in the

context of P2P-SIP.

We do not propose any change in SIP. It uses existing SIP concepts such as proxy, reg-

istrar and user agent, and messages such asREGISTER to create a P2P-SIP network among

the participanting nodes. The P2P-SIP node uses existing SIP headers such asTo, Contact and

Reason to convey various Chord parameters.

Section 6.2 presents various design alternatives. Section 6.3 gives an overview of the

P2P-SIP architecture, user registration and call setup. Section 6.4 describes the detailed design

of the DHT using pseudo code and example messages. Section 6.5 and 6.6 describe the user

registration and call setup in P2P-SIP. Section 6.7 provides guidelines to extend P2P-SIP for

advanced services. Section 6.9 analyzes various security threats and their proposed solutions.

Section 6.10 predicts performance of the system in terms of scalability, reliability and call setup

latency.

6.2 Background and Design Alternatives

Background on Chord: a Structured P2P Algorithm

Structured P2P algorithms such as Chord [22] focus on optimizing the P2P overlay for lookup

latency and join or leave maintenance cost [103] instead of using inefficient blind search by

flooding. We use Chord as the underlying distributed hash table (DHT) in our implementation

for lookup. Chord has a ring-based topology where each node stores at mostlog(N) entries (or

state) in itsfinger table, which is like an application level routing table, to point to other peers.

Lookup is done inO(log(N)) time.

Consider an example Chord network with six bit identifiers as shown in Fig. 6.1. The

identifier range is [0-63]. The node identifier is hash of the node’s IP address. The data key is

also hashed to a key identifier in the identifier range. Chord suggests using SHA1 as the hash



106

39

36
33

28

26

22

19

18

24

13

10

8

5
2

48

15

163

30

40

distance   start    next node (and IP address)

1     11     13

next=30

next=33

next = 26
Find(32):

32   42     44
16   26     26
8     18     18
4     14     15
2     12     13

61

59

58

56

51

50

46

44

 = peer node

Figure 6.1: Example Chord network

function that generates 160-bit identifiers. The nodes arrange themselves in the identifier circle

(or ring) as shown. A node with identifierNid and predecessorNpred is responsible for storing

all the keys in the range (Npred,Nid]. For example, node 22 should store keys 20, 21 and 22 in

this example.

Every node maintains a finger table oflog(N) = 6 entries pointing to the next-hop node

location at distance2i−1 (for i=1,2,..,6) from this node identifier. Node 10’s finger table is shown

in Fig. 6.1. The finger table contains first nodes with identifiers greater than or equal to 11, 12,

14, 18, 26, 42 for index i=1,2,...,6, respectively. If the node with identifier 11 does not exist then

the next available node identifier (13 in this case) is used. The nodes in the finger table are 13,

13, 15, 18, 26, 44, respectively, because nodes with identifiers 11, 12, 14, 42, 43 are not present

in the example network. The “next node” column contains both the node identifier and the IP

address of the next hop node.

When node 10 wants tofind key 32, it looks up the finger table to find the closest match

as start value of 26, and sends the query to node 26. Similarly, node 26 in turn sends it to node

30, which finally sends it to node 33. Node 33 is the successor node for the identifier 32 in the

network, hence is responsible for storing information about key 32. At each step the distance to

the destination is reduced by approximately half, resulting inO(log(N)) lookup latency, if there

areN nodes in the ring.

The rest of the architecture describes the mapping between the Chord algorithm and SIP



107

message processing. We evaluate different design alternatives for user lookup and registration to

meet P2P-SIP goals.

Why is node identifier independent of user identifier?

In our first attempt to design P2P-SIP, we derived node identifier using the hash of user identi-

fier. Users registered their identifiers with the system so that other users could locate them. As

shown in Fig. 6.2 when the user started her client application and indicated her “screen name”

asalice@office.com, the node computed the DHT key (e.g., using SHA1 as in Chord) from the

name and joined the DHT using this user key as the node key. Alice’s key was 42 in the example.

When another user, say Bob, wanted to locate Alice, Bob’s node used the same hash function to

calculate the same key, 42, for Alice, and invoked thefind(42) method on the DHT. The DHT

algorithm located node 42 and then, Bob’s application could talk to Alice’s application.

12

42

24

bob@home.com=12

alice@office.com=42

sam@work.org=24

Figure 6.2:No REGISTER

REGISTER alice@office.com=42

REGISTER bob@home.com=12

24

56

42

12

58

32

14

Figure 6.3:With REGISTER

This scheme could not support offline messages or multiple clients registered for the same

SIP user identity,sip:alice@home.com. For example, if Alice is not present then Bob cannot

leave a message for her. On the other hand, in Fig. 6.3, the node key and user key are computed

separately. The SIPREGISTER message is used for inserting a node as well as registering a user

identity in the DHT. Each node in the DHT acts as a registrar. When Alice starts her application,



108

the node uses its IP address to compute the node key, 14. In other DHT algorithms such as

CAN [101], it may randomly choose a key. It then inserts itself into the DHT based on its node

key by sending one or more SIPREGISTER messages to its prospective neighbors in the DHT.

The node then computes the key on Alice’s name and sends a SIPREGISTER message to the

other node, with key 58, that is responsible for the user key 42. For example, Alice’s node has

a node key of 14 where as Alice’s user key is 42, so the node 14 sends aREGISTER message

for key 42. The node 58 that is responsible for key 42 accepts the registration and maintains the

state that user Alice can be found at node 14’s IP address. Even if Alice’s application (node 14) is

not available, Bob can still leave offline message with node 58 that can later be delivered to Alice

when she comes online. Similarly, there can be multiple registrations for the same user key 42, if

Alice has multiple active clients.

As an alternative to the SIPREGISTER message, one can use the SIPPUBLISH mes-

sage to publish the user location and presence status [129]. Both the messages are handled in the

similar way for the purpose of this chapter, so the choice does not affect the overall architecture.

6.3 Architecture Overview

Socket interface

Find
Join

Find buddies

detect NAT
peer found/ Multicast REG

MESSAGE

Media path
transfer

IM, Call

Leave

Sign in,

REGISTER,

REGISTER

On Startup
On Reset

Sign out,

INVITE,
DHT (Chord)

User location

User interface (buddy list, etc.)

ICE SIP

Discover

RTP/RTCP

Codecs

Audio devices

Figure 6.4: Block diagram of a P2P-SIP node

Fig. 6.4 shows the block diagram of the different components in the P2P-SIP node. When

the node starts up and the user signs-in with her identifier, thediscover module is activated to



109

initiate NAT and firewall detection, peer discovery and SIP registration. Multicast SIPREGIS-

TER request, cached peer addresses from last boot cycle and pre-configured bootstrap addresses

are used to discover an initial set of nodes. Theuser interface module keeps track of the user’s

“friends list” and invokes theuser location module to locate these friends. User location is ob-

tained using theSIP module or, if this node is a super-node, theDHT module. Typically a node

with public IP address, sufficient bandwidth and uptime is made a super-node to form the DHT.

In our implementation, we make a node with public IP address a super-node.

The node architecture can be logically divided into two parts: DHT maintenance and user

account maintenance. TheDHT module maintains the peer information (e.g., Chordfinger table)

and performs DHT operations such asfind, join andleave. It provides the underlying topology

for communication. The user account maintenance module deals with maintaining local user

accounts as well as storing remote user registrations. It acts as a SIP registrar and proxy server.

6.3.1 SIP Layer

SIP is used as the underlying protocol for maintaining the DHT, locating another user, registering

the user, call setup and instant messaging. The SIPREGISTER message is used in two contexts

by the node: query and update. If aContact header is present in the message, then it is an update

request indicating that the sender wants to update the bindings for the node identifier in theTo

header. Otherwise, it is a query request, where the sender is requesting to get theContact infor-

mation of the node identifier in theTo header. Initial discovery uses theREGISTER message for

query. This behavior is semantically same as that defined by SIP.

One can argue that the SIPOPTIONS message should be used in place of theREG-

ISTER message. Since the SIPOPTIONS message semantics is to query the media

sessions and supported methods of the recipient end point, but not to retrieve the

contact locations of the recipient, we do not useOPTIONS. Moreover, the multicast

SIP registration semantics can also be used for discovery of the initial peer node.

Once the user’s contact location lookup is done, the call setup or instant messages can

be sent directly to the user’s phone. SIPREGISTER refresh andOPTIONS messages are used

to detect node failure. When a super-node shuts down, the registrations are transferred to other



110

super-nodes in the DHT as appropriate. Other SIP functions such as third-party-call control and

call-transfer can be implemented in the similar way. The media path (audio device, codecs and

transport) is independent of the P2P-SIP operation, except that it uses the ICE module in Fig 6.4.

Node and user identifiers are represented using SIP URIs. For example, if a node is

listening at transport address 192.1.2.3:8054 for SIP messages and the Chord’s hash function

computes the key H(192.1.2.3) as 17, then the node’s URI becomessip:17@192.1.2.3:8054.

A node identifier or key (e.g., 10) in the domainexample.com, whose transport address is not

known is represented assip:10@example.com. This is needed, for example, to lookup node ad-

dress for node identifier 10 in the DHT, because the node IP address is not already known. Every

local P2P-SIP network is represented using a DNS domain name, whereasexample.invalid is

used for the key that has no domain, e.g., in the global DHT. Such node identifiers are useful for

DHT maintenance, e.g., to query another node’s transport address to populate this node’s finger

table entries.

User Alice can register her identifier assip:alice@example.com. The user’s email is

used as the identifier so that she can use the authentication mechanism described in Section 6.9.

6.3.2 Node Startup and Peer Discovery

In practice, the client node can try to use both P2P overlay and the SIP-based user lookup. When

the node starts up and the user enters her identifier such asalice@example.com, the node finds the

possible SIP server addresses using DNS [28] and sends a SIPREGISTER message as shown in

Fig. 6.5. If the SIP registration succeeds, the node can be reachable using standard SIP mechanism

in addition to the P2P mechanism.

The node also tries to discover possible super-nodes so that it can join the P2P overlay.

When the node discovers any one other node in Chord, it can join the Chord DHT based on the

node key. A number of approaches can be re-used from various existing proposals as follows:

• Multicast with very small time-to-live (TTL) value (e.g., within a LAN) can be used to

discover local peers and get more super-node information from these peers. SIP defines

multicast registration address for IPv4 as 224.0.1.75. Multicast-based node discovery may

result in many disconnected DHT components. To prevent this, only existing DHT nodes



111

start refresh

exit thread

thread
SIP registration

no

yes

send REGISTER

user id =
alice@home.com

timer

Peer discovery thread

(no loop)
response
redirect

Ordinary node startup

timer expired

success

failed

failed

timer expired

failed

timer expired

timer
Start retry

Success
peers

use bootstrap

  ttl=1
Multicast

  timer
Start refresh

or SRV?
DNS NAPTR

found
send REGISTER
to last seen peers

Figure 6.5: Node startup and outgoing registration

(super-nodes) should respond to multicast discovery requests (i.e., ordinary nodes should

not get discovered). Limited multicast on wide-area means the system cannot rely on mul-

ticast alone.

• Some sort of service discovery can be used, e.g., SLP, to locate super-nodes [130].

• If the peer addresses are cached, then more super-node information can be obtained from

those peers assuming the peers are still active and have not changed their locations since

last seen.



112

• As the last resort, some pre-configured bootstrap peers can be obtained from DNS query to

a well known domain, e.g.,sippeer.net, or can be pre-configured in the application software

(e.g., as implemented in Skype).

The super-node information is cached for subsequent registrations when the user logs out and

logs in again. Hence, the discovery is going to be a one time affair for most installations unless

all the cached super-nodes are found to have moved or disappeared.

6.3.3 User Registration

Once a node detects a set of super-nodes, it picks one and sends SIPREGISTER messages to

register with it. TheTo andFrom headers in the message correspond to the local user identifier,

e.g., sip:alice@home.com. The Request-URI corresponds to the super-node’s address, e.g.,

sip:192.2.1.2:5060.

An ordinary node is just a SIP user agent, whereas a super-node serves as the SIP user

agent as well as registrar for other nodes. A super-node sends theREGISTER messages on

behalf of the attached nodes to the destination super-nodes in the DHT. It also joins the DHT

with other super-nodes and actively takes part in user location lookup.

Ordinary nodes periodically sendREGISTER refreshes as keepalive messages to detect

any super-node failures. Super-nodes can periodically send the SIPOPTIONS message among

themselves or to the attached nodes to monitor liveness. The refresh interval can be adjusted

based on the system load. The keepaliveOPTIONS message is not sent to a node if some other

message was exchanged with that node in the last keepalive interval.

When an ordinary node receives aREGISTER message either for user registration or

node registration, it sends the SIP redirect response to redirect the sender to its own super-nodes

as shown in Fig. 6.6. When a super-node receives aREGISTER message from an ordinary node

and the sender is part of its attached nodes, the super-node proxies the message to the appropriate

nodes in the DHT as per user key of the sender. If the sender is not part of this super-node’s

attached nodes, it can decide either to accept the new node or reject it. If it wants to reject it, it

redirects it to some other super nodes which may be less loaded than this super-node. The sender

does loop detection to avoid getting into redirection loop.



113

attached peers list.
add this peer to 

new DHT node

new  attached peer

refresh

reset timer
accept and

peer?

Can 
accept new

registered?
Already

yes

no

no

yes

Is this a
super−node

multicast?
recvd on

Incoming REGISTER

Invoke DHT register.

user key.
should have this 
super−node that
Redirect to the 

yes

not accept)
(decided to

no. 

node fails
or remote 

expiresTimer

start refresh timer

attached peer is accepted)
to supernode or when new

(on transition from node
Invoke DHT register

target is local node

remote node

Send REGISTER

user key
DHT node for 
Locate correct

DHT info
update internal

A

Aaddresses
super−nodes’ unicast
redirect to my

Figure 6.6: Incoming registration

6.3.4 Node Shutdown or Failure

When an ordinary node leaves the system it can just un-REGISTER with the attached super-node

which in turn can propagate the un-registration to the corresponding nodes holding this node’s

key. A failure of an ordinary node does not affect the rest of the system. In any case, the attached

super-node can detect the failure by the absence of periodic refresh. It can further confirm the

failure by sending anOPTIONS message to the failed node to see if there is any response.



114

24

58
10

27

32

Node 39 
fails

16 16
Node 16 can

node 32
still locate

10

27

32

24

58

39

Figure 6.7: Failure of a super-node in the DHT

When a super-node leaves, the state needs to be updated in the attached ordinary nodes

as well as the other super-nodes in the DHT that are neighbors of this node. If a super-node is

shutting down, it gracefully transfers the user records that it holds to the other nodes in the P2P

overlay. This guarantees that others users can locate the record when the DHT node is gracefully

shutting down. It sends a SIPREGISTER message to the DHT nodes that will be holding the

user records after this node leaves. It does not need to inform the attached ordinary nodes. The

attached nodes will detect the failure on the next registration refresh and try to discover and

connect to other super-node that holds the record.

When a super-node fails abnormally (Fig. 6.7), the neighboring DHT nodes detect the

failure by detecting failed keepalive message and adjust the DHT to accommodate for the keys

that were held by the failed nodes. However, the mapping is lost unless the originating node

sendsREGISTER refresh. TheREGISTER refresh goes to the new super-node that handles the

corresponding key in the DHT. This make some services such as offline messaging temporarily

unavailable (Section 6.7).

To distinguish a SIP-only application with a P2P-SIP application, we can use theSup-

ported header in theOPTIONS or REGISTER message.



115

6.3.5 User Location and Call Setup

User can watch the presence status of other users by specifying their identities in his “friends”

list. If the user already has a friends list, the node tries to locate those friends on startup. Initially

we assume that the friends list is stored in the local computer for this user. Later we extend this

in Section 6.7 to store any user information (including the friends list) on the P2P network to

provide device independence to the user. The IP addresses of all the friends are cached for future

use.

The only important step for the purpose of this chapter is locating the node that has the

user location record for the destination user. Once the call setup is complete, media packets are

sent end-to-end. A node sends the SIPMESSAGE or INVITE message for instant message or

multimedia call, respectively. If the destination address is cached because, for example, this node

made a recent call or instant message to that destination, then the cached address is used. If the

client at the cached IP address does not respond (because there is no client running or the client

is not a P2P-SIP node), then the cache entry is removed and discovery is restarted.

62

2

16
35

37

44

34
20

15

1058

24

39

henry@office.com

14

home.com

alice@home.com

sam@home.com

bob@play.com

SIP path

(DNS to resolve home.com

192.0.2.2

to server IP − 192.0.2.2)

(1)
(3)

(2)

P2P path

Figure 6.8: User location and call setup

DNS-based lookup [28] and P2P lookup is done simultaneously as shown in Fig. 6.8. For

P2P lookup, an ordinary node sends aINVITE or MESSAGE to the attached super node, which

acts as a SIP proxy. A super-node locates the destination node holding the key in the underlying



116

DHT. Once the mapping is obtained, it can either proxy or redirect the message. Redirection is

the preferred way as it takes the super-node out of the call loop. However, in some cases such as

those involving firewall and NAT, proxy is the only option as we show in Section 6.7.6.

Other SIP functions such as third-party-call control and call-transfer are implemented in

the similar way. For example, the SIPREFER message for call transfer is routed similar to

INVITE on the P2P overlay. Most of the messages are handled end-to-end directly by the com-

municating nodes without going over the P2P overlay. Only dialog initiating messages such as

INVITE or SUBSCRIBE, or out-of-dialog messages such as firstMESSAGE for instant mes-

sages need to use the P2P lookup service.

6.4 Details of the DHT Module

The DHT module takes care of implementing three abstract methods:Join, Leave and Find

using SIP. When the node starts up it needs to discover at least one other node in the DHT. Then,

it joins the DHT through that node. When the node is gracefully shutting down, it leaves the

DHT. Higher layer application such as user account maintenance module uses theFind method

to locate the next hop node to send user registration or proxy other SIP messages for call setup or

instant messaging.

This Section describes the details of the DHT module implementation. In particular, we

explain the mapping of the Chord algorithm to SIP messages and processing. We illustrate with

simple examples using 5-bit identifiers. We represent the nodeN ’s identifier asNid, transport

address (IP and port number) asNaddr, IP address asNip, predecessor asNpred, successor as

Nsucc, finger table entry of this node for indexi asF i, and corresponding start, end and next hop

node URI asF i
start, F i

end andF i
node respectively. The successor list is represented asN list

succ, and

ith successor asN i
succ. Note thatN1

succ is same asNsucc. Finger table entry for another nodeN

is denoted asN :: F i. Note thatNsucc is same asN :: F 1
node.

The pseudo code to set the finger table entry and to query the closest preceding finger are

described in procedures 6.4.1 and 6.4.2, respectively. IfF i
node is set tonode, then all subsequent

F j
node are also set tonode as long asF j

start is beforenode in the Chord ring. To find the closest

preceding finger for a givenkey, the finger table is scanned in the reverse order and the alive node



117

Procedure6.4.1:N .set-fingers (i:start index,node:node location)

/* Set the finger table entries starting ati */
/* Returns the index of the last finger entry that gets set. */
F i

node ⇐ node
while i ≤ m− 1 do

if F i+1
start ∈ [Nid, F

i
node] then

F i+1 ⇐ F i
node

else
return i

i⇐ i + 1
return i

with highest identifier preceding thekey is returned. Lookup is also done in the successor list,

N list
succ.

Procedure6.4.2:N .closest-preceding-finger (key)

/* Find the closest preceding finger for thekey */
node⇐ Nid

for i← m down to1 do
if F i

node is alive and F i
node ∈ (Nid, key) then

node⇐ F i
node

break
for all s in N list

succ do
if s is aliveand s ∈ (Nid, node) then

node⇐ s
break

return node

6.4.1 Initialization

When the node starts up, it allocates any available port for receiving SIP messages on TCP and

UDP. Our SIPPEERapplication can accept-p command line option to configure a fixed receiving

port number, instead of using any available port. Typically, there are three listening threads, (1)

for TCP on INADDRANY interface and some portp, (2) for UDP unicast on INADDRANY

interface and same portp, and (3) for UDP multicast on address 224.0.1.75 and port 5060. To

allow receiving both multicast and unicast packets on portsp and 5060, threads (2) and (3) bind



118

to multicast as well as unicast addresses. Ifp is 5060, then thread (3) is not created. The UDP

sockets are bound non-exclusively on port 5060, so that multiple instances of the node can run

on the same host.

The node calculates its node identifier using the IP address of the local interface. For

testing purpose we use both IP and port, so that we can start nodes with different node identifiers

on the same host. However, in practice only the IP address should be used. This prevents a single

IP address from disturbing random parts in the DHT if a malicious node does frequent join and

leave to cause high churn.

6.4.2 Peer Discovery

1

1

1

1

10

22

15

1

10

128.59.15.60

128.59.15.31

128.59.15.48

128.59.15.55

1

1

22

22

22

1

22

15

15

15

10

22

10

10

10

Figure 6.9: Example Chord network with 4
nodes

15

151

1

1

1

10
15

22

1

22

22

22

7

7

7

7

10

22

128.59.15.56

1

15

15

10

10

7

128.59.15.60

128.59.15.31

128.59.15.48

128.59.15.55

1

1

15

1

22

Figure 6.10: After node 7 joins the network

Consider an example Chord network with four nodes as shown in Fig. 6.9. The node

identifiers are10, 22, 1 and15, and the node IP addresses are128.59.15.55, 128.59.15.31,

128.59.15.60 and128.59.15.48, respectively. When a new node,7, (with transport address

7addr=128.59.15.56:44452) starts up, it invokes itsDiscover method (procedure 6.4.3) to dis-

cover possible peers.



119

Procedure6.4.3:N .Discover

if discovery is allowedthen
sendREGISTER sip:224.0.1.75

To: Nid

else
for i := 1 to m do

F i
node ⇐ Nid

Npred ⇐ Nid

trigger join complete event

TheDiscover method of node7 sends a SIPREGISTER message withrequest-URI as

sip:224.0.1.75 (SIP REGISTER multicast IPv4 address) and theTo header as the local node

identifier,7id. TheFrom header is always the local node identifier,7id, if the request is generated

for the node. (The mandatory SIP headers that are not needed for understanding P2P-SIP are not

shown, but must be sent as per SIP specification.)

REGISTER sip:224.0.1.75 SIP/2.0

To: <sip:7@128.59.15.56>

From: <sip:7@128.59.15.56>

If the application is started with-N option to suppress node discovery, the node state

is initialized to reflect a singleton node in the DHT. In that case, all finger table entries and

predecessor in the node point to this node’s location.

If some other node, say node22, receives the multicastREGISTER request, and is al-

ready part of the DHT, it responds with its own unicast address,22addr=128.59.15.31, in the SIP

302 redirection response.

SIP/2.0 302 Redirect to unicast

Contact: <sip:128.59.15.31>

If the node receives multiple final responses, it can choose which one to use. Our imple-

mentation uses the first received response. If the node does not get any response within a timeout

(we use 30 seconds), it uses other means of discovery. The following possibilities exist but are

not yet implemented:



120

Service discovery: The node can have a service location protocol (SLP [131]) user agent (UA),

that discovers other nodes in the domain. Once the node joins the DHT it should register

with the SLP directory agent so it other nodes can discover this node. For the Internet,

some wide-area service discovery protocol is more suitable [132].

Bootstrap nodes: The node can be pre-configured with a set of IP addresses or domain names to

probe for possible peers. For example, the node can query DNS forsippeer.net domain’s

SIP servers and send the initialREGISTER message to them. At least one of the the

initial bootstrap P2P-SIP nodes is assumed to be active for this scheme to work. This may

introduce the centralized component, but is limited in scope only to the initial bootstrap

process. Once the node starts up it caches other peers addresses for subsequent reboots.

If the node cannot discover any other peer, it assumes that it is the first node in the DHT

and initializes its data structures (Chord finger table and predecessor location) accordingly. It

also re-schedules the discovery procedure for a later time, say after five minutes.

6.4.3 Joining the DHT

Once other peer(s) are discovered, the node selects one and sends a SIPREGISTER message to

its unicast address. For example, node7 sends the following message to22addr=128.59.15.31.

REGISTER sip:128.59.15.31 SIP/2.0

To: <sip:7@128.59.15.56>

From: <sip:7@128.59.15.56>

When node22 receives theREGISTER on its unicast address, it extracts thedestination

key, 7, from theTo header. Depending on the destination key value,k, there are three cases

for nodeN to process the request (procedure 6.4.4): (1) ifk ∈ (Npred, N ], then nodeN is

responsible for storingk, (2) if k ∈ (N, Nsucc], then nodeNsucc is responsible for storingk,

otherwise (3) some other node is responsible for storingk. For case (1), nodeN responds with

a SIP200 success response containing theContact header asNid and the predecessorContact

parameter asNpred. Thus, it inserts node22 immediately before nodeN in the ring. If the key,k,

is same asN (subset of case (1)), but the addresses are different (e.g., two nodes happen to have



121

Procedure6.4.4:N .OnRegister (R:registration object,M :request message)

if join is not completethen
ignoreM

else ifM is a query, i.e.,M .Contact is emptythen
to⇐M .To.user
if to 6= Nid and to /∈ (Nid, Nsucc] then

node⇐ closest-preceding-finger(k) /* procedure 6.4.2 */
else ifto equalsNsucc’s id, but has different addressthen

node⇐ Nsucc

else
node⇐ Nid

if node = Nid then
if to = N then

send response200 OK
Contact:Nid; predecessor=Npred

else
send response200 OK

Contact:Nsucc; predecessor=Nid

else
proxy M to node

the same hash value for the node identifier), then a global failure (SIP600 response) is returned,

with the Contact header asNid. For case (2), it responds with a SIP200 success response

containing theContact header asNsucc and the predecessor parameter asNid. Thus, it inserts

node22 immediately after nodeN in the ring. For case (3), it proxies the request to the next hop

node based on the finger tableN :: F . Eventually the request reaches the node responsible fork,

which can respond back with the correctContact header.

In our example, key7 does not belong to node22 or successor1 (this is case (3)), so the

finger table is used to find the next hop node. Since the largesti for whichN + 2i−1 ≤ k, where

N=22 andk=7, isi = 4, the next hop is22 :: F 4
node=1addr, hence the request is proxied to1addr.

Node1 decides that keyk=7 belongs to the successor node10, (case (2) because7 ∈ (1, 10])

and responds with the success response containingContact as10addr. Node22 forwards this

response back to node7. Note that the predecessor information needed by the Chord algorithm

is conveyed in thepredecessor parameter of the SIPContact header.

SIP/2.0 200 OK



122

To: <sip:7@128.59.15.56>

Contact: <sip:10@128.59.15.55> ;predecessor=sip:1@128.59.15.60

Procedure6.4.5:N .OnRegisterSuccess (R:registration object,M :response message)

if R was a query, i.e.,R.Contact is absentthen
if M .To =Nid and Nsucc is emptythen

/* set the finger table. */
k ⇐ set-fingers(1,M .Contact) + 1/* procedure 6.4.1 */
if k ≤ m then

/* more empty entries in finger table. */
/* query for the next empty entry. */
id⇐ N + 2k−1

sendREGISTER M .Contact
To: sip:id@sippeer.net

trigger join complete event
else

/* stabilize here with predecessor. */
sendREGISTER M .Contact

To: Npred (or Nid if predecessor is empty)
Contact:Nid; predecessor=Npred

else
if ∃i, such thatF i

start = M .To then
if i ≤ m then

/* found a pending query for empty finger table entry. */
i⇐ set-fingers(i, M .Contact)/* procedure 6.4.1 */
if i < m then

/* more empty entries in finger table. */
/* query for next empty entry. */
id⇐ F i+1

start

sendREGISTER Nsucc

To: sip:id@sippeer.net
else ifi = m then

if join is not completethen
/* stabilize here. */
sendREGISTER Nsucc

To: Npred (or Nid if predecessor isempty)
Contact:Nid; predecessor=Npred

trigger join complete event

When the discovering node,7, receives the SIP200 response withTo header as7id, it

updates its finger table with the successor node locations and goes on to find remaining nodes



123

in the finger table (procedure 6.4.5). For example if theTo header in the response is this node

identifier,7id, and the successor for this node7succ is empty, then the successor is set to be the

Contact header in the response,7succ := 10. Now, 10 ≥ 7 + 2i−1 for i=1 and 2, so node7

updates its finger tableF 1
node := F 2

node := 10id. The next unassigned finger entry for indexi=3

needs to be discovered. Node7 sends a SIPREGISTER message forF 3
start=11. The domain

sippeer.net is used as logical domain for node11id to indicate that the IP address of this key

11 is not known. Alternatively, a domain name such assippeer.invalid can be used to prevent

conflict with a real domain name.

REGISTER sip:128.59.15.55 SIP/2.0

To: <sip:11@sippeer.net>

From: <sip:7@128.59.15.56>

Eventually node7 receives the response for this registration, indicating that node15 is responsible

for key11:

SIP/2.0 200 OK

To: <sip:11@sippeer.net>

Contact: <sip:15@128.58.15.48> ;predecessor=sip:10@128.59.15.55

When the node gets the SIP200 response for thisREGISTER, it realizes that theTo

header corresponds toF 3
start, and updates the finger table based on theContact header of the

response,F 3
node := 15id. Since15 ≥ F 4

start, it updatesF 4
node := 15id. Finally, node7 sends

another SIPREGISTER message to discover nodeF 5
start = 23, and updates the finger table on

response asF 5
node := 1id.

6.4.4 Stabilization

Chord implements a distributed stabilization algorithm to gradually update the finger tables of

various nodes after some node joins or leaves. It also allows a node to add itself to other nodes’

finger tables. The stabilization algorithm is periodically started by each node. In our example, af-

ter node7 fills all the finger table entries, it tries to stabilize the Chord DHT if theJoin procedure

is not yet complete. To initiate the stabilization process, it sends a SIPREGISTER message to



124

Nsucc, sets theTo header asNpred (or Nid, if the predecessor is not known or is empty) and the

Contact header pointing toNid. Assuming the predecessor7pred is known as node1, then the

node7 sends the following request:

REGISTER sip:128.59.15.60 SIP/2.0

To: <sip:1@128.59.15.60>

Contact: <sip:7@128.59.15.56> ;predecessor=sip:1@128.59.15.60

Procedure6.4.6:N .Stabilize

/* This is called periodically by the ChordNode thread. */
if join is completedthen

if Nsucc 6= Nid then
sendREGISTER Nsucc

To: Nsucc

Contact:Nid; predecessor=Npred

else ifNpred is not emptyand Npred 6= Nid then
/* this is a singleton node in the ring */
set-fingers(1,Npred) /* procedure 6.4.1 */

if Npred 6= Nsucc and Npred is not emptythen
sendREGISTER Npred

To: Npred

Contact:Nid; predecessor=Npred

When the node joins the DHT, it also starts its stabilization algorithm. The stabilization

algorithm is periodically invoked by the node to refresh finger table entries, successor and prede-

cessor locations. The stabilization algorithm just initiates the SIP registration for the successor

and predecessor nodes with the local contact address in theContact header as shown below and

detailed in procedure 6.4.6). It avoids sending duplicate messages if the successor and predeces-

sor nodes are the same, which happens only when there is only one node in the ring.

REGISTER sip:10@128.59.15.55 SIP/2.0

To: <sip:10@128.59.15.55>

Contact: <sip:7@128.59.15.56> ;predecessor=sip:1@128.59.15.60

REGISTER sip:1@128.59.15.60 SIP/2.0



125

To: <sip:1@128.59.15.60>

Contact: <sip:7@128.59.15.56> ;predecessor=sip:1@128.59.15.60

If the node,N , discovers that the predecessor node is not empty or not same as this node,

and the successor is this node (i.e.,(Npred 6= φ|Npred 6= Nid)&Nsucc = Nid), then it concludes

that there is only one node in the DHT. In that case it sets the successor as the predecessor node

and adjusts the finger table accordingly:Npred := Nid.

When the successor or predecessor of this node receives this SIPREGISTER message

with theContact header, it updates its state (procedure 6.4.7). In particular, if the sending node

identifier is closer to the receiving node than the existing predecessor in the Chord ring, then

predecessor is set as the sending node identifier. The200 response contains thesuccessor-list

so that the original stabilizing node can update its state with the successor’s successor list. The

successor-list is sent using theContact headers with different preference values,q : 0 ≤ q ≤ 1.

The preference value indicates how close the successor is to the key, and hence how likely it

is to store the data for this key. Higher value indicates higher preference. Suppose there arek

successors, thenith successor hasq := 1− i
k for i = 0, 1, .., k−1. Chord specifies thesuccessor-

list to be of sizeO(log(N)). Node10 sends the following response to node7, indicating node

7’s successor list:{10, 15, 22, 1}.

SIP/2.0 200 OK

To: <sip:10@128.59.15.55>

From: <sip:7@128.59.15.56>

Contact: <sip:10@128.59.15.55> ;q=1 ;predecessor=sip:7@128.59.15.56

Contact: <sip:15@128.59.15.48> ;q=.8

Contact: <sip:22@128.59.15.31> ;q=.6

Contact: <sip:1@128.59.15.60> ;q=.4

When the stabilizing node,7, receives the SIP200 success response from its successor,

10, it updates its successor list using theContact headers in the response (procedure 6.4.8). If

node7 discovers that successor node10’s predecessor lies between this node and the successor,

(7, 10), then node7 sets its successor pointer to10’s predecessor.



126

Procedure6.4.7:N .OnRegister (R:registration object,M :request message)

/* This is appended to procedure 6.4.4 */
if M .Contact is presentthen

if M is not unregister, i.e., expires6= 0 then
if Npred is emptyor M .From∈ (Npred, Nid) then

Npred ⇐M .From
if M .To =Nid then

send response200 OK
Contact:Nid; predecessor=Npred; q=1.0
Contact: successor-list[0]; q=.8
Contact: successor-list[1]; q=.6
. . .

else
send response200 OK

Contact:Nsucc; predecessor=Nid; q=1.0
Contact: successor-list[1]; q=.8
. . .

Procedure6.4.8:N .OnRegisterSuccess (R:registration object,M :response message)

/* This is appended to procedure 6.4.5 */
if R was not a querythen

if Nsucc = M .To then
pred⇐M .Contact.predecessor
if pred 6= Nid and pred ∈ (Nid, Nsucc) then

set-fingers(1,pred) /* procedure 6.4.1 */
if pred = Nid then

N list
succ ⇐M .Contacts in decreasing q

if join is completedthen
/* stabilize the next finger entry. */
i⇐ dlog Nsucce
if i < m then

id⇐ F i+1
start

if id ∈ (Nid, Nsucc] then
node⇐ Nid

else
node⇐ closest-preceding-finger(id) /* procedure 6.4.2 */

if node = Nid then
node⇐ Nsucc

sendREGISTER node
To: sip:id@sippeer.net



127

At this point, node7 refreshes the remaining finger table entries beyond10. For example,

it locates the next hop for the next finger table entryF 3
start = 11 > 10, and sends a SIPREGIS-

TER query forsip:11@sippeer.net to sip:10@128.59.15.55 as shown below. If the next hop

node for this key belongs to node7 itself, then the request is sent to the successor,Nsucc.

REGISTER sip:128.59.15.55 SIP/2.0

To: <sip:11@sippeer.net>

From: <sip:7@128.59.15.56>

When node7 receives a response for this query for key11, it continues to refresh remain-

ing finger table entries (procedure 6.4.5) by sending moreREGISTER requests. Fig. 6.10 shows

the stable Chord network after node7 has joined.

6.4.5 Node Shutdown (Graceful Termination)

Suppose node7 wants to gracefully leave the network. It unregisters with its successor10 and

predecessor1 (procedure 6.4.9). Once the node10 and1 know that node7 has left, other nodes

will eventually know using the stabilization algorithm.

Procedure6.4.9:N .Leave

if Npred is validand Npred 6= Nid then
sendREGISTER Npred

To: Nid

Contact:Nid ∪N list
succ

Expires: 0
if Nsucc is validand Nsucc 6= Nid then

sendREGISTER Nsucc

To: Nid

Contact:Nid ∪N list
succ

Expires: 0

To unregister, node7 sends a SIPREGISTER request withExpires header with value 0

as follows. TheContact headers are also present in the request indicating the successor list.

REGISTER sip:1@128.59.15.60 SIP/2.0



128

To: <sip:7@128.59.15.56>

From: <sip:7@128.59.15.56>

Expires: 0

Contact: <sip:7@128.59.15.56> ;q=1.0 ;predecessor=sip:1@128.59.15.60

Contact: <sip:10@128.59.15.55> ;q=.8

...

REGISTER sip:10@128.59.15.55 SIP/2.0

To: <sip:7@128.59.15.56>

From: <sip:7@128.59.15.56>

Expires: 0

Contact: <sip:7@128.59.15.56> ;q=1.0 ;predecessor=sip:1@128.59.15.60

Procedure6.4.10:N .OnRegister (R:registration object,M :request message)

/* This is appended to procedure 6.4.7 */
if M .Contact is presentthen

to⇐M .To
if M is unregister, i.e., expires = 0then

if to = Npred then
Npred ⇐M .Contact.predecessor

if to = Nsucc then
N list

succ ⇐M .Contacts in decreasing q
set-node-as-inactive(to) /* procedure 6.4.11 */

else
/* See procedure 6.4.7 */

When node10 receives the unregistration from node7, it realizes that its predecessor is

leaving, so it updates its predecessor location using thepredecessor value,1, in theContact

header:10pred := 1 (procedure 6.4.10). Similarly, when node1 receives the unregistration

from node7, it realizes that its successor is leaving, so it updates its successor to be the next

active successor in1list
succ. When a node location is made invalid, it is removed from1list

succ and

1 :: F . Any inactive finger table node location is changed to the next alive entry in the finger

table (procedure 6.4.11).



129

Procedure6.4.11:N .set-node-as-inactive (node)

/* Set the node as inactive inF andN list
succ */

for all n in F andN list
succ do

if node = n then
n.alive⇐ false

/* UpdateN list
succ to replace dead nodes */

previous⇐ Nid

for k ← m down to1 do
if F k

node is not alive then
F k

node ⇐ previous
else

previous⇐ F k
node

Node7 should wait for confirmation responses (until a reasonable timeout) from10 and

1 before shutting down.

6.4.6 Node Failure and Failover

Node failure, unlike graceful shutdown, needs to be detected automatically by other nodes when

the SIPREGISTER message fails. If node7 fails due to some reason, the neighbors10 and1

detect the failure and update their states to reflect it. Our SIP library,libsip++, generatesOn-

RegisterFailed event when the outgoingREGISTER message gets a failure SIP response or

times out. Registration failures can happen due to many reasons and at different stages (proce-

dure 6.4.12):

Global failure or SIP 600 response may be received if a duplicate node identifier is detected.

For example, this occurs if the hash function generates the same node identifier value for

two nodes,H(A) = H(B), butA andB have different transport addresses. IfA is already

in the network, thenREGISTER from B will be rejected with a SIP600 global failure

response. The response containsNA, so nodeB can use this address,NA, as the outbound

proxy instead of joining the Chord network directly. This is highly unlikely if a large hash

space such as 160 bits of SHA-1 is used.

Discovery failure may happen if there is no other P2P-SIP node in the multicast domain. In this

case, other means of discovery should be used, e.g., service location for P2P-SIP server



130

using SLP, or using the bootstrap nodes to join the network. Alternatively, the node can

assume singleton node in the Chord network, and adjust its states accordingly. This is

useful within a single LAN environment such as P2P VoIP within an organization.

Besides duplicate node detection and discovery failure, we want to address the case of

node failures so that the network can failover automatically. When a node detects that another

node has failed, the first node deactivates the failed node’s location from its finger table and

successor list. There are following cases: (1) if the destinationkey (To header) and the next hop

node (request-URI) were same, that node location is deactivated, (2) if the request was not sent

to the successor (uri 6= Nsucc), the next hop node location is deactivated, but not the destination

key, (3) if the request was a query (noContact header), the next hop node location is deactivated,

but not the destinationkey, otherwise (4) the node represented by the destinationkey (To header)

is deactivated. If the next hop node is the predecessor, then the predecessor variable is reset

(Npred := φ).

The next step is to re-send the original query request to the new failover hop. If the

successor node failed, then the next successor is chosen and the request is sent again to the new

successor, if one is found. Otherwise, the query is sent to the next closest preceding finger to the

destinationkey. Only theREGISTER query and not updates, are re-sent, because updates are

refreshed anyway in the next stabilization interval. If the new next hop is after the destination key

in the Chord ring, then the query is not re-sent, and is considered a failed query.

The node checks for duplicate identifiers when the initial discovery returns a a dupli-

cate successor node identifier (procedure 6.4.13). For example, if nodesip:7@128.59.15.56

discovers the successor assip:7@128.59.15.45, it uses128.59.15.45 as the IP address of its

outbound proxy and does not join the Chord network directly.

6.5 User Registration

The DHT module maintains the underlying P2P overlay network, whereas the user location mod-

ule takes care of user profile and registrations. Both the modules use the SIPREGISTER mes-

sages. We describe the user account maintenance in this section.



131

Procedure6.4.12:N .OnRegisterFailed (R:registration object,M :response message)

to⇐M .To
uri⇐M .uri
if to = Nid and R is a 600-class global failurethen

/* Discovery failed. Probably duplicate node identifier. */
if M .Contact is presentthen

set-fingers(1,M .Contact)/* procedure 6.4.1 */
trigger join failed event

else ifuri is multicast discovery address, 224.0.1.75then
/* Discovery failed. Assuming singleton node in Chord. */
for i← 1tom do

F i
node ⇐ Nid

Npred ⇐ Nid

trigger join complete event
else

succ⇐ Nsucc

if to = uri or uri 6= Nsucc or R.Contact is emptythen
set-node-as-inactive(uri) /* procedure 6.4.11 */
if uri = succ then

successor failed⇐ true
else

set-node-as-inactive(to) /* procedure 6.4.11 */
if uri = Npred then

Npred ⇐ empty
node⇐ Nid

if successor failed is true then
/* select the next successor. */
if Nsucc is emptyor Nsucc = Nid then

/* Successor not found. Ignore. */
else ifNsucc ∈ (Nid, to] then

node⇐ Nsucc

else
/* Do not know where to send. */

else
node⇐ closest-preceding-finger(uri) /* procedure 6.4.2 */
if node = Nid then

/* No more addresses left for successor. */
/* Now resend only query messages if possible. */
if R.Contact is absentand node 6= Nid and node ∈ (Nid, to] then

R.uri⇐ node
re-register usingR



132

Procedure6.4.13:N .OnRegisterSuccess (R:registration object,M :response message)

/* This is appended to procedure 6.4.5 and 6.4.8 */
if R was a query, i.e.,R.Contact is absentthen

to⇐M .To.user
succ⇐M .Contact
pred⇐M .Contact.predecessor
if to = N and succ equalsNid but has different addressthen

/* duplicate node identifier found */
set-fingers(1,succ) /* procedure 6.4.1 */
trigger join failed event

else ifM .To =Nid and Nsucc is emptythen
/* See procedure 6.4.5 */

else
/* See procedure 6.4.5 */

Suppose the table of user registrations in the node is represented asA such thatA[k] is

the user registration for user identifierk. Suppose the list of local user registrations is represented

asL such thatLi is theith local user registration.

Procedure6.5.1: RegisterUser (k:user account or identifier)

L.append(k)
node⇐ N.Find(kid) /* procedure 6.5.2 */
if node = Nid then

A[kid]⇐ k
else

sendREGISTER node
To: kid, From:kid, Contact:kcontact

Procedure6.5.2:N .Find (key:identifier to find)

/* Find the next hop node forkey */
if key ∈ (Nid, Nsucc] then

node⇐ Nid

else
node⇐ closest-preceding-finger(key) /* procedure 6.4.2 */

if node = Nid then
node⇐ Nsucc

return node



133

6.5.1 Registration Handling

When a user registers her identifier, sayk=alice@example.com, a new local user registration

object is created to represent this user. The next step is to transfer this registration on to the

P2P network to the responsible Chord node (procedure 6.5.1). Suppose the user identifier key is

H(k)=1, then this user registration will be stored in the DHT on the node which is responsible for

this key,1. The DHT’sFind method is invoked to get the next hop location and the request is

forwarded (see procedure 6.5.2). If the local node is responsible for this key, then the registration

is stored locally. For example, when user Alice registers from node7 (Fig. 6.10), the next hop is

1id so the followingREGISTER request is sent:

REGISTER sip:128.59.15.60 SIP/2.0

To: <sip:alice@example.com>

From: <sip:alice@example.com>

Contact: <sip:alice@128.59.15.56>

TheRequest-URI may contain the domain part of the user identifier instead of the IP address.

The receiving node should authenticate any registrations (Section 6.9). The registration is repli-

cated at all the nodes in the successor-list of the responsible node,1list
succ, by sending newREG-

ISTER requests to the nodes in the successor list. The replication can be done either by the

responsible node or the registering user.

When node1 receives the message, it recognizes that the destinationkey in To header

belongs to a user rather than a node. As shown in procedure 6.5.3, there are following cases:

(1) if key ∈ (Npred, Nid], then this node is the responsible node, (2) ifNsucc = Nid, then there

is only this node in the Chord ring, so obviously this node is the responsible node, otherwise

(3) find the closest preceding finger for this key and proxy the SIP request to that node loca-

tion. In this example, node1 uses itself as the responsible node and stores the registration for

alice@example.com.

Now, node1 replicates the registration to other nodes in1list
succ (procedure 6.5.4). For

example, it sends the followingREGISTER message to node10addr, with To header contain-

ing the destinationkey alice@example.com, From header containing1id andContact header



134

Procedure6.5.3:N .OnRegister (R:registration object,M :request message)

to⇐M .To
if to is not a node identifierthen

if to ∈ (Npred, Nid] or Nsucc = Nid then
/* Register the user locally. */
A(to)⇐M

else
if to /∈ (Nid, Nsucc] then

node⇐ closest-preceding-finger(to) /* procedure 6.4.2 */
else

node⇐ Nid

if node = Nid then
proxy M to Nsucc

else
proxy M to node

else
/* to is a node identifier. see procedure 6.4.10 */

containing original contact location of Alice.

REGISTER sip:128.59.15.55 SIP/2.0

To: <sip:alice@example.com>

From: <sip:1@128.59.15.60>

Contact: <sip:alice@128.59.15.56>

Procedure6.5.4:A[k]⇐M

A[k] := M
if M.To = M.From or M.Reason = “leaving′′ then

/* This node is responsible fork */
for all S in N list

succ do
sendREGISTER Saddr

To: kid, From:Nid, Contact:A[k]contact

The receiving node10 recognizes this to be a registration transfer from one node to an-

other, since theTo header andFrom header are different. It stores the registration without routing

it further. It should authenticate the sending node1 before storing the registration. If theFrom

header is also a user identifier, then theREGISTER request is a third-party registration (e.g.,



135

secretary registering on behalf of her boss), and should be routed using the P2P-SIP routing algo-

rithm based on theTo header. Third-party and transferred registrations should be authenticated at

each proxy.

6.5.2 Node Shutdown (Graceful Termination)

When a node gracefully leaves the network, it should transfer all stored registrations to the new

responsible node, which is its immediate successor (procedure 6.5.5). For example, when node1

leaves, it sends the followingREGISTER request to1succ = 7addr.

REGISTER sip:128.59.15.56 SIP/2.0

To: <sip:alice@example.com>

From: <sip:1@128.59.15.60>

Reason: SIP ;cause=480; text="leaving"

Contact: <sip:alice@128.59.15.56>

Procedure6.5.5:N .Leave

/* unregister this node using procedure 6.4.9 */
/* unregister local accounts inL */
for all u in L do

R⇐ N.Find(uid)
if R 6= Nid then

sendREGISTER Raddr

To: uid, From:uid, Expires: 0
/* transfer local registrations */
for all k in keys(A) do

sendREGISTER Nsucc

To: kid, From:Nid, Expires: 0, Reason: leaving

When node7 receives the registration transfer with theReason field indicatingleaving,

it can decide to assume the responsibility for this registration. Node7 can also conclude that

node1 is leaving based on the node unregistration message, and assume responsibility for all the

keys that were transfered from node1 before. The decision is local to node7 since assuming

responsibility for registration is an extra load. Even if node7 does not take the responsibility



136

for the transferred registration, when Alice’s user agent refreshes the registration, the appropriate

responsible node (which may be7) will get the new registration. Suppose node7 decides to

accept the responsibility for this destinationkey, it replicates the registration to all the nodes in

7list
succ. That means it sends a SIPREGISTER to its successor10addr as follows:

REGISTER sip:128.59.15.56 SIP/2.0

To: <sip:alice@example.com>

From: <sip:7@128.59.15.56>

Contact: <sip:alice@128.59.15.56>

Node10 had earlier received the replicated registration foralice@example.com from node1.

When node10 receives the newREGISTER from node7, it concludes that the responsibility for

keyalice@example.com has been transferred from node1 to node7.

6.5.3 Node Failure and Failover

Node failure is similar to node shutdown, except that the failed node does not transfer registra-

tions. The immediate successor detects that its predecessor has failed and owns the responsibility

for the keys from its immediate predecessor. For example, if node7 fails, node10 detects the

failure, and can decide to assume responsibility for the destinations keys sent by node7. If node

10 decides to not assume the responsibility, it will get the next registration refresh from Alice’s

user agent, at that time it can authenticate Alice and assume responsibility.

6.6 Call Setup and Message Proxy

So far we have described only the registration request routing. A SIP request such asREG-

ISTER or INVITE belongs to either an user or a node, based on the destination being the user

identifier or the node identifier, respectively. ForREGISTER request, the SIPTo header is used

for computing the key for routing decision. For all other requests (e.g.,INVITE, MESSAGE),

the request-URI is used to make the routing decision. However, this means that SIPPEERmust

not modify therequest-URI on proxy for non-REGISTER requests.



