Reliable, Scalable and Interoperable Internet Telephony

Kundan Narendra Singh

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2006

(©2006
Kundan Narendra Singh

All Rights Reserved

ABSTRACT

Reliable, Scalable and Interoperable Internet Telephony

Kundan Narendra Singh

The public switched telephone network (PSTN) provides ubiquitous availability and very
high scalability of more than a million busy hour call attempts per switch. If large carriers are
to adopt Internet telephony, then Internet telephony servers should offer at least similar quantifi-
able guarantees for scalability and reliability using metrics such as call setup latency, server call
handling capacity, busy hour call arrivals, mean-time between failures and mean-time to recover.
This thesis presents a reliable, scalable and interoperable Internet telephony architecture for user
registration, call routing, conferencing and unified messaging using commodity hardware. The
results extend beyond Internet telephony to encompass multimedia communication in general.

The architecture presented in this thesis deals with two aspects: at least PSTN-grade re-
liability and scalability of the Internet telephony servers, and interoperable Internet telephony
services such as conferencing and voice mail using existing protocols. We describe the archi-
tecture and implementation of our Session Initiation Protocol (SIP)-based enterprise Internet
telephony architecture known as Columbia InterNet Extensible Multimedia Architecture (CIN-
EMA). It consists of a SIP registration and proxy server, a multi-party conferencing server, a
gateway for interworking SIP with ITU’s H.323, an interactive voice response system and a
multimedia mail server. CINEMA provides a distributed interoperable architecture for collabora-
tion using synchronous communications like multimedia conferencing, instant messaging, shared
web-browsing, and asynchronous communications like discussion forum, shared files, voice and
video mails. It allows seamless integration with various communication means like telephone, IP
phone, web and electronic mail.

We present two techniques for providing scalability and reliability in SIP: server redun-

dancy and a novel peer-to-peer architecture. For the former, we use DNS-based load sharing

among multiple distributed servers that use backend SQL databases to maintain user records.
Our two-stage architecture scales linearly with the number of servers. For the latter, we pro-

pose a peer-to-peer Internet telephony architecture that supports basic user registration and call
setup as well as advanced services such as offline message delivery, voice mail and multi-party

conferencing using SIP. It interworks with server-based SIP infrastructures.

Contents

List of Figures iX
List of Tables XV
Acknowledgments XVi
Chapter 1 Introduction 1
1.1 Scalabilityand Reliability, 3
1.2 Peer-to-PeerIP Telephony 6
1.3 Internet Telephony Interoperability. 8
1.4 Original Contributions e 9
1.4.1 Failover and Load Sharing in SIP Telephony. 10
1.4.2 Peer-to-peer Internet Telephony using SIP (P2P-SIP) 10
1.4.3 Enterprise Internet Telephony and Multi-platform Collaboration... . 11
1.5 OverviewoftheThesis 15
Chapter 2 Background: Session Initiation Protocol (SIP) 17
| Server Redundancy 26
Chapter 3 Failover and Load Sharing in SIP-based IP Telephony 27
3.1 Introduction. e e 27

3.2 RelatedWork. e 28

3.3

3.4

3.5

3.6

3.7

Availability: Failover 30

3.3.1 Client-based Failover. 30
3.3.2 DNS-based Failover. 30
3.3.3 Failover based on Database Replication... 31
3.3.4 Failoverusing IP Address Takeover 32
3.3.5 Reliable ServerPooling. 33
3.3.6 Implementation 34
3.3.7 Analysis 36
Scalability: Load Sharing 39
3.4.1 Network Address Translation 39
3.4.2 Multiple Servers with the SameIPAddress 39
3.4.3 DNS-basedLoad Sharing 40
3.4.4 Identifier-based Load Sharing. 41
3.4.5 Two-stage Reliable and Scalable Architecture. 42
Performance Evaluation... 44
351 TestSetup. 44
3.5.2 Analysis e 46
3.5.3 Non-uniform Call Distribution 50
3.5.4 Performance of Stateful Proxy. 51
3.5.5 Effectof DNSLookups., 52
3.5.6 OtherSIPstoneTests. 54
Server Architecture 55
3.6.1 ProcessingSteps. e e 56
3.6.2 StatelessProxy e 57
3.6.3 Stateful Proxy 59
3.6.4 TheBestArchitecture. 63
3.6.5 Effecton Load Sharing Performance 63
CoNCIUSIONS. o 64

Il Peer-to-peer IP Telephony

Chapter 4 Overview of Peer-to-Peer Internet Telephony using SIP

4.1 IntroducCtion.

4.2 Related Work.

42.1
4.2.2
4.2.3
4.2.4

Skype and Related Systems.
P2P-SIP Telephony.,
IP Telephonyvs. FileSharing

Robustness and Scalability.

4.3 Design Requirements e

4.4 SIP-using-P2P and P2P-over-SIP

Chapter 5 SIP-using-P2P: Using an External DHT as a SIP Location Service

5.1 Introduction.

5.2 Background: DHTAPI e

5.3 Dataand ServiceModels.

5.4 LogicalOperations e

5.5 DeploymentScenarios

5.5.1

P2P Client

552 P2PProxy
55.3 P2PClientAdaptor

5.6 Securityand Trust. e

5.7 ImplementationIssues

5.8 Advanced ServiCes e e e

5811 OfflineMessages e

5.8.2 Presence. e e

5.9 Evaluation.

Chapter 6 P2P-over-SIP: DHT Maintenance using SIP

6.1 Introduction. e e

6.2 Background and Design Alternatives

66

67
67
70

70

71

72

73

74

77

80
80
81
82
84
88
88
92
93
94
95
99
99
100
100

6.3 Architecture Overview 108
6.3.1 SIPLayer. 109
6.3.2 Node Startup and Peer Discovery. 110
6.3.3 UserRegistration 112
6.3.4 Node ShutdownorFailure 113
6.3.5 UserlLocationandCallSetup 115

6.4 DetailsoftheDHT Module 116
6.4.1 Initialization 117
6.4.2 PeerDiscovery e 118
6.4.3 JoiningtheDHT. 120
6.4.4 Stabilization 123
6.4.5 Node Shutdown (Graceful Termination) 127
6.4.6 Node Failureand Failover 129

6.5 UserRegistration. e 130
6.5.1 RegistrationHandling. 133
6.5.2 Node Shutdown (Graceful Termination) 135
6.5.3 Node Failureand Failover 136

6.6 Call Setupand Message Proxy. v i i i i 136
6.6.1 Multimedia Call Setup and Instant Messages 137

6.7 Advanced Services 138
6.7.1 OfflineMessages 139
6.7.2 Multi-party Conferencing. 141
6.7.3 Devicelndependence. e 141
6.7.4 Presence and Event Notification. 142
6.7.5 Adaptor for Existing SIP Phones. 145
6.7.6 NAT and Firewall Traversal. 145

6.8 Inter-domain Operation: Multiple DHTs 146

6.9 SecCurity. 151

6.10 Performance Evaluation... 160

6.11 CoNnCIUSIONS e e e e 162

Enterprise IP Telephony 165
Chapter 7 Background: Conferencing, Streaming and Voice Dialogs 166
7.1 Multi-party Conferencing e 166
7.1.1 ConferencingModels. 168
7.1.2 Requirements for Centralized Conferencing. 172
7.2 \oiceXML: Interactive Voice Response, 173
7.3 RTSP:MediaStreaming. i 175
Chapter 8 Related Work: Internet Telephony and Multimedia Collaboration 177
8.1 Interworking Between SIPandH.323 179
8.2 Unified Messagingusing SIPandRTSP. 179
8.3 Centralized ConferencingusingSIP. 180
8.4 Integrating VoiceXML with SIP Services. 181
Chapter 9 Multi-platform Collaboration in CINEMA 182
9.1 Introduction. 182
9.2 Requirements. e e e 183
9.3 Architecture Overview 185
9.3.1 Weblinterface 186
9.3.2 Personal Calendar and AddressBook 187
9.3.3 Eventsand Event-groups. 188
9.4 Synchronous Collaboration. 188
9.4.1 AudioMiXing e 189
9.4.2 VideoForwarding e 193
9.4.3 InstantMessaging. e 194
9.4.4 SharedWebBrowsing, 194
9.45 ScreenSharing 195

9.4.6 ConferenceControl. e 195

9.4.7 Dial-invs Dial-outConferences 196
9.5 Asynchronous Collaboration 196
951 FileSharing. e 197
9.5.2 DiscussionForum. 198
9.5.3 Conference EventRecording 198
9.5.4 Unified Messaging and MultimediaMail 200
9.5.,5 Naotifications and Announcements. 207
9.6 Additional Services 209
9.6.1 Presence. 209
9.6.2 Interactive Voice Response (IVR) 211
9.6.3 Interaction among Email, Telephoneand IM. 218
9.7 ConClusions. 221
Chapter 10 Scalable Centralized Conferencing 225
10.1 Introduction. e 225
10.2 Scalability. e 226
10.2.1 Requirements o it 226
10.2.2 Performance Evaluation 228
10.2.3 Cascaded Conference Servers 238
10.2.4 Distributing Conferences. 242
10.2.5 Handling Overload: Graceful Denial and Admission Control 243
10.3 Reliability 243
10.3.1 Reactive Failover 244
10.3.2 Proactive Redundancy 245
10.4 CoNCIUSIONS e 246
Chapter 11 Interworking Between SIP/SDP and H.323 248
11.1 Background and Requirements e 249
11.1.1 Protocol OVerview. o o i 249

Vi

11.1.2 Translation Requirements 250
11.2 Architecture for User Registration 255
11.2.1 IWF Contains SIP Proxy and Registrar. 256
11.2.2 IWF Contains an H.323 Gatekeeper 259
11.2.3 IWFis Independent of Proxy or Gatekeeper. 261
11.3 Signaling Address Translation 263
11.4 Connection Establishment 264
11.4.1 UsingH.323v2FastConnect 265
11.4.2 Call Translation Without using Fast Connect. 265
11.5 Calculating a Common Subset of Media Capabilities 272
11.6 Translating Advanced Services. i i e 276
11.6.1 Multi-party Conferencing. 276
11.6.2 CallTransfer 278
11.7 Conclusion 279
Chapter 12 Conclusions and Future Directions 281
12.1 Summary of the Problems and Contributions 281
12.2 Connecting Themes 283
12.3 Server-based vs. Peer-to-peer Internet Telephony. 284
12.4 Implications of thisResearch. 286
12.5 Future Directions. 287
Appendix A Design and Implementation of the Columbia SIP Library 289
Al Background. 289
A.2 UserAgentLibrary e 297
Appendix B Two-way Replication in MySQL 302
Appendix C Data Format for SIP-using-P2P 305
Appendix D Implementation Details of SIP-H.323 Interworking Function 311
D.1 Implementation Requirements 311

Vii

D.2 Signaling Address Translation .