137

Message Proxy

When an incoming non-REGISTER request is received, and therequest-URI is a user identifier

(i.e., not a node identifier), and the request does not belong to an existing dialog or local user

on this node, then SIPPEERlooks up for the user key in its registered user map,A, as shown in

procedure 6.6.1. If no registration is found, then a404 response is returned if the key belongs to

this node, otherwise the request is proxied to the next hop node. If valid registrations are found,

the request is proxied to those registered contact locations. Alternatively, a 302 redirect response

can be used.

Procedure6.6.1:N .OnReceiveRequest(T :transaction,M :message)

if M .method == REGISTERthen
/* user or node registration: procedure 6.5.3 */

else ifM .uri is some node identifierthen
/* this is for the DHT module */

else ifM belongs to existing dialogthen
/* let the dialog state-machine handle it */

else ifM .uri is in Li then
/* M is for local user on this node */

else ifM .uri is not in A[k] then
/* no registration found */
if M .uri ∈ (N.prev, N ] or N .Find(M .uri) failed then

send response404 User not found on P2P/SIP
else

next := N .Find(M .uri)
proxy M to next without modifying uri

else
/* registration found */
contacts := A[M.uri].contacts
proxy M to contacts using parallel forking without modifying uri

6.6.1 Multimedia Call Setup and Instant Messages

SIPPEER allows initiating or terminating a SIP call using the command line interface. When

the node initiates a request, or acts as an outbound proxy for an existing SIP client, it tries both

traditional DNS lookup for the user domain and P2P lookup for next hop in Chord for the user

identifier. When one branch gets a final response, the other branch is cancelled. Alternatively,



138

some P2P-SIP node can try DNS first and fallback to P2P lookup when it fails to get DNS NAPTR

or SRV records.

If the node initiates a call or acts as an outbound proxy, it does both DNS and P2P lookup,

otherwise it does only P2P lookup. To detect that this node is acting as an outbound proxy

for a third party SIP client, SIPPEER uses theReason header field. All requests initiated or

proxied by SIPPEER has aReason header field indicating that the DNS lookup was already

done. When a SIPPEERnode receives a message with thisReason it does not invoke another

DNS lookup, but uses only P2P lookup. This is not a standard SIP behavior, though it works for

our initial prototype. Eventually, a new SIP header or parameter needs to be defined to convey

this information.

Usually, theBYE message is sent directly between the two endpoints to terminate the

call, without involving P2P lookup. Other messages such asMESSAGE for instant messaging

follow similar lookup mechanism asINVITE. TheSUBSCRIBE message handling for locating

users in the friends list on startup is described in Section 5.8.

6.7 Advanced Services

Basic call setup is not enough to be competitive in Internet telephony. This section describes

some of the advanced services such as NAT and firewall traversal, presence, offline message

storage and multi-party conferencing.

Many advanced services can be specified using SIP URIs. For example,sip:staff-

meet@conferencing.net can indicate the pre-scheduled conferencing service byconferenc-

ing.net domain, orsip:dialog.voicexml@ivr.net can reach the generic interactive voice response

service. Such services can be built transparently in the basic implementation. For example, a SIP

conference server can register all the pre-scheduled conferences in the P2P network, an answer-

ing machine module can register to receive incoming calls on behalf of all the registered users,

and a VoiceXML browser can register the specific voice dialog service such as voice mail access.



139

6.7.1 Offline Messages

This section describes problems with offline messaging. When Alice calls Bob or leaves an

instant message for Bob, and Bob is not online, the message should be stored reliably by the

system and delivered to Bob when he comes online.

There are three places where we can store the offline messages: the source, the destination

or some intermediate node in the P2P overlay. The classical PSTN voice mails are stored in the

destination answering machine attached to the callee’s phone, or in some cases in centralized

voice mail server attached to the destination PBX. Similarly, the P2P-SIP client running on the

destination user’s machine can store the message if the destination user did not pick up the phone.

The problem comes when the destination phone itself is not active or the user has not started her

client.

Sam’s message stored
at node 32

   sam=

20

32

58
10

39 24

16

Bob=45’s message

42
51

stored at node 58

sender 20 also stores
the message

Node 58 stores all messages with next
r nodes (r=1 here)

Sender 16 need not store the
message since it got delivered to destination

Figure 6.11: Offline message storage

One way to achieve this is by having the DHT peer that is responsible for storing location

of Bob, also store the offline multimedia messages for Bob as shown in Fig. 6.11. In the case

of super-node failure, the offline messages become unavailable until the storage node becomes

online again. To solve this, the node can store the message in multiple places and keep them

consistent similar to the Oceanstore architecture [133]. A P2P file storage system with mes-

sage waiting indication is sufficient to implement offline message storage. POST [134] is a P2P



140

messaging system that can also be used for offline messages.

Another option is for the caller node to cache the message locally and deliver it to the

destination node when the destination becomes available.

The message delivery notification is reliably sent back to the caller. If the message is not

delivered or the storage node fails, then the caller node finds the new storage node and records the

message again without any user intervention. When a node starts up, it checks for any undelivered

message from past boot cycle, and tries to re-send them upon bandwidth and CPU availability.

This has certain security issues if the same machine is used by many users as in an Internet kiosk.

Unlike email system, where the intermediate Mail Transfer Agents (MTAs) are reliable

and delivery confirmation from an MTA is sufficient, in P2P-SIP an end-to-end confirmation is

desirable. Alternatively a third party storage server can take the ownership of the message for the

subscribed user, relieving the sender from keeping a copy.

Some nodes may just cache a summary of undelivered messages (such as subject, date,

headers) instead of the complete multimedia content to save on bandwidth and disk space. Some

nodes may attempt to send the message by alternative means such as email if the email identity

can be cryptographically verified to belong to the destination user.

To receive the offline message, the destination node subscribes to the message waiting

indication (MWI) event with the P2P network and gets notified on startup when a new offline

message is available. The node can then fetch the message using file transfer or real-time multi-

media call to a special URI such assip:bob-vmail@server. Alternatively, the user can buy MWI

service from some centralized service provider that registers with the P2P-SIP network on behalf

of the user to receive her calls.

An alternative approach is to have the user buy the MWI service from some service

providers that register with the system with user identifierbob@yahoo.comfor example. When

the caller cannot reach Bob within some time, the server automatically picks up the calls and

stores the offline message. One problem with this approach is that it tends to become centralized.



141

6.7.2 Multi-party Conferencing

In classical telephony, multi-party conferencing is done via pre-arranged dial-in conference bridges

(or conference servers). These conference servers can register the intended conference addresses

such as “staff-meet@columbia.edu” with the P2P overlay. However, the mixing is done by a

centralized server which can become the potential bottleneck for large conferences.

For small scale ad hoc conferencing among the participants, one of the participant who

has good capacity (CPU, memory, bandwidth) can become the mixer and mix audio from other

participants. Since audio mixing requires access to the un-encrypted audio samples from all the

speakers, one cannot pick an untrusted peer as the mixer. One viable alternative is to pick an

existing conference participant as the mixer.

Completely decentralized conferencing [135] can be used to establish a full-mesh signal-

ing and media relationship among the participating members. The protocol works for concurrent

join and leave of members in the conference. This prevents dependency on a single peer node

that does mixing.

Instead of a full-mesh media, a multicast media distribution tree can be used. It assumes

that a small number of members (say one or two) will be speaking at any instant, and the receiv-

ing node can select or mix the audio samples from multiple streams in the session. Several P2P

application layer multicast schemes have been proposed [136, 137], some of which can use the

proximity information available in the underlying DHT [102, 138]. The application level multi-

cast seems to be the best option for large scale conferencing in P2P-SIP because of the scalability.

6.7.3 Device Independence

So far we assumed that a user logs in from a particular node and all the user profile information

such as friends list or privacy policy are stored in the local node. However, similar to file storage

systems or storing offline messages in P2P-SIP, the node can store the encrypted user profile in-

formation also in the P2P overlay network [133]. On startup when the user signs in her identifier,

the node fetches the profile information reliably and uses that.



142

6.7.4 Presence and Event Notification

Presence is an important service in Internet telephony. SIP has methods such asSUBSCRIBE

andNOTIFY to watch the presence status of a user and to notify the watchers when the presence

status changes, respectively.

The basic idea is not different from the call setup and registration, where the responsible

node becomes the server for the user identifier. When a watcher subscribes to a user identifier,

the responsible node maintains this subscription state. The responsible node detects any change

in the user’s presence status, either on receipt of incoming registration or explicit publication of

presence information by the user using the SIPPUBLISH message. When the presence status of

this user changes, the responsible node sends the notification to all the watchers. The responsible

node can also perform presence composition in this service model.

Alternatively, to simplify the implementation, the responsible node can use event sub-

scription migration without actually implementing presence. The responsible node receives the

subscription request from the watcher, but terminates the subscription when it detects a change

in status of the user on incoming registration. Thus, the watcher sends anotherSUBSCRIBE

message, which gets proxied to the current location of the user if the user is available. Thus, this

facilitates end-to-end event notification, without having to implement individual events such as

presence in P2P-SIP.

Our SIPPEERhas only a rudimentary support for event subscription and notification [139,

140] such that the node can store and transfer generic event subscriptions without processing any

event package, e.g., presence. Other SIP users agents that support presence or other events can

work in conjunction with SIPPEER. In particular, SIPPEER facilitates subscription migration

from a P2P-SIP node to subscribee’s endpoint and vice versa.

Suppose a subscriber, Alice (alice@example.com), subscribes to the presence status of

Bob by sending a SIPSUBSCRIBE message tobob@yahoo.com. Note that the P2P-SIP node

may not be able to authenticate the subscription since the subscriber Alice may not be registered

with the P2P-SIP network at all. In this case Alice may provide more information about her

certificate or public key which Bob can be used to verify the identity.

SUBSCRIBE sip:bob@yahoo.com SIP/2.0



143

To: <sip:bob@yahoo.com>

From: <sip:alice@example.com>

If Bob does not have a valid registration in the P2P-SIP network, the responsible node

for Bob’s user identifier keeps the subscription information. It responds with a SIP202 pending

response, and a SIPNOTIFY message withSubscription-State of pending (procedure 6.7.1).

If SIPPEERunderstands the event-package (e.g., presence package may be implemented in some

P2P-SIP nodes), then it can put appropriate message body inNOTIFY to indicate offline status.

SIP/2.0 200 Pending

NOTIFY <sip:alice@example.com> SIP/2.0

Subscription-State: pending

Procedure6.7.1:N .OnSubscribe (S:subscription object,M :request message)

if noA such thatA.to = S.to then
/* No valid registrations found */
send response202 Pending
sendNOTIFY S.from

Subscription-State: pending
else ifS was activethen

/* Terminate existing subscription first */
sendNOTIFY S.from

Subscription-State: terminated; reason=deactivated
deleteS

else
for all C in A.contacts do

proxy M to C
if a valid 2xx, 401, or 407 response is receivedthen

deleteS
/* proxy the response upstream */

else
/* do not migrate. respond locally. */
send response202 Pending
sendNOTIFY S.from

Subscription-State: pending

When Bob registers, the subscription is terminated with reason as “deactivated” so that



144

Alice can subscribe again (procedure 6.7.2).

NOTIFY <sip:alice@example.com> SIP/2.0

Subscription-State: terminated ;reason=deactivated

Procedure6.7.2:N .OnRegister (R:registration object,M :request message)

/* This is appended to procedure 6.5.3 */
for all S such thatS.to = R.to do

if S.event isnot reg then
sendNOTIFY S.from

Subscription-State: terminated; reason=deactivated
deleteS

If Bob has a valid registered contact, then SIPPEERproxies theSUBSCRIBE message

to the contact. If there are multiple registered locations, then the request is forked to all the

locations. Once the request is proxied, the SIPPEERnode steps out of the subscription path.

When Bob unregisters with P2P-SIP, he sends aNOTIFY message to Alice terminating

the subscription with reason “deactivated”. Alice subscribes again, and the subscription gets

migrated to the responsible P2P-SIP node.

When the responsible P2P-SIP node gracefully leaves the system, it also sendsNOTIFY

to terminate all the subscriptions for keys stored on that node. Alternatively, the node can send

theSUBSCRIBE message to the new responsible node. However, this approach requires addi-

tional logic for the node authenticating on behalf of the subscriber to the subscribee, hence not

recommended.

Each user identifier,A, is associated with zero or more contact locations,Ci, and zero of

more subscriptions,Sj . The algorithm for handing incomingSUBSCRIBE by the responsible

node is shown in procedure 6.7.1, and incomingREGISTER for subscription migration is shown

in procedure 6.7.2.

One potential problem could be as follows. Suppose Bob registers with his user agent

which does not support events. So theSUBSCRIBE request will be rejected, e.g., by “501 not

implemented” error code. This terminates the subscription attempt by Alice, who may not retry

subscribing. To work around this problem, SIPPEERmay use theOPTIONS message to Bob to



145

find out if Bob’s user agent supportsSUBSCRIBE or not. It also intercepts theSUBSCRIBE

response from Bob. If Bob’s user agent fails without notifying Alice, there may be delay before

Alice detects and retries.

The P2P-SIP node should implement the registration event package [140] since it acts as

registrar for some users. The subscription for eventreg [140] is handled locally by the node that

is responsible for storing user registrations. This subscription does not get migrated when the

user registers or unregisters. When the node storing the subscription is leaving the network, it

terminates the subscription so that the subscriber re-subscribes to the new responsible node for

the user key.

6.7.5 Adaptor for Existing SIP Phones

A SIP user agent can use the P2P-SIP node as an outbound proxy and take part in the P2P-SIP

network. We have tested our P2P-SIP adaptor, SIPPEER, with various SIP user agents such as

the Columbia University’ssipc, the Cisco IP phone 7960, the Pingtel IP phone, Xten Networks’

X-Lite client v2.0 and Microsoft Windows Messenger.

Some phones do not implement outbound proxy as per the SIP specification [3], which

says that the outbound proxy should be treated as a pre-loaded route set. In particular, if the out-

bound proxy doesnot record route the initialINVITE request, then the subsequent request in the

dialog such asBYE should not be sent to the proxy. Suppose thesipc user,alice@example.com,

INVITEs the Cisco phone user,bob@example.com, using P2P-SIP. After the call, Bob hangs

up. The Cisco phone sends theBYE request to the outbound proxy (P2P-SIP node) but the

request-URI containsalice@pc2.example.com:5060. The P2P-SIP node may not be able to

proxy the request because this URI may not be registered in the P2P-SIP network causing the

DHT lookup to fail. We work around this problem in SIPPEERby proxying the request to the

request-URI instead of doing a DHT lookup in this case.

6.7.6 NAT and Firewall Traversal

In an ideal world, ISPs and corporate system administrators should enable their NAT and firewall

devices with SIP proxies or application level gateways (ALG). However, in practice, this is rarely



146

done. This forces the application developers to write customized kludges to work around NAT

and firewall [141, 142].

There are two aspects to NAT and firewall traversal: automatic detection of the type of

NAT and firewall and tunneling though the NAT and firewall devices for inbound or outbound

messages. The detection is done at the application startup when the node connects to a super-

node. The node implements the Interactive Connectivity Establishment (ICE) algorithm [141]

for NAT traversal. UDP is preferred mode of communication. However, if UDP messages cannot

be received (e.g., the firewall blocks UDP), then a persistent TCP tunnel presumably to port 80,

initiated from the internal node to the external super-node can be used for both inbound and

outbound messages.

We refer to firewall or NAT as amiddlebox, and the internal network behind the middle-

box as aprivatenetwork. If a P2P-SIP node in a private network, it does not join the global DHT,

but instead uses an existing global DHT node as an outbound proxy. When an existing client (C)

uses a P2P-SIP node (P) as an adaptor (outbound proxy), there are three cases: (1) if both P and

C are in public network, it does not involve any middlebox, (2) if P is public and C is private, then

C needs to implement various middlebox traversal mechanisms, and (3) if both P and C are in

private network, then P does not join the global DHT, but uses an existing DHT node as outbound

proxy.

Both signaling and media traffic needs to be traversed through the middlebox. SIP signal-

ing traversal through middlebox is handled using symmetric response routing [125] and connec-

tion reuse [124]. Interactive connectivity establishment (ICE [107]) is used in conjunction with

STUN [105] and TURN [106] to enable media traversal.

We explain how to interwork between P2P-SIP of a private network with the global P2P-

SIP next.

6.8 Inter-domain Operation: Multiple DHTs

In real deployments, it is useful to allow multiple P2P-SIP networks (DHTs) to be interconnected.

For example, individual large organizations can have an internal P2P-SIP network which is con-

nected to the global P2P-SIP network.



147

In this section, we propose a two level network: the global (public) DHT represented by

sippeer.net and a local DHT, which may be behind a firewall or NAT. Note that the inter-domain

operation proposed here is preliminary and needs more experiments as the P2P-SIP work gets

matured in the IETF.

Overview

Our hybrid architecture allows both the P2P-SIP network clouds and server-based SIP infrastruc-

ture to coexist. There are two approaches: cross register all the users of one network with all

the other networks, or locate the user in the other network during call setup. The former method

works for small number of known P2P-SIP networks. The latter approach can be implemented

using a global naming service such as DNS, or an hierarchy of P2P-SIP networks. In the first case,

every P2P-SIP network is represented by a domain name. This is no different from a server-based

SIP network where the domain name resolves to one or more bootstrap nodes in that network [28].

In the second case, P2P-SIP is used instead of DNS to resolve the domain name. For example,

an individual large organization can have local P2P-SIP network which is connected to the global

(public) P2P-SIP network as shown in Fig. 6.12. The local domain-specific DHT has representa-

tive server nodes that are also reachable in the global DHT. For example, keyprivate.com maps

to nodes A and C in the global DHT. Any node in the domain-specific DHT can reach the global

DHT, and any node in the global DHT can reach the domain-specific DHT via the representative

server nodes in the domain. The global DHT computes the index based on user identifier of the

form user@domain, and if not found then justdomain. The local one computes the index based

onuser for intra-domain calls.

The hybrid architecture allows the user to register with her provider’s SIP server, if avail-

able, as well as the P2P-SIP network. Call setup is sent to the SIP destination, if resolved via

DNS, as well as to the P2P-SIP network.

Registration

Consider the architecture shown in Fig. 6.12 with one global DHT (nodes P, Q, R, S) and two

domain specific DHTs. Domainprivate.com’s DHT has nodes A, B, C, D andexample.com



148

has nodes X, Y, Z, where nodes C, D and X are representative server nodes.

global
(sippeer.net) example.com

P

NAT

Alice

Bob

example.com => X
private.com    => C,D

domain=private.com
next−level=sippeer.net

domain=example.com
next−level=sippeer.net

domain={}
next−level={}

DHT:

config:

Paul

Ron

paul@columbia.edu => P
ron@columbia.edu   => R

Zhou

bob@yahoo.com => B

zhou  => Z
bob      =>B

Alice

alice   =>A, Q

private.com

A

Y

Z

X

S R

Q

D

C

B

Figure 6.12: Inter-domain P2P-SIP

Every DHT has some bootstrap nodes identified in the DNS entry of the domain. For

example, the bootstrap nodes for global DHT are identified by DNS record ofsippeer.net, and

those for local DHTs ofprivate.com andexample.com by their respective DNS records. When

a node starts up, it uses its configured domain name and performs DNS NAPTR and SRV lookup

for this domain. If no domain name is configured, it assumes globalsippeer.net domain. If any

IP address matches any of the local interface, the node assumes it is one of the bootstrap nodes

for the domain. For example,private.com resolves to IP addresses of nodes C and D, where as

example.com to node X.

There are two configuration properties for each node:domain andnext-level. The for-

mer indicates the domain for the node, wheresippeer.net indicates the global DHT, whereas

the latter indicates the next level DHT’s domain. Bootstrap nodes in global DHT are configured

with domain andnext-level as empty. When the node starts up it does DNS query and detects

that it should be a bootstrap node for the global DHT. Representative server nodes, C and D in

theprivate.com domain are started withdomain asprivate.com andnext-level assippeer.net.

When node C starts up, it detects that it is a bootstrap node for its domain. Since C is a bootstrap

node and thenext-level is not empty, it registers its domainprivate.com in the next-level DHT



149

via the bootstrap nodes insippeer.net domain. The registration gets stored at appropriate global

P2P node based on the keyprivate.com. Similarly, nodes D and X register their domains in the

next-level global DHT.

REGISTER sip:sippeer.net SIP/2.0

To: <sip:private.com>

From: <sip:C@private.com>

Contact: <sip:C_ip_address>

The global DHT stores the mapping thatprivate.com is found at node C and D, whereasexam-

ple.com is at node X.

When a domain-specific node, A, starts up, it discovers node C, e.g., using multicast dis-

covery. Node A gets to know itsdomain andnext-level parameters in theREGISTER response

from node C in new SIP headers. It then joins the domain-specific DHT inprivate.com domain.

It also knows that it is not the bootstrap node, so it does not register its domain to the next level

DHT. Existing clients such as X-lite do not need to understanddomain andnext-level parame-

ters, because they will typically be connected to a P2P-SIP node (outbound proxy), and do not

take part in DHT directly. Internal DHT nodes maintain theirnext-level anddomain properties,

and send that information to other new joining nodes in that DHT.

The domain-specific bootstrap nodes use the P2P-SIP nodes of next-level DHT as out-

bound proxy. If a domain-specific bootstrap node is in public network, it can directly join the

global DHT, in addition to the domain-specific DHT.

Domain administrators may install multiple domain-specific bootstrap nodes to share

load. The next-level may be configured as empty so that the domain specific bootstrap nodes do

not connect to the global DHT. This allows restricting P2P-SIP calls to within a domain. Nodes

may still use DNS [28] to reach outside networks directly without going through the global DHT.

Alternatively, administrators may install only bootstrap nodes in the domain as a replacement for

SIP proxy and registrar of the domain. In this case, the internal SIP phones use server-based SIP

architecture but the domain is connected to global DHT via P2P-SIP.



150

Call Setup

When a useralice@private.com in a domain using node A, wants to call another user

bob@private.com, it discovers that the domain portion of the destination is same as thedo-

main property, so it callsFind(bob) in the domain-specific DHT. The domain-specific P2P-SIP

nodes identify the domain, and build the lookup key using only the user part.

Whenalice@private.com wants to callpaul@columbia.edu, the domains do not match,

so it proxies theINVITE request to the domain’s bootstrap node (C or D) resolved via DNS. Nodes

C and D act as proxy to the global DHT, and perform lookup on the global DHT.

When a userpaul@columbia.edu using node P in global DHT, wants to call

ron@columbia.edu, the domains do not match. This is because node P is configured with

domain as empty. In this case it looks up for both keysron@columbia.edu andcolumbia.edu.

Suppose,ron@columbia.edu is registered from node R in the global DHT, then the call is prox-

ied to node R.

Using similar procedure, supposepaul@columbia.edu wants to call al-

ice@private.com, then it first looks up for bothalice@private.com and private.com

keys in global DHT. The latter is found to be registered as nodes C and D, so the request gets

proxied to C or D or both, which further proxies the request to internal node A which registered

asalice@private.com. If such user identifier is not registered, the domain-specific DHT node

sends back appropriate failure response, 480 or 404, to the caller.

Supposealice@private.com on node A, wants to callzhou@example.com. The IN-

VITE request is proxied to C, which in turn proxies to X, which then proxies to internal node Z

which registered as this user.

Cross-Domain

The system allows a user inprivate.com domain to register with user identifier containing an-

other domain. For example, if user on node B registers asbob@yahoo.com, the registration

should be propagated to the global DHT. Similarly, a user visiting another network should be

allowed to register with her home domain’s DHT. We assume such cross registrations are limited

in volume and are supported with appropriate authentication.



151

When a user on node B in domainprivate.com registers as identifierbob@yahoo.com,

the node compares the domain part, similar to the call setup procedure. Since the domain does

not match, theREGISTER message is proxied to the domain-specific bootstrap nodes C or D,

which in turn proxies it to the global DHT.

When a user on node P in global DHT, registers as identifieralice@private.com, the

REGISTER message is first sent with key as the domainprivate.com. If this fails, then the user

key alice@private.com is used for routing. Alternatively, both can be tried in parallel, but will

result in duplicate registrations. Since only a few users are expected to cross register, this is not

bad.

TheOPTIONS request tosip:private.com can be used before sendingREGISTER for

alice@private.com to detect if the domain-specific servers exist forprivate.com or not.

When user on node Q callsalice@private.com, it needs to send twoINVITE re-

quests, one tosip:alice@private.com and other tosip:private.com. The latter URI is not

right since the nodes C or D cannot tell where to proxy the request. There are two alterna-

tives: use URI assip:user@private.com?p2p-key=private.com or useOPTIONS method to

sip:private.com to discover nodes C and D, and then sendINVITE to one of those nodes with

URI assip:alice@private.com. Usingp2p-key parameter reduces the call setup round-trips but

looks like a hack. The problem with Q sending INVITE directly to C or D is that C or D may be

behind NAT or firewall and reachable only via P or S, respectively.

6.9 Security

A distributed P2P architecture makes the system more prone tosecurityissues such as trust (pri-

vacy and confidentiality), malicious node behavior (e.g., call dropping) and DoS attacks [143].

Security is one of the most important problem to be solved for any structured P2P system because

of the potentially untrusted peers [144]. The problems include: (1) authentication (to prevent

unauthorized calls from spammers), (2) encryption (to prevent others not in the call setup path

knowing about the call information), (3) privacy and confidentiality (to prevent sending infor-

mation to untrusted entity and to prevent misuse of information) and (4) dealing with malicious

nodes (what if a peer node happily accepts the call requests but drops them without forwarding



152

to the appropriate node). The first two problems (authentication and encryption) can be solved

using mechanisms similar to those proposed for SIP telephony. For example, end-to-end digest

authentication, hop-by-hop transport layer security (TLS) or end-to-end S/MIME can be used.

We do not solve the security issues for P2P-over-SIP architecture, but highlight some of

the existing work and potential directions for future work. In particular, the P2P trust and mali-

cious node in a DHT such as Chord is not yet solved, but certain simplifications and assumptions

can be made to reduce the problem.

P2P-SIP applications expose existing security threats such as virus and worms to more

networked users, even to corporate networks behind firewalls if the firewall allows SIP traffic.

Unlike the traditional client-server model where the server is more prone to attacks and most

users run only clients, a P2P application acts as a server listening for incoming message on the

user machine. In the context of P2P-SIP, there are a number of different types of threats, some

of which exist in server-based SIP, whereas others in P2P. In this section we summarize various

threats.

Threats: untrusted peers

A number of “untrusted” peers may be involved in user location lookup for a call, unlike the

“trusted” servers in the classical SIP telephony. In the classical server based telephony, as long as

both caller and callee can trust the server for privacy and confidentiality of the call information,

there is no problem. Secondly, the peers may be acting correctly but secretly logging all the call

requests which may later be misused.

Freenet [12] solves this problem by hop-by-hop routing of request and responses where

each hop (peer) changes the source identifier. This prevents any peer in the request path to know

the original sender of the request. Similar techniques can be used in P2P-SIP architecture assum-

ing absence of collusion (i.e., multiple malicious peers collaborating to know the call informa-

tion), but are difficult if a DHT is used as the underlying P2P network.

Detection and control of misbehaving peers in Chord-based DHT is yet an unsolved prob-

lem. There are guidelines that can help reduce the risk. In particular, it is hard to detect a misbe-

having node that routes some calls correctly, but drops others. Secondly, the node may secretly



153

log the call information for later misuse.

The proprietary protocol of Skype makes it difficult for other people to build software

that communicates with the Skype clients. Hence, a Skype client can trust the validity of an-

other Skype client (this is not impossible, as Kazaa-Lite and more recently Skype security analy-

sis [145] shown). On the other hand, P2P-SIP based on open protocols cannot trust the validity of

another peer. Redundant lookup paths can be used to reduce the risk in structured P2P networks.

It will be interesting to answer questions like “how many independent lookups are needed for

99.99% success rate, if at most 5% of the randomly distributed peers are malicious?”

A number of reputation systems have been proposed for P2P [146, 147, 148, 149]. How-

ever, they focus on file sharing systems (not real-time), have centralized components, assume

co-operating peers or have problems of collusion and multiple identities. Further study is needed

to detect the peers who are known to drop calls or do other malicious behavior so that they are

not used in the call routing path and not allowed to become part of the underlying DHT.

Besides untrusted trust peers, some of the other security threats are summarized below.

Malicious program: A malicious P2P-SIP application can allow various forms of attacks, break-

in, or spread virus, spy-ware or worms. Software developed by trusted entities or open

source community can reduce this risk. Even software bugs such as buffer overflow can be

exploited by hackers. Running the application as a regular user instead of an administrator

(on Windows) or super-user (on Unix) can reduce the risk to some extent.

Copyright violation: P2P-SIP architecture can be easily extended to support file transfer. For

example, SIPINVITE can initiate aftp session using appropriate SDP message body. The

problem is similar to other P2P file sharing applications. P2P-SIP does not have an efficient

search method, i.e., search for files using regular expression pattern matching. This also

reduces the threat, since not many people will use this for sharing music files if the files

cannot be efficiently searched.

Stolen identity: The system should prevent a malicious user from stealing the identify of another

user. This threat is sometimes also known as authenticity: when you make a call to a user

identifier, are you sure that you are reaching the correct user? In P2P-SIP, we reduce the



154

risk by requiring that the user identify must be a valid email address. (In future this can

be extended to a valid telephone number.) The system generates a password for the user

identify and sends it to the email address. We describe this mechanism later in this section.

The system should be able to authenticate and securely determine whether the user is who

he claims to be.

Privacy: Certain user information needs to be conveyed to the other peers to allow call routing.

The system should ensure that no sensitive data is conveyed which can be misused later.

In particular all signaling and media communication should be encrypted. Privacy and

confidentiality in a pure P2P system is difficult. Some parts of the problem is addresses in

this section using public key mechanism.

Free riding: There is another kind of threat to P2P systems, called “free riding” [150]. Some

nodes may want to use the P2P services for making and receiving calls but refuse to serve

in the user location lookup process by becoming a super-node. The system should enforce

some policy to discourage such peers. For example, peers can earn some credit for doing

services which can later be used for using the services. Every peer can start with an initial

amount of credit. Peers behind a NAT and firewall may have to pay for the service if they

cannot serve by becoming a super-node. Nodes that run out of credits and refuse to pay are

declined the service. A BitTorrent-like approach is useful: if a peer can be a super-node,

then it can connect to other nodes only if it also routes calls.

If the user identity is easy to obtain (e.g.,yahoo.com email addresses), then people can

always acquire new identities to make outbound calls. However, they won’t be able to

advertise their identity for incoming calls for long period, if they do not serve in the P2P

overlay or pay credits to other serving peers. Moreover, making outbound calls does not

entitle them to free gateway access or free PSTN calls.

Besides the above threats there are more threats in P2P systems such as anonymity [12] and ac-

counting. Caller anonymity can be provided by having the SIP outbound proxy hide the identity

of the caller. Call accounting is needed for PSTN calls, and can be provided by the gateway.



155

Accounting within P2P-SIP nodes is not required. Finally, if automatic software updates are in-

corporated in P2P-SIP nodes, then it must be done in a reliable, secure and decentralized manner.

Some of the security problems in P2P are hard to solve. There is a tradeoff between

security risks and convenience of server-less systems. We divide the problem into multiple stages

and analyze each of them below.

Identity Protection

User identifiers can be randomly assigned by the system, chosen by the user as a screen

name (e.g.,alice172@sippeer.net) or chosen by the user as her valid email address (e.g.,al-

ice@example.com). The first two approaches allow the user to choose her password, but it is

not clear how the P2P node can get the password from the user to verify. We use the last approach

as it allows the system to generate a random password and email it to the user for authentication.

In the first two approaches, if a password is randomly generated by the system, it can be mailed

to the user if theContact header in the SIPREGISTER request has an email address.

When a user signs up with the P2P-SIP network for the first time, we need to verify that

the user identifier is valid and indeed belongs to the user. In the absence of public key infras-

tructure (PKI), the system can generate a new password and send it in an email to the user as

mentioned earlier. This requires that the user identifier be same as her email address. For ex-

ample, when Alice signs up with identifieralice@example.com by sending a SIPREGISTER

message, the responsible node generates a random password for Alice and sends it in an email

to alice@example.com. It then challenges Alice with digest authentication [127]. We use the

domain part of the user identifier as therealm for authentication. The responsible node maintains

the authentication information (user identifier, realm and MD5 hash of “user:realm:password”)

on the DHT. The information is indexed by the user identifier. This information is required and

sufficient for future authentication of any user signing up with the same identifier. A reasonable

time-to-live, say one week, can be used. The information is refreshed when the user subsequently

signs up. So if the user identifier is unused for a week, subsequent sign-in generates new password

sent to the user’s email address.

The email sent to Alice contains the user identifier, realm and password. It also contains



156

the IP address (or other identifying information) of the original sender of theREGISTER request,

so that Alice can report abuse if she was not the one trying to sign up with P2P-SIP. When Alice

receives the password, she signs up again with the appropriate credentials. Subsequent sign-up

follow the same procedure.

When a registrar node (A) shuts down, the registration is transferred to another DHT

node (B). If node B trusts node A, it just needs to authenticate A, otherwise it re-generates a new

password and sends it to the user’s email address. We believe that once we have a P2P reputation

system, only the more trusted nodes will be present in the DHT. The problem is still there if the

registrar node is malicious, and can cause denial of service (DoS).

Sending in email is just one of the ways. Alternatively, if a group of users already have

user certificates from other trusted entity such as VeriSign, they don’t need to do email based cer-

tificates. Another possibility is to also allow telephone number identity (tel URL) if the user can

call from that telephone number (with caller id) to a interactive voice system that verifies that the

user owns this telephone number and issues a new certificate. This way other friends who know

his phone number instead of email address, can also reach him on p2p-sip. Making an outbound

call to a telephone number (similar to sending an outbound email) for identity verification is not

a good idea, unless user pays for the call.

Misbehaving Nodes

Certain guidelines can be followed to detect and avoid misbehaving nodes [151]. For example,

the caller can prefer the redirect (iterate) mode of operation, so that it can monitor at each step

whether the routing is as per the DHT specification. There should be no single point of rout-

ing decision. In our current implementation, the responsible node also does replication. So a

misbehaving responsible node can make the user unavailable.

Generally speaking there are known three models to prevent misbehaving nodes in P2P:

(1) hide the security algorithms and protocols, so that only the single vendor implementation

will be running on the node (e.g., Skype), (2) form a social network of peers in unstructured

P2P system, or (3) keep only trusted nodes in the structured P2P network (e.g., OpenDHT is a

managed P2P network). Since identifying untrusted nodes is difficult, we may want keep both



157

trusted and untrusted nodes in a structured P2P, but nodes should be able to selectively trust other

nodes during call routing and registrations. Thus, the requirement does not fit any of the known

security mechanisms for handling untrusted nodes.

One option is to use redundancy in lookups. However, if at each of thelog(N) steps in

the lookup path, the request is sent to two nodes, then the request can traverseO(N) nodes which

is inefficient. Alternative is to build multiple independent DHTs (e.g., Chord using different hash

functions) using the same the set of nodes, and perform lookup and update on all the DHTs. For

example, if a fraction,f , of N nodes are malicious independent of each other, then the probability

of successful lookup is(1− f)log(N). With k independent Chord-based DHTs, the probability of

failed lookup on all the DHTs is(1− (1− f)log(N))k. For example, if only 1% of the nodes are

malicious, then in a DHT with one million nodes (N = 220), 19% of the lookups will fail. But

with two independent DHTs this reduces to about 3% failures. This approach increases the DHT

maintenance and state overhead by a factor ofk, and does not work well with higherf or N .

Malicious nodes cause two kinds of problems visible to the user: (1) denial of service

(DoS), i.e., the user identifier becomes unavailable, and (2) intercept, i.e., call goes to the wrong

person. The latter can be detected using end-to-end authentication assuming a previous commu-

nication has happened, or using a chain of certificates assuming both the caller and callee trust

at least one certifying authority (CA). The former (DoS) is difficult to eliminate without a P2P

reputation system. “Node calling itself” mechanism can be used for detection to some extent. For

example, multiple identities can be created per user including the test identities, and the system

periodically makes calls or sends instant messages from one to the other to check correctness.

The nodes can periodically verify the routing correctness, e.g., by making calls to itself through

some other node. Such a probe-based approach assumes that the nodes are not able to distinguish

between a normal request and a probe request.

To build a reputation system one approach is to have separate systems (DHTs) for user

lookup, and reputation. This is similar to the judiciary or press system in a real world, which

keeps a tab on misbehaving people. The nodes in this reputation system can be selected (or

elected) from the original P2P network. Thus, the node can serve in the reputation system along

with the lookup system. This service should be temporary (i.e., limited in time) to give chance



158

to every node instead of having a few nodes hog the reputation board. The election may be

based on some criteria such as past records of service, or random. Using the past history may be

abused if the nodes provide good service to build the reputation, and finally misbehave when they

serve in the reputation board. However, a random selection is always prone to some fraction of

misbehaving nodes getting elected.

In such a democratic system, it should be emphasized that a single malicious node should

not be able to invite many other malicious nodes in the network. Formally, if only a fraction,f ,

of the nodes in the P2P network are malicious, then probabilistically at mostf fraction of the

nodes in the reputation board can be malicious.

The next question is how to detect whether a node misbehaved or not? When a node (A)

detects that another node (B) did not forward its request, or forwarded it incorrectly, it can report

this to the reputation system. The reputation system, which has rough idea about the P2P network

(i.e., which nodes are responsible for what key ranges?) can update the reputation of B, possibly

after consulting and querying B. Such a report from A to B needs to cryptographically verify the

message exchanges as seen by A.

The size of the reputation board is much smaller than the original P2P network. The exact

size of the reputation board will depend on the particular DHT and the election algorithm.

Data Privacy

In addition to the misbehaving nodes which can disrupt the DHT lookups, users also need to

store some information on the DHT nodes, which may be untrusted. There are three types of

information about the user that can be stored on another node.

public: P2P node should be able to see the information for message routing, authentication, or

other processing. For example, user’s encrypted password, contact locations (SIPContact

header including preference value, expiration time and URI), voicemail options (such as

timeout to go to voicemail, maximum message size, etc). Note that this information is not

public to everyone, but only to the P2P nodes that help in lookups.

private: Only the user should be able to see and modify this information. Private data must be



159

encrypted by the user before storing on the node. For example, user’s address book, groups,

calendar appointments, watcher and watchee list, programmable scripts (e.g., LESS, CPL,

SIP CGI or servlet) and other profile information.

protected: User should be able to see and modify the information, but some other user should

be able to create the information. The storing node should not be able to see or modify

the information. For example, voice/video mail, and offline messages. Protected data is

encrypted by the sender using the recipients public key, and decrypted by the recipient.

Programmable Call Routing

The responsible node cannot trust the registered user except that it can store her information and

route her calls. For example, untrusted programmable call routing scripts such as SIP-CGI and

SIP Servlet will not be run by the responsible node on the user’s behalf. On the other hand,

trusted and secure CPL scripts can be run by the responsible node. However, this is purely a local

decision by the responsible node.

User Aliases

User can have alias names or other names. For examplealice@example.com may also have

alias aswebmaster@example.com and other names asAlice.Smith@example.com. These

are treated as user identifiers and all profile information must be duplicated. Sharing the profile

information among the aliases causes complicated trust requirements. On the other hand, user

will typically have provisions in her user agent to register with multiple user identifiers or line

presence, so that does not require support from P2P-SIP.

Alternatively, a user can maintain a primary identifier such asalice@example.com and

point all other identifiers such asAlice.Wonderland@yahoo.com andaw76@columbia.edu

by registering them with contact as the primary identifier. This avoids duplicating the profile

information for secondary identifiers, but increases the call setup latency when someone wants

to reach the user by her secondary identifier. To avoid going into a search loop, the responsible

node for the secondary identifier will typically redirect the call request to the primary identifier.

The caller’s phone then retries search for the primary identifier on the P2P-SIP network.



160

To simplify the implementation, aliases follow the same procedure for first time log-in,

i.e., alias must be a valid email address and the password is sent to the email address represented

by the alias identifier.

To summarize the security discussion of P2P-over-SIP, the security threats such as stolen

identity and privacy can be solved, but the malicious nodes that do not forward the lookup requests

or secretly log the communication are hard to solve without a centralized reputation system.

6.10 Performance Evaluation

In this section we evaluate the P2P-over-SIP architecture in terms of scalability, reliability and

call setup latency.

Scalability

Scalability of the P2P-SIP network depends on the capacity (bandwidth, CPU, memory) of the

individual participating super-nodes. Suppose there areN super-nodes in the Chord ring, iden-

tifier space ism-bit long (i.e., the identifier range is 0 to2m − 1), number of registered users in

the system isn (such that number of keys stored per node is approximatelyk= n
N ), REGISTER

refresh rate to successor and predecessor to keep the Chord ring correct isrs, refresh rate for fin-

ger table entry isrf , call arrival is Poisson distributed with meanc per node, user registration is

uniformly distributed with mean intervalt per user, and node joining and leaving are Poisson dis-

tributed with meanλ. Because average lookup in Chord travels throughO(log(N)) nodes [22],

the finger refresh messages, call arrival messages and user registration refresh messages travel

O(log(N)) hops. There areO(log(N)) finger table entries per node. Node join and leave gener-

ateO((log(N))2) messages. The average message rate per node is sum of the message rates due

to refresh, call arrival, user registration and node join or leave, which can be given as:

M = {rs + rf (log(N))2}+ c. log(N) + k
t log(N) + λ(log(N))2

N

The message rate in the node determines the bandwidth and CPU utilization for the node.

If each node can handleC requests per second, then the equationC = M gives the maximum

possible number of nodes,Nmax, in the system, which roughly translates toNmax = 2
C

r+c for



161

largeN , wherer is the refresh rate andc is the call rate. Note thatλ is low because nodes which

often join and leave are not made super-nodes.

Suppose the node supports 10 requests per second (which is much less than the typical

capacity of hundreds of requests per second as mentioned in Chapter 3) with minimum refresh

interval of one minute (r = 1
60 ) and mean call rate of one call per minute per node, then the

maximum number of nodes in the system can be210∗30. Our SIPPEER implementation can

support about 800 outgoing registrations per second, for example. If more nodes join the system,

the super-nodes become overloaded and may deny some incoming call, registration or proxy

requests. However, large values ofN also increases the call setup latency as we describe below.

Reliability

When a node fails the user registrations stored on that node are lost. To achieve reliability, the

refresh rate can be increased (so that node failure detection happens quickly), the user registration

refresh rate can be increased (so the the user record is unavailable only for a brief period of time)

or the user registration record can be replicated at multiple nodes (e.g., store the user registrations

at log(N) successive nodes in Chord).

Chord provides reliability against node failure by storinglog(N) successor addresses and

replicating keys at some constant (K) number of successive nodes. In P2P-SIP, the node update

response contains all thelog(N) successor addresses, and user registrations are replicated atK

successive nodes. The equation for average message rate does not change ifλ includes failure

rate along with node join and leave rates.

When a node gracefully leaves the network, it unregisters with its successor and prede-

cessor so that they can update their Chord data structures. It also transfers all the registrations

to the successor. When a node fails abnormally, its successor and predecessor detect the failure

and update their data structures. The stabilization algorithm ensures that the information gets

propagated to other relevant nodes in Chord over a period of time.

The P2P-SIP node that stores the user registration, also proxies the call request to that

user. Once the call setup is complete, the P2P-SIP node is not needed in the call path.



162

Call Setup Latency

The P2P advantages come at the cost of increased call setup latency. For example, with 10,000

nodes in Chord, the average lookup path length is six hops [22], so P2P call setup will take about

six times more than traditional client-server call setup in SIP. With good network condition, single

lookup (INVITE response) in SIP is expected to take less than 200 ms. So one or two seconds

delay before the phone rings in P2P-SIP is tolerable given that on an average the phone will ring

for much longer before the callee picks up.

Due to P2P synchronization latency which depends on refresh rate and node join, leave

and failure rates, there may be delay in updating the user records. In this case, it may take mul-

tiple retransmissions before call setup is complete. This further increases the call setup latency.

Successful user location in Skype takes about three to eight seconds [104].

Some kind of hybrid system may be implemented that takes the advantages of many dif-

ferent structured and unstructured P2P algorithms to further reduce the latency and maintenance

cost. For example, there has been recent proposal on one hop lookups for P2P [152] assuming

large storage space in the peer nodes.

6.11 Conclusions

We have described a pure P2P architecture for SIP telephony. The architecture provides zero

configuration, robustness and scalability inherent in P2P systems, in addition to interoperability

with existing SIP infrastructure. The advantages come at the cost of increased call setup latency.

Note that the media is sent directly between the two parties without going through the SIP proxies

in both the client-server and P2P arcitectures and hence, media delay is uneffected.

For SIP-using-P2P, we have presented an example architecture using OpenDHT as an

externally managed peer-to-peer network. We explained various P2P deployment components

such as clients, proxies and adaptors using pseudo-code and examples. We also presented some

of the design issues based on our implementation. The architecture can be used for other DHTs

with similar interfaces. Based on our analysis, we recommend using P2P clients instead of the

P2P proxies or adaptors as much as possible, and the planned authenticated interfaces [27] when



163

implemented in OpenDHT. This reduces the number of lookup and updates in the P2P network

and, hence, is more scalable. The design and data format presented in this paper can be used by

other P2P-SIP implementations to build an interoperable network of P2P-SIP nodes for contact

management, key storage, NAT and firewall traversal, presence and offline message storage.

For P2P-over-SIP, we analyze various design alternatives, propose a P2P-SIP architecture

using Chord as the underlying DHT, and describe various user location and registration steps

in detail. We also present an overview of various advanced services such as offline messaging,

conferencing, NAT and firewall traversal and security issues.

We have implemented P2P-SIP node in both P2P-over-SIP and SIP-using-P2P architec-

tures for multimedia communication using our SIP C++ library. The SIP-using-P2P architecture

is also implemented in the Columbia SIP user agent,sipc.

We notice that the classical client-server architecture of SIP and the P2P-SIP architecture

are two extremes. For example, in the former case, the per-domain SIP is used to locate the user

in the domain, and DNS is used to locate the per-domain server. In the latter case, P2P overlay

is used to locate the node holding the user location. There can be an intermediate architecture

that can use DNS to locate the server but the servers can dynamically join and leave the system

using dynamic DNS. This gives rise to the service provider model where the provider sells the

SIP service by becoming part of another provider’s SIP server pool. DotSlash [92] explores this

option in the context of web “hot spots” and uses service location protocol (SLP) to locate the

backup servers. Such approaches need explicit synchronization of registration records among the

participating servers similar to join and leave maintenance in P2P.

More work is needed in advanced services such as large scale application level multicast

conferencing using P2P, distributed reputation system for peers, and PSTN interworking related

issues such as authentication and accounting. There should be a reasonable incentive to become

a super-node to provide services to other peers.

There are a few open issues: how to turn a node behind firewall or NAT into a super-

node in the DHT. This reduces the load on public super-nodes, since most of the residential and

corporate users typically will be behind some firewall and NAT. Alternatively, the private nodes

in a domain can form a secondary P2P overlay connected to the public DHT via a few external



164

connections to reduce the port utilization on the NAT device.

Some of the P2P open questions described in [153] are relevant to P2P-SIP architecture

also. Some kind of hybrid system may be implemented that takes the advantages of many differ-

ent structured P2P algorithms to further reduce the latency and maintenance cost. For example,

there has been proposal on one hop lookups for P2P [152] assuming large storage space. Apply-

ing this in P2P-SIP is transparent to our architecture.

Finally, we conclude on a note that unless the SIP servers (proxies, registrars) are widely

deployed, we will need P2P based IP telephony tools so that everyone can use the system. Such

P2P-SIP architecture can be extended to other protocols such as H.323.



Part III

Enterprise IP Telephony

This part describes the components in our multimedia collaboration architecture for enterprise

IP telephony and large scale conferencing. The goal is to build a multi-platform collaboration

architecture using standard protocols that can be accessed from different devices and tools such

as IP phone, regular telephone, email, instant message and web. We also describe our SIP-H.323

translation mechanism.

165



166

Chapter 7

Background: Conferencing, Streaming

and Voice Dialogs

Multimedia collaboration consists of a number of components such as multimedia conferencing,

real-time media streaming and interactive voice dialogs. Before we describe our multi-platform

collaboration architecture, we provide background on these components in this chapter.

7.1 Multi-party Conferencing

Multi-party conferencing is an important telephony service, provided in the PSTN by conference

bridges. Many PSTN carriers offer conference bridges which allow users to take part in a voice

conference by dialing a telephone number and conference access code. We can further enhance

conferencing for Internet telephony by adding video and collaboration. The conference can be

identified by a destination address, and participants can join the conference by making a call to

that address, thus requiring no modifications in end systems. There are currently two Internet

telephony signaling protocols, IETF’s SIP [3] and ITU-T’s H.323 [37]. SIP identifies the des-

tination via a SIP URI of the formsip:user@domain, while H.323 usesAliasAddress data

structures, which can assume many forms, including URLs.

There are two different aspects of Internet based conferencing, signaling and media. Ei-

ther SIP or H.323 can be used as a signaling protocol for taking part in a conference. Both SIP



167

and H.323 use the Real-time Transport Protocol (RTP [1, 2]) for carrying real-time media traffic,

such as audio and video. H.323 defines a multi-point control unit (MCU) for handling multi-

party conferences. An MCU consists of a multi-point controller (MC), which can also be part of

a terminal, to handle signaling and control exchanges with every participant in the conference.

An optional component, the multi-point processor (MP), handles mixing and filtering of different

media streams. SIP does not define any conferencing entity as such, as these entities are easily

implemented as SIP user agents. The core SIP specification supports a variety of conferencing

models [50]. In the server-based models, RTP media streams are mixed or filtered by the server

and distributed to the participants. There is a standard point-to-point signaling relationship be-

tween each participant and the conferencing server.

The conference is identified by the SIP URI, e.g.,sip:discuss@server.com. The stan-

dard user location and routing mechanisms in SIP forward all calls to the appropriate conference

server atserver.com without requiring any extension to the protocol. The SIP message routing

entities (SIP proxies) need not be aware that the request URI corresponds to a conference and not

to an individual person.

The Session Description Protocol (SDP [46]) is used to indicate media capabilities and

media transport addresses. The participant sends the information about his media capabilities

and the transport address where he wishes to receive RTP packets. In the message body of

the 200 success response, the server sends the transport address to which the participant should

send his RTP packets. More advanced scenarios can be accomplished using the SIPREFER

method. For example, an existing participant can invite another user to join the conference.

These conferencing models can be found in [50].

SIP-based authentication can be used to prevent unauthorized participants from joining a

conference. The server can support both pre-arranged conferences as well as ad-hoc conferences

by assigning special meaning to the user field in the request URI. For example, participants who

wish to joinsip:ietf.arranged@office.com will need to set up the conference before hand, while

those who wish to joinsip:library-discuss.adhoc@office.com do not need to setup the confer-

ence in advance. In both the cases, the participants have to know the unique conference URI.

The conference state is maintained as long as at least one participant is part of the conference.



168

Participants find out about the conference URL via external means, such as email or a web page.

7.1.1 Conferencing Models

SIP can support many different conferencing architectures. SIP supports various multi-party

conferencing models [50], ranging from mixing in end systems to multicast conferences. When

multicast is not available, centralized mixing, transcoding and filtering of media can be used to

create multi-party conferences.

Conference models can be distinguished based on the topology of signaling and media

relationships. Conferences with a central server are easier to handle for end systems and simplify

keeping track of the conference participants. On the other hand, network-layer multicast is more

scalable for large-scale media distribution and allows a “loose” model of conference member-

ship [154], where each member has only an approximate view of the group roster.

Table 7.1 summarizes the different types ofmedia distribution modelsin multimedia con-

ferencing. The table compares the scaling properties, depending on the the number of active

senders,M , and the total number of participants,N . Given thatM is almost always one for

typical audio conferences, most of these models scale similarly in terms of processing and band-

width requirements. Note that the centralized model performs better with higherM if inputs are

summed.

Centralized Conferencing

In the centralized model, a server receives media streams from all participants, mixes them if

needed, and redistributes the appropriate media stream back to the participants (See Fig. 7.1). If

the speaker’s audio is received in the mixed stream by the speaker, he will hear echo of his own

voice. Since senders would have difficulty subtracting out their own contribution due to expensive

audio analysis, the server needs to create a customized stream for each of the currently activeM

senders and a common stream for allN−M listeners, assuming that they can all support the same

media format. The server needs to decode audio streams before mixing, as mixing is generally

performed only on uncompressed audio. DecodingM and encodingM + 1 streams limits the

amount of active sources or conferences. The available outbound network bandwidth at the server



169

Properties centralized full mesh multicast unicast rx, mul-
ticast tx,

end system mix-
ing

Topology Star full mesh m-cast tree star and m-cast ad-hoc
Server process-
ing

O(M+N) n/a n/a O(M+N) n/a

Endpoint pro-
cessing

O(1) O(M) O(M) O(1) variable

Server band-
width

O(M+N) n/a n/a O(M) using m-
cast

n/a

Endpoint band-
width

O(1) O(M) O(1) O(1) variable

Scaling medium medium large large medium
Heterogeneous
endpoints

yes yes no no yes (partially)

Get back your
media

no no no yes no

Table 7.1: Types of conferences;M is the number of active senders andN the total number of
participants

limits the number of participants in the total conference.

The central server model has the advantage that clients do not need to be modified and do

not have to perform media summing. In addition, it is relatively easy to support heterogeneous

media clients, with the server performing the transcoding. For example, this allows a confer-

ence consisting of participants connected through high-bandwidth networks as well as wireless

networks, each receiving the best possible quality. At the cost of increased inbound bandwidth,

silence detection can be delegated from clients to the server. This is helpful if the phones of the

participants do not support silence suppression.

Also, the server can enforce floor control policies and can control the distribution of video

based on audio activity. Compared to a distributed model, a central server can readily provide a

consistent view of the complete conference membership.



170

A B

C

D

E D A+B+C+E

(a) Centralized Server

A

B C

D

B
B

B

A

D

C

(b) Full mesh

A B

C

D

B+D+C
A+D+C

A+B+D

(c) End system mixing

M

A

B

C

M D

E

3

2

2

2 4

3 2

2

(d) Unicast receive and multicast send
(Example network: link bandwidth
requirements are multiple of codec
bandwidth.)

Figure 7.1: Types of media distribution model

Full mesh

In a full mesh, each active participant sends a copy of its media stream to all participants via

unicast, without a central server. End systems sum the incoming audio streams; since most of the

time, only one speaker will be active, the CPU overhead is modest as long as silence suppression

is implemented everywhere, but it fails if the access bandwidth of some participants is just large

enough for a single stream. For video, full mesh does not scale unless, for example, only currently

active speakers send video. In a full mesh, each pair of participants must share a common codec.



171

Multicast

Network-layer any-source multicast is ideally suited for large-scale conferences. A multicast

address is allocated for each media stream, and every participant sends to that address. As in

the full mesh, participants receive packets on the same address from all other participants, and

need to sum or select streams. While the incoming bandwidth is the same as in a full mesh, each

system only needs to generate one copy of the media stream.

Unfortunately, native multicast is not widely available outside network testbeds such as

Internet2. Also, all participants must share a common set of codecs.

Unicast receive and multicast send

This scheme combines some of the benefits of the server and multicast models. Participants

send their media streams using unicast to the conferencing server, which sums them and sends

them out on a pre-established multicast address. Thus, unlike pure multicast, end systems do

not have to filter or mix media streams. Every participant receives the mixed stream, which

includes his own stream. Unless a sender maintains a buffer of the data sent and there is a means

of aligning time scales, it will have difficulty removing its own audio content from the mixed

stream, because of expensive audio correlation analysis. If the sender does not remove his own

audio, he will hear echo. The gain in bandwidth efficiency is largest if the number of simultaneous

senders is small compared to the total group size. This approach lends itself well to single-source

multicast [155, 156].

Endpoint mixing

Instead of in a server, mixing can take place in one of the participating end systems. For example,

if A andB are in a call,A can also inviteC. A sends the sum of the media fromA andB to C,

and the sum ofA andC to B. B andC do not need to be aware of the service performed byA,

but can in turn mix other participants.

Cascading mixers increases the delay on some of the media paths. Another problem is

that the conference dissolves when the participant who is acting as a mixer leaves the conference.

This model is likely to be suitable only for small conferences of three or four parties.



172

Replication

Besides these, one can imagine a replication model, where the server sends a copy of each incom-

ing media stream to all the participants using unicast. The mixing is done at each end system.

This might be useful for media path authentication as every end system exchanges media packets

only with the server’s IP address. The CPU overhead is modest as long as silence suppression

is implemented. The server however is less loaded than in the case of the centralized conference

since it is now freed from the task of mixing audio streams. This is the model used in the case of

video and text based conferences, since there is inherently no mixing required.

Media vs. Signaling

Media and signaling can use different models in the same conference. For example, one could

combine centralized signaling with multicast media distribution, where the server maintains a

one-to-one signaling relationship with each of the participants. Unfortunately, this requires co-

operation from the end system. The server can indicate a multicast address in its SIP success

response, causing the end system to send media streams via multicast, but the end system will

still expect to receive media via unicast. More sophisticated session description formats may

address this issue.

Also, different media streams can use different models. For example, audio could be

mixed by a central server and redistributed, while video can be sent point-to-point between every

pair of participants as in full mesh.

Thus, as long as multicast is not widely available, server-based conferences will continue

to be the only viable model for mid-size conferences of tens to hundreds of participants.

7.1.2 Requirements for Centralized Conferencing

The main functions of a conference server is the mixing and redistribution of media streams.

Typically, Internet audio streams are added or mixed, while video streams and other media are

simply replicated. However, a video mixer can also create a new composite video image [157].

For audio, the server needs to ensure that a participant does not receive a copy of his own media

in the mixed stream. RTP [158] allows a sender to indicate which sources have been combined in



173

a single media packet. When summing, the server should absorb the jitter in packet arrival times

while introducing minimum delay.

For replication, the server should not need to be aware of the media formats. The RTP

SSRC indication [1, 2] ensures that the receiver can distinguish different sources addressed to the

same network destination.

For either summing or replication, it is desirable if each participant can use different

media types and packetization intervals, to accommodate heterogeneity of end systems and ac-

cess bandwidths. Implementations need to scale to large number of conferences as well as large

numbers of participants per conference.

A media mixing module with a SIP interface can act as a conferencing server component

in the distributed application server component architecture. Advanced system can bundle this

functionality with other services, such as interactive voice response (IVR) and a web-based user

interface.

7.2 VoiceXML: Interactive Voice Response

VoiceXML [35] is an XML-based language developed by the W3C to facilitate interactive voice

response (IVR) that feature synthesized speech, digitized audio, recognition of spoken and DTMF

key input and recording of audio for telephony applications. It converts the traditionally propri-

etary and closed IVR systems into an open programmable architecture.

A VoiceXML interpreter, also known as VoiceXML browser, can fetch VoiceXML pages

from a web server, allow user input via spoken audio or touch-tone keys, and submit filled forms

to the server-side scripts to generate another VoiceXML page for subsequent dialogues. The

back-end programmable web CGI scripts can perform the application logic, such as voice-mail

access or email access by phone.

The following example VoiceXML page prompts the caller with spoken audio: “Enter the

ZIP code ...”. When the user presses a sequence of digits, say 10027#, the variablezipcode gets

the value “10027” that gets passed to the URLhttp://myserver.com/weather.cgi?zipcode=10027.

It is up to the scriptweather.cgi to process the input and generate further VoiceXML pages. If

there is some error or user doesn’t press anything, then the prompt is repeated.



174

<?xml version="1.0"?>

<vxml version="1.0">

<form>

<field name="zipcode">

<prompt>Enter the ZIP code of the location for which you

want weather information.</prompt>

</field>

<catch event="noinput error help">

Enter the ZIP code again followed by the pound key.

</catch>

<block>

<submit next="http://myserver.com/weather.cgi" namelist="zipcode"/>

</block>

</form>

</vxml>

User input, either DTMF or spoken audio, can be specified using a set of rules called as

grammar. A simple DTMF grammar can be used to receive only the DTMF input. A typical

explicit dtmf tag in the VoiceXML page looks like:

<dtmf type="application/x-dtmf">

1 | 2 | 3 | 4 | *

</dtmf>

The MIME type for this grammar is “application/x-dtmf”. Input is either a fixed length string or

terminated by a “#”. A default implicit timeout of five seconds is implemented so that the input

is automatically accepted if the user does not press the terminating “#” key within five seconds.

If no grammar is specified, then the interpreter will accept any input. Special key sequence such

as “**#” may be defined to signal thehelp event.

A VoiceXML browser needs a call control engine to handle or initiate telephony events

such as incoming calls or call transfer. The browser fetches the VoiceXML pages or pre-recorded

media files from a web server and presents an interactive dialog to the telephone user. Fig. 7.2

shows an example scenario where the browser, with SIP-based call control engine, is accessed

from SIP phones as well as a regular telephone. The VoiceXML pages can either be statically



175

Figure 7.2: Example sipvxml scenario

stored on the web server or dynamically generated based on some server side programming logic

like HTTP-CGI (Common Gateway Interface), Java servlet or Java server pages. The media files

can either be stored on the web server or can be streamed in real-time from a media server, such

as ourrtspd, directly to the SIP caller using RTP [1, 2].

7.3 RTSP: Media Streaming

The Real-Time Streaming Protocol (RTSP) [159] allows to control multimedia streams delivered

on the Internet. It is similar to HTTP [7] in syntax and semantics, and defines new methods

such asSETUP, TEARDOWN, PLAY, RECORD andPAUSE, to start and terminate a stream,

perform time-positioned playback, recording and pausing of a stream, respectively.DESCRIBE

andANNOUNCE requests are used to learn or specify the session description of a stream for

playback and recording, respectively. They use the Session Description Protocol (SDP) [46] in

the message body to describe the session. Unlike HTTP, which downloads the whole media file

in the response, RTSP uses the Real-time Transport Protocol (RTP) [1, 2] to deliver multimedia

streams in real-time. An exampleSETUP request is shown below:



176

SETUP rtsp://example.net/bob/movie.rm RTSP/1.0

CSeq: 102

Transport: RTP/AVP;unicast;client_port=8000-8001;mode="PLAY"

RTSP clients such as Apple’s QuickTime [160] and RealPlayer [161] are well known

among Internet users for playing stored audio or video content. However, RTSP can also be used

for playing live content. The SDP contains a multicast address to play a live multicast radio, or

to record a multicast program. In that case, the RTP packets are streamed to or received on that

multicast IP address.



177

Chapter 8

Related Work: Internet Telephony and

Multimedia Collaboration

Internet telephony has been an active area of research and development in the past decade, with

a number of companies such as Vonage, Skype, AT&T, Net2Phone, DialPad and MediaRing

providing PC-to-PC and PC-to-phone calls. Their objective is mainly to provide low-cost call

service to PSTN from the public Internet, whereas our architecture, which is called Columbia

InterNet Extensible Multimedia Architecture (CINEMA), is well-suited for Internet telephony

infrastructure within an organization with many more additional services such as collaboration

and platform independence. CINEMA emphasizes use of existing standards for interoperability

and an open and distributed component architecture instead of closed server box implementing

all the features.

A number of efforts started about the same time as ours in enterprise IP telephony sys-

tems, including but not limited to Cisco Call Manager [162] and Nortel Multimedia Communi-

cation Server [163]. All the systems have evolved over time to contain more or less equivalent

set of features. However, there are certain design issues and tradeoff such as those affecting the

reliability and scalability of the distributed architecture that differ. Our goal is to provide a fully

distributed architecture that allows interoperability among different components from different

vendors. This means that any standard complaint tool can be used in place of existing tools in

the architecture. Secondly, proprietary or single vendor protocols such as Skype [21] and Cisco’s



178

Skinny [164] are not considered for building enterprise IP telephony systems in this thesis.

CINEMA-based Internet telephony can be used to minimize telephone infrastructure and

service costs within an organization. We can configure CINEMA to carry calls between campuses

or branch offices over IP with virtually no added cost.

Several multimedia conferencing products use SIP or H.323 for signaling, e.g., Meet-

ingPoint from CUseeMe Networks [165], Sametime from Lotus [166], and GnomeMeeting [167]

from the Linux community. Our system can provide services beyond standard video conferencing

and can actually incorporate these tools as long as they are standards-compliant.

Computer-supported collaborative work (CSCW) has been studied even before the web [168,

169, 170, 171]. ACM’s special interest group on supporting group work, SIGGROUP, explores

topics related to computer-based systems that affects team or group in workplace settings. How-

ever, the focus remained mostly on web-based document sharing and concurrent editing in sys-

tems such as BSCW [172], Lotus Domino [173], Hyperwave [174] or Livelink [175]. Many

researchers have explored specific types of collaboration such as collaborative software develop-

ment [176] or electronic class rooms [177].

Multimedia conferencing using audio, video, and data communication using instant mes-

saging and email, have independently evolved and become popular over the years [178, 179, 180,

181, 182]. Using audio and video for collaborative work is not new [183, 184]. There are a num-

ber of audio/video collaboration systems such as MBone tools [185, 186], MeetingPlace [187]

and GnomeMeeting [167]. The ITU-T’s H.323 protocol suite [99, 188] provides video confer-

encing systems along with T.120 for data conferencing and T.128 for application sharing [189].

Most of the technologies used in our architecture, such as shared web-browsing [190],

conference floor control [191, 192, 193, 194], application sharing [195, 196, 197, 198] and web-

based collaboration [199] have been investigated extensively elsewhere. A number of web portals

such as Yahoo! and MSN provide online calendaring, and sharing of information to some extent.

However, the concept of groups has only recently started gaining attention. Our work was the

first demonstration of a SIP-based comprehensive and extensible collaboration system combin-

ing synchronous and asynchronous collaboration mechanisms. Although our approach comes

from a multimedia communication background, it integrates the conferencing and collaborative



179

computing approaches.

Next, we describe related work specific to components of CINEMA, such as SIP-H.323

translation, unified messaging and centralized conferencing.

8.1 Interworking Between SIP and H.323

The problem of interworking between SIP and H.323 had started to attract attention when we first

proposed and demonstrated a translation scheme. Agboh [200] and Kausar and Crowcroft [201]

had addressed the problem of interworking, but had not solved the issues of registration and media

capability translation. Moreover, the translation of call setup from multi-stage H.323 to single

stage SIP was not available until our work. Since the newer versions of H.323 have proposed

a number of enhancements including the single stageFastConnect call setup procedure, thus,

further simplifying the translation. However, newer versions are supposed to interoperate with

older versions, hence our translation scheme is still valid and useful.

A informal work group was formed later within the IETF to investigate the translation

with the newer versions of H.323. The group developed the requirements for the translation [202].

A number of products are now available that perform SIP-H.323 translation such as from Vocal-

Tec, NexTone and SIPquest.

More recently, vendors such as Cisco and Microsoft have moved to SIP. Thus, with the

gradual disappearance of H.323 systems, especially after Microsoft discontinued the H.323-based

NetMeeting software, the research interest in SIP-H.323 translation is fading. There are lots of

deployed H.323 conferencing systems such as from Polycom and Radvision, and many carriers

have made huge investments in H.323-based infrastructure. Therefore, SIP-H.323 translation is

still needed.

8.2 Unified Messaging using SIP and RTSP

There is a fair amount of early messaging work, in particular, the Etherphone work done at Xerox

PARC [203, 204, 205], but none of it addressed the integration of Internet telephony with voice

messaging. Profiles have been defined for Internet messaging to support voice. In particular,



180

VPIM [206] supports the interchange of voice messages between voice mail systems, unified

messaging systems, email servers and desktop client applications. The basic architecture is to

carry the voice attachments in the electronic mail. None of these addressed the integration of

Internet telephony with the voice messaging system. Moreover, carrying the voice bits across

low-bandwidth links while forwarding the messages is not desirable. It also requires special-

purpose client applications which can understand the profiles.

We proposed and implemented the first voice mail and answering machine system for

SIP-based Internet telephony that combined the power of media streaming and worked without

modifying the existing SIP servers or clients. Subsequently, various schemes have been proposed

to forward a call to a voice mail server in SIP-based Internet telephony systems. The Common

Gateway Interface for SIP [24] or the Call Processing Language [49, 48] can be used to configure

the SIP server to use an external voice mail service. Campbell and Sparks [207] suggest the use

of SIP Request-URI to carry service control information related to voice mail.

Voicemail and answering machine are now common features in SIP-based Internet tele-

phony systems.

8.3 Centralized Conferencing using SIP

Before we started working on our SIP conference server, most of the then existing conference

servers in the market were based on H.323. These included MeetingPoint from CUseeMe Net-

works, Sametime from Lotus and Microsoft Exchange 2000 Conferencing Server. These sup-

ported T.120 for application sharing and whiteboards. MeetingPoint has mechanisms to link

servers together so that conferences can be shared and load-balancing can be done.VideoTalks [208]

by AT&T Labs is a comprehensive multimedia conferencing system intended to provide a variety

of Internet services such as video conferencing and low cost video-on-demand. It is not based on

SIP.

A number of software (e.g., RAT and NeVoT) support multicast “light-weight” confer-

encing, without explicit signaling support [154]. Etherphone [209] is probably one of the earliest

systems supporting multimedia conferencing.

Our sipconf was one of the first centralized conference server implementation based on



181

SIP. We further extended it to form the core of our synchronous collaboration platform by adding

video, screen sharing, instant messaging and recording. SIP-based conferencing has now become

a common feature in any Internet telephony infrastructure. The IETF’s XCON working group

is standardizing centralized conference control protocol for operations such as floor control and

configuration access[210, 211].

8.4 Integrating VoiceXML with SIP Services

The Voice Browser working group of World Wide Web Consortium (W3C) has developed the

VoiceXML [35] specification. VoiceXML applications for interactive voice response are devel-

oped by many commercial organizations.

When we developed our SIP-based VoiceXML browser, there were some existing VoiceXML

implementations. For example, Plum Voice Portal Technology [212] could present existing web-

sites or intranet applications to a phone user. It could also deliver follow-up information via email

or fax. Open VXI [213] was an open source VoiceXML interpreter. IBM’s WebSphere provided

HTML-to-VoiceXML transcoding that could be converted to speech by a VoiceXML browser.

Talking E-Mail [214] allowed users to access emails from various interfaces including voice, i-

mode, Web and WAP. None of these applications used SIP for call control. Ours was the first

known implementation of a SIP-based VoiceXML browser.

SIP URI for indicating VoiceXML service is specified in [215]. Tellme studio [216]

provided the first SIP based VoiceXML development platform that allows users to test custom

VoiceXML pages or scripts. We used this for initial testing of our email-by-phone system.

In Section 9.6.2, we describe the design of a SIP-based VoiceXML browser,sipvxml, and

its application in our IP telephony test bed. Ours was the first implementation to associate the

VoiceXML transfer tag with the SIPREFER message for a conferencing application. Moreover,

it can be used as a third-party voice application server like Tellme or an integrated component in

CINEMA [89, 217, 88] for campus or enterprise VoIP services. We describe multi-platform col-

laboration in CINEMA, the first complete IP PBX and collaboration system, in the next chapter.



182

Chapter 9

Multi-platform Collaboration in

CINEMA

9.1 Introduction

In many organizations, e-mail and tele-conferencing are the only means of collaboration. More

recently, people have started to use instant messaging (IM) for short interactive communication.

Even though these communication means are not designed for collaborative work, the limited set

of available options causes them to put all their data such as meeting notes, documents, conference

schedules and reminders into the email system.

We need a collaborative environment that seamlessly integrates with the existing commu-

nication means of email and phone as well as newer methods like IP telephony and instant mes-

saging. Consider an IP telephony conference with some participants on phone, and some others

using desktop audio/video clients. Late-arriving participants can browse through the past meet-

ing proceedings, and non-participating group members can be automatically notified of meeting

minutes and other important document locations via email.

Our system is different from earlier conferencing applications in that it integrates the

two modes of collaboration: synchronous that requires active real-time participation and asyn-

chronous that are not real-time. We support multimedia conferencing, instant messaging, shared

web-browsing, file-sharing, discussion forum, voice and video mails. As an example, same group



183

of people can be addressed by video conference, instant message and email, with appropriate

archival of interactions. Secondly, it provides device-transparency by allowing access and inter-

action even if participants temporarily have only a phone or email. Although it is not new, we also

provide hybrid interaction such that one can use phone for audio and PC for IM and document

sharing in the same conference.

Our architecture provides building block tools for any type of multimedia collaboration,

instead of focusing on specific types such as collaborative software development. We want to

support three kinds of typical interactions: long-lived distributed groups that alternate between

synchronous and asynchronous interactions, such as design teams, college classes, committees

and work teams, asymmetric events such as lecture and lecture series, where interaction is mostly

limited to asking questions to the speaker, and short-lived spontaneous interaction among groups

of people.

Our collaboration system is based on standard protocols and tools such as SIP [3] and

Real-Time Streaming Protocol (RTSP [32]) for signaling, Real-time Transport Protocol (RTP [1,

2]) for media transport, VoiceXML [35] for voice-based interaction, Call Processing Language

(CPL [49]) for network-based service creation, Language for End System Services (LESS [218])

for endpoint-based service creation and a web interface for asynchronous collaboration.

In this chapter, we describe the architecture and implementation of our comprehensive

multi-platform collaboration framework. We describe the requirements for comprehensive multi-

media communication and collaboration systems in Section 9.2. Section 9.3 provides an overview

of the architecture and the user interface. Section 9.4 describes the synchronous collaboration ar-

chitecture whereas Section 9.5 details the asynchronous collaboration. Additional services such

as presence, interactive voice response and integration of phone, IM and email are detailed in

Section 9.6. Finally, we present the conclusions in Section 9.7.

9.2 Requirements

The basic requirements for a comprehensive collaboration system consist of a personalized view

of the system, real-time or interactive multimedia collaboration (calledsynchronous) and loosely

tuned sharing of information (calledasynchronous). A web-based user interface provides a



184

portable and personalized way to access the system.

Personalized view

People like to have personalized views of the system such as per-user calendar with appointments

and conferences. However, the system should also allow sharing the view with other users or in a

group after filtering. For example, Alice may not want to see the events posted by Bob. She can

schedule a conference or discussion forum for her project group, and invite members to join.

Synchronous collaboration

The system should allow multi-party audio, video and text conferencing. It may support shared

white-board facilities, shared applications and screen sharing. It should allow restricted confer-

ences with only authorized members as well as public unrestricted ones. The conferences may

be pre-scheduled or created on the fly. It may support both dial-in and dial-out conferences, floor

control, and telephone-based authentication. It should be possible to record, and later, playback

the proceedings of a conference. It may allow time-positioned playback (e.g., play after first 30

min of recorded data), sharing files with other participants (e.g., agenda, slides or meeting min-

utes), playing a media file in the conference, merging two conferences into one, or splitting one

into two conferences.

Asynchronous collaboration

The most basic form of sharing information is via various forms of messaging, e.g., email, voice

and video mails. The system may allow recording and filtering of IM communications. It may al-

low storing messages in various folders, accessing remote email clients or servers for multimedia

messages and listening to the messages via a telephone. The web-based message board may be

accessed via email or telephone. It should be possible to share files and other information within

or across groups.



185

Email
client

Web
browser

sipc
user agent

Regular phone IP−phone Desktop PC with various clients

SIP/PSTN
  gateway

Server components

VoiceXMLscripts

T1/E1

RTP/SIP

Conference
server

sipconf

Web server
Call

Web

IM
Email

scripts

CGI

messaging
Unified

sipum

rtspd
Media
server

sipvxml

IVR

sipd
SQL DB

Figure 9.1: SIP-based collaborative work environment

9.3 Architecture Overview

Our CINEMA architecture consists of a set of distributed server components and user agents as

shown in Fig. 9.1. The SIP registration and proxy server (sipd) is used for user location and

forwarding of signaling messages. The multi-party conference server,sipconf [34], forms the

core of the synchronous collaboration infrastructure. The media server,rtspd, allows stream-

ing of multimedia content for playback and recording. The unified messaging server,sipum,

provides centralized answering machine, and multimedia mail service [33]. A web-based inter-

face provides asynchronous collaboration support. User agents such as regular PSTN phones

via a SIP-PSTN gateway, IP-phones, or desktop based SIP user agents likesipc are used for

synchronous collaboration. Interactive voice dialogue via the VoiceXML browser,sipvxml [36],



186

allows easy access to a telephone user. The SIP server and the SQL database [29] form the core

of the infrastructure for basic call flow.

9.3.1 Web Interface

The CINEMA web-based user interface manages user accounts, voicemails and conferences.

The web pages are generated using the HTTP CGI [219] scripts that access the SQL database

for configuration and profiles. The web pages provide intuitive user interface components and

context-sensitive help. There are multiple levels of details in different user expertise levels. For

example, abeginner-level user accesses only basic features to get started whereas anadvanced-

level user can configure and manage detailed information. The interface allows configurable

layout of the web pages so that a particular installation of the system can be adapted for each

service provider.

There are two types of users:regular usersandadministrators. An administrator has

additional privileges compared to a regular user. The first user created during installation becomes

the administrator. An administrator can add additional users as administrator or regular user,

change the user type, or access profiles of other users. New users can also “sign-up” for the

service from the web. The web interface functionality can be further classified as follows:

Call-routing profile: The user can manage profile information, current contact locations, alter-

native names for identification, on-line status of “buddies”, access control as to who can

call, and programmable call handling, e.g., based on time-of-day or caller-id.

Unified messaging:This includes the integrated interface for voice and video mails, emails and

discussion forum on various topics.

Event calendar and conferencing:This provides the personalized calendar for each user. It

allows managing various appointments, events and conferences.

Address book and access group management:The user can maintain an address book of his

friends’ profile such as name, email address, department, birthday and postal address. The

user can organize his address book entries into groups with different access privileges. For



187

example, people in “my family” group can access his personal calendar whereas others

cannot.

Administration and accounting: An administrator can manage several server configuration pa-

rameters, user privileges, as well as the visual layout of the web pages. He can also assign

various tariff rates for the phone calls and configure the gateway locations for the telephone

destinations.

The web interface is just a front-end to the user profile and system configuration informa-

tion stored in the SQL database.

9.3.2 Personal Calendar and Address Book

Figure 9.2: Personal calendar

When the user logs in from the web, it shows the most recent appointments and voice-

mails. A personal calendar shows the various appointments or conferences scheduled for the user



188

or his group (Fig. 9.2). The user can see the day, week, month or year view for different levels of

information.

The per-user address book allows organizing the contacts into local or global access

groups. Alocal group is visible only to the owner, e.g., “my friends”, whereas aglobal group is

visible to everyone, e.g., “network research group”. An address book entry can belong to zero

or more access groups. An event, such as an appointment or a class schedule, can have a group-

name with given group-privileges. The read or write access privilege for an event can beowner,

group or everyone, similar to Unix file permissions. Theread access privilege specifies who

can view the description and details of the event. Thewrite access privilege tells who can modify

the event attributes. A personal appointment typically hasowner privileges for read and write,

whereas a seminar series hasgroup read access andowner write access privileges.

9.3.3 Events and Event-groups

An event is an individual event or appointment. Aneventgroup is a collection of related events,

e.g., an university course for which individual classes, or events, happen weekly. Eachevent can

belong to aneventgroup. An eventgroup can have zero or moreevents. An eventgroup can

optionally have arepeat indicator, e.g., every month, every year. The repeat indicator is useful if

one does not want to itemize individual events, e.g., yearly birthday reminders.

An event-group may be associated with an optional conference name, e.g., on-line lecture

series. While aneventgroup defines a group of events used in calendar, a conference is strictly a

synchronous collaboration with additional attributes like supported media-types, dial-in numbers,

recording formats, default audio sampling rate, public or private conference type and public or

private participant list. Various SQL tables for storing the information and their relationships are

explained in the CINEMA technical reports [88, 220].

9.4 Synchronous Collaboration

A multi-party multimedia conference is the simplest form of synchronous collaboration. In the

absence of multicast, centralized conference servers provide an attractive solution for small to



189

medium scale conferences. Moreover, a centralized control integrates easily with other collab-

oration requirements such as floor control. For example, the organizer can control who gets to

speak at any instant if there are multiple speakers, and enforce the policy at the server.

A conferencing server consists of a signaling and a media module. The signaling mod-

ule receives SIP requests to join or leave the conference, while the media module receives

and sends RTP media streams from and to the participants. The participants dial the con-

ference URL, e.g.,sip:staff-meet@cs.columbia.edu, to join the dial-in conference. The con-

ferences can be pre-scheduled from the web interface, or created on the fly, e.g., by dialing

sip:letsmeet.adhoc@conference-server.

The conference can have heterogeneous endpoints used by various participants with dif-

ferent media capabilities. For example, some user agents connected to low bandwidth links can

have only low bit-rate audio codec whereas others on high bandwidth links can support high-

quality codecs along with video. When a user agent joins a conference, it indicates its capabilities

to the server. The server selects a subset of capabilities based on the intersection of user agent

capabilities and the server capabilities on per-participant basis.

Our conference server,sipconf, consists of a number of features such as audio mixing,

video forwarding, instant messaging, shared web browsing, screen sharing and conference con-

trol.

9.4.1 Audio Mixing

When the participants join the conference, the server mixes and redistributes the audio such that

a participant hears everyone else except herself from the server. The server decodes the incoming

audio from the participant, and puts it in a per-participant queue as shown in Fig. 9.3. On periodic

interrupt, the participant audio is mixed, and redistributed back to the participant after encoding.

The server acts as an RTP mixer [1, 2] for the audio. However, since each receiver can potentially

have different audio stream mixed from audio streams of all the participants except herself, and

each call leg in the conference forms an independent RTP session between the server and the

participant, the conference represents multiple logical RTP mixers.



190

ED

D

DA

B

C

DVI

G.711 Mu Linear

X = A+B+C
X−B E

X−C

Mixed Linear Stream
GSM

G.711 Mu
Send to C

DVI
Send to B

G.711 Mu
Send to A

= B+C
X−A

Periodic timer interrupt
Play−out delay

Linear

Linear

= Audio Encoder = Audio DecoderDE

E

Figure 9.3: Audio mixing

Decode-mix-encode

In Fig. 9.3, participantA supports the G.711 codec,B DVI codec andC both GSM and G.711.

Participants list the codecs they support in their SDP component of the SIPINVITE requests.

The server selects an intersection of the algorithms supported by the participant as well as by the

server. This selection is returned in the success response to the participant. These algorithms are

listed in order of preference in the SDP of theINVITE or its response.

The mixing algorithm follows adecode-mix-encodesequence. When an audio packet

arrives at the mixing module, it is decoded into 16-bit linear samples and appended to the per-

participant audio buffer queue. Each buffer is labeled with the corresponding RTP timestamp.

The jitter in packet arrivals is absorbed by a play-out delay algorithm. Every outbound packetiza-

tion interval, a timer triggers a routine that mixes a range of the samples from one of more input

buffers from each active participant into a combined packet by simple addition of the sample

values. The timer is adjusted to account for processing delay in each interval.

To allow input and output packets to have different packetization intervals, the mixer

routine can grab samples from one or more input buffers. Using a linked-list of buffers saves

memory compared to a circular buffer of maximum size, and makes it easier to detect when a

particular source is silent. For each of the participants, the linear sample values from the per-

participant queue (e.g.,A) is subtracted from the mixed data (X) and the resulting data (X −A)

is encoded using the preferred audio compression algorithm ofA. The encoded data is packetized



191

and sent to that participant. If there areM participants, then both mixing and redistribution will

takeM additions andM subtractions. Note that the receive and transmit audio algorithms need

not be same for each participant.

While thedecode-mix-encodesequence is the most straightforward approach to imple-

menting an audio mixer, there are alternative approaches. For instance, one can build an addition

or subtraction table for G.711 samples, so that conversion to linear is not required to do mixing.

This only works for G.711, not for codecs with cross-sample dependencies such as G.723.1 or

GSM.

Also, instead of subtraction, one could createM + 1 different streams directly, one for

each talker and one for the listeners. However, that requiresM2 additions.

Optimizing the Mixing Logic

It is possible to optimize the mixing logic, although we have not implemented any optimizations.

One such scheme (Fig. 9.4) combines the encoding step for the output streams that have same

mixed audio data and uses the same encoding algorithm. For all the participants who did not speak

in the last timer interval and who have a common subset of supported receive audio algorithm,

we can call the encoder only once. However, if a stream stops being active, it will receive the

general listener packet stream rather than its own version, so that the predictor will be wrong. It

is not clear how much this would matter in practice.

Packetization Interval

Although RTP implementations are supposed to handle a wide range of packetization intervals,

we found 20 ms to be the only one that worked across a range of media clients such as RAT [52]

or Microsoft NetMeeting. End systems permitting, it may be useful to dynamically change the

packetization interval for outgoing packets, as smaller packetization intervals decrease delay, but

increase network bandwidth and computational effort.



192

A

B

E

F

D

C

X=B+D
D

D

E (G.711)

E (G.711)

E (G.711)

E (GSM)

X

X−B

X−D

X

X

X−B

X

X−D

X

X

A−D support G.711;  E and F support GSM.

Figure 9.4: Possible optimization in decode-mix-encode sequence

Inactivity Detection

The system should be able to detect if a particular participant becomes inactive, e.g., due to user

agent failure. Failures can be detected by observing ICMP errors or sudden discontinuation of

RTCP reports.

Automatic Gain Control

If the participants use different types of devices, it is possible that some users are heard louder

whereas some others are hardly audible due to different speaker and microphone volumes. The

server can do automatic gain control for both incoming and outgoing audio. However, this puts

additional processing overhead on the server and reduces scalability. Alternatively, the server

can indicate the volume level if it is too high or too low to the participant, who can then adjust

her microphone and speaker volume, or it can selectively implement automatic gain control for

participants who want it. For example, using VoiceXML a participant can press 6 to increase her

microphone volume, or press 7 to reduce her speaker volume.



193

Playout Delay Algorithm

Playout delay algorithms help absorb the jitter in network packet arrival due to network conges-

tion. Adaptive playout delay further allows an application to adapt to changes in the amount of

jitter, thus giving minimum delay in the audio stream. Playout delay compensation takes place be-

fore mixing, stretching or shrinking silence periods between talkspurts to adjust the time between

arrival and mixing [221, 222]. In the absence of silence periods, time stretching or companding

can be used, albeit at much greater computational cost. We have used Algorithm 1 from [221],

with α = 0.95, for our implementation. The algorithm is basically a linear recursive filter. The

adapted delay at any instant depends on the measured delay (using RTP timestamps) plus the pre-

vious adapted delay, with a weighting factorα. The playout delay depends on both the adapted

delay and the variation in the adapted delay.

9.4.2 Video Forwarding

Unlike audio, mixing does not make sense for video. Every participant may want video from ev-

eryone else in the conference. The server implements transparent packet forwarding for video. A

video packet from a participant is distributed to every other participant in the conference without

modification. In this case, the server does not implement the RTP stack for video session. The lip

synchronization between the audio and video sessions is done at the participant’s user agent on

receiving the two streams.

Alternatively, the server can send only one video stream of theactivespeaker to all the

participants, or the chair can decide whose video stream needs to be distributed. Organizing the

participants’ video in a single stream (NxN tile) puts additional processing load on the server,

degrades quality, and is undesirable.

If the user agent does not indicate video capability, i.e., no video port, then video is

disabled for this call leg. The participant can dynamically change the capability. For instance,

she can start with audio, and later, switch to audio and video sessions.



194

9.4.3 Instant Messaging

The instant message (IM) handling in the conference server is similar to video forwarding.

When alice@office.netsends an IM tobob@home.com, the SIP server athome.comdomain

proxies it to the current location of Bob’s phone. An IM sent to the conference URIsip:staff-

meet@servers.comis intended for all the conference participants. If the conference is not active

or there is no other participant, then the server indicates the error to the sender. If the sender is

not already in the conference, then the server can either indicate an error to the sender, or still

continue to distribute the IM to the participants. In a way, the server provides a group address to

send IM to, similar to email-groups.

Meet me at Tom’s at 8:00.
...
Content−Type: text/plain
To: Alice <im:alice@office.net>
From: Bob Wilson <im:bob@home.com>
...
Content−Type: Message/CPIM
To: <sip:alice@office.net>; tag=Uo18a
From: <sip:staff−meet@servers.com>
MESSAGE sip:alice@office.net SIP/2.0

SIP headers

IM headers

IM text

Figure 9.5: Example SIP MESSAGE for instant messaging

An example SIPMESSAGE sent by the server is shown in Fig. 9.5. It indicates that the

SIP message is sent from the conference server to the participant, Alice, and the IM is originated

by the user Bob. The server can also forward indications [223] that allows Alice’s user agent to

display status such as “Bob is typing a message”.

The server should allow transitioning from an IM session to a full multimedia session,

and vice-versa, when the participant changes her media capabilities accordingly.

9.4.4 Shared Web Browsing

The SIPMESSAGE method can be used not only for instant messaging, but also for some

additional control. For example,sipc can capture the browser event on navigation and indicate



195

that HTTP URL to the remote party. The server forwards the message like any other IM, thus,

readily supports shared web browsing among multiple participants. The message is similar to

Fig. 9.5 except that the IM headerContent-Type is text/uri-list and the IM text contains

the HTTP URL. If the remote party understands this content, it can also invoke the browser

pointing to the given HTTP URL.

9.4.5 Screen Sharing

We have added support for the open source Virtual Network Computing (VNC [224])-based

screen sharing insipconf. VNC is a client server protocol, where the server shares its screen to a

viewer or client. To avoid authenticating the client, we initiate the session from the VNC server

to the listening client. If a participant shares her screen, her user agent invokes the VNC server

application whereas all the other participants invoke the VNC client application. The conference

server merely forwards packets similar to video forwarding. The data packets containing the

screen buffers are forwarded from the VNC server to all the VNC client applications whereas

the control packets such as mouse and keyboard input are sent from the VNC client to the VNC

server application. The VNC protocol can be tunneled through SSH for secure sessions.

9.4.6 Conference Control

In a hybrid conference using phone for audio and PC for IM, it should be possible to control

the conference from either phone or IM client. Simple IM to the server can be used as control

commands, e.g., if a participant sends IM text as “list”, the server returns the IM text containing

list of all the active participants. Similarly, when a new participant joins or one leaves, all the

existing participants are notified by the server via IM.

Conference floor control [210] means controlling who gets the exclusive access of the

shared media channels or resources. For example, typically only one participant should speak in

a conference. In case of multiple contenders, the conference chair can decide who gets to speak.

There are many ways to do advanced floor control such as using Simple Object Access Protocol

(SOAP) to run Remote Procedure Calls (RPC) on the server, web interface, and via touch-tone

phones. We have implemented SOAP-based floor control in our server.



196

SIP and SOAP: Conference floor control consists of two parts: notifying the participants about

who is holding the floor [139], and allowing the moderator and the participants to re-

motely control the floor. For example, a moderator can grant or deny a floor request

and a participant can claim or release a floor. We use XML-based platform independent

SOAP [225, 226]) for encapsulating and exchanging the floor-control commands instead

of creating a new RPC (remote procedure call) protocol.

Web interface: The control messages can be sent from the web via CGI scripts or Java ap-

plets. The moderator can grant or reject floor to other participants from the web. For the

web-based floor control, the web components communicate with the conference server and

indicate the appropriate control message.

Interactive voice response:This allows a telephone user to control the conference via limited

touch-tone keys. For example, “press 1 to ask for floor”. The DTMF (Dual-tone multiple

frequency) digits are typically detected and translated to special RTP packets [227] at the

telephony gateway.

9.4.7 Dial-in vs Dial-out Conferences

Although most of our earlier discussion focused on dial-in conferences, dial-out mode is equally

important, for example, a participant invites another user in the conference, or the server sends

out call invitations to the intended participants at a scheduled time. Usually some form of audio

and text announcement indicates the purpose of the call to the user. To avoid the dialed-out call

going to answering machine, the server may prompt the user to press certain digits to actually

join the conference.

9.5 Asynchronous Collaboration

There are a number of related events during or after the conference that need to be shared with

others even when the conference is not active. For example, the recorded conversation or meeting

minutes may be needed in subsequent meetings, off-line discussion on the topics covered in the

conference needs to be co-ordinated in the same way as the conference was controlled or the notes



197

may be edited remotely using WebDAV [228]. The primary objectives of these collaboration

mechanisms are to avoid duplicating shared data and to provide some form of change control on

shared data.

As mentioned earlier, every conference is associated with someeventgroup. An event-

group can be associated with various forms of asynchronous collaboration mechanisms, such as

file sharing and discussion forum. Conference participants can share meeting notes, agenda or

other documents via the web.

9.5.1 File Sharing

Figure 9.6: File sharing

The web interface allows uploading shared files as shown in Fig. 9.6. The shared file

attributes consist of the creator’s user identifier, name of the file, MIME-type [229] for display, a

brief textual description, date of creation and last modification, and the access privileges for read,

write and delete. The read access privilege can be for thegroup or public, whereas the write and

delete access privilege can be for thegroup or owner. The group name of the file is inherited

from the associatedeventgroup. The users can register to get notified via email when the shared



198

file is modified or deleted.

9.5.2 Discussion Forum

Message boards and discussion forums facilitate asynchronous discussion on a particular topic.

One advantage over email-based discussion is that it can systematically display the various dis-

cussion threads, postings and replies. The message information stored in the SQL table includes

the message subject, content, sender identifier, date and time, associatedeventgroup identifier, a

unique message identifier and the message identifier of the parent message. If there is no parent

message, then this message is the start of some thread. If there is a parent message, then this

message is a reply to that parent message. The associatedeventgroup specifies the read and

write access attributes for the message board.

The users can also register to receive new posts or replies in their email. They can use

email to post a message or reply to the discussion thread. Fig. 9.7 shows an example web inter-

face. Integrating email with the system is discussed in detail in Section 9.6.3.

9.5.3 Conference Event Recording

CINEMA allows recording of the audio, video and IM communications in a conference. The

audio recording at the conference can be done either when the media packets (RTP) are received

from the participant or when the mixed stream is created as in Fig. 9.3 (p. 190). In the former case,

the recording is done by dumping the raw RTP (and RTCP) packets along with packet size and

time-stamp, in a file. This “rtpdump” format can later be played out using our media server,rtspd.

The server does not need to understand any specific media file-formats, such as MPEG or “wav”,

but works as long as the playing client understands the codec used by the recording client. On the

other hand, a mixed audio stream can be recorded in standard Sun “snd” or Microsoft “wav” file

format. Only rtpdump recording format is needed for video, since the server does not generate

any mixed video stream. The system allows recording in a local file or to remote media server

using an RTSP URL. A per-conference quota on maximum recorded file size can be imposed.

The recorded file path or URI information is stored in the SQL table for each conference instance

(or event), whereas recording format preference is indicated for each conference (or event-group).



199

Figure 9.7: Web-based discussion forum

The conference proceedings can be displayed using a time-line on the web interface as

shown in Fig. 9.8. The first time-line indicates the complete conference duration with the impor-

tant events, such as the new user join, leave, file uploads and instant message interaction. The

second time-line is the zoom-in view of a part of the conference duration as selected in the first

time-line. A user can click on the appropriate icon to playback the recorded media (audio, video),

instant message or view the uploaded file. User can click on the time axis to jump to that location.



200

Figure 9.8: Web interface for conference recording

Different colors are used to identify a small number of active participants.

9.5.4 Unified Messaging and Multimedia Mail

The ability to send multimedia messages to other individuals or a group is an important feature

of collaboration systems. Registered users can listen to their voice/video messages, recorded

conference proceedings or view their emails from the web.

The basic requirements of a voicemail service are secure recording and playback of mes-

sages, ease of access and navigation, touch-tone interface, new message notification and call

reclaiming by the receiver, i.e., if the receiving user picks up the phone while the caller is record-

ing the message, he should be able to talk to the caller. Additionally, an Internet-based voicemail

service should integrate with email, web and instant messaging.



201

Answering Machine and Message Recording

The voice and video mail is recorded at the media server,rtspd, by the centralized answering

machine and voicemail server,sipum. The sipum, directly connects the media path between

the caller and the media server,rtspd, hence scales to large user population. Secondly, it uses

the standard protocols such as SIP and RTSP, and existing features such as “request-forking”,

hence does not require any modification to the current infrastructure and can work well even if

the voicemail provider is different from the Internet telephony provider.

1. Alice calls Bob through server at cs.columbia.edu

bob@sbb.cs.columbia.edu

4

R

6

server
Voicemail

server

vm.cs.columbia.ed

R. RTP/RTCP packets are exchanged directly between

    and also to the voicemail server.

4. Voicemail server accepts the call

5. SIP server cancels the other branch

@cs.columbia.edu

5

3

2

2. The SIP server proxies the call to Bob’s phone

INVITE

INVITE

SIP proxy

RTSPserver
rtsp.cs.columbia.ed

CANCEL

200 OK

INVITE

200 OK

6. SIP server forwards the final response

    two SETUP requests to RTSP server (for playback of
    welcome message and recording of voice mail).

3. After 10 s, voicemail [or multimedia mail] server sends

alice@home.com

    the RTSP server and Alice’s phone.

2

1

Figure 9.9: Forwarding the call to voicemail

Fig. 9.9 shows an example of recording voicemail. A SIP server handles all the users in



202

a particular domain, e.g., cs.columbia.edu. Different users register their current location with the

SIP server, so that the server can contact the user on receipt of an incoming call. The voicemail

server also registers its location on behalf of all the users it is serving. From the SIP server’s

perspective, there are two active locations for every user, one is his actual SIP based phone and

the other is the voicemail server.

When a user Alice, (alice@home.com) calls Bob,bob@cs.columbia.edu, the SIP

server proxies the call to both locations. If the user picks up the phone, the branch to the voice

mail server is cancelled and a normal SIP call proceeds betweenAlice andBob.

The voicemail server is configured to wait for some time, say 10 seconds, before accepting

the call. So, ifBob does not pick up the phone in 10 seconds, the voicemail server is going to

accept the call on his behalf. Before accepting the call, the voicemail server sets up the media

path with the RTSP server. It sends an RTSPSETUP message to the RTSP server to play back the

voice prompt toAlice for leaving a voice message. The voice prompt for the outgoing message

can be generated using a recorded media file, or, if configured, by converting the text ofBob’s

vacation message to speech. The voicemail server sends anotherSETUP message to the RTSP

server to record the message.

Once the caller has finished recording, he hangs up and triggers a SIPBYE request. The

voicemail server informs the RTSP server to stop recording. Media data for the outgoing and the

recorded message is exchanged directly between the caller (Alice) and the RTSP media server

using RTP [1, 2].

Havingsipum register with the SIP server on behalf of the user is very simple and does

not need any intelligence in the SIP user agent or the SIP server. However, there is a race con-

dition, as to whether the userBob or sipum picks up the call first. If both pick up the call at

approximately the same instant,Alice will receive two final responses. It is up to the caller to

keep one or both the call legs. The response should indicate whether it is from a multimedia

mail system or a human user. This will help the caller’s user agent automatically send SIPBYE

request to one of the call legs.

This approach does not distinguish between a busy callee and no response from callee. In

either case the multimedia mail server will wait before accepting the call. This might be desirable



203

if the callee’s user agent implements call waiting service.

There are several other ways to forward an incoming call to a multimedia mail server:

the callee’s phone can forward the call to voicemail after few rings, the SIP server can transfer

to voicemail if the callee is busy or there is no response. The transfer can be based on either

a programmable script or global server configuration. The phone-based forward does not work

if the callee’s phone is dead or unreachable. Secondly, such intelligence in an user agent is not

always possible, particularly in low cost SIP enabled embedded devices. The programmable

script such as CPL or sip-cgi allows more precise per-user control over the service. For example,

Bob can use the script of Fig. 9.10 to selectively forward the call to his voicemail depending on

caller address, time of day, etc. However, this approach requires programmable SIP servers such

assipd.