D.2.1 Converting SIP Addresses to H.323 Addresses 321

D.2.2 Converting H.323 Addressesto SIP Addresses 323

D.3 Detailed Description of IWFBehavior 324

D.3.1 SIP-originatedRequests. 0. 324

D.3.2 H.323-Originated Requests 328
Appendix E Glossary 332
336

Appendix F Bibliography

viii

List of Figures

1.1 AnexampleSIPcall e 3
1.2 SIP network architecture 5
1.3 P2P-SIP deployment architectures. 7

1.4 CINEMAarchitecture 12
2.1 Example SIP MessagewithSDP. 19
2.2 ExampleSIPcallrouting 21
2.3 Example CPL script: call routing based ontime-of-day 24

3.1 Client-basedfailover. 30
3.2 DNS-basedfailover e 30
3.3 Failover based on database replication 31

3.4 Whentheprimaryserverfails 32
3.5 Whenthe masterdatabasefails. oL 32
3.6 co-locateddatabase and proxy. 32
3.7 Reliable server poolingforSIP. 33
3.8 Failoverin CINEMA 35
3.9 Callsetuplatencyonfailover. 37
3.10 User unavailabilityonfailure 37
311 DNS-based. e e e e e 40
3.12 I|dentifier-based load sharing. 00 40

3.13 Two-stage reliable and scalable architecture 42

3.14 ExampletestsetupforS3P3. 45
3.15 Example message flow for S2P2: in the first stage INVITE goes via S2, whereas
ACK and BYE via S1, but in the second stage all the requests go via P2 based on
the consistent hash of the destination user identifier.. 45
3.16 Serverthroughputisi, P,,, configuration f, first stage aneh second stage servers.
The results show that the performance increases linearly with the number of
servers, i.e., s2p2 is twice and s3p3 is thrice that of s1pl and sOpl performance.)
3.17 Theoretical and experimental capacity for configuraip®,,, 48
3.18 Effect of user identifier distribution among second stage servers for S2P22. Uni-
form distribution gives the best performance, i.e., success rate is close to 100%

until the peak performance (1800 CPS), whereas for non-uniform distribution the

success rate reduces as soon as one of the server is overloaded (at 1500 CPS). . .

3.19 Performance of,, P,, with stateful proxy in second stage. The results show that
the performance increases linearly with the number of servers, i.e., s2p2 is twice
and s3p3 is thrice that of s1pl and sOpl performance. 51
3.20 Stateful proxy messageflow L 52
3.21 Performance fa$,, P, with registration server in second stage. The results show
that the performance increases linearly with the number of servers, i.e., s2p2 is
twice and s3p3 is thrice that of s1p1 and sOp1l performance. 54
3.22 REGISTERmessageflaw. 55
3.23 Processing steps in a SIP server. The potentially blocking operations either due
to 1/O, events or locks are markedwithB 56
3.24 Performance of software architectures relative to event-based on different hard-
ware. For example, the performance of stateless proxy on 4xP hardware in the
thread pool architecture is approximately three times that in the event-based ar-

chitectureonthe same hardware. 60

47

50

3.25 Two-stage thread pool software architecture: the example consists of four threads,

numbered 0 to 3, in the thread pool. Any available thread receives the message,
parses it and based on the hash of the SIP Call-ID value in the message, forwards

the message to the appropriate thread. In the example, the hash is 1, thus both

SIP INVITE request and 200 OK response go to the thread number 1. 61

4.1 Client-server vs peer-to-peer distributed systems 68
4.2 Design A: all servers store all user records on registration 75
4.3 Design B: search for the serveroncallsetup 75
4.4 Option1:OnlyserversinDHT. i i it e it 76
4.5 Option2: Complete P2Poverlay. 76
4.6 Option3: Intermediate model o 76
4.7 Difference between SIP-using-P2P and P2P-over-SIP architectures 77
5.1 LogicaloperationsinaSIPserver., 82
5.2 Datamodelvsservicemodel. 83
5.3 P2P-SIP: SIP-using-P2P architecture 88
6.1 Example Chordnetwork. 106
6.2 NOREGISTER. e e 107
6.3 WIithREGISTER e e e e e e e 107
6.4 BlockdiagramofaP2P-SIPnode 108
6.5 Node startup and outgoing registration 111
6.6 Incomingregistration 113
6.7 Failure of asuper-nodeintheDHT. 114
6.8 Userlocationandcallsetup. 115
6.9 Example Chord networkwith4nodes. 118
6.10 Afternode 7 joinsthenetwork 118
6.11 Offline messagestorage e 139
6.12 Inter-domain P2P-SIP 148

Xi

7.1 Types of media distributionmodel 170

7.2 Example sipvxmlscenaria 175
9.1 SIP-based collaborative work environment 185
9.2 Personalcalendar. 187
9.3 AUdIOMIXING 190
9.4 Possible optimization in decode-mix-encode sequence. 192
9.5 Example SIP MESSAGE forinstantmessaging 194
9.6 Filesharing. 197
9.7 Web-based discussionforum. oL 199
9.8 Web interface for conferencerecording. 200
9.9 Forwardingthe calltovoicemail 201
9.10 CPL script for forwarding a call to voicemail 203
9.11 Voice messages userinterface. oL 205
9.12 SIP-based presence e 209
9.13 Web-basedpresence e 211
9.14 Operationofsipvxml 212
9.15 Method 1: Joining a conference in blind transfermode 215
9.16 Method 2: Joining a conference using bridged mode 216
9.17 Email-by-phone architecture L. 218
9.18 Email notificationtophone L 218
9.19 Example translation used in email to phone system. 219
9.20 SIP-CGl for IMto email translation. 222
10.1 Physical configuration 229
10.2 Logical configuration 229

10.3 Server performance with increasing number of participants in a single conference 230
10.4 Server performance with increasing number of four-party conferences. 231

10.5 Speaker-to-listener delay for first and last participant to receive packets from the

Xii

10.6 Effect of packetization interval on performance. 234

10.7 Server performance on 360 MHz Sun/SPARC as the number of participants in a
single conference increases.o 236

10.8 Relative audio codec performance in terms of CPU speed on various platforms
for processing 20 ms audio. The y-axis provides numbers in Kilo cycles (1024

cycles). For example, GSM encoder took about 300 Kilo cycles on a 900 MHz

Sparc, which meang2 2002, o ~ 3250s. 238
10.9 Tree-based cascaded servers 239
10.10Full mesh cascaded servers o 239

10.11Performance of two cascaded conference servers for a single conference .. 242

11.1 H.323 call without fast-connect. 251
11.2 Architecture for user registration in SIP-H.323 interworking. 256
11.3 Initialization of SIP and H.323 terminals, and the IWF when IWF contains SIP

proxy and registrar. The registration may get stored on two independent gate-

keepersinthe H.323cloud.. 258
11.4 Address translation fromSIPtoH.323. 258
11.5 Address translation fromH.323to SIP. 259

11.6 Address translation from SIP to H.323 when IWF contains an H.323 GK .. . 260
11.7 Address translation from H.323 to SIP when IWF contains an H.323 GK .. . 260

11.8 Call setup from SIP UA to H.323 terminal with FastConnect 265
11.9 Call setup from H.323 terminal to SIP UA with FastConnect 266
11.10Call from SIP terminal to H.323 terminal without Fast Connect. 267
11.11Call from H.323 to SIP terminal without Fast Connect. 268
11.12Call from H.323 to SIP with conversion between OLC and SDP 271
11.13Call from SIP to H.323 with conversion between OLC and SDP 272
11.14Ad-hoc conferencing among SIP and H.323 endpoints 277
11.15Different conferencing architectures. 278
11.16An example of call transfermapping. 279

Xiii

Al
A2
A3
A4
A5
A.6
A7

Canonicalization, authentication and routing foracall. 290

SQLVSFASISQL . .« v o v e e e 293
Softwaredesignmodules L 294
Software library and applications. 295
SIP transaction and clientbranches 298
call control statemachine. 299
Outgoing registration state machine 300

Xiv

11

3.1
3.2

4.1

51

7.1

10.1
10.2

D.1
D.2
D.3
D.4
D.5

List of Tables

Factors contributing to IP telephony scaling 3
Performance (CPS) of stateless proxy for Proxy 200test. 58
Performance (CPS) for stateful proxy for Proxy 200test 63
Different applicationsof P2P 73
Notationsusedinthischapter 81

Types of conferenced] is the number of active senders aNdhe total number

of participants. 169

Effect of various parameters on the server performance 227
Comparison of various audio codecs: time taken for encoding and decoding of
20 ms of audio on Pentium 4, 3 GHz CPU running Linux 2.6.9 in our test-bed: E

means encoder, and D means decoder. G.711 and G.722 are ITU-T's, and DVI is

Intel/IMA'S 237
Supportfor Q.931 messages. e 312
Mapping between SIP status codes egason fields 314

Supportfor H.245 messages.. 317
Audio capability mapping 319
Video capability mapping.. 320

XV

Acknowledgments

| acknowledge with great pleasure the contributions of Professor Henning Schulzrinne, without
whom this work would not have been possible. Professor Schulzrinne has provided guidance,
knowledge, advice, and direction whenever it was needed. He provided opportunities for new
research and introduced me to other researchers in the field, which have proved invaluable. |
would also like to thank him for improving my writing skills, allowing me to mentor various
project students and providing support for travels to various conferences.

| thank the rest of my thesis committee members: Dr. Gail Kaiser, Dr. Vishal Misra,
Dr. Dan Rubenstein, and Dr. Milind Buddhikot. Their valuable feedback helped me improve my
dissertation and shape the direction of my research.

The work presented in this thesis was financially supported by SIPQuest, which has also
provided direction and scope for the work. In particular, | would like to acknowledge Yi Qin,
Lei Wei and Sibon Barman for insightful discussions on SIP-based enterprise IP telephony ar-
chitecture. The SIP-H.323 translator and unified messaging research were initially supported by
Sylantro Inc.

| have enjoyed the privilege of working with my fellow graduate students, particularly
the other members of the Internet Real-Time research group. They have provided spirited dis-
cussions, comments, and feedback, both in research group meetings and in one-on-one commu-
nications. In particular, Jonathan Lennox, Wenyu Jiang, Xiaotao Wu and Sankaran Narayanan
contributed in the core design and implementation of CINEMA (Columbia InterNet Extensible
Multimedia Architecture) and deserve special credit. Jonathan Lennox is the primary architect
of our SIP serversipd, and helped with the SIPstone measurement tools. Wenyu Jiang did the

hard work in interconnecting our PBX (Private Branch eXchange) with the gateway. Xiaotao Wu

XVi

implemented the multimedia collaboration cliesijc, and helped in integrating the peer-to-peer
mode. Sankaran Narayanan implemented the SIPstone tool and the efficient database interaction
in sipd.