<?xml version="1.0" ?>
<!DOCTYPE cpl SYSTEM "cpl.dtd">

<cpl>
<subaction id="voicemail">

<location url= "sip:bob@vm.cs.columbia.edu"><redirect /></location>
</subaction>
<incoming>

<address-switch field="origin" subfield="host">
<address subdomain-of="cs.columbia.edu">

<location url= "sip:bob@sbb.cs.columbia.edu">
<proxy>

<busy><sub ref="voicemail" /></busy>
<noanswer><sub ref="voicemail" /></noanswer>
<failure><sub ref="voicemail" /></failure>

</proxy>
</location>

</address>
<otherwise><sub ref="voicemail" /></otherwise>

</address-switch>
</incoming>

</cpl>

Figure 9.10: CPL script for forwarding a call to voicemail



204

Scalability

The voicemail server has both SIP and RTSP parts. On one side it can receive Internet telephony

calls using SIP, and on the other side it behaves as a RTSP client and can perform playback,

recording and other control on the multimedia mail residing at the remote RTSP server.

The RTSP server acts as a storage server for the multimedia mails. Separating the voice-

mail server from the storage server helps in building scalable systems. For example, a single

voicemail server can serve all students of an university, while using the departmental RTSP

servers for load balancing. Since the voicemail server does not have to handle the media stream,

processing speed is not a bottle-neck.

POP3 [230] and IMAP (Internet Message Access Protocol [231, 232]) are not used di-

rectly because they do not support media streaming. One can implement a POP3 or IMAP inter-

face to fetch the voice message similar to text based electronic mails.

Notification of New Messages

The server notifies the user of new incoming messages, e.g., using email, and indicates the pointer

or URL to listen to the message. It allows sending the media content instead of the pointer in

the email, if the user wants that way. That is, forwarding of the voice message as a MIME

(Multipurpose Internet Mail Extensions [45]) attachment to electronic mail is supported. It also

implements message waiting indication so that the SIP phones can receive notification when a

new message arrives.

Retrieving Voicemail

Our system offers five choices for retrieving multimedia mail messages:

1. Existing RTSP based media players can be used to directly play the voice messages from

the RTSP server. For instance, the URIrtsp://server.com/bob/inbox/6532.au can be

used to retrieve the message number 6532 from the RTSP server,server.com, for user

Bob.

2. Bob can also use his SIP phone and call the URIsip:bob-6532-retrive@voicemail.com



205

to retrieve his message from his voicemail server,voicemail.com. The call is received

by the voicemail server which in turn contacts the RTSP media server and retrieves the

message. The media data for the message is directly sent from the RTSP server toBob’s

SIP phone.

3. Bob can dial the auto-attendant or voicemail number, and navigate through the interactive

voice prompts using the touch tone keypad of his telephone.

4. Alternatively, the multimedia mail server can be configured to send the message as an

attachment toBob’s email address, as mentioned earlier.

5. The preferred approach is to access the voicemail from a web page using a web browser,

as described next.

Unified Display of Messages

Figure 9.11: Voice messages user interface

An example web page is shown in Fig. 9.11. Basic features like folder management,

password change, customizing the voice response, deleting messages and sorting the messages

based on different parameters (e.g., date, subject, size) are implemented. The system provides

an integrated set of facilities to ease user administration and to share common resources such as



206

address books, calendar and group messages, and can also be extended to use other email and

calendaring tools if the user prefers. The web interface is extended with a simple IMAP-based

client to fetch and display the email from user’s other email accounts.

One possible enhancement is that the conference invitation sent in an email is automati-

cally added to the user’s personal calendar if she accepts the invitation. Alternatively, she can use

her own email client to read these messages. She should be able to send multimedia messages to

a group of people, such that the message appears in the group member’s “inbox” folder. The user

can delete or move the message pointer to another folder, and still share the media content across

the group.

Call Reclaiming

Another implicit requirement for the voicemail system is to allow reclaiming an already trans-

ferred call. If the callee arrives and picks up the phone when the voicemail is being recorded,

the system should provide an option for the user to stop the recording and continue talking in a

normal call. This is not trivial if the voice mail system is not part of the callee’s user agent.

One approach is to use SIP call control to support call reclaiming. In the previous example

(in Fig. 9.9), when the call gets transferred to the voicemail server, the voicemail server invites

the intended user,bob@sbb.cs.columbia.edu, in the existing call. IfBob picks up the phone

while the voicemail is being recorded, he joins the existing call to form a three party conference

between the caller (Alice), the voicemail server and himself. The voicemail server then drops

out of the conference by sending a SIPBYE. If Bob does not pick up the phone, the voicemail

server cancels the call once the message fromAlice has been recorded. However, it is not clear

how the voicemail server can callBob without having the SIP server fork a branch back to the

voicemail server. One can extend the caller preference [233] to include a description of the user

agent picking up the phone.

Another approach is to use third party call control, with the voicemail server as the third

party. It simply sends anINVITE to Bob, with Alice’s session description. IfBob picks up, it

also changesAlice’s session description via re-INVITE, so that the two now talk directly to each

other media-wise. To avoid any confusion toBob, the voicemail server may prompt him that



207

Alice’s message is being recorded.

A third approach uses call state notification.Bob subscribes to call events from the

voicemail server and canINVITE himself to the call. This requires further study.

It might be desirable to have the user decide whether to stop the recording or not. The

caller may not want to repeat the long message if he has already recorded most of it.

It is not clear how essential a call reclaiming feature is in practice, given that most users

using the centralized voicemail system of the mobile phone service provider do not currently have

this feature and are not complaining. Since implementing the call reclaiming is complicated, it

may be desirable to leave it for simplicity.

The voicemail server uses the SIP request-URI to identify the purpose of the call. For

instance, if the call is directly made to the voice mail server to leave an announcement or a

reminder in user’s mail box, the server should not try to contact the intended recipient.

Deletion of Messages

The architecture assumes that the RTSP media server stores the multimedia messages. However,

there is no explicit mechanism to delete a resource in RTSP, in its current form.

One option is to define a new method, sayDELETE, to delete a resource or a media file

on the RTSP server.

The other approach is to pretend as if you are recording the file, but terminate the RTSP

connection without actually recording anything. To be more specific, an RTSPSETUP with

record mode is sent to the server, immediately followed by an RTSPTEARDOWN, without

sending aRECORD message. Our RTSP server interprets this as a command to delete the file.

Even otherwise, the recorded file will be empty, and of no use.

While the first method is more direct, it requires modifying RTSP. We have implemented

both approaches.

9.5.5 Notifications and Announcements

The system can notify the user of various appointment reminders, conferences schedules or

changes in shared files, message board or incoming multimedia message. The notification in-



208

formation stored in the SQL table and can be associated with anevent and aneventgroup. The

information also contains the destination for notification such as phone number, SIP URI, email

address or IM address, time relative to the event in seconds (e.g., notify 60s before the event), and

the identifier of the scheduled notification. The notifications are scheduled using the “at” com-

mand on the Unix platform. The user can schedule the same notification to multiple destinations.

It supports different kinds of notifications:

• Birthday, appointment or other event reminders for which the notification is sent before the

event occurs.

• Scheduling any text or media as a notification (e.g., wake-up call) that automatically creates

an associatedevent. The notification is sent when the event occurs.

• Notification for theeventgroup, in which case the notification is sent for every individual

event in thateventgroup.

While an email or IM is an one-time event with no interaction, a phone-based notification

can prompt the user with more options via interactive voice response. For example, “press 1 to

get notified again after 5 min, or press 2 to listen to the details of the event”. The system can

allow scheduling the notifications from the web interface or via telephone using the touch-tone

input.

It is possible to send a phone announcement to aneventgroup, in which case all the group

members get the announcement, or to a set of SIP addresses or phone numbers. For example, an

announcement to 1-212-93970?? will be received by all the valid telephone subscribers in the

range 1-212-9397000 to 1-212-9397099. The announcement server makes SIP calls to all the

numbers specified, and if successful, speaks out the announcement. It attempts multiple times on

busy or no-answer. To avoid leaving the announcement to an answering machine, the server can

prompt the recipient to press some digit to confirm user presence. Such announcement system

will also be useful in the case of an emergency.



209

9.6 Additional Services

So far we have discussed the synchronous and asynchronous collaboration tools in CINEMA.

There are other interesting services that assist both synchronous and asynchronous collaboration.

For example, a conference server can dial-out a scheduled meeting only when all the required

participants are on-line. An IM user can join a tele-conference and interact via speech-to-text

and text-to-speech conversion between the IM text and other participants’ audio. The location

information published by the user can determine her availability. We describe some of these

enabling technologies in this section.

9.6.1 Presence

The presence information gets used quite often in people’s daily life. People are used to checking

online status before starting a conversation with their IM “buddies”. In our system, we base our

presence information handling on the SIP event notification architecture [139].

NOTIFY

example.com
alice@

macrosoft.com

SUBSCRIBE

NOTIFY

REGISTER

PA

bob

UA

PA

PUA

PUA

PUA

presentity

presence server

registrar

Figure 9.12: SIP-based presence

The presence information is maintained either on the SIP servers residing in networks or

on the presence-enabled SIP user agents as shown in Fig. 9.12. If a user Alice is interested in the



210

presence status of another user Bob, then she subscribes to his addresssip:bob@macrosoft.com

for the event package of “presence”. Our SIP server,sipd, proxies theSUBSCRIBE message

to the registered user agents with presence capability of Bob. If the user agent wishes to handle

the subscription, it sends a 200-class SIP response tosipd. Therefore,sipd disables the internal

presence agent for this subscription. On the other hand, if the userrejects (600-class response),

then thesipd stores the decision in the SQL database so that future subscription from Alice to

Bob are also rejected even if Bob’s user agent is off-line. For other responses such as the user

agent is not presence-enabled, thesipd enables the built-in presence agent for this subscription.

However, before the actual presence information can be conveyed to Alice, the subscribee Bob

must approve the subscription from the web.

The web interface displays the list of subscribed users (buddies) as well as all the others

who are interested in knowing the presence status of this user as shown in Fig. 9.13. Note that

a subscription can be handled only by the server or the user agent but not simultaneously by

both [234]. It is possible to transfer the subscription from the user agent to the server and vice-

versa.

More recently, our SIP server,sipd, has been simplified by extracting the presence agent

part as a separate server.

The network-based presence agent is useful when the end devices are not presence-

enabled such as location sensors or magnetic swipe-card reader. For example, Bob can use a

passive device, such as a magnetic swipe-card or an iButton [235] and the card or button reader

delivers the location information to the server. Alternatively, when Bob’s wireless phoneREG-

ISTERs with the server, the server can publish his on-line status to the subscriber, Alice.

Pushing the presence information to the end systems also has some benefits. In Internet

telephony, end systems are the only entities where signaling and media flows converge whereas

intermediate proxies only handle signaling. The means that several services can only be per-

formed in the end system.

The SIP event notification can be applied to non-presence events, e.g., the voicemail

server can notify the user’s phone of any waiting messages [236].



211

Figure 9.13: Web-based presence

9.6.2 Interactive Voice Response (IVR)

We have discussed a number of examples involving user interaction via touch-tone input from

a telephone. Oursipvxml is a SIP-based VoiceXML browser that allows a SIP phone, or a

regular telephone via a gateway, to interact with the back-end application logic [36]. We have

implemented only a subset of VoiceXML tags as needed in our application:assign, audio,

block, catch, clear, disconnect, dtmf, error, exit, field, filled, form, goto, help, noinput,

nomatch, prompt, submit, value, var andvxml. We do not support any client side script (e.g.,

JavaScript) usually needed for arithmetic or string operations in the browser, as the same effect

can be achieved using server side processing.

Operation of the Browser

Fig. 9.14 shows the components of our SIP-VoiceXML browser,sipvxml. We use Apache’s XML

parser [237] with DOM interface, an HTTP fetcher [238] for getting non-XML pages and CMU’s



212

On new incoming
SIP call

recognition
Grammar
matching interpretation

XML 
parser

Detect
DTMF

Speech

rules algorithm

Form

fetcher
Http

text to
speech SDK

RTP/RTCP

RTP/RTCP

(1)

Web
server

Web
server

Interpreter
thread

(2)

(4)

(5)

(11)

(15)

(7)
(6)

(12)

(14)
(13)

(3)

(8)
(9)

(10)

RTP
send
thread

(16)

RTP
receive
thread

SIP interface

RTP 
interface

INVITE

SIP

Figure 9.14: Operation of sipvxml

FLite text-To-speech (TTS) for speech synthesis [239].

(1) When the browser receives a new incoming SIP call it creates three different threads: an

RTP receive thread, an RTP send thread, and the VoiceXML interpreter thread. The RTP re-

ceive thread receives media packets from the caller and invokes the DTMF detection module.

The RTP send thread streams out media packets to the caller. A separate send thread helps in

maintaining the constant bandwidth (e.g., 64 kb/s for G.711 audio) for outgoing packets and

irrespective of the speed of the speech synthesizer. The initial VoiceXML page URL can be

preconfigured in the browser or encoded in the SIP request [207]. For example, if the caller

dials sip:dialog.vxml.http%3a//dialogs.server.com/ script32.vxml@vxmlservers.com then

the call will reach the browser running atvxmlservers.comand it will fetch the initial VoiceXML

page fromhttp://dialogs.server.com/script32.vxml. On the other hand, if the request-uri is

sip:7137@cs.columbia.edu, then the interpreter is invoked with the default pre-configured ini-

tial VoiceXML URL, e.g., that of the conferencing service.

(2-5) The interpreter thread calls the XML parser with the initial URL. The XML parser fetches

the page from the web server or a local file system (based on the initial URL). It presents the

returned XML document into a tree data structure. The interpreter thread invokes theForm Inter-



213

pretation Algorithm(FIA [35]) on the selectedform from the VoiceXML document.

(6-8) FIA invokes various other modules based on the content of the VoiceXML document. For

example, it can invoke the text-to-speech SDK to synthesize anyprompts. The current imple-

mentation does not use any speech recognition engine because user input is via touch-tone keys.

FIA can also invoke the HTTP fetcher module to fetch an external grammar file or a media file

for an audio prompt. XML parser internally has its own HTTP client to fetch VoiceXML pages.

The HTTP fetcher implements a simple HTTPGET method to retrieve a document.

(9-10) The media file retrieved from the web server using HTTP fetcher is fragmented into 20 ms

packets for interactive telephony, and enqueued for streaming out to the caller by the send thread.

The speech synthesizer output is also fragmented and enqueued for sending out to the caller.

(11) The VoiceXML document can specify the grammar rules in various scopes in the document.

FIA can set the active grammar for the matching engine based on the current execution scope in

the VoiceXML page.

(12-14) The RTP receive thread receives the RTP media packets and invokes the DTMF detec-

tor. Any detected DTMF digit is passed to the grammar matching engine. DTMF tones can be

transported from the caller to the browser in a number of ways. One approach is to not distin-

guish them from the spoken voice by encoding them using the same audio codec. However, a low

bandwidth audio codec may distort the properties of the in-band DTMF tones making them hard

to detect. A second, preferred way is to use “telephone-event” [227] containing the digit codes

instead of the encoded audio in RTP packets. In the first case, the browser has to do the DTMF

detection, whereas in the second case the caller or the gateway has to do the DTMF detection.

The RTP receive module forwards telephone-events directly to the grammar matching engine.

We have implemented both these methods. A third method of transporting DTMF in SIPINFO

message is not used in our implementation.

(15-16) The grammar matching engine tries to match the received digits with any active grammar,

and informs the FIA if a match is found. The RTP send thread periodically sends media packets

to the caller. No packets are sent during silence.

We have developed some CGI-based applications for voicemail access and conference

participation. Each registered user gets a unique telephone PIN (personal identification num-



214

ber) for authentication. The voicemail script announces the number of new and old messages,

and prompts the caller to listen to the messages. The conferencing application prompts for the

conference number and transfers the call to that conference.

Joining a Conference via IVR

Consider a SIP conferencing system where users join the conference by dialing in a conference

URI such assip:staffmeet@conference.com. A regular telephone user with only a touch-tone

phone cannot dial such a generic URI. We can assign one phone number per conference for

Direct Inward Dialing (DID). However, it is preferred that the user always dials the number of

the VoiceXML browser or some auto-attendant that in turn prompts him for the authentication

PIN (personal identification number) and conference number. Once the user is authenticated the

browser transfers the call to the selected conference. One can also use a single PIN to identify

both the participant as well as the conference.

Fig. 9.15 shows how an user, say Alice, interacts with the browser before joining

the conference. (1) Alice dials the browser’s phone number, 212-9397137, or SIP URI,

sip:7137@server.com. (2) The browser accepts the call and prompts the caller to enter PIN

for identification. (3) Alice keys in her PIN, 1-2-3-4, followed by a terminating # key. The

DTMF digits are sent in RTP. (4) The browser looks up the database and identifies the caller

as “Alice”. (5) Based on the privileges, the browser prompts her with a list of conferences to

choose from. (6) Alice picks up the conference with identifier 23. (7) The browser again checks

if Alice is allowed to join the conference identified by number 23, which in this example is

sip:staffmeet@conference.com. (8) Once the authentication is done, the browser transfers the

call to the actual conference server using the SIPREFER method [77] containing the SIP URI

of the conference. (9) Alice’s phone accepts the transfer and initiates a new call to the conference

server. (10) Alice’s phone exchanges audio with the conference server directly, without going

through the browser.



215

(1)

(8)

(9)

VoiceXML browser

200 OK (accepted)

(5) enter the conference 
identifier you want to join

User SIP phone

(6) 2-3-#

(1) INVITE sip:7137@server.com

identification

ACK (cnfirmed)

with credentials

 202 Accepted

BYE

200 OK (call closed)

200 OK (accepted)

(2) Welcome, please enter your
four digit PIN code.

(3) 1-2-3-4-# (4) user auth/

Conference server

(9) INVITE sip:staffmeet@conference.com

(10) User talks/listens to the conference server directly

(8) REFER to sip:staffmeet@conference.com

(7) is user 
allowed to join?

Database

BYE (user ends the call)

200 OK (call closed)

1234=>Alice

(a) Message flow

(b) Architecture

23=>staffmeet

(4) (7)

Alice is allowed

Figure 9.15: Method 1: Joining a conference in blind transfer mode

Call Transfer

Note that the user authentication, conference look up and transfer are actually invoked by the con-

ference service CGI scripts, whereas the browser just interprets the VoiceXML pages generated

by the scripts to do the actual transfer or prompt the caller. For instance, the service script may



216

generate the followingtransfer tag for the call transfer in step (9).

<block>

<prompt>

Your call is being transferred, please wait.

</prompt>

</block>

<transfer dest="sip:staffmeet@conference.com" bridge="false" />

There are two ways to transfer a call from the browser to another phone in VoiceXML.

Theblind transfer sends the SIPREFER message, and terminates the original call leg between

the caller and the browser. The caller user agent is then responsible for placing another call to the

Refer-to location. Thebridgedtransfer causes the browser to place another call to the destination,

and join the media path between the original caller and the destination.

(1)

(8)
(9) User talks/listens to the browser

(8) INVITE sip:staffmeet@conference.com

BYE (user ends the call)

with credentials

 202 Accepted

200 OK (call closed)
BYE

200 OK

VoiceXML browserUser SIP phone

Call request+authentication

(1)-(7)
(4) (7)

(a) Message flow (b) Architecture

Figure 9.16: Method 2: Joining a conference using bridged mode

Fig. 9.16 shows the bridged transfer case with the browser as a back-to-back-user-agent

(B2BUA) bridging the audio path between the user phone and the conference server. Steps 1 to 7

are same as in the blind transfer case. Instead of sendingREFER, the browser sends a new call

request to the conference server identifying the conferencesip:staffmeet@conference.com in

theRequest-URI of the SIPINVITE message. The browser acts as an application level packet



217

forwarder in both directions for RTP and RTCP media traffic.

We have implemented both blind and bridged transfer insipvxml. The advantage of

bridged transfer is that the browser remains in the media path and can terminate the call (e.g., if

the calling-time exceeds the quota) or accept future control commands (using DTMF) from the

user phone. For conferencing, it may be useful to interpret DTMF, e.g., 6-6-# to mute your audio

or 6-8-# to join another virtual chat/conference room. Secondly, the browser needs to forward

other signaling messages also, e.g., re-INVITE from the caller to the conference server. Moreover,

maintaining packet forwarding states for the duration of the conference limits the scalability of

the browser on how many simultaneous callers it can handle. The browser may issue re-INVITEs

with updated transport addresses for media to both the caller and the conference server such that

the media path is direct. However, this still needs to maintain the call signaling state for the

duration of the call. On the other hand, a blind transfer does not require any call state in the

browser for the duration of the conference. But it expects that the caller’s IP phone supports the

SIPREFER method.

Instant Message as Input and Prompt

To allow PC-based SIP phones that do not have touch-tone dial-pad, our browser also accepts

input via IM text. The prompts can be sent both in audio and IM for such phones.

Distributed Component Architecture

In a distributed component architecture it may be desirable to separate the text-to-speech and

speech-to-text functions from a VoiceXML browser, as different modules. Our RTSP server,

rtspd, can convert the text supplied in URL to speech and stream to the client. Alternatively, a

SIP “text-audio” converter can convert between the text in IM and the audio in the call session.

Such external components can be invited in the existing sessions for applications such as email

by phone, as we describe next.



218

9.6.3 Interaction among Email, Telephone and IM

Today, email is the most common form of electronic communication. However, the convenience

of email is limited by the necessity of an Internet connected computer. A system that allows

interworking of email with other communication means such as telephone or IM, will enhance

user experience. Such system can be used to reach those users who only have email access via

IM, define certain incoming emails as important and forward them to IM, get a virtual-IM account

to interact with other IM users via email, access emails via phone, get notified of any important

email on phone, and text-chat with other IM users or in a conference via phone. We describe the

SIP-based architecture and on-going implementation of such interactions in CINEMA.

Email by Phone

Assuming that wherever you go there is a telephone, using a telephone to check email is a sensible

solution. Ouremail-by-phonesystem provides a way to check and even send email from a touch-

tone telephone [240]. The application runs as Java Servlet on a web server, generating VoiceXML

pages for telephony dialogues, and interacting with back-end IMAP or POP3 email-servers as

shown in Fig. 9.17. We have also implemented Tcl-based CGI scripts for the email-by-phone

service to better integrate with the rest of our system that uses Tcl scripts.

 browser
VoiceXML

Internet

IP−phone

Inbox

HTTP

SIP

PSTN phone

sipvxml

Email
ServletJSP

T1/E1

SIP

SQL DB

Figure 9.17: Email-by-phone architecture

SIP

PSTN phoneIP−phone

Internet

convertor
IM/call

Incoming email

Important
emails

SIP

(1)

(2)

(3)

(4)

example .procmailrc

Inbox

:0c
* ^Subject:.*[iI]mportant.*
| siptc

:0c
* ^From:.*Alice.*
| siptc

Email to IM
siptc

to 
Text

speech

SIP

procmail

T1/E1

IM/call

Figure 9.18: Email notification to phone

The caller is prompted to listen to old or new messages, compose a new message, reply



219

to an existing message, delete a message, forward a message, advance through the messages, and

switch between new and old messages for playback.

Email to Phone

Asynchronous event notification is useful when polling for the event is inefficient. For example,

the email-by-phone system can be modified to notify the user of any important email by calling

user’s cell phone. The definition of “important” email can be programmed by the user. The

architecture is shown in Fig. 9.18.

Incoming email filtering on Unix is relatively simple usingprocmail [241]. On other plat-

forms, such as windows, one can periodically poll the IMAP-based email-server for new emails.

An exampleprocmail script of Fig. 9.18 treats the subject with “important” or “Important” key-

word, or sender as “Alice”, as important and forwards to thesiptc script.

Thesiptc script extracts the email body and other information, e.g., subject, priority and

sender address, creates a SIP instant message, and sends it to the IM-call converter. The IM text

is truncated if it is too big. Theforwarded-from, replied-to or signature part in the email are

ignored as shown in Fig. 9.19.

Alice   alice@office.net

> server on home.com
> you can use the SIP 

Kindly restart.
The server is down.

Hi Bob,

instant messageemail

From: Alice <alice..

Subject: RE: your server Subject: regarding y..
To: Bob <bob@ho..To: Bob <bob@home.c..

From: Alice <alice@of..

Kindly restart.
The server is down.
Hi Bob,

−−

Figure 9.19: Example translation used in email to phone system

The IM-call converter acts as a translator between the SIP-based IM and audio call. In

the reverse direction, it can notify the IM over phone. In the absence of session-based IM, it uses



220

the various headers in the SIPMESSAGE to associate the IM session with the audio call. This

avoids making a new SIP call, if IM is received for an existing session. The SIP call destination

can be pre-configured or derived from the IM destination address, which can be an IP user or a

telephone subscriber via a gateway. Separating the converter from the email to IM translation

allows running the email system and speech system on different hosts in the network.

Once the call is established the converted text is spoken out to the destination phone.

After that, the system may transfer the phone call to an IVR system, e.g., to prompt the user to

repeat the message or connect to theemail-by-phonesystem.

IM-call Converter

The IM-call converter described in the previous section can be extended to a generic translator

to allow a phone user to initiate an IM conversation. It uses both text-to-speech and speech-to-

text. Suppose Bob’s IP telephony service provider allocates a telephone extension say 7155 for

his IM address. When Alice dials the extension, the service provider maps the destination to

sip:Ym9iQGhvc3RC@serverCwhere Ym9iQGhvc3RC is base64-encoding [45] ofbob@hostB.

The translator,simvoice, running onserverCreceives the call request and sends an initial IM

greeting tosip:bob@hostB. It maintains the association between the caller and the final IM des-

tination for the duration of the call.

When Alice speaks, the audio is converted to text using CMU Sphinx speech recognition

engine [242]. To send an IM, the user can indicate the end of a speech message by pressing a

DTMF key. Alternatively, the converter can assume the end of a speech message when it receives

some audio followed by a few seconds of silence.

In the reverse direction, when Bob sends an IM text tosimvoice, it invokes the Flite

text-to-speech engine [243] to convert and send it to Alice as voice.

If Alice hangs up, the association is lost. If thesimvoice can not find an associated call

for an incoming instant message, it replies with another instant message indicating the error. The

IM user should be allowed to initiate the session using session-based IM

In a collaboration environment, the converter allows the users with different system ca-

pabilities such as telephone and IM to interact. This helps the deaf, hard of hearing and speech-



221

impaired individuals to collaborate easily in a multimedia conference [244].

Often we have found that the speech-recognition quality is poor. The converter should

provide feedback to the speaker by sending the converted IM text as well to the phone using

text-to-speech.

Email to IM

In the email to IM direction, Alice can email to a special address such asmy-

server+bob@office.net1 which is received by Bob as IM. Theprocmail script of my-

server@office.netreceives the email, finds the IM destination asbob, translates the email’s text

content to IM and sends it tobob@office.net. Alternatively, Bob can advertise his email address

asbob+im@office.netto send him an IM. The difference is that theprocmail is configured at

myserverin the former and at Bob’s email in the latter case. A third approach is that Bob defines

certain emails as important and automatically forwards them to his IM address.

IM to Email

In the reverse direction, Alice can also use the services frommyserversuch that Bob can send

IM to myserver+alice@home.com. The server should put the appropriate emailReply-to header

pointing to the sender viamyserver, so that the email replies can be sent back to the IM user

correctly. Alternatively, Alice can sign-up with her SIP-provider to run a programmable call-

routing using SIP-CGI [24] that identifies important IMs and sends her an email with the content

when she is not on-line, as shown in Fig. 9.20.

9.7 Conclusions

This chapter describes a SIP-based collaboration framework that integrates with telephony, in-

stant messaging, email and web using existing protocols and tools. We have discussed seamless

integration between two types of collaboration modes: synchronous and asynchronous. The con-

ference server and user agent in our CINEMA infrastructure allow synchronous multi-party mul-
1Note that some email servers allow sending email to user+something@domain, which will be delivered to the

inbox of user@domain.



222

Meet for lunch?
send email to alice@nyu.edu

(3) not handled

IM client offline
Alice’s PC and

(2) MESSAGE
Alice phone
alice@home.com

(4)

bob@office.net

home.com

(1)MESSAGE

Meet for lunch?

Bob’s PC

SIP
CGI

sipd

Figure 9.20: SIP-CGI for IM to email translation

timedia collaboration via audio, video, instant message, screen sharing and shared web-browsing.

The personalized user profile, calendaring, address book management, event and conference man-

agement, and system configuration can be done from the web interface. It also facilitates docu-

ment sharing and asynchronous discussions among the group members. Moderators can monitor

and control various synchronous and asynchronous activities. The messaging and notifications

are used to reach the users when they are off-line.

We have described the architecture of our Internet telephony installation consisting of

the SIP server, SIP-PSTN gateway, RTSP media server, unified messaging server, conferencing

server, interactive voice response server and SIP-H.323 translator. It provides enterprise IP tele-

phony architecture for corporates and campuses. We have used CINEMA in our department as

an example of real world deployment. We have also built various components addressing a com-

mercial deployment such as security, billing, and interworking with the corporate firewalls and

Network Address Translators (NATs). A similar architecture can be deployed at other campus

and organization networks who want to benefit from the services provided by Internet telephony,

in particular SIP.

A SIP-based architecture allows to easily extend the infrastructure with new features, e.g.,

presence-enabled calls and programmable call routing. Interactive voice response provides easy

access to the system from a telephone, whereas various text-to-speech tools allow interaction via



223

plain email. This facilitates access to the system transparent to the end user device. Hence, we

claim CINEMA to be a comprehensive multi-platform collaboration architecture. Moreover, the

system allows hybrid interaction, e.g., phone for audio, PC for IM and document sharing in the

same conference.

Based on our implementation, SIP provides a suitable multimedia conferencing protocol

that allows advanced scenarios and services without requiring that end systems are conferencing-

aware. Our conference server supports audio mixing based on various codecs such as G.711

µ-law and A-law, GSM, DVI ADPCM, high quality G.722 and, more recently, Speex. The video

codecs are transparent to the server, because the server does not need to decode video and can

just do packet forwarding to other participants. In addition to audio and video conferences, var-

ious other services are provided at the conference server such as instant messaging and screen

sharing. Our SIP-H.323 gateway permits the participation of H.323 clients in the SIP-based con-

ference. Participants can also join conferences from the PSTN via a SIP to PSTN gateways using

interactive voice dialogs.

VoiceXML is a powerful technology for interactive voice dialogs that allows telephone

users to access services that are typically available to web users. SIP interface to a VoiceXML

browser allows such services from a IP telephone as well as a regular telephone, via a gateway,

using the call transfer feature in an interoperable manner. We have implemented a SIP VoiceXML

browser and used it to allow telephone users to connect to our conferencing server. This along

with other services that we have implemented will help users to join a conference, check mails

and stay informed from anywhere thus enabling ubiquitous availability.

We have described a multimedia mail architecture for Internet telephony, using SIP and

RTSP, and shown how it meets the general requirements for a voicemail service. Various ap-

proaches are possible to utilize the voicemail service in the Internet telephony environment. Ap-

plicability ranges from a single user subscribed to a voicemail service to a whole university using

the campus wide service. Separation of the voicemail server from the signaling and the storage

servers helps in building scalable systems. We have also described some of the protocol issues,

in particular, reclaiming a transferred call and deleting a mail, based on our implementation.

Our architecture is being enhanced and licensed by SIPquest Inc., to over a hundred com-



224

mercial sites for evaluation or deployment. We have used a number of components of CINEMA

in various other projects in our lab. For example, the NG911 project uses the conference server to

bridge the emergency caller, emergency responder and any third party medical or police assistant.

Total physical lines source lines of C/C++ code of various CINEMA components mea-

sured using SLOCCount [245] is about 180,000 including some external software. Out of this

my contribution is more than 60,000 in C/C++ and an additional 30,000 in Tcl.

We have described the various collaboration tools in CINEMA and how they interact to

achieve new services. Collaborative work is a vast research area incorporating numerous tech-

nologies such as networks, multimedia, object oriented concepts, virtual reality and artificial

intelligence. Our aim is to complement these research innovations by providing a framework

over which other collaboration tools can be built or integrated. Although CINEMA’s main focus

is on real-time synchronous communication, we also correlate the two modes of collaboration

for an enhanced end-user experience. CINEMA can be used within an organization as well as

in portal mode by application service providers. We have not yet implemented the recording of

conference events such as join or leave, and the programmable conference server behavior.

We evaluate the performance of our conference server in the next chapter.



225

Chapter 10

Scalable Centralized Conferencing

10.1 Introduction

Multimedia conferencing forms the core of synchronous collaboration described in the previous

chapter. Section 9.4.1 (page 189) describes our centralized conference server and audio mixing

algorithm. In particular, the server implements thedecode-mix-encodesteps to perform audio

mixing such that each participant can listen to all the other participants.

Providing reliability using server redundancy is not trivial because the conference server

maintains call state unlike the call stateless SIP proxy servers. In this chapter, we describe the

techniques for reliability and scalability of conference servers. We also evaluate the performance

of our conference server for single server as well as distributed cascaded server architecture.

Vendors have built DSP-based customized hardware that are specialized in processing

audio. However, one of our main goals is to provide carrier grade services on commodity hard-

ware such as desktop PCs and workstations. We measure the conference server performance on

commodity hardware running Linux.

Scalability and reliability of different media are handled differently. There are two types

of media handling: mixing and forwarding. Audio is typically mixed whereas video or instant

message is forwarded without any mixing in the conference server. For the purpose of this chap-

ter we focus only on audio mixing. We only examine the media path, and do not explore the

performance effect of high signaling churn, i.e., high rate of participants join and leave.



226

10.2 Scalability

Conference size is measured in terms of number of participants. A small scale conference con-

tains two to ten participants, medium scale ten to few hundreds and large scale over thousands of

participants. Broadly speaking there are two metrics to quantify the load on a conference server:

(P ) the number of simultaneous participants in a single conference, and (C) the number of si-

multaneous conferences with small number (three or four) of participants each. High load on

the conference server requires more processing and bandwidth at the server and can hamper the

quality of service metrics such as delay (D), jitter (J) and packet loss (L).

10.2.1 Requirements

Performance is typically limited by three factors: server’s network bandwidth, CPU and memory.

Which of these becomes the bottleneck in turn depends on other parameters such as media codec

and packetization interval. For example, high bandwidth G.711 codec imposes less CPU overhead

whereas the low bandwidth GSM or G.723.1 codecs are CPU intensive.

The goal of performance measurement of a conference server is to understand the effect

of load (P , C) on the limiting factors (CPU, bandwidth, memory) for a given set of parameters

(codec, interval). Thus, we identify the bottleneck for the given hardware and measure the max-

imum capacity (Pmax,Cmax) without affecting the quality of service. In particular, more than

5% of packet loss or more than 150 ms of mouth-to-ear delay will hamper smooth bidirectional

conversation, and we pick those as indicating that the server has reached its performance limit.

Server bandwidth

On average, only one participant is speaking in a conference at a given time. Otherwise the

listeners may not be able to understand the conversation. In large conferences, participants should

perform silence suppression to reduce the mixing load on the conference server. If the codec

bitrate isB, thenP participants in a conference with one active speaker at any instant and the

others performing silence suppression, requires an inbound bandwidth ofB and an outbound

bandwidth ofP ·B at the server.



227

CPU

An audio mixer withC conferences andP participants per conference requires(αP + β)C

instructions per second, whereα corresponds to the per-participant processing andβ to per-

conference processing.α includes encoding of the receiver’s audio and any copying of data

among buffers, whereasβ includes decoding of speaker’s audio and any processing of periodic

interrupt for the conference. A simple codec such as G.711 requires minimal encoding and de-

coding effort, but imposes heavier burden on buffer copying due to the large message size.

Memory

The memory at the server is usually not an issue. A real-time conference server needs to keep the

delay and hence the buffer size small, thus it does not use lots of memory in audio buffers. Nev-

ertheless, each conference and participant requires some call signaling (SIP) state at the server.

Increase in parameter valueCPU Bandwidth Delay
Packetization interval (T ) reduces reduces increases
Codec bitrate (B) increases increases N/A
Codec complexity (M ) increases N/A N/A
Network jitter (J) N/A N/A increases

Table 10.1: Effect of various parameters on the server performance

Table 10.1 summarizes the effect of various parameters on performance. Note that the

delay column indicates the base delay under normal load. At high load, when CPU utilization is

close to 100%, the delay and loss increase abnormally.

To derive a mathematical relationship among these parameters, consider a single confer-

ence server withC conferences, each withP participants. Each participant is using audio codec

with bitrateB kb/s, and complexity ofMe andMd cycles of CPU for encoding and decoding,

respectively. Suppose the packetization interval isT ms and the network jitter in the speaker to

server path isJ ms. The packet size includes the audio payload size as well as the packet header

for IP, UDP and RTP, which is20+8+12 = 40 bytes. The packet header contributes a bandwidth



228

of 40×8
T = 320

T kb/s. Thus, under normal load on the conference server, we get the following:

IP packet size = BT
8 + 40 bytes

Inbound bandwidth = C(B + 320
T ) kb/s

Outbound bandwidth = C(P − 1)(B + 320
T ) kb/s

Delay at server ≤ T + 4J ms

CPU usage ∝ (αP + β)C

= ((Me + a.B1 + b)P + (Md + c.B1 + d))C

whereB1 = B + 320
T

The termT + 4× J assumes the adaptive playout algorithm as described in [221], which adjusts

the playout delay as four times the variance in packet arrival time. Here,a, b, c, d are constants

that can be derived using experiments. For G.711 codecMe andMd are negligible. Usually the

constant factorsb andd are small because most of the processing depends on the packet size,

and hence bandwidth. Thus, CPU usage becomesC(a.P + c)(B + 320
T ) wherea andc are some

constants. For G.711B is 64 kb/s, and if the packetization interval,T , is changed from 20 ms to

40 ms, the CPU usage reduces by a factor of 0.9, thus giving a better performance.

For CPU-intensive codecs such as GSM and G.723.1, theMe andMd components are

significantly higher than the other components, thus the CPU usage roughly becomesC(Me.P +

Md). The packetization interval does not have much effect since the buffer copying and packet

processing are masked by more CPU intensive encoding and decoding operations.

10.2.2 Performance Evaluation

To measure the performance of our conference server,sipconf, we built a load generator using

our sippeer application in user agent mode and a built-in audio tool,rtpqos. The audio tool

generates incremental patterns in the media packet instead of using a real encoded audio. For

example, the first packet has payload with all bytes set to 1, second with all bytes set to 2, and so

on. The pattern wraps to 0 on overflow. The conference server is configured to send the speaker’s

audio in the mixed stream back to the speaker for the measurement. On receiving the media

packet, the audio tool compares it with the actual sent pattern and infers the quality of service

(QoS) characteristics such as delay and loss.



229

We did not use the QoS statistics from RTCP because the RTP/RTCP session is

established between the participant and the server, and does not indicate the QoS of

the voice traffic end-to-end from the speaker to the listener. For example, the packet

loss and delay introduced by the server is not captured in the RTCP statistics.

T1

T2

Tn

S1

conference server

P1,P2

P3,Q1

Q2,Q3

C1,C2

measure CPU and 
memoryand measure loss and delay

Start test clients

Controller

P,Q = participant
C = conference

T = test client
S = server instance

SIP user agent

SIP user agent

SIP user agent

AudioTool

AudioTool

AudioTool

Figure 10.1: Physical configuration

SIP INVITE (call setup)

RTP media (audio)

Q3P2 P3 Q2

P1 Q1

C2C1

Figure 10.2: Logical configuration

An example test setup is shown in Fig. 10.1. The server,S1, hosts two conferences,C1 and

C2. The controller starts three test clients,Tn, with six participants,Pi and Qj , to join the

two conferences as shown in Fig. 10.2. In each conference, the first participant is the speaker

and everyone is listening. The first participant gathers the QoS statistics for speaker-to-listener

voice path. The controller collects the QoS statistics from the test clients as well as the periodic

performance statistics (CPU and memory utilization) from the server host, and summarizes the

resulting server performance.

The server and test clients were running on Pentium 4, 3 GHz CPU machines with 1 GB

memory running Linux 2.6. All the hosts were connected to the same 100 Mb/s Ethernet switch.

All the participants used G.711µ-law audio codec with 20 ms packetization interval. The confer-

ence server also used 20 ms packetization interval and did not implement the optimization (see

Section 9.4.1, p. 191) to reduce the number of encode operations. Each test host ran at most two

test clients, and each test client emulated at most 40 participants. This ensured that the load on

test machines was light (less than 30% CPU usage in our experiments) so that the test machine



230

never became a bottleneck.

We conducted two tests to measure the number of participants (P ) in a single conference,

and the number of four party conferences (C), respectively. Each of the tests was repeated three

times and we did not see any significant deviation in performance between these repetitions.

In the test, we increased the participant count incrementally in steps. Each step ran for

two minutes. For the first test, a single conference was used and the number of participants was

increased by 40 in each step. In each step, the participants joined the conference at the rate of

one participant per second. Thus, out of 120 s of a step, first 40 s indicates churn, and next 80 s

indicates steady state, i.e., the number of participants remains constant. For the second test, each

conference contained at most four participants and the total number of participants was increased

by 40 in each step, i.e., the number of four-party conferences was increased by 10 in each step.

Note that only one participant in each conference was an active sender of media packets.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  40  80  120  160  200  240  280  320  360  400  440  480
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20
 0  120  240  360  480  600  720  840  960  1080  1200  1320  1440

C
P

U
 u

sa
ge

 (
%

),
 %

 lo
st

 a
nd

 d
el

ay
 (

m
s)

M
em

or
y 

us
ag

e 
(M

B
)

Participants count

timeline (seconds)

% lost

delay (ms)

memory (MB)

CPU usage

Figure 10.3: Server performance with increasing number of participants in a single conference



231

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  40  80  120  160  200  240  280  320  360  400
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20
 0  120  240  360  480  600  720  840  960  1080  1200

C
P

U
 u

sa
ge

 (
%

),
 %

 lo
st

 a
nd

 d
el

ay
 (

m
s)

M
em

or
y 

us
ag

e 
(M

B
)

Participants count (=four times conferences count)

timeline (seconds)

worst % loss seen by any participant

delay (ms)

memory (MB)

CPU usage

Figure 10.4: Server performance with increasing number of four-party conferences

CPU utilization

Fig. 10.3 and 10.4 present the results for the two tests, respectively. In particular, our hardware

(3 GHz, Pentium 4) can support about 440 participants in a single conference and about 80 four-

party conferences with G.711µ-law audio while keeping the server CPU utilization below 80%.

At 500 participants in a conference, the server CPU usage reaches close to 100%.

The timeline (x-axis top) can be co-related to the participant count (x-axis bottom)

as follows: 0-120 s corresponds to the first step with 40 participants, 120-240 s cor-

responds to 80 participants, and so on.

Memory utilization

Memory utilization at the server is about 11 MB for 500 participants. The memory is mostly

allocated for call state with about 20 kB per call. The memory graph shows that in each step of



232

120 s, there is a linear increase in memory for first 40 s and then the memory remains constant

for the duration of that step. This is because the fourty participants join during the first 40 s in

each step. The later parts in the memory plot are flat because the Unixtop command gives MB

resolution instead of kB resolution after 9 MB. Thus it does not show the linear increase in each

step after 9 MB. As seen here, memory is clearly not the bottleneck.

Audio delay and loss

The speaker-to-listener delay is less than 20 ms, which is the packetization interval. This excludes

any wide-area network delay because the experiment is done on the same LAN. The delay is

measured from the time the packet leaves the speaker application, to the time it is received by

the listener application. Thus, it does not include the playout delay at the receiver application.

In the absence of any network jitter on the same LAN, the adaptive playout algorithm at the

mixer calculates the average playout delay as half the packetization interval, i.e., 10 ms. Fig. 10.5

shows the difference in delay experienced by the first and the last participants a single conference

as the number of participants increase. Because the conference server sends the media packet

from the first to the last participant in that order in every packetization interval, the delay for

the first participant remains constant whereas that for the last participant gradually increases

from 10 ms to 24 ms when the participant count increases from 40 to 440, as long as the CPU is

below 80% utilized. When the CPU usage is close to 100% the delay as well as the packet loss

suddenly increase. This is expected because as long as all the processing can be done within the

packetization interval, the QoS doesn’t get degraded. Once the processing takes more than 20 ms

and spills over to the next interval, an additional processing keeps accumulating, resulting in

packet loss of UDP media packets and additional delay in sending the packets to the participants.

A packet loss of less than three packets per five seconds of logging interval is ignored by the

listener when counting the number of packet losses.

Audio bandwidth

The bandwidth for G.711 codec payload is 64 kb/s. Adding the headers (RTP, UDP and IP) for

every packet in 20 ms gives a packet size of 200 bytes, i.e., 80 kb/s above the link layer. Thus,



233

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  40  80  120  160  200  240  280  320  360  400  440  480

 0  120  240  360  480  600  720  840  960  1080  1200  1320  1440

D
el

ay
 (

m
s)

Participant count

timeline (seconds)

First participant (receiver)

Last participant (receiver)

Figure 10.5: Speaker-to-listener delay for first and last participant to receive packets from the
mixer

a server on a 100 Mb/s duplex Ethernet can support up to 1,250 outbound media streams to the

participants, ignoring any control traffic such as SIP and RTCP. With Gigabit Ethernet, the server

bandwidth is never a problem for a single conference server for medium scale conferences. In

practice, the access link bandwidth of the server may impose a stricter limit on the conference

capacity.

Sockets – open file descriptors

Currently, we use separate RTP and RTCP sockets for each participant. Thus, withP participants,

the server opens2P sockets for media. If the operating system imposes a limit of 1024 open

file descriptors for ordinary users, the server running as ordinary user can support up to 512

participants. However, this can easily be fixed either by increasing the open file descriptors limit

or by modifying the server to reuse sockets among multiple participants.



234

Effect of packetization interval

A 20 ms interval in the conference server seems to be the most interoperable. For example, Robust

Audio Tool (RAT) cannot correctly handle intervals that are not multiples of 20 ms. Moreover,

a small packetization interval also guarantees that the maximum delay incurred by the server

processing is bounded by this value under normal load.

On the other hand, using a larger packetization interval such as 40 ms causes less overhead

in terms of header bandwidth and buffer copying at the server. However, this can increase the

delay to at most 40 ms at the server with heavy load. Hence, we recommend using 20 ms if the

load is well below the server capacity.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  40  80  120  160  200  240  280  320  360  400  440  480

 0  120  240  360  480  600  720  840  960  1080  1200  1320  1440

C
P

U
 u

sa
ge

 (
%

),
 d

el
ay

 (
m

s)

Participants count

timeline (seconds)

delay (ms) for 20 ms and 40 ms interval

CPU usage for 20 ms
and 40 ms interval

Figure 10.6: Effect of packetization interval on performance

Fig. 10.6 compares the performance using the packetization intervals of 20 and 40 ms. As

shown, at 50% CPU utilization we can support about 320 and 400 participants with 20 and 40 ms

intervals, respectively. Thus, 40 ms interval improves the performance by a factor of approxi-



235

mately 1.25 over 20 ms interval. Due to the smaller packet size, the header overhead in 20 ms

interval is larger. The IP layer bandwidth required for 20 ms is80
72 = 1.11 times that for 40 ms. If

we include the Ethernet packet overhead of 18 bytes per packet, the factor becomes87
75 = 1.16.

We conclude that the performance benefit in using the larger packetization interval is due to the

lower packet size, and hence lower buffer copying and processing.

We also observe an increase in the speaker-to-listener delay from about 12 ms to 24 ms

when changing the interval from 20 ms to 40 ms. This is expected, since the average delay caused

by the server is half of the packetization interval if there is no jitter. The memory utilization is

independent of the packetization interval, but depends on the number of participants.

Extrapolating the performance for 40 ms interval, the server can support about 720 partic-

ipants in a single conference. However, the current implementation needs to be modified to share

socket connections across different sessions to support these many participants, or the operating

system’s default limit on per-process open file descriptor count needs to be increased to about

1500.

Performance on Sun SPARC vs Pentium

Fig. 10.7 shows the conference server performance on a Sun SPARC Ultra 5/10 with 256 MB

memory and a 360 MHz CPU, using a 20 ms packetization interval. One difference with the

earlier measurements on Pentium running Linux, is that on Sun machine the quality of service

(delay and loss) degrades as the CPU utilization becomes more than 50%. The server can support

about 60 participants in a conference without degrading the audio quality.

Compared to the capacity of 480 participants on Pentium 3 GHz CPU, which roughly

translates to 6.25 MHz of CPU cycles per participant (or MHz/participant), the Sun machine

gives similar performance of 6 MHz/participant. Thus, there is not much difference between

Sun SPARC and Pentium 4 in our conference server test. Most of the processing at the server

involves buffer copying and network I/O. With 40 ms interval, the performance improves to about

4.2 MHz/participant on Pentium.

Our earlier measurement of the conference server in 2001 [34] on the same Sun hardware

gave the server capacity of about 80 participants in a single conference with one active speaker, or



236

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20
 0  120  240  360  480

C
P

U
 u

sa
ge

 (
%

),
 %

 lo
st

 a
nd

 d
el

ay
 (

m
s)

M
em

or
y 

us
ag

e 
(M

B
)

Participant count

timeline (seconds)

% lost

delay (ms)

memory (MB)

CPU usage

Figure 10.7: Server performance on 360 MHz Sun/SPARC as the number of participants in a
single conference increases

about 15 three-party conferences with all participants as active speakers supporting G.711µ-law

audio, without degrading the audio quality. The server sent packets at 40 ms intervals whereas

the participants sent at 20 ms intervals. Thus, the performance was roughly 4.5 MHz/participant,

which is slightly worse than the current performance of 4.2 MHz/participant on a Pentium pro-

cessor with 40 ms interval. Even at that time, the CPU was the primary bottleneck. Since then the

architecture of our conference server has improved from a thread-per-participant and a thread-

per-conference to a single-threaded event-based architecture.