A number of other students have contributed to various components in the architecture
as follows. Salman Baset implemented the event notification web interface. Omer Boyaci added
the DNS NAPTR (naming authority pointer) record lookupsipd. Michael Castleman imple-
mented the anonymizer. Joseph Gagliano helped in implementing email notification to phone.
Tarun Kapoor installed the initial MySQL database for testing. Gaurav Khandpur implemented
the initial web-based discussion forum. Ali Khwaja integrated the high-quality codec (G.722)
and sampling rate conversion in the conference server. Anshul Kundaje added RADIUS (Remote
Authentication Dial in User Service) accountingsipd. Jisoo Lee added experimental location
detection for emergency calls 8ipd. Xu Li added the ENUM (E.164 Numbering) support to
sipd. Li Liao helped in TLS (Transport Layer Security) configuration. Chin-hong Lin and Agung
Suyono implemented the conference recording feature. Daniel Liu and Naho Ogasawara imple-
mented the initial email-by-phone system using Java Servlets. Gautam Nair helped in the initial
implementation of the conference mixer. Ajay Nambi implemented some VoiceXML browser
enhancements, voice-mail access and conference joining scripts. Sankaran Narayanan added
TLS and IPv6 support. Eva Nautiyal and Manica Piputbundit helped in the implementation of
phone announcement service and integration of TRIP (Telephony Routing oves|pytdimo
Ohtonen helped in incorporating IPv6 support. Anurag Pant integrated the text-to-speech sup-
port in our media server. Mark Pimentel helped in implementing the conference timeline display.
Joe Rosen implemented automatic gain control in the server. Jeffrey Schnurmacher designed
the initial web interface layout. Naoya Seta implemented the convertor between instant mes-
sages and voice calls. Huitao Sheng helped with the initial performance measurement of the
load sharing architecture. Madhuri Shinde enhanced the user interface of our P2P-SIP monitor-
ing tool. Theodore Summe helped in adding the address book access via telephone in our test
bed. Priyanka Upadhayay experimented with integrating speech recognition to our media server.
Pimrampai Vannacharoen enhanced the email-by-phone system by using Tcl and integrated with

the rest of our test bed. Visda Vokhshoori and Sean Mandel helped in initial Voice XML browser

XVii

implementation. Sean West enhanced the auto-attendant application. Huwei Zhang contributed
in file-sharing and conference load balancing. Thanks are due to Enlai Chu of Cisco, Keane Chin
of SIP Communications Inc., and Sarmistha Dutta of Columbia University for their help with
the Cisco gateway and departmental PBX. Thus, a number of people have helped in incremental
development of the test bed which | have used in my thesis.

I am infinitely indebted to my family without whom this work would not have completed.
In particular, my father Narendrakumar Singh and mother Nimmi Singh, who have consistently
encouraged me to continue and finish my doctorate degree. My mother’s untimely death in 2005
left me in utter shock and dismay. Words are not enough to thank my close friends, Knarig Arab-
shian and Shailendra Yede, for their moral support in difficult times like this, and for motivating

me in my research.

XViii

To my parents

XiX

Chapter 1

Introduction

Internet telephony is defined as the transport of telephone calls over the Internet. Internet tele-
phone calls can originate from traditional phone sets through gateways, PCs using software or
embedded devices (“Ethernet phones”). Most of the interest in Internet telephony is motivated
by cost savings and ease of developing and integrating new services. Internet telephony inte-
grates a variety of services provided by the current Internet and PSTN (public switched telephone
network) infrastructure. Internet telephony employs a variety of protocols, including RTP (Real-
time Transport Protocol [1, 2]) for transport of multimedia data and SIP (Session Initiation Pro-
tocol [3, 4]) for signaling, i.e., establishing and controlling sessions. To ensure wide acceptance
of SIP among carriers, SIP servers should demonstrate service availability and scalability at least
as good as PSTN.

Decades of engineering and research have gone into providing the high availability and
scalability of the public switched telephone network (PSTN). For example, PSTN switches have
a “5 nines” reliability requirement, i.e., are available for 99.999% time or all but 5 minutes of a
year. The performance of the PSTN is measured using metrics such as call setup delay (or post-
dial delay) [5], busy hour call arrivals [6] (a measure of throughput), mean-time between fail-
ures (MTBF) and mean-time to recover (MTTR). The first two are concerned with performance,
whereas the last two are metrics for quantifying availability. Traditionally, telephony service is
perceived as more reliable than the Internet-based services such as web and email. We believe

that Internet telephony [4] will fail to completely replace classical PSTN unless it provides at

least similar quantifiable guarantees.

SIP is a signaling protocol for IP telephony, multimedia conferencing, instant messaging
and presence. SIP-based Internet telephony (SIP telephony) has been proposed as an alternative
to the classical PSTN and offers a number of advantages over circuit switched telephony [4]. SIP
signaling servers, like PSTN switches, help in call establishment and user location. However, un-
like closed network-centric PSTN systems, SIP provides more control to the end users. SIP uses
a number of other Internet services such as Domain Name Service (DNS) and non-guaranteed
(best effort) IP packet delivery. Secondly, SIP servers that run on commodity hardware running
Unix or Windows cannot assume strict operating system performance guarantees. SIP servers
are closer to web servers than to PSTN switches, because of their request-response nature, text-
based message format and programmable call routing behavior. However, unlike HTTP [7] which
presumes a reliable underlying transport, SIP can use UDP for transport with application level
retransmission for reliability and maintains transaction state at the proxy server. This makes the
SIP reliability and scalability problem different from classical telephony or web.

The SIP proxy servers are light-weight compared to PSTN switches because they only
route call signaling messages without maintaining any per-call state. The SIP proxy server of a
domainis responsible for forwarding the incoming requests destined for the logical address of
the formuser@domairo the current transport address of the device used by this logical entity,
and forwarding the responses back to the request sender. Consider the example shown in Fig. 1.1.
When a user, Baob, starts his SIP phone, it registers his unique idebtifi@home.cono the SIP
server in thdhome.condomain. The server maintains the mapping between his identifier and his
phone’s IP address. When another user, Alice, ciitob@home.copmer phone does a DNS
(Domain Name Service) lookup fdrome.comand sends the SIP call initiation message to the
resolved server IP address. The sepreixiesthe call to Bob’s currently registered phone. Once
Bob picks up the handset, the audio packets are sent directly between the two phones without
going through the server. Further details [4, 8, 3] of the call are omitted for brevity.

SIP is designed to integrate with other Internet services, such as email, web, voice mail,
instant messaging, multi-party conferencing and multimedia collaboration. We have implemented

a SIP-based software suite call€blumbia InterNet Extensible Multimedia Architecture

1) REGISTER
Client Server @ Client
ﬂg 3) INVITE L] @mvie ‘g“
. Proxy/
iAIlce registrar Bob

database
2) DNS ‘ SIP server (registrar and proxy)
—
- Database or data storage

Figure 1.1: An example SIP call

(CINEMA) for Internet telephony and used it within the Computer Science department at Columbia
University, integrating it with the existing PBX (Private Branch eXchange) infrastructure. The
architecture provides inter-operability with the PSTN, programmable Internet telephony services,
IP-based voice mail, integration with web and email for unified messaging, multi-party multime-
dia conferencing, and inter-operability with existing multimedia tools. The setup allowed us to
extend our PBX capacity and eventually replace it, while keeping our existing phone numbers.
This test-bed provides an environment where we can add new services and features, for example,
accessing emails from a regular telephone, network appliance control, and support for instant

messaging and presence. We believe that our setup can be readily used by other organizations.

1.1 Scalability and Reliability

In the example of Fig. 1.1, the SIP server, which includes the proxy and registration functions,
forms the core of the Internet telephony infrastructure. For a scalable and reliable Internet tele-
phony system, the core must be scalable and reliable. There are two components in providing

high capacity reliable IP telephony services: network and servers as shown in Table 1.1.

Network Server

1. Location of server in the network. 1. Hardware configuration.

2. Backbone network capacity. 2. Non blocking /0.

3. Load balancing among multiple 3. Server profiling (where it spends time).
distributed servers 4. Throughput as a function of load.

Table 1.1: Factors contributing to IP telephony scaling

Scalabilitydetermines how well a solution to some problem works when the size of the
problem increases. For Internet telephony systems, scalability determines the performance as the
load increases. SlIPstone [9] defines various metrics to measure the SIP server performance such
as registrations per second (RPS) and calls per second (CPS). It describes a series of tests with a
pre-configured workload to simulate the activities of multiple users initiating SIP calls. The tests
measure the performance of user registration and call handling, including redirect, failure and
successful call setup.

Availability is defined as the probability that the service is available to use. It depends on
the failure probability distribution and the recovery time distribution. We use therediafility
to mean availability.

SIP [3] defines three roles for a SIP server: registration, redirect and proxy. In practice,
these roles are combined into a single entity, called the SIP server. The capacity requirement for
the SIP server depends on its role in the network (Fig. 1.2). In real implementations one would
expect to find small to medium scale corporate or enterprise proxies that provide rich integration
with voice mail, calendar or event natification, proxies co-located with NAT (Network Address
Translator) or firewall, stateless load balancing proxies managing some resources (e.g., a set of
media gateways to PSTN) and high capacity proxies at various points in a carrier network for call
routing. For example, 3GPP’s IP Multimedia Subsystem (IMS) uses SIP for Call Session Control
Function (CSCF) to support millions of users and defines different server roles such as outbound
proxy (P-CSCF) in visited network, interrogating proxy (I-CSCF) as the first point of contact for
incoming calls in the home network, and serving proxy (S-CSCF) providing services based on

subscriber’s profile [10, 11].

Reliability: The mean time between failures (MTBF) of the system can be obtained based on
historical data, but is very difficult to predict in a complex systems like ours with a number of

distributed interacting components. We focus on reducing the mean time to recover (MTTR) for
the CINEMA components such as the SIP server. A few seconds of failover latency may not
be noticeable for enterprise systems, but is undesirable for carrier proxies. A number of com-

ponents such as DNS time-to-live, ARP (Address Resolution Protocol) cache, DHCP (Dynamic

& |Prouter o @
<> PSTN switch Chatterbox Cafe ™~
SIP proxy server ﬁﬁ 7777777 @ \ISP
‘i IPNetwork gy
= — >
—
P phones < % ‘
" o o SIPIMGC
<] <
< ‘ = <> Carrier network-
8B o= = -
i MG|
Firewall;
GW Yo
> -
Ethernet Q Q
PSWE ECE < e
phones ~| | T1PRI/BRI <> -
“ | To o
a8

Figure 1.2: SIP network architecture

Host Configuration Protocol) timers, and SIP registration and call setup latency affect MTTR

depending on the failover architecture. We explore this further in Section 3.3.

Scalability: SIP registration provides soft state which is periodically refreshed by registration
refreshes. With the default one hour registration refresh timeout and the server capacity to handle
one hundred registrations per second, i.e., 0.3 million registrations per hour, the server can serve
0.3 million users. A hundred registrations per second capacity roughly translates to 10 ms system
time because the server can spend 10 ms per registration on an average. The capacity is further
limited due to two registration requests using digest authentication or high registration rate for
mobile users.