Performance of various audio codecs

The codec performance is an important factor in the overall server performance. For example, if

the encoder takesMe=50µs to encodeT=20 ms worth audio to each participant, then the server

cannot encode more than 400 streams. Thus, the encoder and decoder performance can impose



237

Table 10.2: Comparison of various audio codecs: time taken for encoding and decoding of 20 ms
of audio on Pentium 4, 3 GHz CPU running Linux 2.6.9 in our test-bed: E means encoder, and D
means decoder. G.711 and G.722 are ITU-T’s, and DVI is Intel/IMA’s

Codec bitrate 3 GHz Pentium 4 360 MHz Sun/Sparc 900 MHz Sun/Sparc
(kb/s) E (µs) D (µs) E (µs) D (µs) E (µs) D (µs)

G.711µ-law 64 5.38 1.63 51.21 13.86 20.18 6.22
G.711 A-law 64 5.47 1.77 54.03 14.48 22.56 9.24
DVI (ADPCM) 32 5.08 2.76 50.24 19.66 17.36 10.09
G.722 (wide-band) 64 69.51 49.69 1005.69 613.66 382.29 233.23
GSM 06.10 13 73.98 29.13 718.17 488.49 327.80 206.16

an upper bound onPmax andCmax.

Pmax ≤ T

Me

Cmax ≤ T

3.Me + Md

Table 10.2 shows the time taken for encoding and decoding of 20 ms of audio on different

platforms: 3 GHz Pentium 4, 360 MHz UltraSparc, and 900 MHz UltraSparc. Fig. 10.8 compares

the relative performance in terms on kilo-cycles (1024 cycles) of CPU on these platforms for

G.711µ-law, G.722 (wide-band) and GSM codecs (low bitrate). The GSM and G.722 codecs are

many times more expensive than the G.711 codec.

Effect of multi-processor hardware

Since the current implementation uses a single thread event-based architecture, it does not take

advantage of a multi-CPU hardware. This can be easily enhanced to a thread-pool implementation

similar to the SIP proxy server architecture (Section 3.6, p. 55). With anN -processor machine,

the thread-pool can haveN threads, where each thread can process about1
N of the participants.

However, for a single conference splitting the participants among the processors does not help.

To reduce the implementation complexity, on every packetization interval only a single thread

sends packets to all the participants in the conference. Alternatively, another buffer can be used

to synchronize the mixing operation with the send operation, thus utilizing multi-processor archi-

tecture. On the other hand, for video packet forwarding (i.e., no mixing step) multiple processors



238

Figure 10.8: Relative audio codec performance in terms of CPU speed on various platforms for
processing 20 ms audio. The y-axis provides numbers in Kilo cycles (1024 cycles). For example,
GSM encoder took about 300 Kilo cycles on a 900 MHz Sparc, which means300×1024

900×1048576s ≈
325µs.

can help a single large conference since the receiving thread can distribute the packets to all the

participants without waiting for it to be mixed.

10.2.3 Cascaded Conference Servers

We have shown that a single conference server can support medium scale conferences with up to

a few hundred simultaneous participants. For large conferences, a cascaded server architecture

can be deployed. This section describes and evaluates our cascaded server architecture.

For large conferences, it is possible to create a cascaded conference server architecture,

where each server appears as a participant to the server at the aggregation level above it (Fig 10.9).

Such a tree adds packetization and playout delay, but can approximate the bandwidth scaling

benefits of network-layer multicast if participants select the closest server. Since it is common that

corporate conferences consist of a large number of participants spread across a relatively small

number of facilities, having a server in each LAN is likely to be a common mode of operation.

There are two approaches to cascading the conference servers: tree-based and full mesh,



239

which we describe below.

Tree-based

In the simple tree based approach (Fig. 10.9), all the conference servers,Sn, are connected in a

tree topology. Each server can have a bunch of participants limited by the single server capacity.

Each server treats the other server that it is connected to as another participant in the conference.

The example shows three servers and nine participants. ServerS1 viewsS2 andS3 as additional

participants and uses the decode-mix-encode logic to send packets to each participant. Thus, each

link carries the audio packet containing mixed audio from all the participants on the originating

side of the link in the tree as shown in Fig 10.9.

S  = conference serve
P = participant

P1+P2+P3+
P7+P8+P9

P4+P5+P6 P7+P8+P9

P1+P2+P3+
P4+P5+P6

P5

S1

S2 S3 P9

P8

P7P6

P1

P4

P3

P2

Figure 10.9: Tree-based cascaded
servers

S  = conference serve
P = participant

P4+P5+P6

P4+P5+P6 P7+P8+P9

P7+P8+P9

P1+P2+P3P1+P2+P3

P5

S1

S2 S3 P9

P8

P7P6

P4

P3

P2
P1

Figure 10.10: Full mesh cascaded
servers

Each stage in the conference adds additional delay. For example, audio from participant

P4 to P9 goes through three servers,S2, S1 andS3. Assuming each server operates at 20 ms

packetization interval, the worst server processing delay will be 60 ms. The delay is in addition

to the transport delay between the four application-level hops in the path fromP4 to P9. Hence,

a tree with a diameter larger than two is not desirable if the conference requires low delay.

Secondly, each stage in the cascaded architecture causes transcoding, and thus degrades

the perceived audio quality. For high quality codecs such as G.711 with Mean Opinion Score

(MOS) of 4.5, two steps of transcoding may be acceptable. However, for codecs such as GSM

with MOS of 3.5, the two steps is not acceptable. This is because a MOS value smaller than 3

is not suitable for smooth audio communication, requiring considerable effort to comprehend the

spoken audio.



240

If each server supportsN participants, then the two stage cascaded tree contains1 + N

conference servers, and can supportN · (N − 1)=O(N2) participants. On our hardware, this

translates to 0.23 million participants with 481 conference servers.

Most large scale conferences are lectures with communication from a single speaker or a

small number of panel speakers to a large audience. In this case the delay is not an issue, the tree

can have any diameter, and hence the cascaded architecture can scale to any population size.

Full-mesh

To avoid the large delay of four application hops in the tree-based architecture, the conference

servers can form a full mesh network for media distribution as shown in Fig. 10.10. In this case,

the server treats the attached server different from the attached participant. The media sent to the

participant follows the normal decode-mix-encode cycle. However, the media sent to the attached

server contains the audio mixed from the participants that are directly attached to this server only,

instead of including the media from other servers. For example, whenS1 sends media toS2 it

does not include the media fromS3 in Fig. 10.10.

Since the speaker-to-listener path contains at most two servers and three application-level

hops, the delay due to server processing is at most 40 ms, assuming 20 ms packetization interval

at each server.

If each server can supportN participants, then this full-mesh architecture can contain

N/2 servers, each attached toN/2 participants, giving a total user population ofN2

4 for a single

conference. On our hardware, this is about 58 thousand participants. Thus, compared to the tree-

based architecture, the full-mesh architecture gives four times lower capacity, between2
3 (due to

number of servers) and34 (due to number of application level hops) times lower delay and uses

half the number of servers.

The optimal number of servers,N/2, is derived as follows. Withx servers connected

in full mesh such that each server is connected tox−1 other servers, each server can

haveN − (x − 1) participants due to its capacity ofN participants. Thus, the total

number of participants isx(N − x + 1). This is maximum when integerx ≈ N
2 .



241

Note that this analysis is only theoretical. In a real deployment other factors such as link band-

width and heterogeneity of servers will affect the total performance of the cluster.

Performance evaluation

To verify the scaling property of the cascaded architecture, we modified out test setup as follows.

Instead of one conference server, two servers are started. Then, the two servers,S1 andS2, are

connected in cascaded mode for conferenceC1 by making an outbound call fromS2 to S1. In

particular, a SIPREFER message is sent toS2 with Refer-To header containing the conference

URI onS1. Thus,S1 treatsS2 as a dial-in participant in conferenceC1, whereasS2 treatsS1 as a

dial-out participant in its conferenceC1. This two-server configuration is the common subset for

both tree-based and full-mesh cascaded architecture.

The earlier loopback mode in the server is not enough in this configuration. This is be-

cause we want to measure the speaker-to-listener delay that goes through the two servers, instead

of looping back from the first server. The audio tool,rtpqos, is modified to work with our SIP

user agent such that two instances of the audio tools from the two independent calls can be asso-

ciated as speaker and listener for measurements.

The results of our experiment confirms linear increase in capacity. In particular, for the

two servers we can support close to 1000 participants, which doubles the single server capacity,

without degrading the audio quality. The results are summarized in Fig. 10.11.

We have not measured the packet loss in this case, because the current method of

matching the received packet with the sent packet to detect the loss does not work

for multiple transcodings. In particular, when the encoded audio is decoded and

re-encoded at the first server, it causes some false negatives, i.e., samples that are

mismatched even though there is no packet loss. When the transcoding is done again

at the second server, the number of false negatives further multiplies, thus causing

incorrect inference of packet loss.

The SIPREFER message can be used to connect any number of servers in the tree-based cas-

caded architecture without modifying the current implementation of the server. On the other hand,



242

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  80  160  240  320  400  480  560  640  720  800  880  960

 0  240  480  720  960  1200  1440  1680  1920  2160  2400  2640  2880

C
P

U
 u

sa
ge

 (
%

),
 a

nd
 d

el
ay

 (
m

s)

Participant count

timeline (seconds)

delay (ms)

CPU usage of two servers

Figure 10.11: Performance of two cascaded conference servers for a single conference

the full-mesh architecture requires modification in the current implementation to treat participants

differently from the other conference servers, as described earlier.

10.2.4 Distributing Conferences

To scale to a large number of (small) conferences instead of a single conference with large popula-

tion, a SIP proxy server can act as a load distribution system and direct incoming requests for new

conferences to different servers. Alternatively, the conference server itself can redirect a request

to an alternate server. We have implemented a time-based load distribution for pre-scheduled

conferences, where an incoming conference request is redirected to a relatively less loaded con-

ference server based on the scheduled conference times and expected number of participants of

the conferences.



243

10.2.5 Handling Overload: Graceful Denial and Admission Control

As we described earlier, when the CPU utilization goes above 80%, the audio quality degrades,

i.e., delay and packet loss increase. This affects the existing calls as well as new calls in the

current implementation. This is clearly undesirable for the existing calls. Thus, if the server is

overloaded, it should reject any new participant or redirect her to the cascaded server.

Since the system load depends on the codec used, the server may also try to restrict the

codecs for the new participants or change the codecs of the old participants using mid-call session

update via SIP re-INVITE.

A server should detect the bottlenecks in real time. Identifying bottlenecks of CPU and

memory are easy. For bandwidth the server can rely on packet loss statistics using RTCP. Usually

if participant’s access is congested only that participant will see losses. If server’s access is

congested, many participants will see losses. Since the server sequentially sends RTP to all

participants every interval, say 20 ms, the first few participants do not see any loss but subsequent

ones will, because of the bursty traffic. To prevent this the server can spread the packets sent

throughout the 20 ms interval. This increases the delay for some participants but prevents loss.

Randomizing the participant order while sending is not useful as it will increase the jitter, thus

increasing the playout buffer and hence the delay. In large group conferences such as lectures,

some delay doesn’t matter but packet loss is undesirable.

If all else fails, the server should give priority to the existing participants, and gracefully

reduce the audio quality of the new participants.

10.3 Reliability

When the conference server fails for some reason during a conference, all the participants stop

receiving media. A secondary server can be used to restart the conference. However, the con-

ference state such as the list of participant addresses and their session description is lost. There

are two alternatives: the participants reconnect to the secondary server after detecting failure, and

secondary server uses the shared state from the failed server to reconnect to all the participants.

We explore some of these techniques to improve the reliability of the conference server.



244

The techniques can be classified into two types: reactive and proactive. The reactive

mechanisms do failover after the failure is detected, whereas the proactive mechanisms provide

redundancy to continue the conference even when the conference server fails.

10.3.1 Reactive Failover

Existing techniques for web server failover can also be applied to conference server failover

where the primary and backup servers share conference state. For example, the backup server

can take over the IP address of the primary server if the primary server fails, without affecting

the participants. This scheme works only when the primary and backup servers are in the same

subnet. Alternatively, IPv6 mobility can be used in which the conference server represents a

mobile node with a fixed home address which gets bound to the particular foreign address of

the primary or backup server. Multi-homing further enhances the reliability in case of network

failures.

SIP allows dynamic updates in a session. Thus, if the primary server fails, the backup

server can send a re-INVITE to all the participants and update their sessions to the backup server.

This means the primary and backup servers may be geographically distributed and get can located

using DNS.

However, the primary and backup servers still need to share state regarding the ongoing

conferences and participants. At the minimum, this state consists of the SIP call (dialog) state

between the server and every participant. The re-INVITE message sent from the backup server

to the participant uses the existing call dialog established between the primary server and the

participant. The call state can be stored in the SQL database shared between the primary and the

secondary server, e.g., using MySQL replication described in Section 3.3.6.

Connecting to the participants from the backup server does not work if the participant

user agent does not support mid-session updates in the media transport addresses. In that case the

participant can dial-in again to the conference, which is now hosted by the backup server.

One problem with reactive failover approach is that when a failure happens, there is some

delay before the backup server takes over. The delay depends on a number of factors such as

keep-alive interval and database replication latency. An alternate approach is to have multiple



245

redundant conferences at the same time as described next.

10.3.2 Proactive Redundancy

In this approach, the participants are connected to two conference servers via two independent

media paths when they join the conference. The participants send the same media streams to

both conference servers, and receive the same media stream from both the servers, under normal

operations. The player plays only the first stream, as long as the primary server is active. If the

first stream stops working, the user agent switches to the second stream.

Having media traverse multiple paths also improves network redundancy if the two servers

are distributed in the network causing independent network paths from the participant to the two

servers.

Alternatively, IP anycast [246] can be used to send media packet to any of the server in

the cascaded architecture. This mechanism does not require two streams, but dynamically picks

the appropriate server.

There are two approaches to implement this: client-based and server-based. In the client-

based approach the client connects to the two conference servers, say using two lines on his

phone. In the server-based approach, when a participant joins the primary server, the primary

server informs the secondary server, which in turn calls back the participant’s phone. Thus, the

participant is in two active calls, one with each server. The second approach doesn’t work if

the participant needs to be billed or is connected via some complex dialog interaction through a

gateway which does not allow call in the reverse direction (e.g., calling cards).

The two servers are cascaded. The second call is usually put on hold either by the partic-

ipant or the server to save bandwidth. When the primary server fails, all the participants are still

connected to the secondary server and can hear each other. This mechanism does not work on

most IP phones without manual switching, e.g., the user has to manually unmute the secondary

call on failure. This mechanism assumes enough capacity in terms of bandwidth and CPU to

support twice the number of calls.

If the call state is easy to create and does not cost anything, then the proactive approach

is better than reactive approach because the failover time is less. In the reactive failover case,



246

the secondary server needs to detect failure and send new call invitations to all the participants,

which can take time for large number of participants. However, for small and medium sized

conferences, it is desirable to do reactive failover to avoid the complexity and overhead of the

proactive mechanism.

10.4 Conclusions

We have shown that it is possible to build medium scale conference servers in software running

on commodity PCs that can support a few hundred participants. The performance can be further

improved to large scale conferences with tens of thousands of participants using a cascaded server

architecture. Furthermore, if delay is not a problem such as for large scale lectures or panel

discussions, then the tree-based cascaded architecture can scale to any user population.

We have performed our evaluation with only G.711 audio codecs. Most user agents sup-

port G.711 to allow interoperation with PSTN, for example. The performance data will be differ-

ent for other codecs. Moreover, advanced audio features such as echo cancellation and automatic

gain control in the server will further affect the performance. In a complex heterogeneous confer-

encing environment with various participants using different codecs, the limiting factors such as

CPU, memory and bandwidth can be calculated and the bottlenecks identified using the analysis

shown in this chapter.

A number of features can be added to our current implementation. For example, the

server currently has a limited dial-out facility because the outbound calls to the participants are

not authenticated. Conferences could also be bounded in duration. However, since the resource

consumption of inactive conferences is very small as long as media streams are muted, it is quite

feasible to set up permanent conferences in work groups, for hoot-and-holler applications. The

seamless transition from centralized conferences to full-mesh and multicast conferences, as well

as hybrid solutions, needs to be supported in the conference server.

As shown in Chapter 9, we can use our SIP-H.323 gateway and commercial SIP-PSTN

gateway to provide a multi-protocol distributed conferencing server that can be contacted from

any of the SIP, H.323 or PSTN networks. To integrate PSTN users, we have implemented inter-

active voice response, e.g., to prompt for conference and participant access codes. The server can



247

further be integrated with a text-to-speech and speech recognition system to allow text-only par-

ticipants in an audio session. We can use an external streaming client for recording and playback

of media (Section 9.5.3). An automatic transcript can be created using speech-to-text. Speaker

indication can be done via instant messages.



248

Chapter 11

Interworking Between SIP/SDP and

H.323

There are currently two standards for signaling and control of Internet telephone calls, namely

ITU-T Recommendation H.323 [37, 99] and the IETF Session Initiation Protocol (SIP) [3, 4].

We describe how a signaling gateway can allow SIP user agents to call H.323 terminals and vice

versa. Our solution addresses user registration, call sequence mapping and session description.

We also describe and compare various approaches for multi-party conferencing and call transfer.

Both SIP and H.323 run over IP (Internet Protocol) and use RTP (Real time Transport

Protocol [1, 2]) for transferring real-time audio/video data, reducing the task of interworking

between these protocols to merely translating the signaling protocols and session description.

Since no media data needs to be translated, a single gateway can likely serve thousands of end

systems.

Interworking between SIP and H.323 requires transparent support of signaling and session

descriptions between the SIP and H.323 entities. We call the server providing this translation a

SIP-H.323interworking function(IWF). Note that the earlier version of our paper [42] called this

a signaling gateway (SGW). We refer to the set of terminals speaking H.323 and SIP as the H.323

and SIPclouds(or networks), respectively, even though they are likely to be intermingled on the

same IP network. We use the termnative networkto refer to the network used by a particular

terminal, while theforeign networkis the network whose access is mediated by the IWF. For an



249

H.323 terminal, a SIP terminal is in a foreign network.

When addressing a terminal using another signaling protocol, there are two approaches.

First, the user can explicitly identify the protocol as part of the address, for example, by inventing

some form of H.323 URL [247] such ash323:alice@columbia.edu. If, for example, an H.323

URL is used by a SIP terminal, it would then be the responsibility of the SIP terminal to find the

appropriate IWF.

Alternatively, a terminal using a particular signaling protocol sees all other terminals as

being native, and does not know or care that a particular address refers to a terminal in the foreign

network. Indeed, an address could well change between being native and foreign, depending

on what equipment the owner of the address happens to be using. This approach is preferable,

but requires that user registrations are exported into the foreign network. Depending on the type

of information sharing between H.323 or SIP elements and the IWF, different architectures are

possible to provide the transparent address resolution and call establishment, as we discuss below.

This chapter describes the details of interworking between SIP version 2.0 [3] and H.323

version 2.0 [37], including the translation between H.245 and SDP. However, since an H.323v2

terminal may or may not support FastConnect (Section 11.4.1), solutions without using this fea-

ture are also detailed. Only a simple call scenario is presented. We list general requirements

for such a translation and a solution which meets those requirements. We describe the call setup

via message flows and pseudo code. Issues related to a new enhanced version of SDP (Session

Description Protocol [46]) is kept open while discussing the solution, so in the future any change

in SDP can be handled easily.

11.1 Background and Requirements

11.1.1 Protocol Overview

H.323 includes various other subprotocols: H.225.0 [248] for connection setup and media trans-

port (RTP), resource access and address translation, H.245 [249] for call control and capability

negotiation, H.332 [250] for large conferences, H.235 [251] for security, H.246 [252] for inter-

operability with the PSTN, H.450 [253, 254] for supplementary services like call transfer.



250

In H.323, a simple call is established as follows. If a user (say Alice) wants to talk to

another user (Bob), Alice first sends an admission request to its gatekeeper. Thegatekeeperacts

as a management entity in H.323, which grants access to resources, controls bandwidth and maps

user names to IP addresses, among other things. The gatekeeper finds out the IP addresses at

which Bob can be reached and informs Alice. After that, Alice establishes a TCP connection to

the IP address of Bob. This is followed by a ISDN-likecall signalingprocedure. Alice sends

a Q.931 [255]SETUP message and Bob responds with a Q.931CONNECT message. Once

the first stage of Q.931 signaling is complete, H.245 takes over. H.245 messages are used to

negotiate terminal capabilities, i.e., the support for various audio and video algorithms. The H.245

OpenLogicalChannel procedure is used for opening different unidirectional media channels. A

media channelis defined as a pair of UDP channels, one for RTP and the other for RTCP. Audio

and video packets are encapsulated in RTP and sent from one end system to the other. Depending

on the version of H.323, Q.931 and H.245 steps can be combined in various ways.

The message flow for normal call connect in H.323 between two terminals registered

with different gatekeepers is shown in Fig. 11.1. More details of individual messages and the

information conveyed are described later as needed.

SIP sets up calls with anINVITE message and a response from the called party. Both

INVITE and the response contain asession descriptionindicating terminal capabilities, typically,

but not necessarily, encoded using SDP. Proxy and redirect servers are responsible for translating

between user names and the called party’s IP address.

An endpoint is either a SIP user agent or H.323 terminal. We use the termsignalingto

mean the protocols specified by Q.931 [255], H.245 [249] or SIP [3]. Data traffic refers to RTP

and RTCP encapsulated multimedia data.

11.1.2 Translation Requirements

Basic requirements for any SIP-H.323 IWF are summarized below:

Protocol compliance: The IWF should use the components of H.323 and SIP. The IWF should

handle all mandatory features of H.323 as well as SIP. Common call scenarios should be

simple to implement.



251

(Q.931 setup)

Connect
Alerting

(admission)ACF
ARQ

Call proceeding
Setup

(admission)

(registration)

  discovery)
(gatekeeper

GCF

RCF
RRQ

GRQ
GCF

RCF
RRQ

GRQ

ACF

ARQ

(Ringing)

(Q.931 closed)

(RAS disengage)DCF
DRQ

DCF
DRQ

ReleaseComplete

(Terminating)EndSessionCommand
EndSessionCommand

(H.245/LCSE)

OpenLogicalChannelAck
OpenLogicalChannel

OpenLogicalChannelAck
OpenLogicalChannel

(H.245/CESE)

TerminalCapabilitySetAck
TerminalCapabilitySet

TerminalCapabilitySetAck
TerminalCapabilitySet

<... master slave determination and round trip delay not shown...>

(Q.931 successfu

LCF
LRQ

GK2 H.323 terminal 2H.323 terminal 1 GK1

Figure 11.1: H.323 call without fast-connect

User registration: The IWF should use the user registration in both the H.323 and SIP clouds

to resolve the user name (alias or URL) to an IP address. In other words, it should provide

a framework in which the user may dial any address without actually knowing whether it

belongs to the H.323 or the SIP cloud.

Mapping between H.245 and SDP:The IWF should be able to map all the mandatory H.245

messages to appropriate SDP messages and vice-versa, without the endpoint being aware

that such conversion is taking place. Other optional features of H.245 and SDP should be

mapped as much as possible to facilitate maximum interworking between the two clouds.

Direct data traffic between the endpoints: Where possible, the IWF should route RTP and RTCP

traffic directly between the endpoints involved in the conference without going through the



252

IWF. This reduces the delay for media packets and helps building scalable IWFs.

Transparent support for audio and video algorithms: The IWF should provide transparent sup-

port for audio and video algorithms, i.e., the IWF should not restrict the capabilities of the

endpoints in terms of audio/video algorithms supported.

Call sequence mapping:The IWF should map the message sequence between H.323 and SIP

in such a way that every important decision (accept or reject a call, choose an algorithm for

a logical channel, and so on) is taken by the endpoints involved in the conference and not

by the IWF itself.

We assume throughout most of this chapter that the session description given by a SIP

endpoint refers to both the transmit and the receive capabilities of the SIP endpoint. This may not

be true in a particular application. If that is the case then the SIP endpoint is expected to give that

information in SDP usingrecvonly or sendonly media attributes.

The analysis of SIP-H.323 interworking can be split into simple call setup, mapping ad-

dresses, finding a subset of capabilities described by H.245 and SDP, conferencing, call services,

security and authentication. Section 11.4 describes call setup and teardown; while Section 11.3

describes address mapping and section 11.5 the capabilities calculation. Security and authentica-

tion is not covered in this thesis.

Call Setup Translation

Three pieces of information are needed for establishing a call between two endpoints, namely the

signaling destination address, local and remote media capabilities, and local and remote media

transport addresses at which the endpoint can receive the media packets. In H.323, this informa-

tion is spread over different stages of the call setup, while SIP conveys it in anINVITE message

and its response.

Translating a SIP call to an H.323 call is straightforward. The IWF gets all three pieces

of information in the SIPINVITE message and can split them across multiple stages of the H.323

call establishment. However, in the reverse direction, from H.323 to SIP, the different stages of

H.323 call establishment have to be merged into a single SIPINVITE message. We describe and



253

compare various approaches in Section 11.4. The H.323v2 (version 2.0) Fast Connect procedure

is a step towards simplifying the multi-stage signaling of H.323. However, it is optional and an

H.323v2 entity is required to support the traditional multi-stage signaling. Thus, we describe call

setup both with and without Fast Connect.

User Registration

SIP-H.323 translation also has to solve the user registration problem. User registration in-

volves mapping of user names, phone numbers or some other human-understandable identifier

such as email addresses to network addresses. By allowing users to be reached by location-

independent identifiers, user registration provides personal mobility. For instance, a call destined

at sip:bob@mydomain.comreaches user Bob no matter what IP address he might currently be

using.

In SIP, proxy and redirect servers access a location server, often a registrar that receives

user registration information. A server atmydomain.comwill map all the addresses of the form

sip:xyz@mydomain.comto the appropriate IP addresses, depending on wherexyz is currently

logged in. In H.323, the same functionality is performed by the H.323 gatekeeper. The IWF

should use the user registration information available in both networks to resolve a user name to

an IP address. The IWF can contain a SIP registrar server, an H.323 gatekeeper or neither, as

discussed in Section 11.2.

Session Description

An IWF also must map session descriptions between the two signaling protocols. H.323 uses

H.245 for session description. H.245 can negotiate media capabilities, provide conference floor

control, and establish and tear down media channels. In H.245, media capabilities are described

as a set of capability descriptors, listed in decreasing order of preference. Acapability descrip-

tor, also called a simultaneous capability set, is a set of alternative capability sets, where each

alternative capability set contains a list of algorithms, only one of which can be used at any given

time. For instance, a capability descriptor{[a1, a2][v1, v2][d1]} has three alternative capability

sets: [a1, a2], [v1, v2], and[d1]. The curly bracket indicates conjunction, i.e.,{A B} meansA



254

andB, and the square barcket indicates disjunction, i.e.,[A, B] implies A or B. Thus the ex-

ample capability descriptor above indicates that the terminal can support audio, video and data

simultaneously. Audio can use either codeca1 or a2, video codecv1 or v2, and data formatd1.

SIP can, in principle, use any session description format. In practice, however, only SDP

is used. SDP lists media types and the supported encodings for each. Unlike H.245, SDP cannot

express cross-media or inter-media constraints, however. For example, SDP cannot indicate that

for a particular media type, the other side can only choose subsetA or subsetB of the listed

codecs, but not codecs from both subsets. Similarly, SDP cannot express that certain audio codecs

can only be used in conjunction with certain video codecs.

Thus, a SIP media capability can be easily described in H.245, however the reverse is

more complicated. One approach is to carry multiple SDP messages in the message body of

SIPINVITE requests and responses, using the “multipart” content type. Each SDP message then

represents one capability descriptor of the H.245 capability set. One problem with this is that it

does not interoperate with many existing SIP user agents that do not understand multipart body.

In Section 11.4 we describe how sending multiple SDP messages can be avoided.

Multi-party Conferencing

Ad-hoc conferencing among SIP and H.323 end systems is not possible without modifying one

or both of these protocols. Ad hoc conferencing is defined as the one in which the participants do

not know in advance whether the call will be point-to-point (two-party) or multi-party. The par-

ticipants can switch from a point-to-point call to a multi-party conference or vice-versa during the

call. It is possible for the participants to invite a third party in the conference or for the third party

to join the conference. Both SIP and H.323 individually support ad hoc conferencing. In SIP,

conference topology can be a full mesh with every participants having a signaling relationship

with every other participant or a centralized bridged conference (star topology) in which every

participant has a signaling relationship with the central conference bridge. It is possible to switch

from a mesh to a bridged conference. In H.323, conferences are managed by central entity called

a Multipoint Controller(MC). An MC can be part of an H.323 terminal, gateway, gatekeeper, or

MCU (Multipoint Control Unit). H.323 conferences have inherently a star topology with every



255

participant having an H.245 control channel with the MC. The MC is responsible for deciding the

common media capabilities for the conference, conference floor control, and other conferencing

functions. All the participants are required to obey the media capabilities given by the MC. Be-

cause of the difference in the topology of the conferences in the SIP and H.323 (star like in H.323

and full mesh or star like in SIP), the transparent support of multi-party conferencing cannot be

achieved without modifying the protocols. However, with some simplifying assumptions, basic

conferences can be set up, as described in Section 11.6.

Call Services

Advanced call services like call forwarding and call transfer are supported by both SIP and H.323.

H.323 uses H.450.x for these supplementary services. SIP has support for call hold, blind transfer,

operator assisted transfer, call forwarding, call park and directed call pickup [256]. These ser-

vices are not yet widely deployed, so that translation is not critical at this moment. Section 11.6

describes some of the related issues.

Security and Quality of Service

Other problems in SIP-H.323 translation include security and quality of service (QoS). Both, SIP

and H.323, individually support these. However, translating from the open architecture of SIP,

where security and QoS is independent of the connection establishment, to H.323, where security

and QoS go hand-in-hand with the call establishment, remains an open issue. For example, an

H.323 terminal communicates its QoS capabilities, whether it is able to reserve bandwidth, during

registration and call admission to the gatekeeper, which is a signaling entity. On the other hand,

QoS is handled end-to-end in SIP without involing proxies and registrars. Thus, an IWF that

remains in the signaling path only, cannot translate QoS capabilities.

11.2 Architecture for User Registration

In this section, we describe different architectures for user registration and address resolution.

User registration serversare the entities in the network which store user registration information.



256

SIP registrars and H.323 gatekeepers are user registration servers. It simplifies locating users

independent of the signaling protocol if the IWF has direct access to user registration servers.

The user registration server forwards the registration information from one network, to which it

belongs, to the other.

11.2.1 IWF Contains SIP Proxy and Registrar

SIP message

registrar

registrar

SIP proxy/

SIP proxy/

registrar
SIP proxy/

SIP User Agent  

RRQ = Registration request
LRQ = Location request

OPTIONS LRQ RRQ

RRQ

H.323 message

(a) Interworking function contains a SIP proxy/registrar

Gatekeeper

Gatekeeper

Gatekeeper

RRQRRQ

REGISTER

REGISTER

REGISTER

IWF

SIP−H.323

IWF

SIP−H.323

IWF

(c) Interworking function is independent of proxy or gatekeeper

(b) Interworking function contains an H.323 gatekeeper

REGISTER

H.323 Terminal
SIP−H.323

SIP User Agent

H.323 TerminalSIP User Agent

H.323 Terminal

Figure 11.2: Architecture for user registration in SIP-H.323 interworking

Our first approach combines an IWF with a SIP registrar and proxy server, as shown

in Fig. 11.2(a). In this approach the registration information is maintained by the H.323 gate-

keeper(s). Whenever the SIP registrar receives a SIPREGISTER request, it generates a regis-



257

tration request (RRQ) to the H.323 gatekeeper, translating a SIP URI into H.323 Alias Address.

H.323 users register via the usual H.225.0 procedure. Since the SIP registration information is

also available through the H.323 gatekeeper(s), any H.323 entity can resolve the address of SIP

entities reachable via the SIP server/IWF. In the other direction, if a SIP user agent wants to talk to

another user, who happens to reside in the H.323 network, it sends a SIPINVITE message to the

SIP server. The SIP server multicasts H.323 location requests (LRQ) to the H.323 gatekeepers.

The gatekeeper to which the H.323 user is registered responds with the IP address of the H.323

user. Once the SIP server knows that the address belongs to the H.323 network, it can route the

call to the destination.

One drawback of this approach is that the H.323 gatekeepers are burdened with all the

registrations in the SIP network.

This approach only makes those SIP addresses handled by the registrar available to the

H.323 zone. Typically, a registrar is responsible for a single domain, e.g.,columbia.edu. Thus,

each H.323 zone would have to have an IWF. If an H.323 user wants to call a SIP terminal, first

the H.323 terminal locates, using DNS TXT records [257, p. 57], the appropriate gatekeeper1,

which in turn uses the registration information conveyed by the IWF to discover that this address

is actually located in the SIP network.

Translation specification details

When receiving a SIPREGISTER request, the IWF generates an H.323 RAS RRQ request to

its local GKs. ThecallSignalAddress of the RAS message contains the network address of the

IWF; the terminalType is set to “gateway” and theterminalAlias is derived from the SIPTo

header or theRequest-URI, as described in Section 11.3.

Thus, any address resolution request coming from the H.323 cloud to a SIP address can

be resolved by H.323 gatekeeper(s) using H.323 RAS requests. Any request coming from the SIP

cloud to H.323 is forwarded to the H.323 gatekeeper(s) by the IWF. H.323 gatekeeper(s) resolve

this address using RAS/H.323.

During initialization, the IWF registers its own alias address (e.g.,gw1) with its local
1It is not clear how widely implemented this approach is.



258

H.323 gatekeepers, so that anybody from the H.323 cloud can reach SIP endpoints by directly

connecting to the alias address of the IWF and by providing a SIP address in the remote extension

address of theSETUP message of H.323.

Fig. 11.3 shows the message flow sequences for successful initialization.

(henry@home.com) (sam@office.net)
IWF

(gw1)

RRQ (gw1)
RCF

RCF
200 OK

RRQ

RCF

(henry@home.com)

REGISTER
To:sam@office.netRRQ

(sam@office.net)

SIP user agent

GK1 GK2
H.323 terminal

Figure 11.3: Initialization of SIP and H.323 terminals, and the IWF when IWF contains SIP
proxy and registrar. The registration may get stored on two independent gatekeepers in the H.323
cloud.

Address resolution from SIP to H.323 is shown in Fig. 11.4, while address resolution

from H.323 to SIP is shown in Fig. 11.5.

(henry@home.com)

RRQ
(henry@home.com)

INVITE

100 Trying
To:henry@home.com

ARQ
(henry@home.com)

(henry@home.com)
LRQ

:CF
(192.1.2.2)

192.1.2.2

RCF

192.1.2.2

ACF
(192.1.2.2)

H.323 terminal
is initialized

User makes
outgoing call

H.323 terminal

GK1 GK2

SIP user agent
(sam@office.net)

IWF
(gw1)

200 OK

Figure 11.4: Address translation from SIP to H.323

This scheme assumes that the IWF is aware of the client part of the H.323 RAS protocol

so that it can talk to the gatekeeper. Each SIP user agent (UA) that registers with the registrar also

appears in the gatekeeper’s database.



259

REGISTER
user agent

is initialized
To:sam@office.net
Contact:128.3.4.4(sam@office.net)

(128.3.4.4)

RRQ

RCF
200 OKUser makes

outgoing call ARQ
(sam@office.net)

(sam@office.net)

ACF
LCF

LRQ

(128.3.4.4)
(128.3.4.4)

H.323 terminal
GK1 GK2

IWF
(gw1)

SIP user agent
(sam@office.net)

128.3.4.4(henry@home.com)

Figure 11.5: Address translation from H.323 to SIP

11.2.2 IWF Contains an H.323 Gatekeeper

This architecture, shown in Fig. 11.2(b) is similar to the previous approach except that the SIP

proxy server maintains the user registration information from both networks. Any H.323 registra-

tion request received by the H.323 gatekeeper is forwarded to the appropriate SIP registrar, which

thus stores the user registration information of both the SIP and H.323 entities.

To the SIP terminal, H.323 terminals simply appear as SIP URLs within the same domain.

(See Section 11.3 on how H.323 addresses are translated to SIP URLs.) If an H.323 entity wants

to talk to a user who happens to reside in the SIP network, it sends an admission request (ARQ) to

its gatekeeper. The gatekeeper multicasts the location request (LRQ) to all the other gatekeepers.

The GK-IWF server captures the request and tries to find out if the address belongs to a SIP user.

It does so by sending a SIPOPTIONS request, which does not set up any call state. If the address

is valid in the SIP network and the user is currently available to be called, the IWF responds with

the location confirmation (LCF), letting the H.323 terminal know that the destination is reachable.

This approach has the similar drawback as the previous approach (Section 11.2.1) in that

the proxy has to store all H.323 registration information.

However, this approach has the advantage that even if some H.323 gatekeepers are not

equipped with a IWF, the address resolution works: If an H.323 gatekeeper cannot resolve a called

address, it multicasts a location request (LRQ) to the other gatekeepers in the network. As long as

at least one H.323 gatekeeper exists with the SIP-H.323 signaling translation capability, the SIP

user can be located from the H.323 network. Note that the previous approach (Section 11.2.1)



260

required that all the SIP registrars/proxy servers must be equipped with IWFs.

Translation specification details

Address resolution from SIP to H.323 is shown in Fig. 11.6. while address resolution from H.323

to SIP is shown in Fig. 11.7.

(gw1)
SIP server

(home.com)
SIP user agent

(sam@office.net)

To:henry@home.com
REGISTER

RCF
200 OK User makes

outgoing call

Contact:henry@gw1

To:henry@home.com
INVITE henry@gw1

To:henry@home.com
302 Moved

Contact:henry@gw1

INVITE

IWF+GK
H.323 terminal

(henry@home.com)

RRQ
(henry@home.com)

192.1.2.2

192.1.2.2

H.323 terminal
is initialized

Figure 11.6: Address translation from SIP to H.323 when IWF contains an H.323 GK

H.323 terminal

REGISTER

Contact:sam@128.3.4.4
To:sam@office.net

is initialized
SIP user agent

200 OK

(office.net)

ARQ
(sam@office.net)

User makes
outgoing call

200 OK
200 OK

OPTIONS
OPTIONSTo:sam@office.net

ACF
(128.3.4.4)

(henry@home.com)

SIP user agent
(sam@office.net)

128.3.4.4
SIP server

IWF+GK
(gw1)

128.3.1.1

Figure 11.7: Address translation from H.323 to SIP when IWF contains an H.323 GK



261

11.2.3 IWF is Independent of Proxy or Gatekeeper

In the third approach, shown in Fig. 11.2(c), IWF is not co-located with either an H.323 gate-

keeper or a SIP proxy server. User registration is done independently in the SIP and H.323

networks. However, when a call reaches the IWF, the IWF queries the other network for user

location. Here, we assume that the IWF is capable of interpreting and responding to the location

request (LRQ) from the H.323 network.

The address resolution mechanism works as follows. Suppose the SIP user Sam wants to

talk to Henry, an H.323 user. Henry has registered with its own gatekeeper in the H.323 network

and the gatekeeper knows Henry’s IP address, conveyed viaRRQ. When Sam contacts the SIP

proxy with Henry’s name, the SIP proxy has no registration for Henry, but is configured to contact

the IWF in case the called party is in the H.323 network. The IWF, in turn, multicasts the location

request (LRQ) for Henry to all gatekeepers. If there is no positive response from the gatekeepers

of the H.323 network within a timeout period, the IWF concludes that the address is not valid in

the H.323 network and the branch fails.

In the other direction, Henry sends an admission request (ARQ) to its gatekeeper. Since

this gatekeeper does not have the address mapping for Sam, it multicasts the location request

(LRQ) for Sam to the other gatekeepers in the network. In addition, the IWF is tuned to receive

theLRQ. The IWF then uses the SIPOPTIONS request (as in Section 11.2.2) to find out if Sam

is available in the SIP network and informs the GK if the request succeeds. This is followed by

H.323 call establishment between Henry and the IWF and a SIP call between the IWF and Sam.

Translation specification details

When a call arrives at the IWF from SIP cloud, the IWF sends a RASARQ request to the H.323

cloud. If the address cannot be resolved or if the RAS request times out, it sends an appropri-

ate response to the SIP endpoint. Similarly, calls from the H.323 cloud are translated into SIP

requests and sent to a proxy or end system.

This approach works well if calls are identified by URLs indicating the signaling scheme,

i.e., if an H.323 request is directed to a SIP URL or vice versa. In that case, it is sufficient if the

GK or proxy is pre-configured with the address of the IWF.



262

If the destination address does not indicate the signaling protocol, a SIP proxy server

has to forward all incoming requests to a local IWF, just in case the destination happens to be

reachable via H.323.

In this architecture, the IWF must implement the RASLRQ (location request) and LCF

(location confirmation) messages. When a call is initiated by an H.323 entity, its gatekeeper

will send an LRQ request to other gatekeepers at the well-known GK multicast address. The

IWF captures the LRQ message and can use one of two approaches to find out if a SIP end

point is available at that address. In the first approach, the IWF sends aREGISTER request

without Contact information to the domain identified in the request (see Section 11.3). If the

registrar has information about the endpoint, it returns this information in theContact headers

of the response. The IWF then translates this information and responds to the H.323 cloud with

a LCF (location confirmation) message. If the registrar returns a negative indication, the IWF

responds with a LRJ (location reject) message or remains silent. (Note that it is permitted that

a terminal responds to LRQ messages, so that a gatekeeper is not needed as a part of the IWF

application.) This approach is equivalent to SIP third-party registration and will not work if the

registrar requires authentication. The second approach uses SIPOPTIONS messages, but is

otherwise identical.

Direct Connection: No User Registration

The IWF should support direct H.323 connections. For instance, a SIP user (Sam) should be

able to call an H.323 user (Henry) through an IWF (saysip323.columbia.edu) by placing a

call to sip:henry@sip323.columbia.edu. Similarly, the H.323 user should be able to reach

a SIP user (sip:sam@office.net) by establishing a Q.931 TCP connection to IWF and provid-

ing the destination address or the remote extension address in the Q.931SETUP message as

sip:user1@office.net. The direct connection does not involve user registration and the caller is

expected to know that the destination is reachable via IWF.

If an IWF receives a Q.931SETUP message, the IWF tries to parse the Q.931destina-

tionAddress. If the destinationAddress is not of the IWF itself and if it is able to resolve it to a

SIP address, then the procedure described in section 11.4 is used to establish the call. (Note that



263

the user registration steps are not involved in this scenario.) Otherwise, if the destination address

is that of the IWF and a remote extension address is present in theSETUP message of Q.931,

then the IWF should use the remote extension address to determine the SIP address. The IWF

MAY also be configured to forward all requests to a pre-defined SIP proxy.

11.3 Signaling Address Translation

While user registration exports identities into the foreign network, address translation is per-

formed by the IWF to create valid SIP addresses from H.323 addresses and vice versa. In SIP,

addresses are typically SIP URIs of the form sip:user@host, whereusernames can also be tele-

phone numbers. However, SIP terminals can also support other URI schemes, for example “tel:”

URIs for telephone numbers [258] or H.323 URLs [247]. Generally, SIP terminals proxy calls to

their local server if they do not understand a particular URL scheme, in the hope that the server

can translate it.

In H.323, addresses (ASN.1AliasAddress) can take many forms, including unstructured

identifiers (h323-ID), E.164 (global) telephone numbers, URLs of various types, host names

or IP address, and email addresses (email-ID). Local user names and host names appear to be

most common. For compatibility with H.323 version 1.0 entities, theh323-ID field of H.323

AliasAddress must be present.

For SIP-H.323 interoperability, there should be a consistent and unique way of mapping

a SIP URI to an H.323 address and vice-versa. Translating a SIP URI to an H.323AliasAddress

is easy: We simply copy the SIP URI verbatim into theh323-ID. Theuser andhost parts of

SIP-URI are used to generate an email identifier, “user@host”, which is stored in theemail-ID

field of AliasAddress. Thetransport-ID parameter is copied from thehost part ofSIP-URI if

the latter is given numerically. Thee164 field is extracted from theuser part of SIP address if it

is marked as a telephone number.

Translating an H.323AliasAddress to a SIP address is more difficult since multiple

representations (e.g.,e164, url-ID, transport-ID) need to be merged into a single SIP address. In

the easiest case, the alias contains aurl-ID with a SIP URI, in which case it is simply copied into

the SIP message. Otherwise, if theh323-ID can be parsed as a valid SIP address (e.g., “Alice



264

<sip:alice@host>” or “alice@host”) it is used. Next, if thetransport-ID is present and it does

not point to the IWF itself, then it forms the host and port portions of the SIP URI. Finally, if the

H.323 alias has anemail-ID, it is used in the SIP URI prefixed with “sip:” URI scheme.

Note that the translated address may not necessarily be valid. On the H.323 side, it may

be desirable to configure a gatekeeper to route all calls that are not resolvable within the H.323

network to the IWF, which would then attempt a translation to a SIP URI. This would allow H.323

terminals to reach any SIP terminal, even those not cross-registered.

If the IWF is configured to route all calls to a default proxy, then it will forward whatever

SIP addresses it can form (from the H.323 Alias Address) to the proxy. This may be needed when

the IWF implementation is split into two (physically separate) parts, namely an H.323 terminal

and a SIP user agent. The H.323 terminal receives the call, maps the H.323 address to the SIP

address and forwards the request to the SIP proxy server.

11.4 Connection Establishment

A point-to-point call from Alice to Bob needs three crucial pieces of information, namely the

logical destination address (A) of Bob, the media transport address (T ) at which each of the users

is ready to receive media packets (RTP/RTCP) and a description of the media capabilities (M ) of

the parties.

Logical Destination address (A): This is the SIP address inTo header orRequest-URI, or the

destination alias address in the Q.931SETUP message.

Media Description (M ): In SIP,M is the list of supported payload types as given by SDP media

description (“m=”) lines. In H.245,M is given by the Terminal Capability Set (TCS).

Media Transport Address (T ): The media transport address indicates the IP address and port

number at which RTP/RTCP packets can be received. This information is available in the

“c=” and the “m=” lines of SDP and the Open Logical Channel message of H.245.

Alice should knowA, T andM of Bob and Bob needs to know Alice’sT andM . The

difficulty in translating between SIP and H.323 arises becauseA, M , andT are all contained in



265

the SIPINVITE request and its response, while H.323 may spread this information among several

messages.

11.4.1 Using H.323v2 Fast Connect

With H.323v2 FastConnect, the protocol translation is simplified because there is a one-to-one

mapping between H.323 and SIP call establishment messages. Both the H.323SETUP message

with FastConnect and the SIPINVITE request have all three components (A, M andT ). If the

call succeeds, both the H.323CONNECT message with Fast Connect, and the SIP200 response,

including the session description, have the required components (M andT of the call destination).

Call scenarios are shown in Fig. 11.8 and 11.9.

INVITE
To:henry@home.com

c=IN IP4 128.3.4.4
m=audio 8000 RTP/AVP 0

Setup

Connect
200 OK

c=IN IP4 192.1.2.2
m=audio 3456 RTP/AVP 0

{g711Ulaw,Rx,128.3.4.4:8000}

fastStart=
{g711Ulaw,Tx,192.1.2.2:3456},
{g711Ulaw,Rx}

fastStart={g711Ulaw,Tx},

(gw1)

H.323 terminal
(henry@home.com)

192.1.2.2

SIP user agent
(sam@office.net)

128.3.4.4
IWF

Figure 11.8: Call setup from SIP UA to H.323 terminal with FastConnect

11.4.2 Call Translation Without using Fast Connect

Since Fast Connect is optional in H.323v2, an H.323 entity must be able to handle calls without

the Fast Connect feature for backward compatibility. Thus, it is likely that the IWF receives

incoming calls from the H.323 network without Fast Connect PDUs. In particular, the IWF must

accept a non-Fast Connect call from the H.323 side. In the other direction, the IWF should try to

use H.323v2 Fast Connect, but must be prepared to switch to the multi-stage call establishment

procedure if the response from the H.323 entity indicates that this is not supported.



266

INVITE

c=IN IP4 192.1.2.2
m=audio 3456 RTP/AVP 0

To:sam@office.net

200 OK

m=audio 8000 RTP/AVP 0
c=IN IP4 128.3.4.4

ACK

Connect

destination:sam@office.net
fastStart={g711Ulaw,Tx},

{g711Ulaw,Rx,192.1.2.2:3456}

fastStart=
{g711Ulaw,Tx,128.3.4.4:8000},
{g711Ulaw,Rx}

Setup

H.323 terminal
(henry@home.com)

192.1.2.2

SIP user agent
(sam@office.net)

128.3.4.4
IWF

(gw1)

Figure 11.9: Call setup from H.323 terminal to SIP UA with FastConnect

When the call is initiated by a SIP UA all the call information (A, M andT ) is present

in the SIPINVITE message and can be used to format H.323 messages. The responses from the

H.323 side are collated and forwarded to the SIP side, as shown in Fig. 11.10.

But when the call is initiated by an H.323 terminal,A, M andT are present in different

messages. In a H.323 call without FastConnect,A is found in the Q.931SETUP message, the

TerminalCapabilitySet of H.245/H.323 containsM andT is present in the H.245 OpenLogi-

calChannel message. There are different ways in which these can be combined to form a SIP

INVITE message.

One obvious approach is to accept the H.323 call without informing the SIP user agent.

The H.323 call proceeds between the H.323 terminal and the IWF as if the IWF is just another

H.323 terminal. The interworking function may get the media capabilities of the SIP user agent

using the SIPOPTIONS message. Media capabilities of the H.323 terminal are obtained via

H.245 capability negotiation. Once the logical channels are established from the IWF to the H.323

terminal, the IWF knowsM andT and can place a SIP call by sending anINVITE. The media

transport address from the 200 response is conveyed to the H.323 terminal while acknowledging

theOpenLogicalChannel requests of the H.323 terminal.