A call setup and termination may involve up to six signaling messages through the SIP
proxy server. This can further increase with retransmissions or forking. 3GPP’s IMS call flow has
additional messages for early media and reliability of provisional responses resulting in about 14
messages per call. Moreover, advanced services such as programmable call routing further im-
poses additional processing demands on the server. Thus, the SIP server performance depends on
CPU, memory, I/O and network bandwidth resources with one or the other dominating depending

on the role. We tackle the reliability and scalability problems of SIP servers in Chapter 3.

1.2 Peer-to-Peer IP Telephony

The majority of the system cost of this server-based architecture is in maintenance and configu-
ration, typically by a dedicated system administrator in the domain. It also means that quickly
setting up the system in a small environment (e.g., for emergency communications or at a con-
ference) is not easy. On the other hand, peer-to-peer (P2P) systems [12] are self-organizing.
Moreover, they are inherently scalable to large user populations, and reliable because of the lack
of a single point of failure. P2P systems, in the purest form, have no concept of servers. All
participants are peers and communicate in a distributed, potentially untrusted environment, to
achieve a certain objective such as locating music files or users.

Peer-to-peer Internet telephony using the Session Initiation Protocol (P2P-SIP) [13, 14,
15, 16, 17] has been proposed to avoid the maintenance and configuration cost of the server-
based SIP architecture, and to prevent catastrophic failures of server-based systems. There are
two approaches for combining SIP and P2P: replace the SIP location service by a P2P protocol
(SIP-using-P2P[16], and additionally, implement the P2P protocol itself using SIP messaging
(P2P-over-SIP. In the first case, P2P is used only for lookups and updates of SIP user’s IP
addresses, similar to LDAP (Lightweight Directory Access Protocol) or SQL (Structured Query
Language) databases used in existing SIP proxies. A scalable and global P2P location service
automatically makes the SIP lookups scalable. In the second case, the P2P maintenance protocol
can further exhibit two modes: (1) tunnel the P2P protocol messages in SIP, e.g., as a message
body or headers, or (2) reuse the semantics of some of the SIP messages and headers to convey
proximity and location information [14]. We describe our P2P-SIP architecture in Chapter 4.

The P2P deployment architecture can be another dimension to classify P2P-SIP systems.
Consider a simple server-based SIP call as shown in Fig. 1.3 (a). This is similar to the earlier
example in Fig. 1.1 except that the caller’s user agent is configured to use the outbound proxy,
which locates the callee’s proxy via DNS. Either the user agent or the proxy server can use the
P2P network for lookup as shown in Fig. 1.3 (b) and (2P clientsare SIP user agents that
do not require any server and directly perform P2P lookups and updagésproxiesare SIP
proxy servers that perform P2P lookups and updates, transparent to the user agent, e.g., in a zero-

configuration server farm of a VoIP provider. The tradeoffs are ease of deployment and integration

with existing SIP clients or proxies, and reusability of other protocols and applications. These

architectures and components should interoperate with each other.

Outbound SIP proxy SIP server (example.net)
SIP user agent

X 1) REGISTEFT’? ﬂ

(@) INVITE _ T}

AT,

SIP user agent

— g(z) INVITE
A}u‘ 8

alice@home.com

bob@example.net

(b) P2Pclients (c) P2P proxies

Figure 1.3: P2P-SIP deployment architectures

The architecture benefits from P2P scalability and robustness against catastrophic fail-
ures. We believe that P2P file sharing systems such as Kazaa [18] and Gnutella [19] are widely
popular because they provide free music and video content without requiring maintenance of a
content server, and they automatically detect NAT and firewall settings without any user interven-
tion. Similarly, P2P-SIP has additional advantages over existing Internet telephony architectures

as follows:

No maintenance or configuration: The system works out-of-the-box without requiring any te-
dious server installation, including NAT and firewall configuration. Our work extends the
goals of the IETF Zeroconf [20] Working Group to multimedia communication and collab-

oration systems.

Interoperability: Unlike other P2P systems such as Skype [21], our architecture uses SIP mes-
sages for communicating with other peers. This readily interworks with any existing IP

telephony infrastructure such as SIP-PSTN gateways.

These advantages come at the cost of increassmlrce lookup delaysecurity threats
and reliability issues. Unlik& (1) lookup cost in a classical client-server based systems, the
P2P lookup cost can be much higher (e.g., Chord [22, 23], which is a P2P algorithm, has lookup
latency of O(log N) where N is the number of peer nodes in the system). A distributed P2P
architecture makes the system more pronedourityissues such as trust (privacy: how much
information does the untrusted peer need to know about me? and confidentiality: what if the
peer who knows my information misuses it?) and denial of service (DoS) attacks (were those
thousands of call routing requests that | received, legitimate?). A reliable framework for authen-
tication without centralized elements is a challenge. In addition, we lose some of the traditional
IP telephony services. For example, some of the programmable call routing techniques such as
SIP-CGI [24] available for SIP telephony do not work in the P2P-SIP system as we do not want to
run a potentially malicious script uploaded by some peer on our machines. Finaliglidtality
of the IP telephony system is very important. People are unlikely to use it if the probability of
successful call setup is not at par with that in the regular telephone network. Further details are

in Chapter 4.

1.3 Internet Telephony Interoperability

The architecture for Internet telephony can be extended to an interoperable multimedia collabo-
ration system using existing protocols such as SIP and RTP. Besides basic user registration and
call setup, SIP supports a number of advanced services such as multi-party conferencing and of-
fline messaging that are required in a collaboration system. Thus, SIP-based enterprise Internet
telephony infrastructure can be used to provide a comprehensive multi-platform collaboration.
There are two modes of collaboration.s&nchronou®r tightly coupled collaboration is highly
interactive and requires the active presence of the other members of the group. On the other hand,
anasynchronousr loosely-coupled collaboration is part of some collective activity directed to-
wards some shared goal or common purpose, but does not require the active presence of the other
members of the group. Bomprehensiveollaboration environment provides both synchronous

and asynchronous collaboration tools and integrates the two so that users can easily alternate

between the two.

One reason many earlier collaboration systems have not succeeded is that they were hard
to use for people when the teams and groups span organizational boundaries. Also, they often
require installing a lot of software, usually only available for limited set of platforms such as
Windows, or work for only one vendor’s tools, or one application such as collaborative software
development [25]. On the other hand, a comprehensive multi-platform collaboration architecture
such as ours, provides building block tools for any type of multimedia collaboration based on
existing protocols, instead of focusing on specific types. It supports platform heterogeneity and
device-transparency. For example, consider an IP telephony conference with some participants on
phone, and some others using desktop multimedia clients. Late-arriving participants can browse
through the past meeting proceedings, and non-participating group members can be automatically
notified of meeting minutes and other important document locations via email. Users can access
and interact even if they temporarily have only a phone or email. Two important requirements

relevant to this thesis are summarized below:

Multi-party conferencing: The system should allow multi-party audio, video and text confer-
encing. Additionally, it should allow shared white-board, shared applications and screen
sharing. It should be possible to record, and later playback, the proceedings of a confer-

ence.

Unified messaging: Traditional answering machines and voice mail services of PSTN can be
enhanced in the Internet telephony by providing multimedia mail, and integration with web
and email. This gives an opportunity to reuse the existing protocols for an interoperable
unified messaging architecture. Programmable interactive voice response dialogs can be

used to allow access and control from telephones.

1.4 Original Contributions

This chapter has described the high-level requirements for scalable, reliable and interoperable

Internet telephony. In this section, | describe my explicit contributions to this topic.

10

1.4.1 Failover and Load Sharing in SIP Telephony

Consider the example of Fig. 1.1 (p. 3). If the server fails for some reason, the call initiation
or termination messages cannot be proxied correctly. We can improve the service availability
by adding a second server that automatically takes over in case of the failure of the first server.
Secondly, if there are thousands of registered users and a single server cannot handle the load,
then a second server can work along with the first server such that the load is divided between the
two. We apply some of the failover and load sharing techniques to SIP servers. In particular, we
evaluate DNS-based redundancy for user registration and call setup messages among multiple SIP
servers that use SQL databases to maintain user records. We present a two-stage SIP server farm
architecture where the first stage statelessly proxies the request to one of the several second stage
servers. These techniques apply beyond telephony, for example, for SIP-based instant messaging
and presence that use the same SIP servers for registration and message routing.

Earlier work showed that our SIP servsipd, supported about 300 registrations and 90
call requests per second [26]. In this thesis, | further improved the system performance by dis-
tributing load among multiple redundant servers and using an event-based software architecture.
My main contribution is to show that the two-stage architecture scales linearly with the number

of servers.

1.4.2 Peer-to-peer Internet Telephony using SIP (P2P-SIP)

To avoid the maintenance and configuration costs of a server-based architecture, we developed a
peer-to-peer (P2P) architecture for Internet telephony using SIP. We identify differences between
rendezvous systems such as Internet telephony and traditional file sharing systems in P2P context.
We analyzed various design alternatives and present a detailed design for both P2P-over-SIP and
SIP-using-P2P, based on our implementation. The P2P-over-SIP implementation has a built-in
Chord [22] as the underlying distributed hash table (DHT), whereas the SIP-using-P2P uses an
external DHT, in particular OpenDHT [27]. Our work is the first published attempt to apply P2P
concepts to SIP-based systems in the P2P-over-SIP architecture. Our novel hybrid architecture
allows both traditional SIP telephony as well as user lookup on P2P network if the local domain

does not have a SIP server. In P2P-over-SIP, we show that SIP can be used to implement various

11

DHT functions such as peer discovery, user registration, node failure detection, user location and
call setup by replacing DNS [28] and the SIP server database with P2P for the next hop lookup in
SIP. For SIP-using-P2P, we provide an XML-based data format for storing SIP information such
as user contact location and security keys, so that different implementations can interoperate in
a global P2P-SIP network. We also provide guidelines for advanced services such as offline
message notification and multi-party conferencing in P2P-SIP. We identify the tradeoff in using

P2P-SIP in terms of increased call setup delay and security threats.

1.4.3 Enterprise Internet Telephony and Multi-platform Collaboration

We identify the requirements for an enterprise Internet telephony infrastructure and describe our
server-based Columbia InterNet Extensible Multimedia Architecture (CINEMA). It also serves
as a corporate or campus infrastructure for existing and future services like instant messaging,
presence, video mail and streaming media.

CINEMA consists of a set of SIP-based servers that provide a pathway to a post-PBX
era of communications. It provides a comprehensive environment for creating and deploying rich
Internet multimedia services including programmable Internet telephony services, audio/video
conferencing, IP-based voice mail, and unified messaging. Fig. 1.4 shows the architecture, the
interaction among the components and my contribution. (Appendix A further describes some of

the software tools | implemented in CINEMA.)

SIP server: Jonathan Lennox is the primary architect of our SIP proxy, redirect and registration
serversipd. It receives user registration messages from user agents and proxies or redirects
the incoming calls for registered users thus acting as a call router. | have further improved

on the reliability and scalability aspectsgipd, as mentioned earlier.

SQL database: sipd uses the MySQL [29] database for storing the current network addresses
and phone numbers where a user can be reached. Other per-user information and server

configuration related to voice mail and conferences are also stored in the database.

PSTN gateway: A Cisco 2600 router with SIP/PSTN capability is connected to the telephone

12

\

mfm 'C]'_FQEIVIA servers - 3
Localflong distance TTelephone f,’sipwnf: rtspd: med1a*§ BrVEr
ez, 1-212-5551212 awritch ;' conference server

~ Department | @

ETSF clients

—- PBX i o &g, Quicktime
TTEd) T
Internal -

sipd: | unified
~ ltlephone I Proxy, = - messag;mg
eg, 7040 713z redirect, !
registrar CQiJ.H i Weh 4&
~ ’ ; sa | '
SIPPSTIV Gateway , ; Web based
e.g, Cizco 2600 j configuration
,l": =P Ir
«+—My other work
WHML ;
7134 i
[er] ./ H323 E
511:|h323L [s :
oll Tooks e SIPHBEB e e
alice@cs translator >~ uco="
& | M i
{zoftphone)

H.323 clients
ez, Methdesting

Figure 1.4: CINEMA architecture

switch (PBX) with a T1 trunk and to the departmental LAN. This could be any SIP-
speaking gateway.

User agents: We use Columbia software SIP user agesip€ [30, 31]) and Ethernet phones
from Cisco, Pingtel and 3Com in our test bed.

Media server: We developed a general-purpose RTSP [32] streaming media séspel;, which

we use for the storage and delivery of announcements and voice mail messages [33]

| am the primary author of the unified messaging server, conference server, SIP-H.323

translator and interactive voice response (IVR) module, which are described next

13

Multi-Party Conferencing

Our collaboration architecture supports both synchronous collaboration such as multimedia con-
ferencing, instant messaging (IM), shared web-browsing, and asynchronous collaboration such
as discussion forums, shared files, voice and video mails, and allows seamless integration of the
two. For example, the same group of people can be addressed by video conference, IM and email,
with appropriate archival of the transactions.

| developed a multi-party multimedia conference sersiggonf [34], that forms the core
of synchronous collaboration in CINEMA. | also evaluated the performance of our conference
server and showed that it can support large scale conferences with thousands of simultaneous

participants, using a two-layer cascaded conferencing architecture.

Unified Messaging

Traditional answering machines and voice mail services are closed systems, tightly coupled to a
single end system, the local PBX or local exchange carrier. Itis hard to perform simple operations,
like forwarding voice mail outside the local PBX, filtering or sorting messages. Configuration is
tedious, e.g., one can not readily switch between a set of outgoing messages. Moreover, voice
mail and call answering services are implemented as stand-alone proprietary systems. The service
must be provided by the PBX, local phone company or the local handset or one must obtain a
separate voice mail number.

On the other hand, Internet protocols, such as electronic mail for Internet messaging
and SIP (Session Initiation Protocol [3, 4]) for Internet telephony, have an open architecture.
Configuration is simpler compared to the PSTN and the protocols are extensible. There can be a
separation between the internet service provider and the messaging or telephony service provider.
Internet telephony is replacing the old telephone systems (PSTN), particularly in corporate and
institutional environments. So, itis important to design a voice mail system for Internet telephony,
addressing some of the shortcomings.

Unified messaging extends the classical voice mail system to more Internet-based mes-
saging service, integrating voice, video, web and electronic mail. We developed a novel and

modular unified messaging architecture for multimedia mail using existing Internet protocols, in

14

particular, SIP and RTSP (Real-Time Streaming Protocol [32]), that allows users message access
from any Internet connected device using standard media players or user agents. SIP is used
for setting up multimedia calls over the Internet. RTSP controls the delivery of streaming media
and provides facilities to play back, record, or perform other operations on multimedia content.

| developed a centralized answering machine and voice mail systens|B8im, based on this

unified messaging architecture that usispd media server for recording and playback.

Our approach differs from other traditional answering machines. We use the standard SIP
forking proxy behavior that does not require modifying the proxy server or the user’s phone. Use
of an external media server helps in keeping the voice mail system out of the media path. Use of
RTSP enables the recording of the message once and the use of the pointer or URL (Universal
Resource Locator) when forwarding the message without actually forwarding the multimedia
file. This is desirable for low bandwidth situations where downloading a whole video mail is
very expensive, particularly if the recipient decides that she doesn’t want to listen to the message
after hearing the first few seconds. Moreover, the multimedia mail can be accessed with any

RTSP based media player, e.g., Apple’s QuickTime.

Integrating VoiceXML with SIP Services

People are familiar with traditional interactive voice response (IVR) systems found in voice malil
access, dial-in conferences, phone-based customer support and tele-banking. VoiceXML is an
XML-based language developed by the W3C [35] to create voice dialogs that feature synthesized
speech, digitized audio, recognition of spoken and touch tone key input and recording of audio
for telephony applications. It enhances the traditional proprietary and closed IVR systems to an
open programmable architecture. It brings the advantage of web technologies to a telephony user
by providing programmable dialogs, similar to HTML forms or CGlI scripts.

A SIP-based VoiceXML (or SIP-VoiceXML) browser allows a SIP user to take part in
application-specific IVR systems, e.g., voice mail or tele-banking. It also brings the advantage
of VoiceXML technology to a regular telephone user via a SIP-PSTN gateway. | implemented
the first SIP-Voice XML browsesipvxml [36], to enhance the services of our CINEMA test-bed.

In particular, we have extended our multimedia conferencing sesigronf [34], and unified

15

messaging (voicemail) servesipum [33] to provide enhanced services and convenience to a

telephone user.

Interworking between SIP/SDP and H.323

The International Telecommunication Union (ITU-T) Recommendation H.323 [37] defines packet-
based multimedia communication systems and is based heavily on previous ITU-T multimedia
protocols. In particular, H.323 call signaling is inspired by H.320 [38] for ISDN (Integrated
Services Digital Network), and call control by H.324 [39] for GSTN (General Switched Tele-
phone Network) terminals. SIP [3], developed in the IETF, builds on a simple text-based request-
response architecture similar to other Internet protocols such as HTTP [7] and RTSP [32]. SIP
provides a similar set of basic services as H.323 [40, 41].

We developed a translation mechanism for interoperability between SIP and H.323. |
developesip323, the first implementation of a signaling gateway [42] between SIP and H.323.
This allows once popular H.323 clients such as Microsoft NetMeeting to interwork with our SIP-
based CINEMA infrastructure. However, with the gradual disappearance of H.323 systems, the
research interest in SIP-H.323 translator has faded. H.323 systems are still used particularly by
carriers who have already made huge investments in H.323-based infrastructures, and by vendors
such as Polycom developing room-based conferencing systems. Thus, there is still a need for

interworking between SIP and H.323.

1.5 Overview of the Thesis

This thesis is organized as follows. After this introduction, | give background information on SIP
in Chapter 2. Then, the thesis is divided into three parts: server redundancy, peer-to-peer and

enterprise IP telephony.

1. In the server redundancy part, | describe our failover and load sharing architecture for SIP

telephony and evaluate its performance in Chapter 3.

2. In the peer-to-peer part, | give an overview of related work and design choices for P2P

16

Internet telephony using SIP in Chapter 4. Then, | describe our SIP-using-P2P and P2P-

over-SIP architectures in Chapters 5 and 6, respectively.

3. In the enterprise IP telephony part, | provide background on different conferencing mod-
els, VoiceXML and media streaming in Chapter 7. Chapter 8 presents the related work on
Internet telephony and multimedia collaboration. Chapter 9 describes our multi-platform
collaboration architecture in CINEMA. Subsequent chapters 10 and 11 give details on con-

ference server scalability and SIP-H.323 translation, respectively.

| present some general conclusions and observations in Chapter 12. Implementation aspects of
various components such as Columbia SIP library and related tools, MySQL replication, P2P-SIP
data format and SIP-H.323 translation are presented in appendices A, B, C and D, respectively. A

glossary of terms and bibliography of references can be found in appendices E and F, respectively.

17

Chapter 2

Background: Session Initiation
Protocol (SIP)

For an Internet voice call, it is sufficient for a participant to know the audio codecs supported
by the other participant and the IP address and port number to which audio packets should be
sent. The problem with this is that IP addresses are hard to remember and may change if the
user is mobile or uses more than one device. SIP allows use of a higher level address of the form
user@domairfor user mobility. For instance, a user can dadb@office.cormo matter what
communication device, IP address or phone number Bob is currently using. The current locations
of the users are maintained by the SIP registration servers, also known as registrars. The user’s
communication devices register with registrar servers periodically by providing the address at
which he/she can be reached. A more detailed description of SIP can be found in [3, 43, 4]. In

this chapter, we give an overview of the features relevant for this thesis.

SIP message: request and response

SIP is a client-server and request-response protocol, similar to the Hyper Text Transfer Protocol
(HTTP) [7]. A user agent client (UAC) generates a request, and sends it to the user agent server
(UAS). The server processes the request and sends the response back to the client. There can

be zero or more intermediate provisional responses, followed by a final response to a request. A

18

request and its responses constituteaasaction

SIP defines methods for session establishment, control and termination. The methods
are invoked by the UAC for a resource identified by an uniform resource identifier (URI) [44]
on the UAS. As shown in Fig. 1.1 (p. 3), when Bob’s user agent is powered up, it (UAC) sends
the REGISTER method to the server (UAS) akample.net to update the contact location of
Bob, identified with URIsip:bob@example.net. The server updates the contact location in its
database. Alice’s user agent (UAC) sends tR¥ITE method forsip:bob@example.net to
Bob’s server to initiate a call to Bob. The server locates the current contact of Bob and proxies
the message to Bob’s user agent (UAS). Since a SIP user agent (or end system) sends as well
as receives the SIP request, it contains both UAC and UAS. Similarly, the server contains both
UAC and UAS. TheBYE request terminates the call, and can be invoked by the user agent of
either Alice or Bob. Alice may cancel a pending call usib§gNCEL before Bob accepts the
INVITE. ACK requests are used for reliability tXIVITE responses [3] because, unlike HTTP,
which runs on TCP, the SIP message can go over UDP also. ThereQ®#alONS method
to get the capabilities of the remote party without actually initiating a call. Additional methods
have been defined to extend SIP for instant messaditSSAGE), presenceUBSCRIBE,
NOTIFY, PUBLISH), call transfer REFER), etc.