While this approach is pretty simple, it has the disadvantage that the IWF accepts the call

without even asking the actual destination, leading to caller confusion if the SIP destination is not

reachable. This is undesirable if the caller is billed for the call setup.



267

C1 = capability set
SETUP

CONECT

Ack

TerminalCapabilitySet

Ack

if present in C1Ack

OpenLogicalChannel

Ack
200 OK

ACK

IWF

For all C1 ^ C2 = M

Session description = M

OpenLogicalChannel

TerminalCapabilitySet= C2

INVITE

SIP user agent H.323 Terminal

Figure 11.10: Call from SIP terminal to H.323 terminal without Fast Connect

This problem can be solved if the IWF sends a SIPINVITE without session description

or a session description without media transport information when receiving the Q.931SETUP

message from the H.323 terminal. Only after the SIP user agent has accepted the call, the IWF

forwards the confirmation (Q.931CONNECT) to the H.323 terminal. The rest of the call estab-

lishment proceeds as before, except that the SIPOPTIONS message is not needed because the

200 response from the SIP user agent describes the media capabilities.

The media capabilities of the H.323 terminal are received in the H.245TerminalCapa-

bilitySet message and are forwarded to the SIP user agent as part of theACK message or via an

additionalINVITE. The media capabilities of the SIP user agent are found in the session descrip-

tion of the200 response to theINVITE request.

The different interpretations of media capabilities by H.245 and SDP potentially cause

problems during the call. In SDP, a receive media capability of G.711 and G.723.1 means that the



268

sender can switch between these algorithms at any time during a call without explicitly informing

the receiver. However, in H.245, the sender chooses an algorithm from the capability set of

the receiver and explicitly opens a logical channel for that algorithm. The sender cannot switch

dynamically to another algorithm without informing the receiver. The sender has to close the

previous logical channel and re-open it with new algorithm. Alternatively, the receiver can use a

H.245ModeRequest to request the sender to use a different algorithm.

This problem can be addressed by having the RTP/RTCP packets from SIP to H.323 be

intercepted by the IWF. If the IWF detects a change in coding algorithm, it initiates the required

H.245 procedures. However, this approach is not advisable, as it scales poorly.

Another approach limits the media description sent to the SIP side to only one algorithm

per media (or per alternative capability set). This can be achieved by maintaining a maximal

intersection of the SIP and H.323 terminal capability sets (Section 11.5).

ACK

TerminalCapabilitySet

TerminalCapabilitySet

OpenLogicalChannel

Ack

Ack

Ack

OpenLogicalChannel

No session description

C1 = capability set

= C2

Session description = M

Ack if present in C1

M is operating mode
For all C1 ^ C2 = M

IWF SIP user agentH.323 Terminal

200 OK

SETUP

CONECT

INVITE

Figure 11.11: Call from H.323 to SIP terminal without Fast Connect



269

Call from H.323 Cloud to SIP Cloud with H.245 TerminalCapabilitySet (TCS) Mapped to

SDP

A first approach has the IWF send a SIPINVITE request when it receives a Q.931SETUP mes-

sage. The SDP body of theINVITE request contains a default session description. The default

session description must be either empty or contain media description (m=) lines indicating the

minimal capabilities of any H.323 terminal handled by the IWF. Currently, these minimal ca-

pabilities include only PCMU audio. If the session description is not empty, the IWF has two

choices:

1. The IWF controls an RTP translator that can forward RTP packets between two different IP

addresses. The SDP “c=” line indicates the address of the translator, with the port indicated

in the “m=” line.

2. The connection (“c=”) line indicates a zero address and the media (“m=”) line a zero port.

When the IWF receives a 200 (OK) response for theINVITE request from the SIP cloud,

the IWF transmits a Q.931CONNECT message to the H.323 endpoint. The IWF initiates the

H.245 capability with the TCS (Terminal Capability Set) sent to the H.323 endpoint. On receipt

of the TCS from the H.323 end point, which has a list of media supported by the H.323 endpoint,

a SIPACK message is formed with an updated session description reflecting the TCS. However,

T is still unknown at this point, so that the SDP “m=” and “c=” lines remain as described above.

When the IWF receives an H.245 Open Logical Channel (OLC) message, the IWF ac-

knowledges it with session information derived from the session description received from the

SIP UA in the 200 (OK) response. When the first RTP packet of any media is received by the

IWF from the SIP cloud, the IWF knows what payload type is used by the SIP UA for that media

type and it can send OLC to the H.323 cloud. RTP packets received until OLC Ack is received

are ignored or buffered for future transmission.

The problem with this approach is that RTP packets from the SIP UA cannot directly go

to the H.323 terminal, but are instead routed through the RTP translator, violating requirement

4 in Section 11.1. This problem can be solved by having the IWF send a re-INVITE to the SIP



270

endpoint after the logical channels have been opened. This newINVITE message indicates media

transport addresses (T ) of the H.323 endpoint and not that of the translator.

A second problem is caused by the different interpretation of dynamic payload type

switching in H.323 and SIP. When the TCS is mapped to SDP, the “m=” line is likely to list

more than one payload type. This indicates to the SIP-controlled media agent that it may switch

dynamically between all the payload types listed, without any H.323 or SIP signaling. However,

in H.323, switching payload types requires Open Logical Channel signaling. This problem can

be solved by restricting the SDP sent to the SIP endpoint to contain only one payload type per

media description line. It is not clear how this payload type should be chosen or how the SIP

endpoint can then switch payload types.

A third problem is that mapping a generic TCS to SDP requires enhancing SDP or SIP

so that it can indicate multiple H.245 capability descriptors. For example, we could use SIP mul-

tipart message bodies, with each body part containing the SDP mapped from a single capability

descriptor. Alternatively, the IWF could send a SIPOPTIONS request to the SIP UA and use

that to calculate the common subset of capabilities (Section 11.5).

Call from H.323 Cloud to SIP Cloud Mapping H.245 Open Logical Channel (OLC) to SDP

In the second approach, on receipt of a Q.931SETUP message, the IWF sends a SIPINVITE re-

quest as before. The IWF performs the H.323 capability exchange with the H.323 cloud without

involving the SIP UA. The IWF then calculates the subset of capabilities from the H.323 TCS and

the SDP contained in the 200 (OK) response to theINVITE. The IWF then sends an H.245Open-

LogicalChannel message for each of the media present in this subset. TheOpenLogicalChan-

nelAck message received from H.323 terminal will have the media transport addresses (T ) of

the H.323 terminal. On receipt ofOpenLogicalChannelAck for all theOpenLogicalChannel

messages, the IWF sends a SIPACK message with the new transport addresses. This call scenario

is shown in Figures 11.12 and 11.13.

Dynamic switching of H.245 Mode or Logical Channels is accomplished using SIPre-

INVITE. For example, if video logical channel is opened from H.323 to IWF after initial call

setup procedure (i.e., Logical Channels for audio are already opened), then the IWF sends a re-



271

156.5.6.6

200 OK

m=audio 8000 RTP/AVP 8
Connect

TCS (g711Alaw: tx and rx)

TCSAck

TCS (g711Alaw, g711Ulaw)

TCSAck

OLC (mode=g711Alaw)

c=IN IP4 128.3.4.4

OLC (mode=g711Alaw)

To:sam@office.net
INVITE (default SDP)

c=IN IP4 156.5.6.6
m=audio 0 RTP/AVP 0

ACK

(re) INVITE

c=IN IP4 192.1.2.2
m=audio 3456 RTP/AVP 8

200 OK

ACK

destination:sam@office.net
no fastStart

OLCAck (rx=192.1.2.2:3456)

OLCAck (rx=128.3.4.4:8000)

To:sam@office.net

(gw1)
H.323 terminal

(henry@home.com)
192.1.2.2

SIP user agent
(sam@office.net)

128.3.4.4

Setup

IWF

Figure 11.12: Call from H.323 to SIP with conversion between OLC and SDP

INVITE message to the SIP side with new SDP describing the video capability also. When the

IWF receives 200 response from the SIP side, it sendsOpenLogicalChannelAck to H.323 side

with the media transport address as received in SDP in the response. The IWF will also initiate

OpenLogicalChannel procedure for the video channel in IWF to H.323 direction.

If the media transport address of SIP UA changes during a call for a particular logi-

cal channel, (e.g., as a result of re-INVITE initiated by the SIP side) then the IWF sendsRe-

questChannelClose H.245 message to the H.323 terminal for the logical channel. H.323 termi-

nal will close the logical channel and will re-open it usingOpenLogicalChannel. The changed

media transport address of SIP UA can then be returned to H.323 terminal in aOpenLogi-

calChannelAck message.

In this approach, RTP packets can be sent directly between the two endpoints. However,

the SIP UA is restricted to algorithms chosen by the IWF. Since these algorithms are derived from



272

156.5.6.6

TCSAck

TCS (g711Alaw, g711Ulaw)

TCSAck

OLC (mode=g711Alaw)

INVITE
Setup

m=audio 8000 RTP/AVP 0
c=IN IP4 128.3.4.4

Connect (no fastStart)

TCS (g711Ulaw: tx and rx)

OLC (mode=g711Ulaw)

ACK

200 OK
c=IN IP4 192.1.2.2
m=audio 3456 RTP/AVP 0

destination:henry@office.com

{g711Ulaw,Rx,192.1.2.2:8000}
fastStart={g711Ulaw,Tx},

OLCAck (rx=192.1.2.2:3456)

OLCAck (rx=128.3.4.4:8000)

To:henry@home.com

(gw1)
H.323 terminal

(henry@home.com)
192.1.2.2

SIP user agent
(sam@office.net)

128.3.4.4

IWF

Figure 11.13: Call from SIP to H.323 with conversion between OLC and SDP

the common subset of H.323 and SIP capabilities, communications should still be possible.

A small problem with this message flow sequence is thatACK timeout on the SIP side

and OLC timeouts on H.323 side may not match. This may result in lots of retransmissions in

the SIP network. To avoid this, the IWF may choose to send anACK immediately upon receipt

of the 200 (OK) response from the SIP UA and then re-INVITE with an updated SDP after all

OpenLogicalChannelAcks have been received from the H.323 endpoint.

We prefer the mapping of SDP to and fromOpenLogicalChannel because mapping

OLC is simpler than mappingTerminalCapabilitySet to SDP, which requires modifications to

SIP or SDP, and it avoids the introduction of a temporary RTP translator.

11.5 Calculating a Common Subset of Media Capabilities

The capability setof a terminal or a user agent refers to the set of algorithms for audio, video

and data that it can support. It also conveys information about constraints in the selection of



273

algorithms it may have. For example, due to limited bandwidth, a terminal may indicate that it

can use either G.711 without video or G.723.1 with H.261 video.

Theoperating modeof a call refers to the algorithms which are used for the actual transfer

of media. To determine the operating mode for a call it is necessary to find out the intersection of

the capabilities of the endpoints in the conference. This section presents a way to calculate this

intersection of the capability sets described by H.245 Terminal Capability Set (TCS) and that by

SDP.

A maximal intersectionof two capability sets is a capability set which is a subset of both

the capability sets and no other superset of the maximal intersection is a subset of those capability

sets. It can be proven that ifM is an operating mode for capability setC1 as well as for capability

setC2, thenM will be an operating mode for maximal intersection ofC1 andC2. Thus, we fulfill

requirement 5 described in Section 11.1.

H.245 definesTerminal Capabilitiesas a list of capability descriptors, ordered by de-

creasing preference. Any one of the capability descriptors can be used for selecting operating

modes. Each capability descriptor includes a simultaneous capability set. Each element in the

simultaneous capability set is an alternative capability set. Each element in the alternative capa-

bility set represents an algorithm. Each algorithm has a payload type and can be fully described

by the payload type, a profile and some optional attributes.

As mentioned earlier,{} represents capability descriptor or simultaneous capability set

(conjunction), and[] contains alternative capability set (disjunction).

Let a1, a2, a3, a4, a5 be audio algorithms and v1, v2, v3 be video algorithms.C1 repre-

sents a capability set with two capability descriptors:

C1 = { [a1, a2, a3] [v1, v2] }

{ [a1, a4, a5] [v1] }

Operating modes could be (a1, v1), (a1, v2), (a4, v1), (a5), etc. Note that (a4, v2) is not

an operating mode since a4 and v2 are drawn from different capability descriptors.

Let C2 be another capability set.

C2 = { [a1, a4, a2] [v1, v2, v3] }



274

{ [a1, a2, a5] [v1, v3] }

The maximal intersection of C1 and C2 is

C = { [a1, a2] [v1, v2] }

{ [a1, a4] [v1] }

{ [a1, a5] [v1] }

Note that there are other capability sets which are intersections of C1 and C2 (e.g.,

{[a1,a2][v2]}), but they are subsets of C and hence can be derived from C.

Algorithm for Finding Maximal Intersection of Capability Sets

An algorithm to find the maximal intersection of any two capability setsC1 andC2 is given

below:

1. Set the resultC to the empty set.

2. Outer loop: for each pair of capability descriptors (d1, d2), whered1 is fromC1 andd2 is

from C2, derive the permutations of alternative sets,s1 ands2.

Inner loop: for each such permutation, wheres1 is fromd1 ands2 is fromd2, intersects1

ands2 (written ass=s1ˆ s2) and adds to C.

3. Remove duplicate entries fromC.

Using the example withC1 andC2 given above, the outer loop runs for four iterations,

sinceC1 andC2 both have two descriptors.

1. d1 = {[a1,a2,a3][v1,v2]},

d2 = {[a1,a4,a2][v1,v2,v3]}

The inner loop runs for 2 iterations:

1) {[a1,a2,a3]ˆ[a1,a4,a2],[v1,v2]ˆ[v1,v2,v3]}

= {[a1,a2][v1,v2]}

2) {[a1,a2,a3]ˆ[v1,v2,v3],[v1,v2]ˆ[a1,a4,a2]}

= {[][]} /* Empty set */



275

2. d1 = {[a1,a4,a5][v1]},

d2 = {[a1,a4,a2][v1,v2,v3]}

1) {[a1,a4,a5]ˆ[a1,a4,a2], [v1] ˆ[v1,v2,v3]}

= {[a1,a4][v1]}

2) {[a1,a4,a5]ˆ[v1,v2,v3],[v1]ˆ[a1,a4,a2]}

= {[][]} /* Empty set */

3. d1 = {[a1,a2,a3][v1,v2]},

d2 = {[a1,a2,a5][v1,v3]}

1) {[a1,a2,a3]ˆ[a1,a2,a5],[v1,v2]ˆ[v1,v3]}

= {[a1,a2][v1]}

2) {[a1,a2,a3]ˆ[v1,v3],[v1,v2]ˆ[a1,a2,a5]}

= {[][]} /* Empty set */

4. d1 = {[a1,a4,a5][v1]},

d2 = {[a1,a2,a5][v1,v3]}

1) {[a1,a4,a5]ˆ[a1,a2,a5],[v1]ˆ[v1,v3]}

= {[a1,a5][v1]}

2) {[a1,a4,a5]ˆ[v1,v3],[v1]ˆ[a1,a2,a5]}

= {[][]} /* Empty set */

After these iterations the intersection set becomes

{ [a1,a2] [v1,v2] } { }

{ [a1,a2] [v1 ] } { }

{ [a1,a4] [v1 ] } { }

{ [a1,a5] [v1 ] } { }

After removing duplicates, the maximal intersection is

{ [a1,a2] [v1,v2] }

{ [a1,a4] [v1] }

{ [a1,a5] [v1] }



276

Since H.323 does not require that all algorithms listed within a single alternative capabil-

ity have the same media type, we need the inner loop to find out all the possible combinations.

For example, if C1 ={[a1,a2,a3] [a1,a4,v2,v1]} and C2 ={[a1,a4,v2] [v1,v2,v3]}, then

the above algorithm correctly finds the intersection as{[a1] [v1,v2]} {[a1,a4,v2]}
As an example, let the SIP capability set be{[PCMU,PCMA,G.723.1] [H.261]} and

H.323 capability set be{[PCMU,PCMA,G.729] [H.261]} {[G.723.1] [H.263]} (i.e., the SIP

user can support PCMU, PCMA or G.723.1 audio and H.261 video, whereas the H.323 user

can support either one of the PCMU, PCMA, G.729 audio with H.261 video or G.723.1 au-

dio with H.263 video). The maximal intersection as calculated by the IWF is{[PCMU,PCMA]

[H.261]} {[G.723.1]}. The IWF derives an operating mode by selecting a capability descrip-

tor from the maximal intersection and selecting one algorithm per alternative capability set (e.g.,

{PCMU,H.261}). The IWF conveys only the PCMU audio and H.261 video to the SIP user agent.

If the SIP side sends additionalINVITE with a different capability set ({[G.729,G.723.1][H.261]},
the new maximal intersection becomes{[G.729][H.261]}{[G.723.1]}. The IWF derives a new

operating mode ({G.729,H.261}) and initiates the H.245 procedure to change the PCMU audio

to G.729.

11.6 Translating Advanced Services

Both SIP and H.323 support advanced services like multi-party conferencing and call transfer. In

this section we propose possible approaches for translating these services.

11.6.1 Multi-party Conferencing

A transparent support for multi-party conferencing can be achieved by having the IWF mirror

the endpoint(s) in each direction. Fig. 11.14 shows a scenario in which two H.323 terminals (H1

and H2) and two SIP user agents (S1 and S2) are involved in a conference. From the H.323

side, the interworking function (IWF1) looks like a single H.323 terminal. From the SIP side, the

interworking function acts as a single SIP user agent.

This approach fails if S1 invites another H.323 user H3 via a different interworking func-



277

H1

H2

S1

S2

Multipoint 

MC

Controller

Convention: Hn : H.323 terminals;     Sm : SIP user a

S3 H3

IWF1

IWF2IWF3

Interworking function

Figure 11.14: Ad-hoc conferencing among SIP and H.323 endpoints

tion (IWF2). For example, the participant H2 cannot know when H3 joins the conference. Al-

ternatively, if H1 invites a SIP user, S3, S2 will not know of the presence of S3. One way for

the participants to know about the existence of the other participants is to rely on the RTP/RTCP

packets. This goes against the idea of H.323 conferencing where H.245 messages are used to

convey the existence of new participants.

We can solve this problem by forcing all invitations to pass through the IWF. Fig. 11.15(a)

shows a conference managed by an MC where H.323 terminals are directly connected to the MC

and SIP user agents are connected through interworking functions. A SIP user agent is allowed

to only invite other SIP UAs through the IWF, so that the IWF can update the MC state. In a

SIP-centric architecture, Fig. 11.15(b), the H.323 terminals take part in the conference through

the interworking functions.

We recommend a SIP-centered architecture because the SIP conferencing model is more

general, allowing full mesh with distributed control or centralized bridged conferences. In gen-

eral, translating services is greatly simplified if an operator adopts a primary signaling protocol,

with services offered only in that protocol. Terminals using another protocol are restricted to

making calls through the IWF.

Supporting H.332 loosely coupled conferences is straightforward, since SDP is used by

both H.323 and SIP in that context.



278

(a) H.323 centered conference

SIP cloud

H.323 cloud

H1

H3

H2

S3

S1

MC

S2

H2

IWF

IWF

IWF

IWF

IWF

IWF

S2

H.323 cloud

SIP cloud

(b) SIP centered conference

H1

H3

S3

S1

Figure 11.15: Different conferencing architectures

11.6.2 Call Transfer

Call transfer is one of the many supplementary services needed for internet telephony. The idea is

to convert a call between two entities (say, A and B) to a call between B and C. Fig. 11.16 shows

the message sequence in H.323 and SIP and a possible translation when A and B are H.323

terminals and C is a SIP user agent.

A difference between SIP and H.323 arises because of the different philosophies of pro-

tocol extension. H.323 designers identify a supplementary service such as call transfer, call for-

warding, call hold and define a new set of messages to accomplish it. This results in different

procedures for different advanced services (e.g., H.450.2 for call transfer, H.450.3 for call diver-

sion, H.450.4 for call park and call pickup). In SIP, crucial information needed for call services

is identified and is encapsulated in new message headers (e.g.,Replaces, Requested-By). Dif-

ferent call services are then designed using these building blocks. SIP also defines call transfer

using theREFER method. The translation is similar.

A number of open issues remain when translating advanced services, including whether

all call parameters can be translated and how security and authentication are to be handled. Since



279

Tranfer Setup
Invoke Call 

SETUPInvoke Call transfer

FACILITY

200 OK

Also: C
BYE

INVITE

Return Result

COMPLETE
RELEASE

Tranfer Setup
Invoke Call 

SETUP

Return Result
CONNECT

Initiate
Invoke Call transfer

INVITE

IWF

ACK

200 OK

New CallNew Call

(b) Call transfer in SIP(a) Call transfer in H.323

and C is a SIP user agent.
(c) Call transfer in mixed network. A and B are H.323 term

C (SIP)B (H.323)A (H.323)

Return Result

COMPLETE
RELEASE

Return Result

CONNECT

ACK

200 OK

FACILITY

Original Call

Original CallOriginal Call
CBACBA

Figure 11.16: An example of call transfer mapping

the two protocols, H.323 and SIP, have many differences, a complete one-to-one translation is not

possible for all advanced services, especially for end-to-end security and authentication.

11.7 Conclusion

We have described a framework for interworking between SIP and H.323. The challenges include

call sequence mapping, address translation and mapping session descriptions. The implementa-



280

tion requirements and detailed interworking function behavior are specified in Appendix D.

Ad-hoc conferencing among SIP and H.323 participants is not possible without modify-

ing one or both of these protocols. The problem can be made tractable by keeping an interworking

function aware of all call state changes.

H.323 has picked up a number of features from SIP, such as Fast Connect and UDP-based

signaling. It is possible that further convergence may occur, although not without fundamental

changes to either SIP or H.323.

We have implemented a basic interworking function using the OpenH323 [259] library

and a SIP signaling stack developed by us as part of CINEMA, and demonstrated a simple au-

dio call setup between SIP user agents and Microsoft NetMeeting. My implementation was later

adapted and commercialized by SIPquest, Inc., and licensed to a number of people including car-

riers. SIPquest engineers had also load tested the software for more than 10,000 simultaneously

active connections.

The translation described in this chapter is not complete in all respects, but facilitates

simple call setup. Overlap sending of dialed digits is not described. Data Application (T.120),

encryption, security and authentication are not covered in this chapter. We have not addressed the

issue of multistage translation, where two H.323 users communicate via a SIP gateway. It is not

yet clear how common such a scenario would be, given direct network connectivity between the

two parties.



281

Chapter 12

Conclusions and Future Directions

We conclude this thesis by emphasizing the need for reliability and scalability in Internet tele-

phony. Although the Internet is perceived as less reliable than the Public Switched Telephone

Network (PSTN), people expect PSTN-grade reliability and performance from Internet telephony.

There are four high-level areas that must be addressed before Internet telephony can be adopted

by the masses: reliability, scalability, quality of service and security. This thesis addresses only

the reliability and scalability issues in the Session Initiation Protocol (SIP)-based Internet tele-

phony systems.

12.1 Summary of the Problems and Contributions

We have addressed the following specific questions:

1. Can SIP servers provide carrier-grade reliability and scalability using commodity hard-

ware? What factors affect the SIP server performance?

2. How can we build a server-less self-organizing peer-to-peer Internet telephony system in a

standards compliant way?

3. Can SIP-based communication be extended to multi-platform collaboration using existing

tools? How well does multi-party conferencing scale on a commodity hardware? How

does SIP interoperate with another competing protocol, ITU-T’s H.323?



282

These problems are addressed in this thesis in three parts:

Server redundancy

We used server redundancy to provide failover and load sharing in a server-based SIP infras-

tructure (Chapter 3). We implemented failover using database replication. We developed the

two-stage architecture for SIP load sharing, which scales linearly with the number of servers.

We quantitatively verified using real measurements, not just a simulation, that a cluster of six

commodity PCs costing a few thousand dollars can support 10 million busy hour call attempts

(BHCA), and 10 million users, and thus, exceeds the performance of a typical class-5 PSTN

switch costing millions of dollars. We quantitatively compared the performance of various thread

and event architectures in a single SIP server software. Our two-stage thread architecture gives

the best performance for a stateful SIP server implementation compared to other event and thread

models.

Peer-to-peer

To reduce the configuration and maintenance cost of a server-based system, we developed and

implemented mechanisms to build a peer-to-peer network for Internet telephony using SIP, while

keeping the syntax and semantics of SIP messages (Chapters 4, 5 and 6). Additionally, we built

mechanisms to securely use an external P2P network as a SIP location service (Chapter 5). The

advantage of using SIP is that it can interoperate with existing SIP-based infrastructure such as

gateways and conferencing servers. The hybrid architecture allows a user to be located in both

peer-to-peer and server-based infrastructure.

Enterprise IP telephony

We extended our Internet telephony architecture, CINEMA, to a multimedia collaboration system

(Chapter 9). We built software pieces for both synchronous collaboration such as highly interac-

tive conferencing as well as asynchronous collaboration that does not require simultaneous active

presence of the participants. We evaluated the performance of our conference server and quanti-

tatively verified that it can support large scale audio conferences with thousands of participants



283

in a cascaded mixer architecture (Chapter 10). We also developed and implemented a translation

scheme between SIP and H.323 so that our SIP-based components can interoperate with H.323

infrastructure (Chapter 11).

12.2 Connecting Themes

There are three main themes that connect various parts of this thesis: reliability, scalability and

interoperability.

Reliability

There are two aspects of PSTN reliability: equipment reliability and network availability. PSTN

switches have a “5 nines” reliability requirement, i.e., are available 99.999% time. PSTN has

call success probability of three to four nines. On the other hand, current Internet telephony has

99.5% probability of call success, and 1.5% probability of call abortion due to poor audio quality,

giving 98% availability [260]. The SIP server reliability determines the equipment reliability in

Internet telephony. The failover architecture described in Section 3.3.6 can be used to achieve “5

nines” reliability of SIP servers. The overall availability depends on a number of other factors

such as underlying routing infrastructure and DNS.

Peer-to-peer (P2P) systems are inherently more reliable and robust because there is no

central point of failure, and the network self-organizes itself when a node fails. Data stored on

the P2P network is replicated to improve the data availability. Our P2P-SIP architecture benefits

from the robustness of the underlying P2P network.

Scalability

We have shown that unlike web server redundancy, a simple server farm with identical redundant

SIP servers is not scalable, because user registration needs to be propagated to all the servers

or databases (Section 3.4.3). We built the two-stage scalable architecture which allows linear

scalability with the number of servers (Section 3.4.5). The two-stage architecture can also be

applied to a multi-threaded transaction stateful server implementation to reduce lock contention



284

among multiple threads (Section 3.6).

We also evaluated the performance of our conference server, and showed the performance

gain in a two-stage cascaded mixer architecture.

P2P systems are inherently scalable because a new node also serves other nodes in lookup,

unlike a server-based system where a new client only adds load on the server. Our P2P-SIP

architecture benefits from the scalability of the underlying P2P network.

Interoperability

When extending the SIP-based multimedia communication system to a comprehensive multi-

platform collaboration system, a number of new components are included, e.g., unified mes-

saging, document sharing and screen sharing. Instead of using proprietary extensions, we have

reused existing protocols and tools as much as possible in our architecture. For example, we use

RTSP for voice mail recording and playback, so that existing media tools such as QuickTime can

be used to listen to the messages. Shared web browsing uses the SIPMESSAGE request to con-

vey the browsed URL. We use VNC for screen sharing, and SOAP and VoiceXML for conference

control. The components interoperate with other implementations based on these open standards.

We also presented interworking between basic user registration and call between SIP and

H.323, so that our SIP-based components can interoperate with other H.323 infrastructure.

One of the distinguishing factors between our P2P-SIP and Skype is that Skype uses a

proprietary protocol, thus supports only a single vendor and single identity provider model. On

the other hand, our P2P-SIP uses SIP for Internet telephony signaling, and can also interoperate

with the client-server SIP infrastructure. Using an open standard allows us to have systems from

different vendors and service providers, instead of a single vendor Skype system.

12.3 Server-based vs. Peer-to-peer Internet Telephony

We have described two architectures for scalability and robustness of Internet telephony: server

redundancy and peer-to-peer. The main problem with a server-based system is that it usually

requires a dedicated system administrator to configure and maintain the servers. The system



285

relies on external dependencies such as DNS. On the other hand, P2P systems automatically

configure themselves, and the P2P network self-organizes itself. This reduces the configuration

and maintenance cost.

Secondly, server-based systems are prone to catastrophic failures, e.g., if all the servers

in the cluster are destroyed in a bomb explosion, the users become unreachable even if the user

machines and parts of the underlying IP network are functioning. On the other hand, a P2P

network is implicitly fault tolerant.

Peer-to-peer systems have significantly higher lookup latency. For example, unlike a sim-

ple request-response message in the server-based system, a lookup in Chord-based P2P network

of N nodes can result inlog N application level hops. However, for Internet telephony call setup

this delay of a few seconds is not a problem.

The security of a structured P2P network against malicious node behavior is still an open

issue. Additional challenges are in building a pure P2P reputation system and working around spy

nodes. On the other hand, in a server-based system, the clients can trust the server, and transport

security of the messages (e.g., using TLS) can guarantee the system security.

Both P2P and server-based systems are scalable. We showed that our two-stage cluster

architecture performs linearly with the number of servers. Therefore, we can achieve any desired

performance by adding more servers in the cluster. P2P networks are inherently scalable, because

a new node also shares the total cost of service, i.e., user lookup.

PSTN interoperability via a gateway is achieved using additional protocols such as ENUM

and TRIP. A P2P system can use the server-based infrastructure for PSTN interoperability similar

to Skype, or allow discovery of PSTN gateways co-located with peer nodes.

Given the tradeoffs between P2P and server-based architectures, and wide deployment of

server-based Internet telephony infrastructure, we predict that both the systems will exist for quite

some time. Thus, we need to interoperate between the two. Our open standards-based P2P-SIP

architecture provides a hybrid system where lookup can be done in both P2P or DNS, and allows

interworking between the two architectures.



286

12.4 Implications of this Research

Internet telephony is more rich in features compared to the PSTN, and allows extending the

system for new services easily. For example, VoiceXML-based telephony applications can be

easily developed using existing web infrastructure. On the other hand, PSTN switches are closed

systems. It is hard to add new services. A result of Internet telephony research in the past

decade is that many organizations and universities are gradually replacing the local PBX with a

SIP-based IP PBX, such as our CINEMA system. SIP-based systems can provide all the PBX

features such as voice mail, conferencing and call transfer, albeit at a lower cost and better quality

and performance, e.g., wide-band audio codec such as G.722 can be used in Internet telephony

instead of only G.711 in PSTN.

Cost is an important factor in determining research directions. For example, Internet

telephony saves long distance cost of PSTN calls, and a P2P network saves the configuration and

maintenance cost of a server-based system. This translates to zero-cost PC-to-PC calls on the

Internet, similar to free emails and instant messaging. The user has to pay only when the call

crosses into the PSTN.

Using open platforms with existing protocols calls for a plethora of new services. We

have built a number of applications in our CINEMA test-bed. CINEMA is also being used in a

number of other experiments and new systems in our lab. For example, the NG911 project uses

the centralized conference server, a Verizon sponsored project builds a firewall and NAT control-

ling proxy using CINEMA, and another project extends the two-stage architecture to presence

scalability. A number of students have done projects using CINEMA, e.g., an auto-attendant ap-

plication using VoiceXML, without having to modify the existing components because CINEMA

uses open standards.

We have shown how to build a scalable cluster of SIP servers, and identified which soft-

ware architecture performs well in terms of threads and event-based implementations. This gives

us a better understanding of scalability and system design issues for SIP-based systems.

There are two types of factors affecting the system scalability: server and network. There

is a limit on single server scalability even with any number of optimizations. Thus, load distri-

bution on the network of servers is more promising to address the growing performance needs of



287

Internet telephony systems. We have shown this for both SIP call setup and conference mixer.

Our systems are modular. The logical components are separated, and usually imple-

mented as independent software. This promotes modular architecture, e.g., keeping the P2P layer

separate from the SIP layer allows extending the system to the external DHT architecture. Fur-

thermore, this promotes DHT-as-a-service model, to save the cost of building new P2P systems

from scratch.

12.5 Future Directions

We have described both server-based and server-less (peer-to-peer) Internet telephony scalability.

We also described how P2P can be used in a server farm to reduce the configuration and main-

tenance cost of servers. This is very promising particularly for carriers with lots of servers, e.g.,

the SIP proxies in the 3GPP architecture can be extended to automatically configure themselves

to serve different roles for different networks.

We have described how to use the shared and managed OpenDHT in P2P-SIP securely.

However, handling malicious nodes in an unmanaged distributed hash table is an open problem.

Unless this is addressed, a global public DHT for P2P-SIP where the user’s phone becomes a

DHT node cannot be deployed securely.

Another interesting question to ask is: what is the performance overhead of security and

quality of service in Internet telephony? Our performance evaluation used UDP transport. How-

ever, in a real deployment on the Internet, TLS is preferred. Although the cluster architecture

we presented can potentially scale to other transport protocols, the absolute performance of the

individual server may be quite different.

SIP-based Internet telephony allows adding new services such as presence, instant mes-

saging and multi-player gaming. The user model and load for these services are different than

the simple user registration and call arrivals that we analyzed. Although our scaling architecture

forms the building block for these SIP-based services, the performance evaluation needs to be

redone to verify the performance gain.

A number of open issues remain in P2P-SIP. In particular, we need to explore the effect of

NAT and firewall traversal on the DHT performance given that many residential users are behind



288

NAT, interworking with PSTN without using a centralized server-based system, optimization for

locating the best media relay in the P2P network to forward media packets to nodes in a private IP

address space, and extension of Internet telephony communication to a multimedia collaboration

in P2P using standard protocols.



289

Appendix A

Design and Implementation of the

Columbia SIP Library

I have implemented a modular SIP library in C++ and used it as the underlying SIP implementa-

tion in all our SIP-based components in CINEMA, such as voice mail server, conference server,

peer-to-peer client adaptor, and VoiceXML browser. This chapter describes the SIP library,lib-

sip++ and the implementation overview of various components in CINEMA.

A.1 Background

The libsip++ is derived from the Columbia SIP server,sipd, and reuses the parsing and trans-

action handling fromsipd. This section describes the components needed for understanding

libsip++ design.

Call Routing

This section describes howsipd handles an incoming call. This is useful in understanding the

design of the SIP library and other components, such as our voice mail server,sipum.



290

Canonicalization

An incoming call is processed as shown in Fig. A.1. Here, Alice,sip:alice@cs.columbia.edu

calls Bob, sip:Bob.Wilson@cs.columbia .edu. Through DNS SRV records, Alice’s user

agent finds out that the hostconductor.cs.columbia.edu serves SIP requests for the domain

cs.columbia.edu. We assume that Bob can be reached in many different ways, for example, as

bob, Bob.Wilson, bob wilson, Bob.V.Wilson andwebmaster.

hostname
mapping

sip:Bob.Wilson@conductor.cs.columbia.edu

Database

dial plan

success 7042@cs.columbia.edu hgs

User lookup

failure
success

sip:Bob.Wilson@cs.columbia.edu

1−to−1 mapping
no match

authentication

policy:
CPL, cgi, register

call routing

Contact list

failure

??????? tel:+1212$
7[01]?? tel:+1212939$
7134 sip:bob@cs.columbia.edu

phone numbers

sip:bob@cs.columbia.edu

Canonicalization

namemapping
alias

alice@cs.columbia.edu

conductor.cs.columbia.edu ==> cs.columbia.edu

bob@cs.columbia.edu

henning@cs.columbia.edu hgs

bob.wilson@cs.columbia.edu bob

Figure A.1: Canonicalization, authentication and routing for a call

After validating the syntax of the call request, the server transforms the callee address to

a canonical user identifier for database lookup, by first transforming the host portion and then

the user name portion. For example, the domain portion,conductor.cs.columbia.edu is canon-

icalized tocs.columbia.edu. This is done by matching the domain portion of the request URI

against a list of possible domain names and IP addresses for SIP requests to this proxy server.



291

In our case, this includes the domain namecs.columbia.edu and the host name and IP address

on whichsipd is running. If the canonicalized host name does not match, the server is being

used as an “outbound proxy server” and just routes the request to the SIP server for the domain,

without any processing. Outbound proxy servers are useful for logging and firewall control, for

example. Outbound proxies are not needed for “sip” URLs, but SIP requests with “tel” URLs

need to designate such a proxy to translate the telephone number into a routable SIP identifier.

This SIP identifier can either point to a PSTN gateway or be a regularsip:user@host URL.

The server first checks whether the SIP identifier is present in SQLput table. If it is

present, then theusername is used unchanged and is the canonical user identifier. If it is not

present, then the server tries to translate the username into a canonical form by two transforma-

tions. In the first, the SQLaliases table is checked to see whether an alias entry is present for

the user. If an alias is present, it is resolved to its canonical identifier user. In the second step,

the name mapper function searches the SQLperson table to see if it can deduce a username,

by comparing the user part of request URI to various combinations of the first, last, and middle

names recorded in that table. (In the example, the name mapper determines from theperson

table that the name “Bob Wilson” corresponds to userbob.)

Finally, the server checks whether the user identifier is a telephone number

or not. A request URI for telephone numbers can be of the form: “tel:number”,

“sip:number@domain;user=phone”, or “sip:number@domain”. Note that for the “tel” URL, the

domain portion does not exist hence there is no need to canonicalize the domain part. Thenumber

can have an optional prefix of “+” to indicate a globally routable number, e.g.,+1-212-9397000.

The first and second cases specifically tell the server that the address is a telephone subscriber.

A heuristic is used to determine if the address matches the third case. A database lookup is

done to compare the address against the available user names and aliases to find a match. This

allows to create telephone number as user identifier or to create telephone number aliases for

user@domain. If the resulting address is still a telephone number, it is canonicalized using a dial

plan. If none of the rules match, the user identifier is returned unchanged to the server.

The SIP server then retrieves contact and policy information for the user

bob@cs.columbia.edu. The policy information describes how the call is handled, for exam-



292

ple whether it is to be proxied or redirected. Bob’s preferences and policy are then executed.

These may, for example, demand that a calling user be authenticated, refuse or redirect calls, or

apply preferences about where Bob wants to be reached. If the server determines that Bob’s cur-

rent policy allows Alice’s call to reach him, it contacts Bob’s list of registered locations. Bob’s

current SIP phones ring, he picks up the handset and starts talking to Alice. When they are done,

either of them can terminate the call.

If the callee’s contact location is a telephone number, then the dialplan matching is done

on the contact location. The dialplan leads to a gateway to reach the PSTN destination.

If there are multiple contacts found for the user, then all of the contact locations are used.

The preference values (q-value) of the contacts are used to order the contact locations. The more

preferred value is tried first, and if it fails or times out, the next preferred location is used. If

multiple contacts have the same or similarq values, then the server forks the call request to all

those locations in proxy mode. In redirect mode, it returns all those contact information back

to the caller. For example, if usersales@company.com, has locationsrep1@pc1.company.com

(preference 1.0),rep2@pc2.company.com(preference 1.0),rep3@pc3.company.com(preference

0.8), senior-rep@company.com(preference 0.3) andmanager@company.com(preference 0.3)

then a call tosip:sales@company.comis first forwarded to both rep1 and rep2. If they do not pick

up the phone or the call fails, then rep3 is tried. If rep3 also does not answer the call, then it is

forwarded to senior-rep and manager simultaneously. The forking behavior with the configurable

priorities for different contact locations can achieve enhanced automatic call distribution (ACD).

Programmable Call Handling

Sipd supports both CPL and SIP-CGI. SIP Servlet [261] implementation is also partially imple-

mented. The piece of software which alters the server behavior, either a SIP-CGI or a CPL script,

can be uploaded to the server using a SIP UA such assipc, or from the web interface.

Database Lookup

Database lookup for locating the contacts of the users constitutes a substantial fraction of the

processing power in a SIP proxy server. Higher delay in database lookup (approximately 10



293

SQL
database

SQL
database

Cache

Periodic
Refresh

< 1ms
10 ms (approx)

Interface
Web

External Database In−memory cache

Figure A.2: SQL vs FastSQL

ms per query) increases the response time/delay of the transaction, hence the performance and

the scalability. We have implemented an in-memory database scheme to speed-up the database

access time in our SIP server (sipd) as shown in Fig. A.2. This involves loading the various

database tables (e.g., user information, contact locations, aliases) into the main memory, instead

of doing lookup into the database for every transaction. Since each table entry takes less than

few hundreds of bytes it is perfectly reasonable to use it in an enterprise environment with only

a few thousands of users for improved performance. However this optimization causes another

problem related to synchronization of the in-memory and external database. In particular, care

must be taken to updated the in-memory database when a new contact is added from the user

interface. We define a periodic refresh interval (About two minutes for contacts table and half an

hours for user information and aliases tables) to refresh the in-memory database. The contacts

table is written out to the external database from in-memory database periodically. We read only

those entries that are modified since last read and write only modified entries back to the database

during refresh.



294

CINEMA Libraries

Many of the architectural components of CINEMA described in chapter 9 are implemented in

C/C++, e.g., SIP server (sipd), media server (rtspd), conference server (sipconf), SIP-H.323

interworking function (siph323) and voice mail server (sipum). All these pieces of software

share the common code base wherever possible. The common part is identified and abstracted as

a set of libraries. Then the applications are built on top of these libraries. This section describes

the various modules used for implementing the system and discusses the design details of the SIP

library.

Figure A.3: Software design modules

The layered hierarchy of various sub-modules is shown in Fig. A.3. The lowest transport

layer is assumed to be TCP or UDP. We use the standardsocket interface for this layer. A

generic HTTP message parsing layer is used for parsing various HTTP-like messages, SIP and

RTSP. RTSP and SIP-specific routines are added above this layer. In particular, the RTSP trans-

action layer maintains the state for a media session, while the SIP transaction and client branch

layers maintain the state for a SIP transaction. The SIP transaction layer is used in implementing

the SIP proxy server. The SIP user agent library (libsip++) uses the transaction layer, and imple-



295

ments the call control state machine above that. Both internal and external libraries are used to

build various applications as shown in Fig. A.4.

LDAP
Xerces−C

OpenH323
PWLib

ViaVoice
Xerces−C

Win32
stub

Utilities
parsing
IPv6

Basic
SIP
library

RTSP
client

SIP UA
library

RTP
library

RTP
audio
mixer

Hash 
table

MySQL
interface

SIP
MIB

MySQL
Resparse

RTSP media
server

SIP proxy
server

SIP/H.323
gateway

SIP/RTP
conferencing

SIP/RTSP
unified messaging

SIP/VoiceXML
browser

libNT libcine libsip librtsp libsip++ librtp libmixer libdict libdb++ libsnmp

CINEMA applications

CINEMA libraries

Parsing, SIP, SDP, RTP, MySQL interface, SNMP interface, portability stubs, etc.

sipconf sipvxmlrtspd sipd sip323 sipum

Figure A.4: Software library and applications

The CINEMA libraries are briefly described below:

libcine: libcine is a generic library with general-purpose utility functions for parsing HTTP mes-

sages, manipulating URIs, logging requests, MD5 functions, database access, software

license check, TCP/UDP wrapper, dynamic string, resolving host names, logging debug

information. This library is shared by both SIP and RTSP implementations.

libdict: libdict is a general-purpose library for dictionary or hash-tables in C.

libdb++: We use the MySQL database in our environment to store various user and system

configuration. This module is a high-level C++ interface for accessing the database tables

built as a wrapper over thelibmysqlclient library. It also provides an in-memory database

mechanism to speedup database access. It also implements a file based authentication to

allow non-database type simple applications like user agent libraries.

libsip: libsip is a SIP library in C that implements the SIP transaction and client branch layers.



296

It allows different authentication mechanisms used by SIP. It also contains the database

interface tolibdb++.

libsip++ (or libsipapi): libsip++, which was later renamed to libsipapi after complete upgrade

to C++, is a SIP user agent library that implements the call control for establishing, main-

taining and terminating a SIP call. It also has SDP parsing routines. It useslibsip for

implementation of transaction and client branch layers.

libmixer (or libconf): libmixer, which was later renamed to libconf, is an RTP audio mixing

library and video distribution library used by the conference server.

libmedia: This library is used for transcoding between different audio codecs, and writing and

reading from audio file for media streaming and recording.

libnat: This library handles NAT and firewall traversal issues using STUN, TURN and ICE

protocols.

rtplib++: The RTP library written is written in C++.

NT: NT library implements the basic portability stubs on the Microsoft Windows platform for the

commonly used Unix functions. In particular, it contains routines foraliases , crypt ,

hashtable , inet , regex , getopt , andpthread . These stubs allow us to use the

same code base for both the Unix and Windows platforms.

I am the primary author of libsipapi, libconf, libnat, and libmedia. Rest of the chapter

describes the libsipapi library.

User Agent Policy

A SIP transactionis identified by theCall-ID, To, From andCSeq SIP headers and the SIP

request URI. A transaction roughly corresponds to a request and all its responses plus their

retransmissions.

A transaction can be of two types: proxy transaction and user agent transaction. A proxy

transaction is associated with a set of client branches. When the proxyreceivesa request from



297

an upstream client it creates the transaction object then forwards the request to the downstream

server(s) using client branches. The responses received by the client branches from the down-

stream server(s) are forwarded to the upstream client. A user agent transaction can either receive

a request and terminate it or can originate a request and wait for responses. Thus, the user

agent transaction can be further classified into incoming transaction (without any client branch)

and outgoing transaction (with only one client branch). Contrast this with the proxy transaction

which can have one or more client branches. More than one client branches signify the forking

proxy behavior. A forking proxy forwards a call to several possible locations simultaneously and

completes the call setup by connecting the caller to the first location answering the call. A client

branch represents a possible location where the destination can be reached.

Once a request is received it can be processed in a variety of different ways: proxy it

(proxy transaction), send a redirect response, inform the user (user agent transaction), or reject it.

The decision to choose appropriate behavior can be governed by differentpoliciesas shown in

Fig. A.5.

A.2 User Agent Library

The user agent library,libsip++, is built on top of the user agent policy interface and uses the

underlyinglibsip’s transaction and client branch architecture. As mentioned earlier, there are two

types of user agent transactions: outgoing and incoming. The state machine for the outgoing

transaction is similar to theproxy policy except that it handles only one client branch. Incoming

transaction’s state machine is more simple as there is no client branch. The user agent library

primarily focuses on the following two things:

Call control: A SIP/SDP multimedia call signaling is implemented using the state machine

shown in Fig. A.6.

Outgoing registration refresh: The user agent library can perform outgoing registrations to the

remote SIP registration servers such assipd. A single one time registration does not need

any state machine, but if one wants to implement an automatic registration refresh mech-

anism, the state machine shown in Fig. A.7 is useful. The state machine handles the



298

Proxy

Redirect

UA
outgoing

UA
incoming

C1

C2

C1

Upstream clients

Alice

Alice

Alice

bob

bwilson

Bob

(2)

(2)

(3)bwilson@H2

(3) bob@H1

(4) 200 OK
(5)

(6)

(7) CANCEL

(1) INVITE Bob

(8) 200 OK

H1

H2

H3

(1) INVITE Bob

User Agent API

User Agent API

(1)(6)

(1) INVITE user
(3)

(4) 200 OK

(2)

(2)

(5) (4) 200 OK

(3) Bob@H3

(2) 302 moved

SIP library transactions and client branches

Proxy transaction (forking)

Redirect transaction

Outgoing user−agent transaction

Incoming user−agent transaction

Downstream servers

object

C

Transaction object

Client branch object

Figure A.5: SIP transaction and client branches



299

IDLE

BYE

OUTGOING

ACTIVE

2xx

BYE

CANCEL

INVITE

INVITE

CANCEL

INVITE

INCOMING_ACK

INCOMING

3xx, 4xx,5xx,6xx,Timeout

401/407 (passwd exists)

2xx

ACK

re−INVITE

180

 4xx,5xx,6xx

 3xx

re−INVITE

Hangup

Initiate

OnCallRejected
Reject, Hangup

Redirect

OnIncomingCall

OnCallCancelled

Accept

OnRemoteSessionChanged

Reinvite, SetSelfSessionDescription

OnCallEstablished

OnHangup

Hangup

OnRinging

1xx−6xx: SIP response from transaction layer (remote)
METHOD: SIP request from transaction layer (remote)
Method: C++ API methods in the library

Event

Action
Notation:

Figure A.6: call control state machine

outgoing SIPREGISTER method for an user agent.

The user agent library also has functions for parsing the SDP message body. However

the media transport or encoding and decoding of the multimedia data is outside the scope of this

library.

A similar state machine is implemented for other SIP methods likeREFER for call trans-

fer, SUBSCRIBE andNOTIFY for presence and event notification. Most of the other methods

(e.g.,DO andMESSAGE) do not require any state machine and can be used in the application

without any libsip++ modification.



300

IDLE

OUTGOING(1)

ACTIVE

OUTGOING(2)

OUTGOING(3)

TERMINATING

Unregister

REGISTER

3xx−6xx

OnRegistrationFailed

REGISTER

Register

2xx

OnRegisterSuccess

Unregister

REGISTER
Unregister

CANCEL

Refresh

re−REGISTER

Register

re−REGISTER

2xx

401/407 (passwd exists)

401/407 (passwd exists)

Exit METHOD: sip message from transaction (remote)

Method: C++ API methods

1xx−6xx : message from transaction layer (remote)

Figure A.7: Outgoing registration state machine

Design Philosophy

There are two popular kinds of API design for signaling protocols such as SIP: polling or events.

Polling involves periodically checking if some event such as incoming call has occurred (e.g.,

Unix select call). This puts an unnecessary burden on the application to check for events. On

the other hand a event driven system nicely fits in the call-back or event-based API.

In the event model there are various object-oriented designs. The JAIN community pro-

posed a SIP API that is based on the listener and provider concept. For example, there can be

a SIP provider object, which implements the SIP stack, and invokes specific methods from the

listener object, to signal events. This kind of design is good for lower level SIP library where you

define how to send or receive a message. Using this API, the application or higher layer has to to

do lots of processing to maintain higher layer states such as transaction state or call state for such

designs.

On the other hand, another model is to provide abstract classes for the notion of call or



301

end-point and let the application create the actual instances derived from these interfaces. Thus,

the events are now handled in the object itself, instead of transferring to another listener object.

Since the application derives from the abstract classes for call and end-point, it can implement

more specific functions such as display alert on an incoming call. We have used this design model

for our SIP user agent library (libsip++) as well as the wrapper for the OpenH.323 library.

Applications

Our SIP user agent library is meant for implementation of user agent type of applications. This

includes, besides a traditional user agent, a conferencing server, an unified messaging system

and a signaling gateway in CINEMA. I have written a SIP user agent,sipua, that is used for

testing various SIP features of other applications such as proxy, and conference server. The P2P-

SIP implementation,sippeer, also includes the functions of a SIP user agent. I have written a

Java-based visualization tool for monitoring various peer nodes. The tool receives parameters

such as node identifier and message exchange from varioussippeer instances and displays the

Chord-based P2P network graphically.

The total physical source lines of C/C++ code of various CINEMA components measured

using SLOCCount [245] is about 187000, out of which my contribution is more than 60000 in

C/C++, and an additional 30000 in Tcl.



302

Appendix B

Two-way Replication in MySQL

This section describes the steps needed to setup two-way replication in MySQL. Please refer to

Fig. 3.8 (p. 35) for the following steps:

1. Edit /etc/my.cnf to set the unique server-id forD1 and enable binary logging:

[mysqld]

server-id = 1

log-bin

Restartmysqld.

2. Create a replication user onD1 with appropriate privileges forD2’s IP address.

GRANT SELECT,PROCESS,FILE,SUPER,RELOAD,

REPLICATION CLIENT,REPLICATION SLAVE ON

*.* TO replication@"sip2.cs.columbia.edu"

IDENTIFIED BY "somepassword";

3. Then copy thedata/sip directory tosnapshot.tar file

4. Get the master status (file name and position) of the binary log.

SHOW MASTER STATUS;

Suppose it shows file asphone-bin.001 and position as 73.



303

5. Shutdownmysqld and start it again. Make sure no updates are happening inD1 or D2

while setting up the replication. Make sureD2 is dead.

6. Create a replication user onD2 similar toD1, but with permissions for IP address ofD1,

so thatD1 can accessD2.

7. Copy and uncompress thesnapshot.tar from D1 to theD2 data directory. This will

ensure the content thesip database ofD2 is same as that ofD1 when for the given master

status ofD1. Some fields in thesip database, such ascinema::sipdhost should store

the actual host name of the machine running the server. These fields can be populated with

sip2 for D2 using the SQLSLAVE SKIP COUNTER global in MySQL.

8. Edit/etc/my.cnf of D2, similar toD1, except that theserver-id is 2 forD2. (server-id

values are not important as long as they are unique for a given replication setup.)

9. Startmysqld onD2.

10. SetupD2 as slave ofD1, by running following command onD2:

CHANGE MASTER TO

MASTER_HOST=’phone.cs.columbia.edu’,

MASTER_USER=’replication’,

MASTER_PASSWORD=’somepassword’,

MASTER_LOG_FILE=’phone-bin.001’,

MASTER_LOG_POS=73;

START SLAVE;

The log file and position are same as that recorded fromD1. At this point we haveD1 to

D2 replication complete.

11. Now record the master status onD2. Suppose it shows file assip2-bin.002 and posi-

tion as 79.

12. Copy all the*bin.* (binary logs) fromD2’s data directory toD1’s data directory.

13. Not setD1 as slave ofD2 by running following command onD1:



304

CHANGE MASTER TO

MASTER_HOST=’sip2.cs.columbia.edu’,

MASTER_USER=’replication’,

MASTER_PASSWORD=’somepassword’,

MASTER_LOG_FILE=’sip2-bin.002’,

MASTER_LOG_POS=79;

START SLAVE;

At this pointD2 to D1 replication is also complete. To allow access from other hosts, it

may be required to remove the no-authentication line from the MySQL permissions table.

USE mysql;

DELETE FROM user WHERE User=’’;

FLUSH PRIVILEGES;

To bring upD1 after a failover, tables onD2 should be read-locked to prevent database

inconsistency. In case failover messes up for some reason, the whole procedure can be repeated

to setup the failover from scratch without losing the data inD1.



305

Appendix C

Data Format for SIP-using-P2P

In this section we propose an XML-based data format for storing SIP-related information on the

DHT for interoperability among different P2P-SIP implementations. The data format applies to

both existing and planned authenticated DHT interfaces [27].

An example user contact of userbob@example.net stored in the DHT at key

H(sip:bob@example.net) is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<contacts xmlns="urn:ietf:params:xml:ns:p2p-sip">

<contact>sip:bob@192.1.2.3:5060</contact>

</contacts>

For unauthenticated DHT interface, we need theexpires anduser attributes as part of thecontact

information, so that the signature can not be misused as described in Section 5.5. These are not

needed for the authenticated DHT interface, since they can be securely derived using other means

such asttl returned byget interface and DHT key, respectively. An example signed contact is

shown below:

<?xml version="1.0" encoding="UTF-8"?>

<contacts xmlns="urn:ietf:params:xml:ns:p2p-sip" Id="One"

user="sip:bob@example.net">

<contact display-name="Bob Wilson" expires="2006-01-31T18:22:38Z">



306

sip:bob@192.1.2.3:5060

</contact>

</contacts>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

<Reference URI="#One">

<Transforms>

<Transform

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

</Transforms>

<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>

<KeyInfo><KeyName>bob@example.net</KeyName></KeyInfo>

</Signature>

Any signature is formatted using W3C’sSignature element [262]. The URI inReference tag

points to the data signed. TheKeyName refers to the user identifier of the signer or the form

user@domain.

The user’s certificate is stored using theKeyInfo element [262] in the DHT at key

H(certificate:bob@example.net) as follows:

<?xml version="1.0" encoding="UTF-8"?>

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">



307

<X509Data>

<X509SubjectName>

CN=bob@example.net,O=P2P Inc.,ST=New York,C=US

</X509SubjectName>

<X509Certificate>MIID5jCCA0+gA...lVN</X509Certificate>

</X509Data>

</KeyInfo>

A user Bob can subscribe for presence status ofalice@home.com, by storing the fol-

lowing information in the DHT at key H(subscribe:alice@home.com).

<?xml version="1.0" encoding="UTF-8"?>

<watchers xmlns="urn:ietf:params:xml:ns:p2p-sip">

<watcher event="presence" entity="alice@home.com"

expires="2006-01-31T18:22:38Z">

sip:bob@example.net

</watcher>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

...

</Signature>

</watchers>

Since this information needs to be encrypted, it gets stored as follows, using the W3C’sEn-

cryptedData element [263]:

<?xml version="1.0" encoding="UTF-8"?>

<EncryptedData Type="urn:ietf:params:xml:ns:p2p-sip#watchers

xmlns="http://www.w3.org/2001/04/xmlenc#">

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

<ds:KeyInfo xmlns:ds="http://www.w3.org/2001/04/xmldsig#">

<EncryptedKey CarriedKeyName="TempKey"



308

xmlns="http://www.w3.org/2001/04/xmlenc#">

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#rsa1_5"/>

<CipherData>

<CipherValue>xyza21212sdfdsfs7989fsdbc</CipherValue>

</CipherData>

</EncryptedKey>

<ds:KeyInfo>

<CipherData>

<CipherValue>A23B45C564587</CipherValue>

</CipherData>

</EncryptedData>

An offline message is also stored as anEncryptedData element. TheType attribute

refers to text or audio format for offline text or voice message, respectively.

Complete schema definition

The complete schema definition forurn:ietf:params:xml:ns:p2p-sip is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:ietf:params:xml:ns:p2p-sip"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:p="urn:ietf:params:xml:ns:p2p-sip"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<import namespace="http://www.w3.org/XML/1998/namespace"

schemaLocation="http://www.w3.org/2001/xml.xsd"/>

<element name="contacts" type="p:contactsType"/>



309

<complexType name="contactsType">

<sequence>

<element name="contact" type="p:contactType"

maxOccurs="unbounded"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>

</complexType>

<complexType name="contactType">

<simpleContent>

<extension base="anyURI">

<attribute name="Id" type="ID" use="optional"/>

<attribute name="user" type="anyURI" use="optional"/>

<attribute name="display-name" type="string" use="optional"/>

<attribute name="expires" type="dateTime" use="optional"/>

<attribute name="priority" type="p:priority" use="optional"/>

</extension>

</simpleContent>

</complexType>

<simpleType name="priority">

<restriction base="decimal">

<pattern value="0(.[0-9]{0,3})?"/>

<pattern value="1(.0{0,3})?"/>

</restriction>

</simpleType>

<element name="watchers" type="p:watchersType"/>



310

<complexType name="watchersType">

<sequence>

<element name="watcher" type="p:watcherType"

maxOccurs="unbounded"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>

</complexType>

<complexType name="watcherType">

<simpleContent>

<extension base="anyURI">

<attribute name="Id" type="ID" use="optional"/>

<attribute name="entity" type="anyURI" use="optional"/>

<attribute name="expires" type="dateTime" use="optional"/>

</extension>

</simpleContent>

</complexType>

</schema>



311

Appendix D

Implementation Details of SIP-H.323

Interworking Function

In this chapter, we list the implementation requirements and details of SIP-H.323 interworking

function (IWF). This is an appendix to Chapter 11.

In this chapter, the key words “MUST”, “ MUST NOT”, “ REQUIRED”, “ SHALL”, “ SHALL

NOT”, “ SHOULD”, “ SHOULD NOT”, “ RECOMMENDED”, “ MAY ”, and “OPTIONAL” are to be in-

terpreted as described in RFC 2119 [264].

D.1 Implementation Requirements

This section lists the messages whichMUST be supported by the signaling IWF. It also highlights

the typical values for parameters for the messages.

H.323 (H.225.0 and H.245)

All the messages which are mandatory in the Q.931 portion of H.225.0 and H.245MUST be

supported. RAS is optional; if used, all messages that are mandatory in RASMUST be supported.

Parameter values (if not specified in this document)MUST be derived from H.225.0 version 2.0

and H.245 version 4.0 for Q.931 and H.245 messages, respectively. This assures that requirement

1 in Section 11.1 is fulfilled.



312

Handling of Q.931 Messages

The IWFSHOULD support the Q.931 messages listed in Table D.1. An entry of “not applicable”

in the table means that it is not visible to the SIP endpoint and is only local to the IWF’s H.323

stack.

Message IWF sends to H.323 H.323 sends to IWF
Alerting Supported Supported
Call proceeding Supported Supported
Connect Supported Supported
Progress Not applicable Not applicable
Setup Supported Supported
Setup Ack Not applicable Not applicable
Release Complete Supported Supported
User Information Not applicable Not applicable
Information Not applicable Not applicable
Notify Not applicable Not applicable
Status Not applicable Not applicable
Status Inquiry Not applicable Not applicable
Facility Not applicable Not applicable

Table D.1: Support for Q.931 messages
A “Not applicable” entry in the table means that it is not visible to the SIP endpoint and is only
local to the IWF’s H.323 stack.

The IWF MUST NOT close the call signaling channel after the call is established. How-

ever, if the call is routed through a gatekeeper and the gatekeeper closes the call signaling channel,

the IWFMUST comply with H.323 andMUST NOT assume that the call is closed as long as H.245

channel is open. If the Q.931 TCP connection is closed without closing the call signaling chan-

nel, then the IWFSHOULD try reopening the TCP connection, as specified by H.323. In case of

failure such as TCP connection refused or TCP connection timeout, the IWFSHOULD close the

call on the SIP side also by sending aBYE.

Q.931-specific information elements, other than user-user information element (UUIE),

do not affect the operation of this IWF, however they are required for interoperation with other

H.323 entities. The specific fields of UUIE used in translating to SIP message are given in Ap-

pendix D.3.



313

Bearer Capability: Information transfer capability (octet 3, bits 0–5): Unless some other re-

strictions apply (e.g., the IWF is connected to a bandwidth-restricted ISDN network),

the parameterSHOULD be set to “unrestricted digital information” or “restricted digi-

tal information” on outgoing side. If the IWF knows that the call is going to be voice

only, it may choose to set it as “speech” or “3.1 kHz Audio”. The IWF ignores this

field on incoming requests.

Information Transfer Rate and Rate multiplier: If bandwidth information is available

from the gatekeeper or some external means (e.g., from bandwidth information in

SDP message), then information transfer rate and rate multiplier may be set to values

reflecting the bandwidth, else they should be set to some high value as appropriate.

This way the bandwidth is not limited to 64 kb/s or 128 kb/s. On the incoming side

these valuesSHOULD be ignored. Note that in a Q.931 message the only possible

values are multiples of 64 kb/s.

Layer 1 protocol (octet 5, bits 1–5): For outgoing Q.931 messages, the parameter is set

to H.221 (’00101’), indicating an H.323 video phone call, unless the IWF knows that

the call is going to be voice only (e.g., if this is hardcoded in the IWF). In that case,

it may encode the parameter as G.711 A-law or mu-law to indicate this.

For incoming Q.931 messages, the IWF ignores this field.

Calling or Called party number: For outgoing Q.931 messages, the IWF translates the SIP

request-URI into ane164 number, as described in Section 11.3. The calling/called party

subaddress is not included in Q.931 messages originating from the IWF.

For incoming Q.931 messages, the IWF relies on user-user information element for ad-

dresses (e.g., sourceAddress and destinationAddress fields of UUIE) and ignores the Q.931

parameter. However, if the calling/called party number is present and e164-ID is not present

in the H.323 Alias Address then the calling/called party number is used instead of e164-ID

while translating address in section 11.3.

H.323 specifies that the called and calling party Subaddress fields are needed for some circuit

switched call scenarios and theySHOULD NOT be used for packet based network side only calls.

Display: For incoming Q.931 messages, the IWFMAY copy the Display IE to thedisplay pa-



314

SIP status releaseCompleteReason
400 Bad Request undefinedReason
401 Authentication Required noPermission
402 Payment Required undefinedReason
403 Forbidden noPermission
404 Not Found unreachableDestination
406 Not Acceptable undefinedReason
407 Proxy Authentication Required noPermission
409 Conflict undefinedReason
410 Gone undefinedReason
413 Request Entity Too Large undefinedReason
414 Request-URI Too Large badFormatAddress
415 Unsupported Media Type undefinedReason
420 Bad Extension badFormatAddress
480 Temporarily not available unreachableDestination
483 Too Many Hops undefinedReason
484 Address Incomplete badFormatAddress
485 Ambiguous badFormatAddress
486 Busy Here destinationRejection
600 Busy Everywhere destinationRejection
603 Decline destinationRejection
604 Does not exist anywhere unreachableDestination

Table D.2: Mapping between SIP status codes andreason fields

rameter of the SIPTo header field.

Similarly, for outgoing Q.931 messages, theDisplay parameterMAY be copied from the

display parameter of the SIPTo field.

Cause: For incoming Q.931 messages, the Q.931 Cause information element and/or the UUIE

reason field are mapped to the appropriate SIP status response code, as described in Ta-

ble D.2. H.225.0 [248] specifies that either the Cause information element or the releaseC-

ompleteReasonMUST be present. It also gives a mapping between the Cause information

element and the releaseCompleteReason. Table D.2 gives the mapping between releaseC-

ompleteReason and the appropriate SIP status response.

Similarly, for outgoing Q.931 messages, the Q.931 Cause information element and the

UUIE reason field are derived according to Table D.2.



315

User-User-Information-Element: Below, we detail the fields in UUIE which are relevant to

H.323-SIP conversion. Other fields are interpreted as defined by H.225.0.

sourceInfo /destinationInfo : In all messages from the IWF, this fieldSHOULD be set to

indicate that this endpoint is a gateway. However, the sequence of supported protocols

in “GatewayInfo” may be empty.

H.245SecurityMode , tokens , cryptoTokens : These fields are interpreted as in H.323.

Note that since H.245 is terminated at the IWF, this kind of security information is

not relevant to the SIP cloud.

fastStart : FastStart PDUs contain theOpenLogicalChannel (OLC) messages. The IWF

converts incoming OLC messages to a SDP message body. One SDP media descrip-

tion line (“m=”) is generated for each distinct session-ID. All logical channels with

same session-ID appear as payload types in a single SDP media description line.

When converting SIP to H.323, the SDP message is converted to a list ofOpenLogi-

calChannel messages, one per payload type. H.323 endpoint will select at most one

OLC per session-ID. This selected OLC is returned by the H.323 endpoint in thefast-

Start field of Q.931Connect message. When converting H.323 to SIP, each OLC

in fastStart corresponds to a payload type of SDP. All the OLC messages with same

session-ID form a single media description (“m=”) line.

The parameters for the Q.931SETUP message are listed below.

sourceAddress : Converted to/from SIP headerFrom field as described in section 11.3.

destinationAddress : Converted to/from SIP headerTo field as described in section 11.3.

destCallSignalAddress : If the To SIP header field contains a numeric host identifier then

destCallSignalAddress is set to the IPv4 address represented by the numeric identifier.

conferenceGoal : Set to “create” in outgoing Q.931 messages. (Additional values may be

supported in future versions of this specification that support conferencing.)



316

remoteExtensionAddress : Not present in outgoing Q.931 messages. For incoming Q.931

messages, this parameter is combined with theDestinationAddress parameter to generate

the SIPTo header field and therequest-URI.

mediaWaitForConnect : Set to “false” in outgoing Q.931 messages. Ignored in incoming

Q.931 messages, as media transmission is transparent to the IWF.

canOverlapSend : Set to “false” in outgoing Q.931 messages and ignored in incoming Q.931

messages since this version of the specification does not support overlap sending.

Use of the Q.932 facility message for call redirection is for further study.

Handling H.245 Messages

Table D.3 details how an IWF handles H.245 messages. An entry of “not applicable” means that

the message does not affect the behavior within the SIP cloud.

The remainder of this subsection lists the possible values of some of the fields of H.245

messages. Refer to H.245 version 4.0 for description and details of the ASN.1 structures for

H.245.

MasterSlaveDetermination : TheterminalType parameter is set to indicate that this terminal

is a gateway. H.323 specifies a set of numerical values of terminalType for different types of

terminals. For example, a gateway without a multipoint controller (MC) has a terminalType

of 60; A gateway with a MC and no multipoint processor (MP) has a terminalType value

of 80. Other values of terminalType are not relevant to this IWF in the case where media

traffic is transparent. See H.323 [37] for other possible values of terminalType.

TerminalCapabilitySet : multiplexCapability::h2250Capability: maximumAudioDelayJitter

should be set to max possible value as specified by H.323. MultipointCapabilities

should reflect minimum capability of Centralized Control/ Audio/ Video/ Data. Other

conferencing capabilities are for further study. RTCP videoControlCapability should

be set to false because anyway H.245 indications have to be used for this purpose.



317

Message REQUIREDor Not applicable
MasterSlaveDetermination/Ack/Rej/Rel Not Applicable
TerminalCapSet/Ack/Reject/Release REQUIRED

Send TerminalCapabilitySet Not Applicable
OpenLogicalChannel/Ack/Reject REQUIRED

OpenLogicalChannelConfirm Not Applicable
CloseLogicalChannel/Ack REQUIRED

RequestChannelClose OPTIONAL

RequestMode/Ack/Rej/Rel RECOMMENDED

RoundTripDelayReq/Res Not applicable
MaintenanceLoopReq/Ack/Reject Not supported
MaintenanceLoopOffCmd Not supported
CommunicationModeReq/Res/Cmd For further study
ConferenceReq/Res/Cmd/Indic For further study
EndSessionCommand REQUIRED

FlowControlCommand For further study
Encryption Command For further study
Jitter Indication For further study
User Input OPTIONAL

H2250MaxSkewIndic For further study
MClocationIndication For further study
FunctionNotUnderstood Not Applicable
FunctionNotSupported Not Applicable
vendorIdentifier Not Applicable
MiscCommand/Indication For further study

Table D.3: Support for H.245 messages.
An entry of “not applicable” means that it is not visible to the SIP endpoint and is only local to

the IWF’s H.323 stack.

MediaPacketizationCapability should contain the information about the dynamic pay-

load types used by SIP endpoint. Transport Capability should be absent. redundan-

cyEncodingCapability should be absent as this is not supported in this version. log-

icalChannelSwitchingCapability may be supported by the IWF’s H.323 stack. This

makes mapping SIP re-INVITE easier. t120DynamicPortCapability is set to false

because T120 data is not supported in this version.

CapabilityTableEntry and

CapabilityDescriptor are mapped from the session description given by SDP. A single



318

capability descriptor is used in H.245. All the payload types on a single media de-

scription line (m=) are combined to form an alternative capability set in H.245. All

such media description lines are combined to form a simultaneous capability set (or

a capability descriptor). Mapping multiple SDP received in multipart body of SIP to

multiple capability descriptor is for further study.

Capability : H233Encryption is not applicable.

H235Security is not applicable.

DataApplication capability is not supported in this version of the specification.

ConferenceCapability is for further study and is not supported in this version of the

specification.

UserInputCapability may be supported by the IWF. This is used to convey DTMF dig-

its. Use of the SIP INFO method is being considered for this purpose.

maxPendingReplacementFor is not applicable.

Audio and Video: A capability in H.323 represents a payload type. Refer to

http://www.iana.org/assignments/media-types/media-types for a list of MIME

types andhttp://www.iana.org/assignments/rtp-parameters for a list of static RTP

payload types. Use of static RTP payload types in SDP is discouraged. The IWF

should maintain a list of all currently available payload types and media formats and

the corresponding RFC numbers. (An intelligent IWFMAY periodically download

and parse these HTML pages to update its database).

The predefined audio and video capabilities are mapped to appropriate media for-

mat and RTP payload type. This mapping is given in this document for ease of

reference. This mapping should be used by the IWF to convert the H.323 capabil-

ity to an SDP media description. When converting from H.323 to SDP, the IWF

SHOULD use dynamic payload type. When converting from SDP to H.323, the IWF

SHOULD NOT use dynamic payload types because many current implementations do

not support these. However, the IWFMUST be able to receive dynamic payload

types, in bothH2250Capability.MediaPacketizationCapabilty.RTPPayloadType



319

H.323 IANA payload type clock/channels RFC
g711Alaw64k PCMA 8 8000/1 RFC1890
g711Ulaw64k PCMU 0 8000/1 RFC1890
g711Alaw56k N/A
g711Ulaw56k N/A
g722-64k G722 9 8000/1 RFC1890
g722-56k N/A
g722-48k N/A
g7231 G723 4 8000/1 None
g728 G728 15 8000/1 RFC1890
g729 G729? Dynamic/18? 8000/1 -
g729AnnexA ? Dynamic 8000/1 ?
g729wAnnexB ?
g729AwB ?
g7231AnnexC ?
gsmFullRate GSM 3 8000/1 RFC1890
gsmHalfRate GSM-HR Dynamic 8000/1 -
gsmEnhFullRate GSM-EFR Dynamic 8000/1 -

Table D.4: Audio capability mapping

and in H2250LogicalChannelParameters.MediaPacketization. When dynamic

RTP payload type are used, H225LogicalChannelParameters.dynamicRTPPayloadType

MUST match the payload type description given in mediaPacketization.

AudioCapability : A subset of IANA-registered formats and H.323-supported capabili-

ties are listed in Table D.4.

Note that H.323 only supports a clock rate of 8000 Hz; other values cannot be mapped

to H.323. SDP attribute “ptime” gives the maximum length of time in milliseconds

represented by media in a packet. This can be used for defining the maximum packet

length.

VideoCapability : The mapping of video encodings is shown in Table D.5. The Video

MPI (Mean Picture Interval) is mapped to the SDP attribute “framerate” as follows:

mpi = 30 / framerate

It is assumed that 29.97 Hz is rounded to 30 Hz when calculating the framerate. So

MPI of 1 become framerate 30.0, similarly MPI of 2 becomes framerate 15. However,



320

H.323 IANA Payloadtype clock RFC
h261VideoCap H261 31 90000 RFC2032
h262VideoCap ?
h263VideoCap H263/H263+? 34 90000 RFC2190/2429?

Table D.5: Video capability mapping.

the IWF shall do proper rounding error correction on the incoming side. So framerate

of 29.97 should also map to MPI of 1. Note that in SDP any possible value for

framerate is allowed, but in H.323 only multiples of 1/29.97 are allowed. The IWF

should convert the framerate to the next lower value allowed in H.323. For example,

a framerate of 12.3 frames per second in SDP is converted to an MPI value of 3 which

is equivalent to 10 frames per second.

DataApplicationCapability : Not supported in this version of the specification.

Use of RSVP (Resource reservation protocol) to handle QoS (Quality of service) is for

further study.

D.2 Signaling Address Translation

A SIP address can be either a SIP URL or any URI. This document only describes the translation

of the SIP (“sip:”), telephone (“tel:”) and H.323 (“h323:”) URL schemes.
The BNF of a SIP address is given below for reference:

SIP-Address = (name-addr | addr-spec)

name-addr = [display-name] ”<” addr-spec ”>”

addr-spec = SIP-URL

SIP-URL = ”sip:” [ userinfo ”@” ] hostport url-parameters

[headers]

userinfo = user [ ”:” password ]

hostport = host [ ”:” port ]

host = hostname | IPv4address | IPv6address

url-parameters = *(”;” url-parameter)

url-parameter = user-param | . . .

In theurl-parameter, only theuser-param parameter is relevant. Theuser name may

be a telephone number.



321

H.323 addresses are typically sequences of Alias Addresses (see H.225.0 [248]). The

ASN.1 description of an H.323 Alias Address is:

H323-Alias-Address ::= CHOICE

{

e164 IA5String (SIZE(1..128)) (FROM("0123456789\#*,")),

h323-ID BMPString (SIZE (1..256)),

...,

url-ID IA5String ( SIZE(1 .. 512)), -- URL Style address

transport-ID TransportAddress, -- IPv4, IPv6, IPX etc.,...

email-ID IA5String (SIZE(1..512)), -- rfc822 compliant email address

partyNumber PartyNumber

}

The PartyNumber parameter is not described in this document. Telephone num-

bers can be conveyed viae164 field of H323-Alias-Address or called/calling party

number fields of Q.931 message.

D.2.1 Converting SIP Addresses to H.323 Addresses

h323-ID

The SIP-Address is stored as is in theh323-ID of the Alias Address. If theSIP-Address

contains more than 256 characters, only theaddr-spec part is copied. If theaddr-spec exceeds

256 characters, the IWF generates a SIP response of 414 (Address Too Long). Each BMP1

character inh323-ID stores the corresponding text character in the SIP Address.

Theh323-ID MUST always be generated so that a terminal running version 1.0 of H.323

(which supports onlye164 andh323-ID, but does not supporttransport-ID, url-ID or email-ID)

can still decode the address.
1BMP stands for basic multilingual plane, i.e., Basic ISO/IEC 10646-1 (unicode) character set.



322

e164

If the SIP-Address’s user is a telephone-subscriber, user-param is set tophone and the

user part does not contain a “w”, it is converted to thee164 field of Alias-Address. Thee164

field only allows characters from the set “0123456789#*,”. Thus, any leading “+” is removed

from the SIPtelephone-subscriber part, as are any visual separators “-” and “.”. The pause “p”

is replaced with “,”.

url-ID

The SIP-URL part of the SIP address is copied verbatim to theurl-ID parameter. If the SIP URL

exceeds 512 bytes in size, the IWF generates the SIP status 414 (Address too long).

email-ID

The user andhost parts are used to generate an email identifier, as in “user@host”, which is

stored in theemail-ID field of AliasAddress. If the size exceeds 512 characters, the IWF gener-

ates the SIP status 414 (Address Too Long).

transport-ID

If the host part of the SIP-URL is indicated as a dotted quad, e.g., 192.1.2.3, it is translated into a

transport-ID. If a port parameter is present in the SIP address, the number is used. Otherwise, the

port number depends on the context. For example, for the destination address of H.323SETUP

messages, it is set to 1720, otherwise it is set to 0.

Although a numeric IP address requires no further address resolution, it is worth

noting that other fields (e164, url-ID, h323-ID) are also needed. If the destination

is a VoIP gateway, for example, then an Internet telephony gateway destination is

mapped from the e164 field or the called party number.



323

Examples

• The SIP Address “sip:j.doe@big.com” is converted to an H.323 Address sequence with

three elements:{ h323-ID = “sip:j.doe@big.com”, url-ID = “sip:j.doe@big.com”, email-

ID = “j.doe@big.com”}

• The SIP Address “sip:+1-212-555-1212:1234@gateway.com; user=phone” is converted

to the H.323 Address: { e164 = “12125551212”, h323-ID = “sip:+1-212-555-

1212:1234@gateway.com”, url-ID = “sip:+1-212-555-1212:1234@gateway.com”, email-

ID =“+1-212-555-1212:1234@big.com”}

• The SIP Address “sip:alice@10.1.2.3” is converted to H.323 Address:{ h323-

ID = “sip:alice@10.1.2.3”, url-ID = “sip:alice@10.1.2.3”, transport-ID = IPAddress

10.1.2.3:1720, email-ID = “alice@10.1.2.3”}

• The SIP Address “A. Bell<sip:a.g.bell@bell-tel.com>” is converted to H.323 Address:

{ h323-ID = “A. Bell <sip:a.g.bell@bell-tel.com>”, url-ID = “sip:a.g.bell@bell-tel.com”,

email-ID = “A. Bell <a.g.bell@bell-tel.com>” }

D.2.2 Converting H.323 Addresses to SIP Addresses

In H.323, addresses are typically a sequence of Alias Addresses (referred to as H.323 addresses

in this chapter). Since it is not possible to convert all the different representations of the address

to a single SIP Address, the IWF will have to drop some of the addresses. However, an IWFMAY

try more than one converted addresses either sequentially or in parallel.

The conversion is done in the following order. If the conversion succeeds in one step,

the conversion concludes and the remaining steps are ignored. If aurl-ID is present and it is a

SIP-URL, then it is used as is in the SIP Address. If anh323-ID is present and it can be parsed

as a validSIP-Address, it is used. This is needed when talking to an H.323 terminal running

version 1.0. If thetransport-ID is present and it does not identify the IWF, then it forms the

hostport portion of the SIP URL and the user portion is constructed usingh323-ID or e164. If

theemail-ID is present, then it is used in the SIP-URI. Theemail-ID is prefixed by the scheme

name “sip:”.



324

If all these efforts fail, then the IWFMAY attempt to construct a legal SIP Address using

the information available. For exampleh323-ID may become thedisplay-name, e164 may

become theuser andhost may be some default domain name.

D.3 Detailed Description of IWF Behavior

This section describes how messages are processed by a SIP–H.323 signaling IWF. The discus-

sion is split into two subsections, with SIP-originated requests discussed in Section D.3.1 and

H.323-originated requests in Section D.3.2. Only fields relevant to the conversion are presented

here. Other parameters are specific to either H.323 or SIP and can be generated by the respective

protocol engine in the IWF without conversion.

The IWF maintains, apart from other call-state information, the capability sets and oper-

ating mode for each call. Capability sets are maintained for each H.323 and SIP endpoint, both

receive and transmit directions. Operating mode contains the modes in each direction (SIP to

H.323 and H.323 to SIP).

D.3.1 SIP-originated Requests

IWF ReceivesREGISTER

The IWF sends a RASRRQ message to the H.323 GK, where thecallSignalAddress is the

address of the IWF, theterminalType is set to “gateway” and theterminalAlias is mapped from

theTo header of theREGISTER request.

The IWF stores the SIPContact header field. A “200 OK” SIP status response is sent

after receiving a RASRCF message.

IWF ReceivesINVITE for a New Call

The IWF MAY respond with a 100 (Trying) response to the SIP entity that sent theINVITE

request. It stores the SDP information as the terminal’s SIP capability and converts the capability

to H.245 format.



325

If the IWF is registered with a gatekeeper, sends a RASARQ message to the gatekeeper,

where thedestinationInfo anddestCallSignalAddress is derived from theTo SIP header, the

srcInfo is derived from theFrom SIP header field andsrcCallSignalAddress is the call signaling

address of the IWF itself. The gatekeeper assigns an endpointIdentifier during registration. That

value of endpointIdentifier is used in theendpointIdentifier field of theARQ message.

Next, the IWF should receive either a RASACF or ARJ message. If anACF message

is received, establish a Q.931 channel as described below. If anARJ message is received, the

behavior depends on thereason parameter:

CalledPartyNotRegistered : The IWF responds with 404 (Not Found).

callerNotRegistered : The IWFMAY register, with a RASRRQ message, the SIP address with

the gatekeeper and then retransmit the RAS request, with theendpointIdentifier returned

in RCF. Alternatively, itMAY send a 400 (Caller not registered) response to the SIP entity.

incompleteAddress : Send 484 (Address Incomplete) response to SIP entity.

Other reasons: Send 400 (H.323 translation failure) response to SIP entity.

If the IWF times out waiting for an ARQ response, it sends a SIP 504 (Gateway time-out)

response.

If the IWF is not registered with a gatekeeper and it is able to resolve the SIP address to

a H.323 address or if the IWF is registered and has received an ACF for the registration request

from the gatekeeper, the IWF sends a Q.931SETUP message to the H.323 entity, where the

sourceAddress is derived from the SIPFrom header, thedestinationAddress is derived from

the SIPTo header or from the RAS ACF response,destCallSignalAddress is derived from the

RAS ACF response or from theTo SIP header. TheremoteExtensionAddress is copied from

RAS ACF if present or extracted fromTo SIP header if possible.sourceCallSignalAddress

is the call signaling transport address of the IWF.fastStart PDUs are mapped from the session

description in theINVITE message body.

Each SDP payload type entry is converted to an OLC message. All the payload types

on the SDP same media description line have the same session id in the OLC messages. This



326

identifies them as belonging to the same group and the receiving H.323 entity will select one of

these.

If the IWF receives a Q.931CallProceeding message, it sends a 100 (Trying) response

to the SIP entity, if not already sent. If fastStart PDUs are present, it stores them.

If the IWF receives a Q.931Alerting message, it sends a 180 (Alerting) response to the

SIP entity, indicating that the final destination is ringing. If fastStart PDUs are present, it stores

them.

If the IWF receives a Q.931Connect message, the behavior depends on whether aFast-

Start indication is present.

If a FastStart indication is present, the IWF maps the received OLCs to the SDP payload

types contained in the originalINVITE request. Format a new SDP packet with more constrained

media description and correct media transport address of the H.323 entity. Now each media

description line will contain a single payload type, depending on which OLC PDUs are present.

The operating mode and H.323 capability set are set to this reduced set of payloads.

The SDP message is sent in a 200 (OK) response. The IWF then waits for theACK

request from the SIP entity. If the IWF times out, it declares the call closed and terminates the

H.323 call. Once anACK has been received, the IWF may proceed with other H.245 signaling

(CESE, RTDSE and so on).

If the H.323 entity does not supportFastStart, the IWF proceeds with H.245 signaling as

described below. First, it sends a TCS to the the H.323 entity and uses the stored SIP capability

set to generate the H.245 capabilities.

If the IWF receives an H.245 TCS message, it updates the H.323 capability set and cal-

culates maximal intersection of H.323 and SIP capability sets (call thisC). Derive a suitable

operating mode fromC (say,M ). For each element inM (for the data from the SIP UA to the

H.323 terminal), send an H.245 OLC message to the H.323 entity. Use the transport address of

the SIP capability set, derived from the SDP received in the originalINVITE message.

If the IWF receives anOLC message and the logical channel is present in the operating

mode from the H.323 terminal to the SIP UA, the IWF sends anOLCAck to the H.323 terminal.

TheOLCAck contains the transport address from the SIP capability set, again derived from the



327

SDP in theINVITE message body. If the logical channel is not present in that operating mode,

the IWF sends anOLCReject.

Once the IWF has received anOLCAck or OLCRej for all outstandingOLC requests,

it updates the operating mode and sends a 200 (OK) response to the SIP entity. The session

description in that response is formed using the new operating mode and the transport addresses

received in the H.245OLCAcks.

The IWF should wait for theACK request from the SIP entity. If the IWF times out, it

should close the H.323 call. This concludes the description of the non-FastStart handling.

If, at any time, the IWF receives a Q.931ReleaseComplete message, a H.323 call could

not be established. The IWF sends a 400 (Client Failure) with reason phrase “H.323 call failed”.

If the Q.931SETUP times out, the IWF sends a 504 (Gateway time-out) response.

If the SIP address is not resolved to an H.323 address, send a 501 (Not Implemented)

response to SIP entity.

IWF ReceivesINVITE for Existing Call

• Update the SIP capability set.

• Recalculate the operating mode, minimizing changes. An H.245Mode Request message

is sent if the operating mode has changed. If theMode Request fails, either close the

media channel or the call.

IWF ReceivesBYE Request

The IWF sends an H.245Endsession to the H.323 entity. Upon receipt of a response or on

timeout, the IWF sends a Q.931ReleaseComplete to H.323 entity. If the call was admitted by

a GK, send a RASDRQ (Disengage Request) message to the GK.

IWF ReceivesOPTIONS Request

There is no equivalent message in H.323 to query H.323 capabilities without establishing the call.



328

D.3.2 H.323-Originated Requests

IWF Receives RASGRQ

The IWF sends a RASGCF (Gatekeeper Confirm) response toGRQ (Gatekeeper Request) only

if the IWF also contains a gatekeeper implementation.

IWF Receives RASRRQ

This is possible only if the IWF also contains a gatekeeper implementation. On receipt ofRRQ

(Registration Request) the IWF sends a SIPREGISTER message to the SIP server where theTo

SIP header field is derived from theterminalAlias parameter; theContact SIP header field indi-

cates the IWF’s location. ThecallSignalAddress received in RRQ message is stored internally

by the IWF. The IWF may send multipleREGISTER requests if the sequence ofterminalAlias

can be mapped to multiple SIP addresses

Once the IWF receives a 2xx response to thisREGISTER, it sends a RASRCF (regis-

tration confirmation) message to the H.323 entity. If it receives any other status response or the

REGISTER request times out, the IWF sends a RRJ (registration reject) to the H.323 entity.

IWF Receives RASARQ

This is possible only if the IWF also contains a gatekeeper implementation. Receipt of this

message indicates that the H.323 entity knows that the destination is reachable via this IWF. One

simple implementation is to accept the admission request giving thecallSignalAddress of the

IWF itself. Alternatively, a procedure similar to that given for RASLRQ, below, can be followed.

IWF Receives RASLRQ

If the IWF receives a RASLRQ (Location Request) message, the IWF sends anOPTIONS

message to the SIP entity, where the SIP entity address is resolved from the H.323 address.

TheTo SIP header field is derived from thedestinationAddress. The IWFMAY send multiple

forking OPTIONS requests if the sequence ofdestinationAddresses can be mapped to multiple

SIP addresses.



329

If it receives a 2xx response for theOPTIONS request, it sends a RASLCF message to

the H.323 with theCallSignalAddress of the IWF itself. If any other response is received or the

request times out, the IWFMAY choose to remain silent or it may send a RASLRJ to the H.323

entity.

IWF Receives a Q.931Setup

The IWF generates an ARQ/ACF sequence if required here as per H.323 standard. However, that

is local to the H.323 stack and does not affect translation.

If fastStart is present, convert it to H.323 capability set, else build some default H.323

capability set. The IWFMAY send a Q.931CallProceeding message to H.323 entity.

The IWF then sends anINVITE, where theTo SIP header field is derived from the Q.931

destinationAddress and/ordestCallSignalAddress. If destinationAddress is the IWF itself,

then useremoteExtensionAddress. The From SIP header field is derived fromsourceAd-

dress and/orsrcCallSignalAddress. The session description is constructed from the H.323

capability set.

If the IWF receives a 2xx response for theINVITE, it updates the SIP capability set using

the session description in the response body. It then sends a Q.931Connect message to the

H.323 entity.

Then, the IWF sends anACK request to the SIP entity.

Then, it sends an H.245 TCS to the H.323 entity using the SIP capability set.

If it receives a TCS, it updates the H.323 capability set and calculates the maximal in-

tersection of the H.323 and SIP capability sets, calledC. FromC, the IWF derives a suitable

operating mode (sayM ). For each element inM in the direction from SIP to H.323, send a

H.245 OLC to the H.323 entity. The OLC messages use the transport addresses of the SIP capa-

bility set, derived from the session description in the 2xx response body.

If the IWF receives anOLC and the logical channel is present in the operating mode from

H.323 to SIP, it responds with anOLCAck. The OLCAck uses the transport addresses of the

SIP capability set. If the logical channel is not present in the operating mode, the IWF sends an

OLCReject



330

Once the IWF has receivedOLCAck or OLCRej for all the requests, it updates the oper-

ating mode. Then, the IWF sends a re-INVITE. The session description is formed using the new

operating mode if it is different from what was sent in the firstINVITE message and the transport

addresses received inOLCAcks. The IWF should wait for a 2xx response from the SIP entity

and respond with anACK request. If it times out or if it fails, it should close the call.

If the IWF receives a 180 (Alerting) SIP response, it sends a Q.931Alerting message to

the H.323 entity.

If the IWF receives any other 1xx SIP response, it sends a Q.931CallProceeding mes-

sage to H.323, but only if one was not already sent for this call.

If no response is received or a failure response is received, the IWF sends a Q.931Re-

leaseComplete message to the H.323 entity.

IWF Receives Mode Request or Change in Logical Channels

Update operating modes, Send re-INVITE to SIP entity. If that fails then reject the Mode Request

or Open Logical Channel request.

IWF Receives H.245EndSession

If the IWF receives a H.245EndSession, it closes the H.245 call. Send H.245EndSession and

Q.931ReleaseComplete to H.323 entity and send RASDRQ to gatekeeper if it admitted the

call.

IWF Receives Q.931ReleaseComplete

If the IWF receives a Q.931ReleaseComplete, the H.323 side of the call is closed. The IWF

sends aBYE to the SIP entity if the call has been established.

IWF Receives RASDRQ

If the call is active, close it. Send RASDCF (disengage confirm) to H.323 entity.



331

IWF Receives RASURQ

If the IWF receives a RASURQ (unregister request) message, the behavior depends on whether

the IWF also acts as a gatekeeper. If the IWF also contains a gatekeeper, unregister the endpoint

as specified by RAS. Otherwise the request must have come from a gatekeeper. Close all the

associated calls on both SIP and H.323 sides and send a RASUCF (unregister confirm) to the

H.323 entity.



332

Appendix E

Glossary

3GPP Third Generation Partnership Project

AAA Authentication, Authorization and Accounting

ACD Automatic Call Distribution

ACL Access Control List

API Application Program Interface

ARP Address Resolution Protocol

B2BUA Back-to-Back User Agent

BHCA Busy Hour Call Arrivals (or Attempts)

CAN Content Addressable Network

CGI Common Gateway Interface

CINEMA Columbia InterNet Extensible Multimedia Architecture

CPL Call Processing Language

CPS Calls Per Second

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DHT Distributed Hash Table

DID Direct Inward Dialing

DNS Domain Name System (or Service or Server)



333

DoS Denial of Service (attack)

DTD (XML) Document Type Definition

DTMF Dual-Tone Multiple Frequency

ENUM Telephone Number Mapping

FIA (VoiceXML) Form Interpretation Algorithm

GMT Greenwich Mean Time

GSTN Global (or Global) Switched Telephone Network (same as PSTN)

H.323 ITU-T recommendation for multimedia communication over packet networks

HTML Hyper-Text Markup Language

HTTP Hyper-Text Transport Protocol

MD5 Message Digest version 5

IETF Internet Engineering Task Force

IM Instant Message (or Messaging)

IMS (3GPP’s) IP Multimedia Subsystem

I/O (Device) input and output

IOS (Cisco) Internetwork Operating System

IP Internet Protocol

IPv6 IP version 6

ISDN Integrated Services Digital Network

ISP Internet Service Provider

ITU International Telecommunications Union

ITU-T ITU - Telecommunication standardization sector

ITSP Internet Telephony Service Provider

IVR Interactive Voice Response

LAN Local Area Network

LESS Language for End System Services

LDAP Lightweight Directory Access Protocol

MAC Medium (or Media) Access Control (or link layer)

MIB Management Information Base



334

MIME Multipurpose Internet Mail Extension

MOS Mean Opinion Score

MTBF Mean Time Between Failures

MTTR Mean Time To Recover

NAPTR (DNS) Naming Authority Pointer

NAPT Network Address and Port Translator (see NAT)

NAT Network Address Translator

P2P Peer-to-Peer

PBX Private Branch eXchange (telephone switch)

PC Personal Computer

PCM Pulse Code Modulation

PIN Personal Identification Number

POSIX The Portable Operating System Interface

POTS Plain Old Telephone Service (also PSTN)

PSTN Public Switched Telephone Network

PUT Primary User Table

QoS Quality of Service

RADIUS Remote Authentication in Dial-In User Service

RAT Robust Audio Tool

RPC Remote Procedure Call

RPS Registrations Per Second

RTP Real-time Transport Protocol

RTCP Real-time Transport Control Protocol (also RTP)

RTSP Real Time Streaming Protocol

SAP Session Announcement Protocol

SDK Software Development Kit

SDP Session Description Protocol

SHA Secure Hash Algorithm (also SHA1)

SIP Session Initiation Protocol



335

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol (also RPC)

SRV (DNS) Service resource record

SQL Structured Query Language

STUN Simple Traversal of UDP through NAT

Tcl Tool Command Language

TCP Transmission Control Protocol

TLS Transport Layer Security

TRIP Telephony Routing over IP

TTL Time-To-Live

TURN Traversal Using Relay NAT

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

URI Universal Resource Identifier

URL Universal Resource Locator

VNC Virtual Network Computing

VoiceXML Voice eXtensible Markup Language

XML eXtensible Markup Language



336

Appendix F

Bibliography

[1] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for

real-time applications,” RFC 1889, Internet Engineering Task Force, Jan. 1996.

[2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for

real-time applications,” RFC 3550, Internet Engineering Task Force, July 2003.

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-

dley, and E. Schooler, “SIP: session initiation protocol,” RFC 3261, Internet Engineering

Task Force, June 2002.

[4] H. Schulzrinne and J. Rosenberg, “Internet telephony: Architecture and protocols – an

IETF perspective,”Computer Networks and ISDN Systems, Vol. 31, pp. 237–255, Feb.

1999.

[5] International Telecommunication Union, “Network grade of service parameters and tar-

get values for circuit-switched services in the evolving ISDN,” Recommendation E.721,

Telecommunication Standardization Sector of ITU, Geneva, Switzerland, May 1999.

[6] F. Schmidt, F. G. Ĺopez, K.-D. Hackbarth, and A. Cuadra, “An analytical cost model for

the national core network,” consultative document, Wissenschaftliches Institut für Kom-

munikationsdienste, Apr. 1999.



337

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,

“Hypertext transfer protocol – HTTP/1.1,” RFC 2616, Internet Engineering Task Force,

June 1999.

[8] H. Schulzrinne and J. Rosenberg, “The session initiation protocol: Internet-centric signal-

ing,” IEEE Communications Magazine, Vol. 38, Oct. 2000.

[9] H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle, “SIPstone - benchmarking SIP

server performance,” Technical Report CUCS-005-02, Department of Computer Science,

Columbia University, New York, New York, Mar. 2002.

[10] G. Patel and S. Dennett, “The 3GPP and 3GPP2 movements toward an All-IP mobile

network,” IEEE Personal Communications Magazine, Vol. 7, Aug. 2000.

[11] M. Martin, “Input 3rd-generation partnership project (3GPP) release 5 requirements on the

session initiation protocol (SIP),” RFC 4083, Internet Engineering Task Force, May 2005.

[12] D. Milojicic, V. Kalogeraki, R. M. Lukose, K. Nagaraja, J. Pruyne, B. Richard,

S. Rollins, and Z. Xu, “Peer-to-peer computing,” technical report HPL-2002-57

20020315, Technical Publications Department, HP Labs Research Library, Mar. 2002.

http://www.hpl.hp.com/techreports/2002/HPL-2002-57.html.

[13] K. Singh and H. Schulzrinne, “Peer-to-peer internet telephony using SIP,” inNOSSDAV

2005, (Skamania, Washington), June 2005.

[14] K. Singh and H. Schulzrinne, “Peer-to-peer internet telephony using SIP,” Tech. Rep.

CUCS-044-04, Department of Computer Science, Columbia University, New York, NY,

Oct. 2004.

[15] S. Baset, H. Schulzrinne, E. Shim, and K. Dhara, “Requirements for SIP-based Peer-to-

Peer Internet Telephony,” Internet Draft draft-baset-sipping-p2preq-00, Internet Engineer-

ing Task Force, Oct 2005. work in progress.

[16] A. Johnston, “SIP, P2P, and Internet Communications,” Internet Draft draft-johnston-

sipping-p2p-ipcom-01, Internet Engineering Task Force, Mar 2005. work in progress.



338

[17] D. Bryan, B. Lowekamp, and C. Jennings, “A P2P Approach to SIP Registration,” Internet

Draft draft-bryan-sipping-p2p-02, Internet Engineering Task Force, Mar 2006. work in

progress.

[18] “Kazaa: peer-to-peer file sharing software application.” http://www.kazaa.com.

[19] “Gnutella: peer-to-peer file sharing software application.” http://www.gnutella.com.

[20] “Zero configuration networking (zeroconf).” http://www.ietf.org/html.charters/zeroconf-

charter.html.

[21] “Skype: Free internet telephony that just works.” http://www.skype.com.

[22] I. Stoica, R. Morris, D. R. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A scal-

able peer-to-peer lookup service for Internet applications,” inSIGCOMM Symposium on

Communications Architectures and Protocols, (San Diego, CA, USA), ACM, Aug. 2001.

[23] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and H. Bal-

akrishnan, “Chord: A scalable peer-to-peer lookup protocol for internet applications,”

IEEE/ACM Transactions on Networking, Vol. 11, pp. 17–32, Feb. 2003.

[24] J. Lennox, H. Schulzrinne, and J. Rosenberg, “Common gateway interface for SIP,” RFC

3050, Internet Engineering Task Force, Jan. 2001.