An exampleINVITE message is shown in Fig. 2.1. Similar to HTTP, it is text-based
with a request line containing the resource identifiereapiest-URI, sip:bob@example.net,
followed by a list of headers and finally a body. The header contains the callee. Theom
header contains the caller. TISibject identifies the subject of the call similar to an email
subject. TheCall-ID contains a unique call identifier to identify this association between the
caller and callee. A SlBialogis uniquely identified using the two end poinf®@ndFrom) and
Call-ID. INVITE and SUBSCRIBE are two methods that can create a new SIP dialog. Within
a dialog, subsequent SIP requests have incread@®ey header values in each direction, i.e.,
caller-to-callee and callee-to-caller.

The SIP response is similar to the request, except that the first line is a response line
containing a response code and a reason phrase. SIP reuses HTTP’s response codes and adds

some new responses. In particulaB response code indicates a success response.

19

INVITE sip:bob@example.net SIP/2.0

Via: SIP/2.0/UDP pc33.home.com;branch=z9hG4bKnashds8
Max-Forwards: 70

To: Bob <sip:bob@example.net>

From: Alice <sip:alice@home.com>;tag=1928301774
Call-ID: a84b4c728ca8@mypc.home.com

CSeq: 613 INVITE

Contact: <sip:alice@pc33.home.com>

Content-Type: application/sdp

Content-Length: 148

v=0

o=userl 53655765 2353687637 IN IP4 192.1.2.3
s=Weekly conference call

c=IN IP4 192.1.2.3

t=0 0

m=audio 8080 RTP/AVP 0 8

m=video 8082 RTP/AVP 31

Figure 2.1: Example SIP Message with SDP

SIP requests and responses may carry message bodies using MIME (Multipurpose Inter-
net Mail Extension [45]) types. The body carries additional information such as a multimedia
session description in tHIVITE request and its success response, or presence stateN®the
TIFY request.

The SIP session negotiates media capabilities of the caller and callee using the Session
Description Protocol (SDP) [46]. SDP contains the various media types (e.g., audio, video),
supported codecs for these media types, and the transport addresses (i.e., IP address or host
name, port number and protocol) for receiving packets for these sessions. The caller offers a
media session iINVITE’s message body, and the callee answers it in the successful response’s
message body [47]. For example, the offer in Fig. 2.1 indicates that the caller can support one
audio session with G.711-law or A-law codec (payload types 0 and 8, respectively), and one
video session with H.261 codec (payload type 31). The callee can select a subset of this media
capability and indicate it in the response. Alternatively, if it does not want to support, say, video
session, it can reset the transport address for the video session. After the call is set up, either party

may change the session description by sending antthdTE method, known as réNVITE.

20

Locating SIP servers

A SIP UAC uses DNS [28] to locate the SIP server for a URI. For example, rettpgest-URI is
sip:bob@example.net, the client uses a DNS query fexample.net to locate the SIP server for

that domain. In particular, the DNS Naming Authority Pointer (NAPTR) recoréfample.net

is queried. If this query fails, the service record (SRV) is queried $gu._udp.example.net
assuming the transport as UDP. The DNS NAPTR and SRV records have priority and weights
to allow failover and load sharing. In the absence of these records, the client can fall back to

querying the A and AAAA records for the IPv4 and IPv6 addresses, respectively.

SIP functions and states

A SIP server contains different functions: registrar, proxy and redirect. rdgistrar function

deals with incomingREGISTER messages. Thproxy function proxies the incoming non-
REGISTER requests to the current contact location of the destination. The current location
can be learned in various ways, including explicit update by the user ageREGASTER. A
redirect server responds with the list of current locations to the caller, so that the caller can di-
rectly re-initiate the request to one or more of those locations. Typically, a single application
implements all these functions.

A SIP server typically destroys all transaction state after the transaction is over. Soft
state is used to maintain transaction state. Typically, all transaction state is maintained for up to
approximately 32 seconds after the final response is sent, during which the server can respond
to any retransmitted request if the earlier response got lost. SIP also defteglasgproxy
function which does not even maintain any transaction state. SIP transactions can complete even
if a server crashes and reboots in the middle, losing all transaction state. SIP messages have
sufficient information to allow a rebooted server to treat the message correctly. This also means
a server can safely clean up old state which has collected due to unusual failures or cases where
the caller lets the phone ring for a long time.

Multiple locations can be registered for a single user, for instance, if the user has many SIP
phones. The SIP server, in proxy mode, forwards the call request to all the registered locations.

If the user picks up one of the phones, the server cancels branches to all the other phones. This

21

behavior is known aforking proxy mode. On the other hand, a sequential proxy mode tries the
registered locations sequentially.

The media path for audio and video is different from the SIP signaling path because media
is exchanged directly between the user agents typically using the Real-time Transport Protocol
(RTP [1, 2]) using the session parameters derived from SDP. A SIP server does not maintain any
dialog or call state. Thus, it treats individual requests sudiN®$TE andBYE as independent
transactions. Subsequent request in a dialog (or call) can directly be sent between the two end-
points instead of going through the server. However, a server can uRetioed-Route header

to remain in the signaling path for subsequent transactions of the call, e.g., for call accounting.

hostelschool.com

Figure 2.2: Example SIP call routing

22

An example call routing in SIP

It is possible to encounter multiple SIP servers (either in redirect or proxy mode) in a given call

attempt. Fig. 2.2 shows a more complex call routing scenario in SIP.

10.

11.

. Bob pob@home.com) tries to reach Alicedlice@office.com).

. The server abffice.com redirects Bob, indicating that Alice can be reachedaht

ice@school.edu.

. Bob’s user agent tries the new location.

. Alice has registered four contacts, with one of them (her desk phone) as her preferred

location. Thus, the server athool.edu tries the more preferred location for Alice at her

desk phone.

. The phone is idle, and sends a “ringing” response. However, since it is not picked up, the

server times out.

. The server then forks the call request to all the remaining three locations simul-

taneously. The locations ara&lice.Cueba@intern.com, alice@columbia.edu and

acll4@hostel.school.com.

. The phone antern.com responds back saying that the user is not available.
. The server atolumbia.edu forwards the call to Alice’s desktop computer.

. A pop-up window appears on Alice’s machine indicating an incoming call from Bob. She

accepts the call by clicking on the “Accept” button of the user interface.
The server atolumbia.edu forwards the response to the upstream serveclabol.edu.

The server aschool.edu on receiving the successful response, cancels out all the other
pending call requests. In this example, it cancels the call request branch dwog-to

tel.school.com. The phone ahostel.school.com stops ringing at this time.

23

12. The server okchool.edu then forwards the successful response to the upstream host

(Bob’s user agent).

13. At this point, the call is successfully established. Now media (audio and/or video) can be

exchanged between the two endpoints. The call termination message is not shown.

In the above example we assume a wide-area network composed of a variety of environ-

ments such as campus, corporate and enterprise running SIP servers.

Programmable call handling

When receiving an incoming call request, the SIP server finds the current user location and either
proxies (forks if multiple contacts), redirects or rejects the call initiation message. Although
this simple model satisfies most user’s needs, some advanced users may want a more complex
scenario. For example, “reach me at my office phone during office hours and call me at my home
after office hours, or don'’t disturb me when a tele-marketer calls.” This can be implemented by
uploading a piece of software on the server, which governs its behavior based on the time-of-
day or caller identification. SIP allows many different ways to achieve this, for example, via the
XML-based Call Processing Language (CPL [48, 49]) and SIP-CGI [24].

The Call Processing Language (CPL) is a language that can describe and control Internet
telephony services. It is implementable on either network servers or user agent servers. It is
simple, extensible, easily editable by graphical clients, and independent of operating system or
signaling protocol. Itis suitable for running on a server where users may not be allowed to execute
arbitrary programs, as it has no variables, loops, or ability to run external programs. Fig. 9.10
shows an example CPL script for time-of-day based call routing. The idea is to proxy the call to
the registered location during office hours and forward the call to voicemail otherwise.

SIP-CGil is similar to HTTP-CGI and can be written in any language. It has the same
potential security problem as HTTP-CGI, and it should be allowed only in a trusted environment
since users are allowed to execute arbitrary code. The SIP server can run the script as an external
process passing all the parameters needed by the script (e.g., caller URI, subject headers, etc.)
and reading back the response from the standard output of the process. The response indicates

how to handle the call, for example, to proxy, redirect or reject it.

24

<?xml version="1.0" ?>
<IDOCTYPE cpl PUBLIC "-//IETF//IDTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>
<time-switch tzid="America/New_York"
tzurl="http://zones.example.com/tz/America/New_York">
<time dtstart="20000703T090000" duration="PT8H" freq="weekly"
byday="MO,TU,WE,TH,FR">
<lookup source="registration"><success><proxy /></success></lookup>
</time>
<otherwise>
<location url="sip:jones@voicemail.net"><proxy /></location>
</otherwise>
</time-switch>
</incoming>
</cpl>

Figure 2.3: Example CPL script: call routing based on time-of-day

More than just a voice call

One advantage of SIP over PSTN (Public Switched Telephone Network) based tele-conferencing
is that it allows creating new flexible services including traditional PSTN services such as interac-
tive voice response (IVR), call transfer, music-on-hold as well as more Internet-specific services
like presence-enabled calls and integration of voice-mails and emails. Multimedia conferences on
the Internet [50] can be created using SIP. Using SIP for instant messaging allows easy integra-
tion with other SIP-based telephony components. Various components such as media streaming
server, call-routing engines and user location server can be combined in various ways to create
new service architectures.

Sipc is the Columbia SIP user agent that can be used for Internet telephony calls, mul-
timedia conferences, presence, instant messaging, and shared web browsing. It supports a range
of media types, such as audio, video, text and white board, and can be easily extended to handle
additional media types. It uses external media tools such as vic [51] for video, Robust Audio Tool
(RAT [52]) for audio and wb [53] as a shared white board. Beyond multimedia communication,

it can also perform network appliance control, or act as Session Announcement Protocol (SAP)-

25

based Internet radio or television [54]. It also supports emergency services such as E911 [55].
After this brief introduction to SIP, | present the first part of the thesis on SIP server

redundancy.

Part |

Server Redundancy

This part describes our failover and load sharing architecture to achieve carrier-grade reliability

and scalability of SIP servers using commaodity hardware.

26

27

Chapter 3

Failover and Load Sharing in

SIP-based IP Telephony

3.1 Introduction

In this chapter, we apply some of the existing web server redundancy techniques for high ser-
vice availability and scalability to the relatively new IP telephony context. In particular, we
consider SIP [3] server failover techniques based on the clients, DNS (Domain Name Service),
database replication and IP address takeover, and load sharing techniques using DNS, SIP identi-
fiers, network address translators and servers using the same IP address, in Sections 3.3 and 3.4,
respectively. These techniques also apply beyond telephony, for example, for SIP-based instant
messaging and presence that use the same SIP servers for registration and message routing.

We describe our two-stage reliable and scalable SIP server architecture in which the first
stage proxies the request to one of the second stage server group based on the destination user
identifier. We quantitatively evaluate the performance improvement of the load sharing architec-
ture using our SIP server in Section 3.5. We also quantitatively compare the effect of SIP server
architecture such as event-based and thread pool on server performance in Section 3.6. This
further improves the performance using the event-based architecture for a single server. Addi-
tionally, we present an overview of the failover mechanism we implemented in our test-bed using

the open source MySQL database. Next, we give an overview of related work in reliability and

28

scalability of SIP-based IP telephony.

3.2 Related Work

SIP servers are similar to web servers. Failover and load sharing for web servers is a well-
studied problem [56, 57, 58, 59]. TCP connection migration [60], process migration [61], IP
address takeover [62] and MAC address takeover [63] have been proposed for high availability.
Load sharing via connection dispatchers [64] and HTTP content or session-based request redi-
rection [65, 66, 63] are available for web servers. Some of these techniques such as DNS-based
load sharing [67, 68] also apply to other Internet services like email and SIP. Some of the load
sharing techniques such as dynamic load balancing [69] can also be applied to SIP, but we have
not investigated this. Although SIP is an HTTP-like request-response protocol, there are certain
fundamental differences that make the problem slightly different. For example, SIP servers can
use both TCP and UDP transport, the call requests and responses are usually nhot bandwidth in-
tensive, caching of responses is not useful, and the volume of data UBEESTER message)
and lookup [NVITE message) is often similar, unlike common read-dominated database and web
applications.

Unlike call stateful PSTN switches, the SIP proxy servers are only transaction stateful [3].
Thus, if the server fails during a transaction, only that transaction needs to be restarted without
affecting the existing call to which the transaction belongs. Some work has already been done in
the context of SIP server availability [70, 71]. In particular, Ohlmeier [70] presents the require-
ments for high availability SIP servers and proposes failover using anycast and data replication.
For SIP server failover, IP anycast does not work well with TCP and the backend database re-
quires synchronization between the primary and backup servers for authentication, thus making
the design complicated. To reduce the session setup time in case of server failure, IETF’s Reliable
Server Pooling (Rserpool) has been proposed for call stateful SIP servers [71]. Although this is
useful for sharing call state between the primary and secondary server, a failed transaction still
needs to be restarted. In Section 3.3.5, we describe how to apply the Rserpool [72, 73]) archi-
tecture for SIP telephony. The primary disadvantage of Rserpool is that it requires new protocol

support in the clients. Mid-call failover [74] and server selection policy [75] for call stateful SIP

29

servers to improve the call success rate are proposed, but these proposals do not apply to the call
stateless SIP proxy servers which are more scalable. We have implemented SIP server failover
using database replication.

SIP-based telephony services exhibit three bottlenecks to scalability: signaling, real-time
media data and gateway services. The signaling part requires high request processing capacity
in the SIP servers. The data part requires enough network bandwidth and capacity (CPU and
memory) in the end systems. The gateway part requires optimal placement of media gateways and
switching components [76]. This thesis focuses only on the signaling part. SIP allows redirecting
a request to a less loaded server using the 302 response, or transferring an existing call dialog to
a less loaded endpoint or gateway [3, 77]. An overloaded SIP server can respond with the 503
response to signal the upstream sender to reduce the request rate when this downstream server is
overloaded. However, this mechanism suffers from load amplification and oscillation problems in
a cluster [78]. The SIP server can utilize the failover and load sharing research done in databases.
For example, the MySQL SQL database allows replication and clustering [29, 79].

Identifier-based load balancing has been used for emails. We combine this with DNS-
based server redundancy for a two-stage reliable and scalable architecture. Novelty of our work
lies in the application of existing techniques to relatively new Internet telephony, and quantitative
performance evaluation of the architecture for SIP-based telephony. We also present an overview
of our implementation of failover and describe some practical issues.

SIP server performance can be quantified using metrics such as calls per second and reg-
istrations per second. SIPstone [9] defines such metrics and provides a benchmarking technique
for SIP proxy and registration servers, which we use in our measurements. Optimizations such
as memory pool, counted strings and lazy parsing have been proposed for SIP servers [80, 26].
These optimizations can further improve our load sharing performance. Event and thread-based
architectures, particularly for web servers, are well known in systems research [81, 82, 83, 84, 85].
We study the effect of server architecture on SIP server performance using commodity hardware

and standard POSIX (Portable Operating System Interface) threads in Section 3.6.

30

3.3 Availability: Failover

High availability is achieved by adding a backup component such as the SIP server or user record
database. Depending on where the failure is detected and who does the failover, there are various

design choices: client-based, DNS-based, database failover and IP address takeover.

3.3.1 Client-based Failover

(4 INVITE (1) REGISTER
P1 <
(3) INVITE < (1) REGISTER - 'u
_ X P2
@/ @) IIC / Bob
: P2 G INVITE | < (2) REGISTER
Alice Bob exanpl e.com
(4) INVITE (2) REGISTER _sip._udp SRV 0 0 pl.exanple.com
SRV 1 0 p2.exanpl e.com
Figure 3.1:Client-based failover Figure 3.2:DNS-based failover

In the client-based failover (Fig. 3.1), Bob’s phone knows the IP addresses of the primary
and the backup server®;, and P. It registers with both, so that either server can be used to
reach Bob. Similarly, Alice’s phone is also preconfigured with the addresses of the two servers.
It first tries P, and if that fails it switches t@.

All failover logic is built into the client. The servers operate independent of each other.
This method is used by the Cisco IP phones [86]. Configuring phones with the two server ad-
dresses works well within a domain. However, DNS is used to allow adding or replacing backup

servers without changing the phone configurations as described next.

3.3.2 DNS-based Failover

DNS provides two record types, naming authority pointer (NAPTR) and service (SRV), relevant
to SIP requests. A SIP client can use the priority parameters of these DNS records to determine
the primary and secondary servers. DNS-based failover using NAPTR and SRV records is the

most clean and hence, preferred way, to failover [28]. For instance, Alice’s phone can retrieve the

31

DNS SRV [67] record forsip._udp.example.cono get the two server addresses (Fig. 3.2). In the

example,P; will be preferred over?,; by assigning a lower numeric priority value k9.
Alternatively, dynamic DNS can be used to update the A-recordhdéone.confrom the

IP address oP; to P, whenP, fails. P, can periodically monitoP; and update the record when

P, is dead. Setting a low time-to-live (TTL) for the A-record bindings can reduce the failover

latency due to DNS caching [87].

3.3.3 Failover based on Database Replication

Figure 3.3:Failover based on database replication

Not all SIP phones are capable of registering with multiple servers. Moreover, to keep
the server failover architecture independent of the client configuration, the client can register with
only P;, which can then propagate the registration}o If a database is used to store the user
records, then replication can be used as shown in Fig. 3.3. Bob’s phone registers with the primary
server, Py, which stores the mapping in the databd3e The secondary server,, uses the
databasd),. Any change inD; is propagated td,. When P, fails, P, can take over and use
D5 to proxy the call to Bob. There could be small delay befbregets the updated record from
D;.

32

3.3.4 Failover using IP Address Takeover

If DNS-based failover cannot be used due to some reason (e.g., not implemented in the client),
then IP address takeover [62] can also be used (Fig. 3.4). This only works if both the primary and
secondary servers are in the same subnet. Bptand P, have identical configuration but run

on different hosts on the same Ethernet. Both servers are configured to use the external master

database;. The slaveD; is replicated fromD;. The clients know the server IP addresga's

10.1.1.1 in this example.

P1
D1
el ‘ 10.1.1.1
l‘ ‘
P2 \ I
D2 10.1.11
J 10.1.14 o o1is
10112 J 101.1.2 M-

Figure 3.4: When the primary Figure 3.5: When the master Figure 3.6: co-
server fails database fails located database and

proxy

P, periodically monitors the activity oP;. WhenP; fails, P, takes over the IP address
10.1.1.1. Now, all requests sent to the server address will be received and proceBsed/bgn
D, fails, P, detects and switches 0, (Fig. 3.5). IP takeover is not used @y, since the SIP
servers can be modified to switch over whenfails. The ARP cache may introduce additional
latency in failover.

The architecture is transparent to the rest of the network including the clients and DNS,
and can be implemented without external assumptions. However, if the replication is only from
the master to the slave, it requires modification in the SIP server software to fif3{ tgnd if
that fails useD, so that all the updates are done to the master server. To avoid replicating the
databaseP; can propagate thRREGISTER message also t8,.

Alternatively, to avoid the server modification, the server and the associated database can

33

be co-located on the same host as shown in Fig. 3.6. If the primary host failsPpatid D,

take over.P; always use®), whereasP, always useg)s.

3.3.5 Reliable Server Pooling

The IETF’s Reliable Server Pooling (Rserpool) working group is developing architecture and pro-
tocols for the management and operation of server pools to support highly reliable applications,
and for client access mechanisms to a server pool. In the context of Rserpool architecture [73, 71],
Fig. 3.7 shows the client phone as the pool user (FBY)and P, as the pool elements (PES) in

the SIP server pogland D, and D, as PEs in thelatabase pool P, and P, register with their

home name serveNS,, which supervises them, and informs the other name servers about these
PEs. Similarly,D; and.D- also register with the name server (NS). The SIP servers are the pool

users of the database pool. A pool element is removed from the pool if it is out of service.

SIP server pool

Client (PU) P1 P2
@ access server pool . {{J’ {{J
] PooI elements

name resolution . access server poc
register server
_inthe pool y

Database pool

- register
SO o
Name Servers

Pool elements

Figure 3.7: Reliable server pooling for SIP

When the client wants to contact the SIP server pool, it queries one of the name servers,
N Sy, to get the list ofP; and P, with relative priority for failover and load sharing. The client
chooses to connect 18, and sends the call invitation. Jf; fails, the client detects this and sends
the message t&,. For stateful serviced?; can exchange state information with another server,

P, and return the backup server,, to the client in the initial message exchange. This way

34

the client knows which backup server to use in case of faili¥ecan also give a signed cookie
similar to HTTP cookie to the client, which sends it to the new failover sef®erin the initial
message exchange. This is needed for call stateful services such as conferencing, but not for SIP
proxy servers.

The SIP serverP;, queries the NS to get the lisf); and D», for the “database pool”.

D; and D, are backed up and replicated by each other, so they can return this backup server
information in the initial message exchange.

The primary limitation of this architecture is that this requires new protocol support for
name resolution and server access in the clients. A translator can be used to interoperate with the
clients that do not support reliable server pooling. However, this makes the translator a single
point of failure between the client and the server, hence limiting the reliability. Secondly, the
name space is flat unlike DNS hierarchy, and is designed for a limited scale (e.g., within an

enterprise), but may be combined with wide area DNS based name resolution, for example.

3.3.6 Implementation

I have used some of the above techniques in our Columbia InterNet Extensible Multimedia Ar-
chitecture (CINEMA). The architecture [88, 89] consists of our SIP sesiied, and a MySQL
database for user profile and system configuration. The configuration and management are done
via a web interface that accesses various CGl (Common Gateway Interface) scripts written in Tcl
(Tool Command Language) [90] on the web server. All the servers may run on a single machine
for an enterprise setup.