[25] J. Schwartz, “Collaboration: More hype than reality,”InternetWeek (online newsletter),

Oct. 1999. http://www.internetweek.com/trans/tr99-bp1.htm.

[26] J. Lennox, “Services for internet telephony,” PhD. thesis, Department of

Computer Science, Columbia University, New York, New York, Jan. 2004.

http://www.cs.columbia.edu/˜ lennox/thesis.pdf.

[27] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, and

H. Yu, “OpenDHT: a public DHT service and its uses,”SIGCOMM Computer Communi-

cation Review, Vol. 35, no. 4, pp. 73–84, 2005.



339

[28] J. Rosenberg and H. Schulzrinne, “Session initiation protocol (SIP): locating SIP servers,”

RFC 3263, Internet Engineering Task Force, June 2002.

[29] MySQL AB Co., “MySQL home page,” http://www.mysql.com.

[30] X. Wu and H. Schulzrinne, “sipc, a multi-function SIP user agent,” in7th IFIP/IEEE

International Conference, Management of Multimedia Networks and Services (MMNS),

pp. 269–281, IFIP/IEEE, Springer, Oct. 2004.

[31] X. Wu, “Columbia university sip user agent (sipc).” http://www.cs.columbia.edu/IRT/sipc.

[32] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” RFC

2326, Internet Engineering Task Force, Apr. 1998.

[33] K. Singh and H. Schulzrinne, “Unified messaging using SIP and RTSP,” inIP Telecom

Services Workshop, (Atlanta, Georgia), pp. 31–37, Sept. 2000.

[34] K. Singh, G. Nair, and H. Schulzrinne, “Centralized conferencing using SIP,” inInternet

Telephony Workshop, (New York), Apr. 2001.

[35] S. McGlashan, D. Burnett, J. Carter, S. Tryphonas, J. Ferrans, T. User, B. Lucas, and

B. Porter, “Voice extensible markup language (VoiceXML) version 2.0,” tech. rep., World

Wide Web Consortium (W3C), Feb. 2003. http://www.w3.org/TR/voicexml20/.

[36] K. Singh, A. Nambi, and H. Schulzrinne, “Integrating voicexml with SIP services.,” in

ICC 2003 - Global Services and Infrastructure for Next Generation Networks, (Anchorage,

Alaska), May 2003.

[37] International Telecommunication Union, “Packet based multimedia communication sys-

tems,” Recommendation H.323, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Feb. 1998.

[38] International Telecommunication Union, “Narrow-band visual telephone systems and ter-

minal equipment,” Recommendation H.320, Telecommunication Standardization Sector of

ITU, Geneva, Switzerland, May 1999.



340

[39] International Telecommunication Union, “Terminal for low bit-rate multimedia commu-

nication,” Recommendation H.324, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Feb. 1998.

[40] H. Schulzrinne and J. Rosenberg, “A comparison of SIP and H.323 for Internet telephony,”

in Proc. International Workshop on Network and Operating System Support for Digital

Audio and Video (NOSSDAV), (Cambridge, England), pp. 83–86, July 1998.

[41] I. Dalgic and H. Fang, “Comparison of H.323 and SIP for IP telephony signaling,” in

Photonics East, (Boston, Massachusetts), SPIE, Sept. 1999.

[42] K. Singh and H. Schulzrinne, “Interworking between SIP/SDP and H.323,” inIP-

Telephony Workshop (IPtel), (Berlin, Germany), Apr. 2000.

[43] H. Schulzrinne and J. Rosenberg, “Signaling for Internet telephony,” inInternational Con-

ference on Network Protocols (ICNP), (Austin, Texas), Oct. 1998.

[44] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): generic

syntax,” RFC 2396, Internet Engineering Task Force, Aug. 1998.

[45] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part one:

Format of internet message bodies,” RFC 2045, Internet Engineering Task Force, Nov.

1996.

[46] M. Handley and V. Jacobson, “SDP: session description protocol,” RFC 2327, Internet

Engineering Task Force, Apr. 1998.

[47] J. Rosenberg and H. Schulzrinne, “An offer/answer model with session description proto-

col (SDP),” RFC 3264, Internet Engineering Task Force, June 2002.

[48] J. Rosenberg, J. Lennox, and H. Schulzrinne, “Programming Internet telephony services,”

IEEE Network, Vol. 13, pp. 42–49, May/June 1999.

[49] J. Lennox, X. Wu, and H. Schulzrinne, “Call processing language (CPL): a language for

user control of internet telephony services,” RFC 3880, Internet Engineering Task Force,

Oct. 2004.



341

[50] J. Rosenberg, “A Framework for Conferencing with the Session Initiation Protocol (SIP),”

RFC 4353, Internet Engineering Task Force, feb 2006.

[51] UCB/LBNL, “vic – video conferencing tool.” http://www-nrg.ee.lbl.gov/vic/.

[52] M. A. Sasse, V. J. Hardman, I. Kouvelas, C. E. Perkins, O. Hodson, A. I. Watson, M. Han-

dley, and J. Crowcroft, “RAT (robust-audio tool),” 1995.

[53] J. Highfield and K. Hasler, “Whiteboard tool,” 1995. http://www-

mice.cs.ucl.ac.uk/multimedia/software/wbd/.

[54] M. Handley, C. Perkins, and E. Whelan, “Session announcement protocol,” RFC 2974,

Internet Engineering Task Force, Oct. 2000.

[55] H. Schulzrinne and K. Arabshian, “Providing emergency services in Internet telephony,”

IEEE Internet Computing, Vol. 6, pp. 39–47, May 2002.

[56] H. Bryhni, E. Klovning, and Øivind Kure, “A comparison of load balancing techniques for

scalable web servers,”IEEE Networks, Vol. 14, July 2000.

[57] K. Suryanarayanan and K. J. Christensen, “Performance evaluation of new methods of

automatic redirection for load balancing of apache servers distributed in the Internet,” in

IEEE Conference on Local Computer Networks, (Tampa, Florida, USA), Nov. 2000.

[58] O. Damani, P. Chung, Y. yu Huang, C. M. Kintala, and Y. Wang, “ONE-IP: techniques for

hosting a service on a cluster of machines,”Computer Networks, Vol. 29, pp. 1019–1027,

Sept. 1997.

[59] D. Oppenheimer, A. Ganapathi, and D. Patterson, “Why do internet services fail, and what

can be done about it?,” in4th USENIX Symposium on Internet Technologies and Systems

(USITS ’03), (Seattle, WA), Mar. 2003.

[60] A. C. Snoeren, D. Andersen, and H. Balakrishnan, “Fine-grained failover using connection

migration,” inUSENIX Symposium on Internet Technologies and Systems, (San Francisco),

Mar. 2001.



342

[61] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and implementation of zap: A

system for migrating computing environments,” inProceedings of the Fifth Symposium on

Operating Systems Design and Implementation (OSDI 2002), (Boston, MA), Dec. 2002.

pp. 361-376.

[62] High-Availability Linux Project, http://www.linux-ha.org/.

[63] Cisco Systems, Failover configuration for LocalDirector,

http://www.cisco.com/warp/public/cc/pd/cxsr/400/tech/locdfwp.htm.

[64] G. Hunt, G. Goldszmidt, R. P. King, and R. Mukherjee, “Network dispatcher: a connec-

tion router for scalable Internet services,”Computer Networks, Vol. 30, pp. 347–357, Apr.

1998.

[65] C.-L. Yang and M.-Y. Luo, “Efficient support for content-based routing in web server

clusters,” in2nd USENIX Symposium on Internet Technologies and Systems, (Boulder,

Colorado, USA), Oct 1999.

[66] Akamai Technologies, Inc. http://www.akamai.com.

[67] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for specifying the location of services

(DNS SRV),” RFC 2782, Internet Engineering Task Force, Feb. 2000.

[68] M. Mealling and R. Daniel, “The naming authority pointer (NAPTR) DNS resource

record,” RFC 2915, Internet Engineering Task Force, Sept. 2000.

[69] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic load balancing on web-server sys-

tems,”IEEE Internet Computing, Vol. 3, no. 3, pp. 28–39, 1999.

[70] N. Ohlmeier, “Design and implementation of a high availability SIP server architecture,”

Thesis, Computer Science Department, Technical University of Berlin, Berlin, Germany,

July 2003.

[71] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen, “Reliable IP telephony ap-

plications with SIP using RSerPool,” inWorld Multiconference on Systemics, Cybernetics

and Informatics (SCI), (Orlando, USA), July 2002.



343

[72] M. Tuexen, Q. Xie, R. Stewart, M. Shore, J. Loughney, and A. Silverton, “Architecture for

reliable server pooling,” Internet Draft draft-ietf-rserpool-arch-10, Internet Engineering

Task Force, Jan 2006. work in progress.

[73] M. Tuexen, Q. Xie, R. Stewart, M. Shore, L. Ong, J. Loughney, and M. Stillman, “Re-

quirements for reliable server pooling,” RFC 3237, Internet Engineering Task Force, Jan.

2002.

[74] L. G. M. Bozinovski and R. Prasad, “A state-sharing mechanism for providing reliable SIP

sessions,” in6th International Conference on Telecommunications in Modern Satellite,

Cable and Broadcasting Services, (Nis, Serbia and Montenegro), Oct. 2003.

[75] H. S. M. Bozinovski and R. Prasad, “Maximum availability server selection policy for ses-

sion control systems based on 3GPP SIP,” inSeventh International Symposium on Wireless

Personal Multimedia Communications, (Padova, Italy), Sept. 2004.

[76] A. Srinivasan, K. G. Ramakrishnan, K. Kumaran, M. Aravamudan, and S. Naqvi, “Optimal

design of signaling networks for Internet telephony,” inProceedings of the Conference on

Computer Communications (IEEE Infocom), (Tel Aviv, Israel), Mar. 2000.

[77] R. Sparks, “The session initiation protocol (SIP) refer method,” RFC 3515, Internet Engi-

neering Task Force, Apr. 2003.

[78] J. Rosenberg, “Requirements for management of overload in the session initiation proto-

col,” Internet Draft draft-rosenberg-sipping-overload-reqs-00, Internet Engineering Task

Force, Feb 2006. work in progress.

[79] Emic Cluster for MySQL, http://www.emicnetworks.com.

[80] J. Janak, “SIP proxy server effectiveness,” Master’s Thesis, Department of Computer Sci-

ence, Czech Technical University, Prague, Czech, May 2003.

[81] V. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An efficient and portable web server,” in

USENIX Annual Technical Conference, (Montery, California, USA), Jun 1999.



344

[82] M. Welsh, D. Culler, and E. Brewer, “SEDA: an architecture for well-conditioned, scalable

Internet services,” inSymposium on Operating Systems Principles (SOSP), (Chateau Lake

Louise, Canada), ACM, Oct. 2001.

[83] R. Behren, J. Condit, F. Zhou, G. Necula, and E. Brewer, “Capriccio: scalable threads for

internet services,” inACM Symposium on Operating Systems Principles (SOSP), (Bolton

Landing, NY), 2003.

[84] S. Mishra and R. Yang, “Thread-based vs event-based implementation of a group commu-

nication,” in Proceedings of the 12th IEEE International Parallel Processing Symposium

and 9th IEEE Symposium on Parallel and Distributed Processing (IPDPS), (Orlando, FL),

Apr 1998.

[85] J. Ousterhout, “Why threads are a bad idea (for most purposes),” inUSENIX Technical

Conference (Invited Talk), (Austin, TX), Jan. 1996.

[86] Cisco IP phone 7960, Release 2.1, http://www.cisco.com.

[87] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and the effectiveness

of caching,” inACM SIGCOMM Internet Measurement Workshop, (San Francisco, Cali-

fornia), Nov. 2001.

[88] K. Singh, W. Jiang, J. Lennox, S. Narayanan, and H. Schulzrinne, “CINEMA: columbia

internet extensible multimedia architecture,” technical report CUCS-011-02, Department

of Computer Science, Columbia University, New York, New York, May 2002.

[89] W. Jiang, J. Lennox, S. Narayanan, H. Schulzrinne, K. Singh, and X. Wu, “Integrating

Internet telephony services,”IEEE Internet Computing, Vol. 6, pp. 64–72, May 2002.

[90] J. Ousterhout, “Tcl: A universal scripting language,” inUSENIX Symposium on Very High

Level Languages, (Santa Fe, New Mexico), Oct. 1994. Invited Talk.

[91] P. Srisuresh and D. Gan, “Load sharing using IP network address translation (LSNAT),”

RFC 2391, Internet Engineering Task Force, Aug. 1998.



345

[92] W. Zhao and H. Schulzrinne, “Dotslash: A self-configuring and scalable rescue system

for handling web hotspots effectively,” inInternational Workshop on Web Caching and

Content Distribution (WCW), (Beijing, China), Oct. 2004.

[93] B. Jenkins, “Algorithm alley,” Dr. Dobb’s Journal, Sept. 1997.

http://burtleburtle.net/bob/hash/doobs.html.

[94] D. R. Karger, A. H. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto, B.-

J. J. Kim, and L. Matkins, “Web caching with consistent hashing,”Computer Networks,

Vol. 31, pp. 1203–1213, May 1999.

[95] I. Jackson, “GNU adns: advanced, easy-to-use, asynchronous-capable DNS client library

and utilities.” http://www.chiark.greenend.org.uk/˜ ian/adns/.

[96] “SIP express router (ser): a high performance free sip server.” http://www.iptel.org/ser.

[97] F. P. Duffy and R. A. Mercer, “A study of network performance and customer behavior

during-direct-distance-dialing call attempts in the USA,”Bell System Technical Journal,

Vol. 57, no. 1, pp. 1–33, 1978.

[98] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Resilient overlay net-

works,” in 18th ACM SOSP, (Banff, Canada), Oct. 2001.

[99] J. Toga and J. Ott, “ITU-T standardization activities for interactive multimedia communi-

cations on packet-based networks: H.323 and related recommendations,”Computer Net-

works and ISDN Systems, Vol. 31, pp. 205–223, Feb. 1999.

[100] Z. Ge, D. Figueiredo, S. Jaiswal, J. F. Kurose, and D. Towsley, “Modeling peer-peer file

sharing systems,” inIEEE Infocom 2003, Mar. 2003.

[101] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-

addressable network,” inSIGCOMM Symposium on Communications Architectures and

Protocols, (San Diego, CA, USA), ACM, Aug. 2001.



346

[102] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems,” inIFIP/ACM International Conference on Distributed

Systems Platforms (Middleware), (Heidelberg, Germany), pp. 329–350, Nov. 2001.

[103] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the evolution of peer-to-

peer systems,” inACM Conf. on Principles of Distributed Computing (PODC), (Monterey,

CA, USA), ACM, July 2002.

[104] S. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer internet telephony

protocol,” in IEEE INFOCOM 2006, (Barcelona, SPAIN), Apr. 2006.

[105] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN - simple traversal of user

datagram protocol (UDP) through network address translators (nats),” RFC 3489, Internet

Engineering Task Force, Mar. 2003.

[106] J. Rosenberg, R. Mahy, and C. Huitema, “Traversal Using Relay NAT (TURN),” Internet

Draft draft-rosenberg-midcom-turn-08, Internet Engineering Task Force, Sep 2005. work

in progress.

[107] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Methodology for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols,” Internet Draft draft-ietf-

mmusic-ice-06, Internet Engineering Task Force, Oct 2005. work in progress.

[108] F. Strauss and S. Schmidt, “P2P CHAT - a peer-to-peer chat protocol,” internet draft, In-

ternet Engineering Task Force, June 2003. Work in progress.

[109] “Groove workspace software.” http://www.groove.net.

[110] “Magi p2p technology being adopted across vertical industries.”

http://www.endeavors.com/PressReleases/partners1.htm.

[111] “Apple iChat AV: Videoconferencing for the rest of us.” http://www.apple.com/ichat/.

[112] “Nimcat networks.” http://www.nimcatnetworks.com/.

[113] “Popular telephony.” http://www.populartelephony.com/.



347

[114] “SIP beyond voice and video.” http://www.research.earthlink.net/p2p/.

[115] J. Rosenberg, J. Peterson, H. Schulzrinne, and G. Camarillo, “Best current practices for

third party call control (3pcc) in the session initiation protocol (SIP),” RFC 3725, Internet

Engineering Task Force, Apr. 2004.

[116] K. Singh and H. Schulzrinne, “SIPpeer: a session initiation protocol (SIP)-based peer-

to-peer Internet telephony client adaptor,” white paper, Computer Science Department,

Columbia University, New York, NY, Jan 2005. http://www.cs.columbia.edu/IRT/p2p-

sip/papers/sip-p2p-design.pdf.

[117] M. Wahl, T. Howes, and S. Kille, “Lightweight directory access protocol (v3),” RFC 2251,

Internet Engineering Task Force, Dec. 1997.

[118] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and zipf-like dis-

tributions: Evidence and implications,” inProceedings of the Conference on Computer

Communications (IEEE Infocom), (New York), Mar. 1999.

[119] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing in

dynamic structured P2P systems,” inIEEE Infocom 2004, (Hong Kong), Mar. 2004.

[120] M. Roussopoulos and M. G. Baker, “Practical load balancing for content requests in peer-

to-peer networks,” technical report cs/0209023, arXiv, Sept. 2002.

[121] S. D. Gribble, E. Brewer, J. Hellerstein, and D. Culler, “Scalable, distributed data structures

for Internet service construction,” inOperating Systems Design and Implementation, (San

Diego, CA, USA), Usenix, Oct. 2000.

[122] “OpenDHT: a public distributed hash table service.” http://www.opendht.org.

[123] H. Schulzrinne, “Composing Presence Information,” Internet Draft draft-schulzrinne-

simple-composition-00, Internet Engineering Task Force, Jul 2005. work in progress.

[124] R. Mahy, “Connection Reuse in the Session Initiation Protocol (SIP),” Internet Draft draft-

ietf-sip-connect-reuse-04, Internet Engineering Task Force, Jul 2005. work in progress.



348

[125] J. Rosenberg and H. Schulzrinne, “An extension to the session initiation protocol (SIP) for

symmetric response routing,” RFC 3581, Internet Engineering Task Force, Aug. 2003.

[126] “The OpenSSL project.” http://www.openssl.org.

[127] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stew-

art, “HTTP authentication: Basic and digest access authentication,” RFC 2617, Internet

Engineering Task Force, June 1999.

[128] R. Merkle, “A digital signature based on a conventional encryption function,”Advances in

Cryptology — CRYPTO ’87, Lecture Notes in Computer Science, Vol. 293, pp. 369–378,

1988.

[129] E. Niemi, “Session initiation protocol (SIP) extension for event state publication,” Inter-

net Draft draft-ietf-sip-publish-02, Internet Engineering Task Force, Jan. 2004. Work in

progress.

[130] W. Zhao, H. Schulzrinne, and E. Guttman, “Mesh-enhanced service location protocol

(mslp),” RFC 3528, Internet Engineering Task Force, Apr. 2003.

[131] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service location protocol, version 2,”

RFC 2608, Internet Engineering Task Force, June 1999.

[132] K. Arabshian and H. Schulzrinne, “Hybrid hierarchical and peer-to-peer ontology-based

global service discovery system,” Tech. Rep. CUCS-016-05, Columbia University, Apr.

2005.

[133] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, and

H. Weatherspoon, “Oceanstore: An extremely wide-area storage system,” technical report

UCB//CSD-00-1102, U.C. Berkeley, CA, USA, May 1999.

[134] A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. Wallach, X. Bonnaire, P. Sens,

J.-M. Busca, and L. Arantes-Benzerra, “Post: A secure, resilient, cooperative messag-

ing system,” inHotOS IX: The 9th workshop on hot topics in operating systems, (Lihue,

Hawaii, USA), USENIX, May 2003.



349

[135] J. Lennox and H. Schulzrinne, “A protocol for reliable decentralized conferencing,” in

ACM NOSSDAV 2003, (Monterey, California, USC), June 2003.

[136] M. Castro, M. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang, and A. Wol-

man, “An evaluation of scalable application-level multicast built using peer-to-peer over-

lays,” in IEEE Infocom 2003, Mar. 2003.

[137] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer multi-

cast,” inSIGCOMM Symposium on Communications Architectures and Protocols, (Pitts-

burgh,PA), p. 13, Aug. 2002.

[138] M. Castro, P. Druschel, Y. Hu, and A. Rowstron, “Proximity neighbor selection in tree-

based structured peer-to-peer overlays,” technical report MSR-TR-2003-52, Microsoft Re-

search, 2003.

[139] A. Roach, “Session initiation protocol (SIP)-specific event notification,” RFC 3265, Inter-

net Engineering Task Force, June 2002.

[140] J. Rosenberg, “A session initiation protocol (SIP) event package for registrations,” RFC

3680, Internet Engineering Task Force, Mar. 2004.

[141] J. Rosenberg, “Interactive connectivity establishment (ICE): a methodology for nettwork

address translator (NAT) traversal for the session initiation protocol (SIP),” internet draft,

Internet Engineering Task Force, July 2003. Work in progress.

[142] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication across middleboxes,” In-

ternet Draft draft-ford-midcom-p2p-01, Internet Engineering Task Force, Oct. 2003. Work

in progress.

[143] D. Murphy, J. Kelly, K. Curley, J. Vickery, and D. O’Keeffe, “P2p security,” Online Re-

port, Networks and Telecommunications Research Group, Computer Science Department,

Trinity College, Dublin 2, Ireland, Jan. 2003. http://ntrg.cs.tcd.ie/undergrad/4ba2.02-

03/p10.html.



350

[144] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach, “Security for struc-

tured peer-to-peer overlay networks,” inOperating Systems Design and Implementation,

(Boston, MA), Usenix, Dec. 2002.

[145] P. Biondi and F. Desclaux, “Silver Needle in the Skype,” Mar. 2006.

http://www.blackhat.com/.

[146] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-peer networks,” in

ACM NOSSDAV 2003, (Monterey, California, USC), June 2003.

[147] S. Lee, R. Sherwood, and S. Bhattacharjee, “Cooperative peer groups in NICE,” inIEEE

Infocom 2003, Mar. 2003.

[148] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for reputation

management in P2P networks,” inInternational World Wide Web Conference (WWW),

(Budapest, Hungary), International World Wide Web Conference Committee, May 2003.

[149] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust for peer-to-peer elec-

tronic communities,”IEEE Transactions on Knowledge and Data Engineering, Vol. 16,

pp. 843–857, July 2004.

[150] E. Adar and B. A. Huberman, “Free riding on gnutella,”First Monday, Vol. 5, Oct. 2000.

[151] E. Sit and R. Morris, “Security considerations for peer-to-peer distributed hash tables,” in

Electronic Proceedings for the 1st International Workshop on Peer-to-Peer Systems (IPTPS

’02), (Cambridge, MA, USA), IEEE, Mar 2002.

[152] A. Gupta, B. Liskov, and R. Rodrigues, “One hop lookups for peer-to-peer overlays,” in

HotOS IX: The 9th workshop on hot topics in operating systems, (Lihue, Hawaii, USA),

USENIX, May 2003.

[153] S. Ratnasamy, S. Shenker, and I. Stoica, “Routing algorithms for DHTs: some open ques-

tions,” in International Workshop on Peer-to-Peer Systems (IPTPS), (Cambridge, MA,

USA), IEEE, Mar. 2002.



351

[154] M. Handley, J. Crowcroft, C. Bormann, and J. Ott, “The internet multimedia conferencing

architecture,” internet draft, Internet Engineering Task Force, July 2000. Work in progress.

[155] S. Bhattacharyya and I. Ed., “An overview of source-specific multicast (SSM),” RFC 3569,

Internet Engineering Task Force, July 2003.

[156] H. W. Holbrook and D. R. Cheriton, “IP multicast channels: EXPRESS support for large-

scale single-source applications,” inSIGCOMM Symposium on Communications Architec-

tures and Protocols, (Cambridge, Massachusetts), August/September 1999.

[157] Z. Y. Shae and M.-S. Chen, “Mixing and playback of JPEG compressed packet videos,”

in Proceedings of the IEEE Conference on Global Communications (GLOBECOM), (Or-

lando, Florida), pp. 245–249 (08B.03), IEEE, Dec. 1992.

[158] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” RFC

1890, Internet Engineering Task Force, Jan. 1996.

[159] J. Luciani, “Classical IP to NHRP transition,” RFC 2336, Internet Engineering Task Force,

July 1998.

[160] “Apple’s Quicktime real-time streaming media player.” http://www.quicktime.com.

[161] “Realplayer media player.” http://www.real.com.

[162] “Cisco CallManager.” http://www.cisco.com/.

[163] “Nortel multimedia communication server 5100.” http://www.nortelnetworks.com/.

[164] “Skinny call control protocol (SCCP).” http://www.cisco.com.

[165] “CUSeeMe: Cornell University’s video conferencing tool.” http://www.cuseeme.com.

[166] “Lotus Sametime 3.0.” http://www.sametime.com.

[167] “GnomeMeeting.” http://www.gnomemeeting.org.



352

[168] M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, and L. Suchman, “Beyond

the chalkboard: computer support for collaboration and problem solving in meetings,”

Communications ACM, Vol. 30, pp. 32–47, Jan. 1987.

[169] J. Conklin, “Hypertext: An introduction and survey,” inGroupware — software for

computer-supported cooperative work(D. Marca and G. Bock, eds.), IEEE Computer So-

ciety Press, 1992. IEEE Computer, September 1987.

[170] A. Dix, “Computer-supported cooperative work - a framework,” inDesign Is-

sues in CSCW, Eds. D. Rosenburg and C. Hutchison, Springer Verlag, 1994.

http://www.comp.lancs.ac.uk/computing/users/dixa/papers/cscwframework94/.

[171] A. Dix, “Challenges and perspectives for cooperative work on the web,” inAn Interna-

tional workshop on CSCW and the Web, (Sankt Augustin, Germany), ERCIM/W4G, Feb.

1996. http://orgwis.gmd.de/projects/W4G/proceedings/challenges.html.

[172] W. Appelt, “WWW based collaboration with the BSCW system,” inSOFSEM (SOFtware

SEMinar), (Milovy, Czech Republic), pp. 66–78, Springer-Verlag in the Lecture Notes in

Computer Science 1725, Nov. 1999. http://bscw.gmd.de/Papers/SOFSEM99/sofsem.pdf.

[173] “Lotus domino.” http://www.lotus.com.

[174] “Hyperwave.” http://www.hyperwave.com.

[175] “Opentext corporation.” http://www.opentext.com/livelink.

[176] G. Kaiser and S. M. Kaplan, “CSCW and software process. session summary in ninth

international software process workshop: The role of humans in the process,” inNinth

International Software Process Workshop, pp. 9–11, Oct. 1994.

[177] M. Mühlhäuser, “Interdisciplinary development of an electronic class and conference

room,” Journal of Universal Computer Science, Vol. 2, pp. 694–710, Oct. 1996.

[178] P. Saint-Andre, “Extensible messaging and presence protocol (XMPP): core,” RFC 3920,

IETF, Oct. 2004.



353

[179] E. Schooler, S. Casner, and J. B. Postel, “Multimedia conferencing: Has it come of age?,”

in 24th Hawaii International Conference on System Science, Vol. 3, (Hawaii), pp. 707–716,

IEEE, Jan. 1991.

[180] S. Yang, S. Yu, J. Zhou, and Q. Han, “Multipoint communications with speech mixing

over IP network,”Computer Communications, Vol. 25, pp. 46–55, Jan. 2001.

[181] M. Handel and J. Herbsleb, “What is chat doing in the workplace,” inProceedings of ACM

Conference on computer supported cooperative work(CSCW), (New Orleans, Louisiana,

USA), Nov. 2002.

[182] “VidMid: The video working group of the internet2 middleware initiative.”

http://middleware.internet2.edu/video.

[183] H. Schulzrinne, “Conferencing and collaborative computing,” inDagstuhl Seminar on

Fundamentals and Perspectives of Multimedia Systems, (Dagstuhl Castle, Germany), July

1994.

[184] E. A. Isaacs and J. C. Tang, “What video can and can’t do for collaboration: a case study,”

in ACM Multimedia, (Anaheim, California), pp. 199–206, Aug. 1993.

[185] S. McCanne and V. Jacobson, “vic: A flexible framework for packet video,” inACM Mul-

timedia, Nov. 1995.

[186] V. Kumar,MBone: Interactive Multimedia On The Internet. Macmillan Publishing (Simon

& Schuster), 1995.

[187] “MeetingPlace.” http://www.meetingplace.net/.

[188] J. Ott, “Teleconferencing in the ITU-T,” inIETF, (San Jose, California), Dec. 1994. Mul-

tiparty Multimedia Session Control WG (MMusic), Talk (c).

[189] P. Balaouras, I. Stavrakakis, and L. Merakos, “Potential and limitations of a teleteaching

environment based on H.323 audio-visual communication systems,”Computer Networks,

Vol. 34, pp. 945–958, Dec. 2000.



354

[190] S. Greenberg and M. Roseman, “Groupweb: A web browser as real-time groupware,” in

Conference on human factors in computing systems, companion, proceedings, (Vancouver,

Canada), pp. 271–272, ACM SIGCHI’96, Apr. 1996.

[191] H.-P. Dommel and J. J. Garcia-Luna-Aceves, “Floor control for multimedia conferencing

and collaboration,”Multimedia Systems, Vol. 5, no. 1, pp. 23–38, 1997.

[192] P. Koskelainen, H. Schulzrinne, and X. Wu, “A SIP-based conference control framework,”

in Proc. International Workshop on Network and Operating System Support for Digital

Audio and Video (NOSSDAV), (Miami Beach, Florida), pp. 53–61, May 2002.

[193] D. Trossen,Scalable Group Communications in Tightly Coupled Environments. PhD the-

sis, University of Technology, Aachen, Germany, Sept. 2000.

[194] F. DePaoli and F. Tisato, “Coordinator: a basic building block for multimedia conferencing

systems,” inProceedings of the IEEE Conference on Global Communications (GLOBE-

COM), (Phoenix, Arizona), pp. 2049–2053 (58.1), IEEE, Dec. 1991.

[195] “pcAnywhere by Symantec, Inc..” http://www.symantec.com/pcanywhere.

[196] “GoToMyPC by Expert City, Inc..” http://www.gotomypc.com/.

[197] International Telecommunication Union, “Multipoint application sharing,” Recommenda-

tion T.128, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Feb.

1998.

[198] T. Ohmori, K. Maeno, S. Sakata, H. Fukuoka, and K. Watabe, “Distributed cooperative

control for application sharing based on multiparty and multimedia desktop conferencing

system: MERMAID,”ACM Computer Communication Review, Vol. 22, pp. 39–40, Mar.

1992.

[199] “VirtualPlaces.” http://www.vplaces.com/vpnet/index.html.

[200] C. Agboh, “A study of two main IP telephony signaling protocols: H.323 signaling and

SIP; a comparison and a signaling gateway specification,” Master’s thesis, Unversite Libre



355

de Bruxelles (ULB), Facutés des Science, D́epartment Informatique, Brussels, Belgium,

1999. supervised by Eric Manie.

[201] N. Kausar and J. Crowcroft, “An architecture of conference control functions,” inPhoton-

ics East, (Boston, Massachusetts), SPIE, Sept. 1999.

[202] H. Schulzrinne and C. Agboh, “Session Initiation Protocol (SIP)-H.323 Interworking Re-

quirements,” RFC 4123, Internet Engineering Task Force, July 2005.

[203] D. B. Terry and D. C. Swinehart, “Managing stored voice in the etherphone system,”ACM

Transactions on Computer Systems, Vol. 6, pp. 3–27, Feb. 1988.

[204] P. T. Zellweger, D. B. Terry, and D. C. Swinehart, “An overview of the etherphone system

and its applications,” in2nd IEEE Conference on Computer Workstations, (Santa Clara,

California), pp. 160–168, Mar. 1988.

[205] P. V. Rangan and D. C. Swinehart, “Software architecture for integration of video ser-

vices in the etherphone environment,”IEEE Journal on Selected Areas in Communica-

tions, Vol. 9, pp. 1395–1404, Dec. 1991.

[206] G. Vaudreuil and G. Parsons, “Voice profile for internet mail - version 2 (vpimv2),” RFC

3801, Internet Engineering Task Force, June 2004.

[207] B. Campbell and R. Sparks, “Control of service context using SIP request-uri,” RFC 3087,

Internet Engineering Task Force, Apr. 2001.

[208] M. R. Civanlar, G. L. Cash, R. V. Kollarits, B.-B. Paul, C. T. Swain, B. G. Haskell, and

D. A. Kapilow, “Videotalks: A comprehensive multimedia conferencing system,” inPacket

Video, (Sardinia, Italy), May 2000.

[209] H. Vin, P. T. Zellweger, D. C. Swinehart, and P. V. Rangan, “Multimedia conferencing in

the etherphone environment,”IEEE Computer, Vol. 24, pp. 69–79, Aug. 1991.

[210] P. Koskelainen, J. Ott, H. Schulzrinne, and X. Wu, “Requirements for Floor Control Pro-

tocols,” RFC 4376, Internet Engineering Task Force, jan 2006.



356

[211] O. Novo, G. Camarillo, D. Morgan, and R. Even, “A common conference information data

model for centralized conferencing (XCON),” Internet Draft draft-ietf-xcon-common-data-

model-00, Internet Engineering Task Force, Apr 2006. work in progress.

[212] “Plum voice portals: automated telephony solutions.” http://www.plumvoiceportals.com.

[213] “Open Source VoiceXML Interpreter.” http://www.openvxi.com.

[214] “Talking EMail: voice-enabled email.” http://www.voice3g.com/appblocks.htm.

[215] E. Burger, J. Dyke, and A. Spitzer, “Basic network media services with SIP,” RFC 4240,

Internet Engineering Task Force, Dec 2005.

[216] “TellMe studio.” http://www.tellme.com.

[217] W. Jiang, J. Lennox, H. Schulzrinne, and K. Singh, “Towards junking the PBX: deploying

IP telephony,” inProc. International Workshop on Network and Operating System Support

for Digital Audio and Video (NOSSDAV), (Port Jefferson, New York), June 2001.

[218] X. Wu and H. Schulzrinne, “Programmable end system services using SIP,” inInterna-

tional Conference on Communications, (Anchorage, Alaska), pp. 789–793, May 2003.

[219] D. Robinson and K. Coar, “The common gateway interface (CGI) version 1.1,” Internet

Draft draft-coar-cgi-v11-04.txt,.ps,, Internet Engineering Task Force, Oct. 2003. Work in

progress.

[220] K. Singh, X. Wu, J. Lennox, and H. Schulzrinne, “Comprehensive multi-platform collabo-

ration,” Tech. Rep. CUCS-027-03, Dept. of Computer Science, Columbia University, New

York, New York, Dec. 2003.

[221] R. Ramjee, J. F. Kurose, D. F. Towsley, and H. Schulzrinne, “Adaptive playout mechanisms

for packetized audio applications in wide-area networks,” inProceedings of the Conference

on Computer Communications (IEEE Infocom), (Toronto, Canada), pp. 680–688, IEEE

Computer Society Press, Los Alamitos, California, June 1994.



357

[222] J. Rosenberg, L. Qiu, and H. Schulzrinne, “Integrating packet FEC into adaptive voice

playout buffer algorithms on the Internet,” inProceedings of the Conference on Computer

Communications (IEEE Infocom), (Tel Aviv, Israel), Mar. 2000.

[223] H. Schulzrinne, “Indication of message composition for instant messaging,” RFC 3994,

Internet Engineering Task Force, Jan. 2005.

[224] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual network comput-

ing,” IEEE Internet Computing, Vol. 2, pp. 33–38, January/February 1998.

[225] X. Wu, P. Koskelainen, and H. Schulzrinne, “Conference floor control protocol,” internet

drafts, Internet Engineering Task Force, 2003.

[226] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte,

and D. Winer, “Simple object access protocol (SOAP) 1.1,” tech. rep., World Wide Web

Consortium, W3C, May 2000.

[227] H. Schulzrinne and S. Petrack, “RTP payload for DTMF digits, telephony tones and tele-

phony signals,” RFC 2833, Internet Engineering Task Force, May 2000.

[228] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen, “HTTP extensions for dis-

tributed authoring – WEBDAV,” RFC 2518, Internet Engineering Task Force, Feb. 1999.

[229] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two:

Media types,” RFC 2046, Internet Engineering Task Force, Nov. 1996.

[230] J. Myers and M. Rose, “Post office protocol - version 3,” RFC 1939, Internet Engineering

Task Force, May 1996.

[231] M. Crispin, “Internet message access protocol - version 4,” RFC 1730, Internet Engineer-

ing Task Force, Dec. 1994.

[232] M. Crispin, “Internet message access protocol - version 4rev1,” RFC 2060, Internet Engi-

neering Task Force, Dec. 1996.



358

[233] J. Rosenberg, H. Schulzrinne, and P. Kyzivat, “Caller preferences for the session initiation

protocol (SIP),” RFC 3841, Internet Engineering Task Force, Aug. 2004.

[234] J. Rosenberg, “A presence event package for the session initiation protocol (SIP),” RFC

3856, Internet Engineering Task Force, Aug. 2004.

[235] Dallas Semiconductor Corp., “ibutton,” 2002. http://www.ibutton.com.

[236] R. Mahy, “A message summary and message waiting indication event package for the

session initiation protocol (SIP),” RFC 3842, Internet Engineering Task Force, Aug. 2004.

[237] “Xerces C++ Parser.” http://xml.apache.org/xerces-c/.

[238] L. Hanson, “Simple HTTP fetcher in C.” GNU LGPL software.

[239] A. Black and K. Lenzo, “Flite: a small, fast run time synthesis engine.”

http://fife.speech.cs.cmu.edu/flite/.

[240] D. Liu and N. Ogasawara,Email by phone using VoiceXML. Columbia University, New

York, May 2001.

[241] “Procmail home-page.” http://www.procmail.org/.

[242] CMU Sphinx group, “CMU sphinx open source speech recognition engines,” 2000.

http://www.speech.cs.cmu.edu/sphinx/index.html.

[243] A. Black and K. Lenzo,Flite: a small, fast run time synthesis engine. Speech Group at

Carnegie Mellon University, 1.0 ed., Aug. 2001. http://fife.speech.cs.cmu.edu/flite/.

[244] N. Charlton, M. Gasson, G. Gybels, M. Spanner, and A. Wijk, “User requirements for the

session initiation protocol (SIP) in support of deaf, hard of hearing and speech-impaired

individuals,” RFC 3351, Internet Engineering Task Force, Aug. 2002.

[245] D. Wheeler, “SLOCCount: A tool to measure source lines of code.”

http://www.dwheeler.com/sloccount.



359

[246] C. Partridge, T. Mendez, and W. Milliken, “Host anycasting service,” RFC 1546, Internet

Engineering Task Force, Nov. 1993.

[247] O. Levin, “H.323 uniform resource locator (URL) scheme registration,” RFC 3508, Inter-

net Engineering Task Force, Apr. 2003.

[248] International Telecommunication Union, “Media stream packetization and synchroniza-

tion on non-guaranteed quality of service LANs,” Recommendation H.225.0, Telecommu-

nication Standardization Sector of ITU, Geneva, Switzerland, Nov. 1996.

[249] International Telecommunication Union, “Control protocol for multimedia communi-

cation,” Recommendation H.245, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Feb. 1998.

[250] International Telecommunication Union, “H.323 extended for loosely coupled confer-

ences,” Recommendation H.332, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Sept. 1998.

[251] International Telecommunication Union, “Security and encryption for H-series (H.323 and

other H.245-based) multimedia terminals,” Recommendation H.235, Telecommunication

Standardization Sector of ITU, Geneva, Switzerland, Feb. 1998.

[252] International Telecommunication Union, “Interworking of H-series multimedia terminals

with H-series multimedia terminals and voice/voiceband terminals on GSTN and ISDN,”

Recommendation H.246, Telecommunication Standardization Sector of ITU, Geneva,

Switzerland, Feb. 1998.

[253] International Telecommunication Union, “Generic functional protocol for the support of

supplementary services in H.323,” Recommendation H.450.1, Telecommunication Stan-

dardization Sector of ITU, Geneva, Switzerland, Feb. 1998.

[254] International Telecommunication Union, “Call diversion supplementary service for

H.323,” Recommendation H.450.3, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Sept. 1997.



360

[255] International Telecommunication Union, “Digital subscriber signalling system no. 1 (DSS

1) - ISDN user-network interface layer 3 specification for basic call control,” Recommen-

dation Q.931, International Telecommunication Union, Geneva, Switzerland, Mar. 1993.

[256] A. Johnston, R. Sparks, C. Cunningham, S. Donovan, and K. Summers, “Session initiation

protocol service examples,” Internet Draft draft-ietf-sipping-service-examples-10, Internet

Engineering Task Force, Mar 2006. work in progress.

[257] O. Hersent, D. Gurle, and J.-P. Petit,IP telephony. Reading, Massachusetts: Addison

Wesley, 2000.

[258] H. Schulzrinne, “The tel URI for telephone numbers,” RFC 3966, Internet Engineering

Task Force, Dec. 2004.

[259] “The OpenH323 project.” http://www.openh323.org.

[260] W. Jiang and H. Schulzrinne, “Assessment of voip service availability in the current inter-

net,” in Passive & Active Measurement Workshop, (San Diego, CA), Apr. 2003.

[261] A. Kristensen, “SIP Servlet API Specification,” Java Specification Request (JSR) JSR-

000116, Java Community Process, mar 2002. Review Draft.

[262] D. Eastlake, J. Reagle, and D. Solo, “XML-Signature Syntax and Processing,” W3C Rec-

ommendation TR/2002/REC-xmldsig-core-20020212/, World Wide Web (W3C) Consor-

tium, Feb 2002. http://www.w3.org/TR/xmldsig-core/.

[263] D. Eastlate and J. Reagle, “XML Encryption Syntax and Processing,” W3C Recommen-

dation TR/2002/REC-xmlenc-core-20021210/, World Wide Web (W3C) Consortium, Dec

2002. http://www.w3.org/TR/xmlenc-core/.

[264] S. Bradner, “Key words for use in rfcs to indicate requirement levels,” RFC 2119, Internet

Engineering Task Force, Mar. 1997.


	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Chapter 1 Introduction
	1.1 Scalability and Reliability
	1.2 Peer-to-Peer IP Telephony
	1.3 Internet Telephony Interoperability
	1.4 Original Contributions
	1.4.1 Failover and Load Sharing in SIP Telephony
	1.4.2 Peer-to-peer Internet Telephony using SIP (P2P-SIP)
	1.4.3 Enterprise Internet Telephony and Multi-platform Collaboration

	1.5 Overview of the Thesis

	Chapter 2 Background: Session Initiation Protocol (SIP)
	I Server Redundancy
	Chapter 3 Failover and Load Sharing in SIP-based IP Telephony
	3.1 Introduction
	3.2 Related Work
	3.3 Availability: Failover
	3.3.1 Client-based Failover
	3.3.2 DNS-based Failover
	3.3.3 Failover based on Database Replication
	3.3.4 Failover using IP Address Takeover
	3.3.5 Reliable Server Pooling
	3.3.6 Implementation
	3.3.7 Analysis

	3.4 Scalability: Load Sharing
	3.4.1 Network Address Translation
	3.4.2 Multiple Servers with the Same IP Address
	3.4.3 DNS-based Load Sharing
	3.4.4 Identifier-based Load Sharing
	3.4.5 Two-stage Reliable and Scalable Architecture

	3.5 Performance Evaluation
	3.5.1 Test Setup
	3.5.2 Analysis
	3.5.3 Non-uniform Call Distribution
	3.5.4 Performance of Stateful Proxy
	3.5.5 Effect of DNS Lookups
	3.5.6 Other SIPstone Tests

	3.6 Server Architecture
	3.6.1 Processing Steps
	3.6.2 Stateless Proxy
	3.6.3 Stateful Proxy
	3.6.4 The Best Architecture
	3.6.5 Effect on Load Sharing Performance

	3.7 Conclusions


	II Peer-to-peer IP Telephony
	Chapter 4 Overview of Peer-to-Peer Internet Telephony using SIP
	4.1 Introduction
	4.2 Related Work
	4.2.1 Skype and Related Systems
	4.2.2 P2P-SIP Telephony
	4.2.3 IP Telephony vs. File Sharing
	4.2.4 Robustness and Scalability

	4.3 Design Requirements
	4.4 SIP-using-P2P and P2P-over-SIP

	Chapter 5 SIP-using-P2P: Using an External DHT as a SIP Location Service
	5.1 Introduction
	5.2 Background: DHT API
	5.3 Data and Service Models
	5.4 Logical Operations
	5.5 Deployment Scenarios
	5.5.1 P2P Client
	5.5.2 P2P Proxy
	5.5.3 P2P Client Adaptor

	5.6 Security and Trust
	5.7 Implementation Issues
	5.8 Advanced Services
	5.8.1 Offline Messages
	5.8.2 Presence

	5.9 Evaluation

	Chapter 6 P2P-over-SIP: DHT Maintenance using SIP
	6.1 Introduction
	6.2 Background and Design Alternatives
	6.3 Architecture Overview
	6.3.1 SIP Layer
	6.3.2 Node Startup and Peer Discovery
	6.3.3 User Registration
	6.3.4 Node Shutdown or Failure
	6.3.5 User Location and Call Setup

	6.4 Details of the DHT Module
	6.4.1 Initialization
	6.4.2 Peer Discovery
	6.4.3 Joining the DHT
	6.4.4 Stabilization
	6.4.5 Node Shutdown (Graceful Termination)
	6.4.6 Node Failure and Failover

	6.5 User Registration
	6.5.1 Registration Handling
	6.5.2 Node Shutdown (Graceful Termination)
	6.5.3 Node Failure and Failover

	6.6 Call Setup and Message Proxy
	6.6.1 Multimedia Call Setup and Instant Messages

	6.7 Advanced Services
	6.7.1 Offline Messages
	6.7.2 Multi-party Conferencing
	6.7.3 Device Independence
	6.7.4 Presence and Event Notification
	6.7.5 Adaptor for Existing SIP Phones
	6.7.6 NAT and Firewall Traversal

	6.8 Inter-domain Operation: Multiple DHTs
	6.9 Security
	6.10 Performance Evaluation
	6.11 Conclusions


	III Enterprise IP Telephony
	Chapter 7 Background: Conferencing, Streaming and Voice Dialogs
	7.1 Multi-party Conferencing
	7.1.1 Conferencing Models
	7.1.2 Requirements for Centralized Conferencing

	7.2 VoiceXML: Interactive Voice Response
	7.3 RTSP: Media Streaming

	Chapter 8 Related Work: Internet Telephony and Multimedia Collaboration
	8.1 Interworking Between SIP and H.323
	8.2 Unified Messaging using SIP and RTSP
	8.3 Centralized Conferencing using SIP
	8.4 Integrating VoiceXML with SIP Services

	Chapter 9 Multi-platform Collaboration in CINEMA
	9.1 Introduction
	9.2 Requirements
	9.3 Architecture Overview
	9.3.1 Web Interface
	9.3.2 Personal Calendar and Address Book
	9.3.3 Events and Event-groups

	9.4 Synchronous Collaboration
	9.4.1 Audio Mixing
	9.4.2 Video Forwarding
	9.4.3 Instant Messaging
	9.4.4 Shared Web Browsing
	9.4.5 Screen Sharing
	9.4.6 Conference Control
	9.4.7 Dial-in vs Dial-out Conferences

	9.5 Asynchronous Collaboration
	9.5.1 File Sharing
	9.5.2 Discussion Forum
	9.5.3 Conference Event Recording
	9.5.4 Unified Messaging and Multimedia Mail
	9.5.5 Notifications and Announcements

	9.6 Additional Services
	9.6.1 Presence
	9.6.2 Interactive Voice Response (IVR)
	9.6.3 Interaction among Email, Telephone and IM

	9.7 Conclusions

	Chapter 10 Scalable Centralized Conferencing
	10.1 Introduction
	10.2 Scalability
	10.2.1 Requirements
	10.2.2 Performance Evaluation
	10.2.3 Cascaded Conference Servers
	10.2.4 Distributing Conferences
	10.2.5 Handling Overload: Graceful Denial and Admission Control

	10.3 Reliability
	10.3.1 Reactive Failover
	10.3.2 Proactive Redundancy

	10.4 Conclusions

	Chapter 11 Interworking Between SIP/SDP and H.323
	11.1 Background and Requirements
	11.1.1 Protocol Overview
	11.1.2 Translation Requirements

	11.2 Architecture for User Registration
	11.2.1 IWF Contains SIP Proxy and Registrar
	11.2.2 IWF Contains an H.323 Gatekeeper
	11.2.3 IWF is Independent of Proxy or Gatekeeper

	11.3 Signaling Address Translation
	11.4 Connection Establishment
	11.4.1 Using H.323v2 Fast Connect
	11.4.2 Call Translation Without using Fast Connect

	11.5 Calculating a Common Subset of Media Capabilities
	11.6 Translating Advanced Services
	11.6.1 Multi-party Conferencing
	11.6.2 Call Transfer

	11.7 Conclusion

	Chapter 12 Conclusions and Future Directions
	12.1 Summary of the Problems and Contributions
	12.2 Connecting Themes
	12.3 Server-based vs. Peer-to-peer Internet Telephony
	12.4 Implications of this Research
	12.5 Future Directions

	Appendix A Design and Implementation of the Columbia SIP Library
	A.1 Background
	A.2 User Agent Library

	Appendix B Two-way Replication in MySQL
	Appendix C Data Format for SIP-using-P2P
	Appendix D Implementation Details of SIP-H.323 Interworking Function
	D.1 Implementation Requirements
	D.2 Signaling Address Translation
	D.2.1 Converting SIP Addresses to H.323 Addresses
	D.2.2 Converting H.323 Addresses to SIP Addresses

	D.3 Detailed Description of IWF Behavior
	D.3.1 SIP-originated Requests
	D.3.2 H.323-Originated Requests


	Appendix E Glossary
	Bibliography
	Appendix F Bibliography