For failover, | use two sets of identical servers on two different machines as shown in
Fig. 3.8. The database and SIP server share the same host. The databases are replicated using
MySQL 4.0 replication [29] such that bofh; and D, are master and slave of each other. MySQL
propagates the binary log of the SQL commands of the master to the slave, and the slave runs these
commands again to do the replication. The details of two-way replication is in Appendix B.

MySQL 4.0 does not support any locking protocol between the master and the slave to
guarantee the atomicity of the distributed updates. However, the updates from the SIP server are

additive, i.e., each registration from each device is one database record, so having two devices for

35

Web | o
scripts

phone.cs.columbia.edu sip2.cs.columbia.edu

REGISTER \ proxy1=phone.cs

_sip._udp backup=sip2.cs
SRV 0 0 5060 phone.cs

SRV 1 0 5060 sip2.cs

Figure 3.8: Failover in CINEMA

the same user register with two database replicas does not interfere with the other registration.
For example, ibob@home.comegisterdbob@locationl.conwith D; andbob@location2.com
with Dy, both D, and D, will propagate the updates to each other such that Bgtand D- will
have both of Bob’s locations. There is a slight window of vulnerability when one contact is added
from D, and the same contact is removedis. Then, after the propagation of updates the two
databases will be inconsistent with different contacts for the user. It turns out that this does not
occur for the simple failover as | describe next. We can safely use the two-way replication as long
as updates are done by only the SIP server.

For a simple failover case, the primary ser¥gris preferred over the secondary server
P,. So all theREGISTER requests go td’, and are updated i®,. The replication happens
from D, to Do, not the other way. Only in the case of failure Bf, will the update happen
to D, throughP,. But D; will not be updated by the server in this case. By making sure that

database becomes consistent before the failed server is brought up, we can avoid the database

36

inconsistency problem mentioned above.

Web scripts are used to manage user profiles and system configuration. To maintain
database consistency, the web scripts should not be allowed to niagifyD; is up. To facilitate
this | modified the MySQL-Tcl client interface to accept a list of connection attributes. For
example, ifD; and D, are listed, then the script tries to conneci2gfirst, and if that fails then
tries D, as shown in Fig. 3.8. For our web scripts, the short-lived TCP connection to MySQL is
active as long as the CGI script is running. So the failover at the connection setup is sufficient.
For long-lived connection, the implementation should be modified to provide failover even when

the TCP connection breaks.

3.3.7 Analysis

The architecture provides high reliability due to redundancy. Assuming the reliability of primary
and backup sets of servers &si.e., the probability that the server is runningis0 < R < 1,
the overall reliability is(1 — (1 — R)?).

Server failure affects theall setup latencysince the client retries the call request to
the secondary server after a timeout) and dker availability (the probability that the user is
reachable via the server given that her SIP phone is up). If the primary server is down for a longer
duration, the DNS records can be updated to promote the secondary server to primary. Fig. 3.9
shows that the client retries the call after a timedu, to the secondary server if the primary
server does not respond. If the individual server reliabilityjsclient retry timeout isl’z, and
DNS time-to-live (TTL) isTp, then the average call setup latency increasés iy — R)Pty <
Tp| (assuming no network delay atitl~ 1), whereP[t); < Tp] is the probability that the time,
tas (random variable), to repair the server is less than the DNS TTL. For example, if the repair
time is exponentially distributed with medh,, thenP[ty; < Tp] =1 — e_;_ﬁ assuming that
the mean time to failure is much larger than the mean time to repair({i.e-,R)7»s ~ 0). If
an explicit failure feedback such as ICMP “host unreachable” is received by the client, the client
tries the secondary server immediately instead of waiting for the timégut,

User availability is mostly unaffected by the primary server failure, because most regis-

trations ardREGISTER refreshes. Fig. 3.10 shows that if the primary server fails after refreshing

37

REGISTER
Caller 200 OK
- o\
" refresh SQL replicate
DNS ' Tr
> Tc
(available)~—Tefresh
N REGISTER
o REGISTER TR
INVITE ilable)
. 7l (Al ok
R INVITE TC‘
100 Trying refresh
Figure 3.9: Call setup latency on failover Figure 3.10: User unavailability on failure

the database with the user record, then the user record is still available on the secondary server.
However, if the primary server fails after the phone registers a new contact for the first time, but
before the registration is propagated to the secondary server, then the phone contact location is
unreachable until the next registration refresh. In this case, assuming that the server uptime is
exponentially distributed, and given the memoryless property, the time-to-failure has the same
distribution. Suppose the mean-time-to-failurd’is and the database replication latencyis
then the probability that the server goes down before the replication is completed (given that it is
up att = 0) is P[lifetime < Ty] = 1 — e_%. For example, ifl’» is one week, andy is ten
seconds, then this probablity #s0000165 ~ 0. If this happens, the user record is unavailable
for at mostT,. + Tr, whereT.. is the registration refresh interval (typically one hour), dndis
client retry timeout, which is about 10 s for Cisco phones. After this time, the client refreshes the
registration and updates the secondary server making the user record available.

We use an in-memory cache of user records inside the SIP server to improve its perfor-
mance [88, 26]. This causes more latency in updating the user registratioPfrtonP,. If the
failure happens before the update is propagatdd tthen it may have the old and expired record.
However, in practice the phones refresh registrations much before the expiry and the problem is
not visible. For example, suppose the record expires every two hours and the refresh happens

every 50 minutes. Suppod® receives the registration update from a phone and fails before

38

propagating the update tb;. At this point, the record iD, has 70 minutes to expire 98,
can still handle the calls to this phone. The next refresh happens in 50 minutes, before expiration
of the record inD. If a new phone is setup (first time registration) just before failur@ofit
will be unavailable until the next refresh. Supp@seandTr are defined as before, afilis the
database refresh interval, then the probability that the server goes down before the replication is

Ty+Te

completedisl —e Tr

Since, most of the time, the same contact information is conveyed in registration refreshes,
we can reduce the number of database transactions. For example, the expiration time can be kept
in memory instead of propagating to the database. When the registration is deleted, expired or
changed in the memory, the information is propagated to the database. Thus, the database traffic
is reduced considerably. This mechanism can be usel ferl servers where one server can act
as a backup folV primary servers. Since the load on the backup server is considerably lower, this
works well. One disadvantage is that if the server fails, the database will still have the expired
user registrations, because the expiration is not stored in the database. We have not implemented
this mechanism.

With the Cisco phone [86] that has the primary and backup proxy address options (Sec-
tion 3.3.1), the phone registers with bathand P,. Both D; and D, propagate the same contact
location change to each other. However, since the contact record is keyed on the user identifier
and contact location, the secowdite just overrides the firsirite without any other side effect.
Alternatively, the server can be modified to perform an immediate synchronization between the
in-memory cache and external database if the server is not heavily loaded.

The two-way replication can be extended to more servers by using circular replication
such asD;-Ds-D3-D4 using the MySQL master/slave configuration [29]. Thus, if each server
reliability is only 98%, a three-way replication gives the total reliability 6f0.02% = 0.999992,

i.e., “b nines”. To provide failover of individual servers (e.f9; fails but notP;), the SIP server

P; should switch taDs if D4 is not available.

39

3.4 Scalability: Load Sharing

In failover, the backup server takes over in the case of failure whereas in load sharing all the
redundant servers are active and distribute the load among them. Some of the failover techniques

can also be extended to load sharing.

3.4.1 Network Address Translation

A network address translator (NAT) device can expose a unigue public address as the server
address and distribute the incoming traffic to one of the several internal private hosts running
the SIP servers [91]. Eventually, the NAT itself becomes the bottleneck making the architecture
inefficient. Moreover, the transaction-stateful nature of SIP servers require that subsequent re-
transmissions should be handled by the same internal server. So the NAT needs to maintain the

transaction state for the duration of the transaction, further limiting scalability.

3.4.2 Multiple Servers with the Same IP Address

In this approach, all the redundant servers in the same broadcast network (e.g., Ethernet) use the
same IP address. The router on the subnet is configured to forward the incoming packets to one
of these servers’ MAC address. The router can use various algorithms such as “round robin” or
“response time from server” to choose the least loaded server.

To avoid storing SIP transaction states in the subnet router, this method is only recom-
mended for stateless SIP proxies that use only UDP transport and treat each request as indepen-
dent without maintaining any transaction state.

In Section , we describe our two-stage architecture. In the absence of DNS SRV and
NAPTR, we can use the same IP address method for the first stage (Fig. 3.13) in the two stage
architecture. The same IP address method is less efficient since the network bandwidth of this
subnet may limit the number of servers in the cluster. Moreover, this method does not work if the

network itself is unreachable. Hence, DNS-based load sharing is recommended.

40

3.4.3 DNS-based Load Sharing

The DNS SRV [67] and NAPTR [68] mechanisms can be used for load sharing using the priority
and weight fields in these resource records [28], as shown below:

example.com

_sip._udp 0 40 a.example.com
0 40 b.example.com
0 20 c.example.com

1 O backup.somewhere.com
The above DNS SRV entry indicates that the seraels ¢ should be used if possible (priority 0),
with backup.somewhere.com as the backup server (priority 1) for failover. Within the three

primary serversa andb are to receive a combined total of 80% of the requests, whifgesum-

ably a slower server, should get the remaining 20%. Clients can use weighted randomization to

achieve this distribution.

stateless
proxy

Figure 3.11:DNS-based Figure 3.12:dentifier-based load sharing

However, simple random distribution of requests is not sufficient since the servers need
to access the same registration information. Thus, in the example above, each server would have
to replicate incomindgREGISTER requests to all other servers or update the common shared and
replicated database(s). In either case, the updates triggelREGISTER quickly become the
bottleneck. The SIP phones typically REEGISTER refresh once an hour. Thus, for a wireless

operator with one million subscribers, it has to process a%%t: 280 updates per second.

41

Fig. 3.11 shows an example with three redundant servers and two redundant databases.
For everyREGISTER, it performs ongead and onewrite in the database. For evelMVITE-
based call request, it performs oread from the database. Evevyrite should be propagated to
all the D databases, whereasead can be done from any available database. Suppose there are
N writes andr - N reads, and if the same number iVITE andREGISTER are processed
thenr = 2. Suppose, the databaseite takesT units of time, and databasead takest - T’
units. Total time per database will B& -+ 1)7'N. This shows that no matter how many servers
are used, the performance is limited by thigte capacity of one database. For example, even
with very largeD, the total time is at least N for N writes, limiting the cluster performance to
+ registrations per second.

The architecture in Fig. 3.11 also provides high reliability due to redundancy. Assuming
that the mean-time-to-repair is much less than mean-time-to-failure, and the reliability of indi-
vidual proxy server is?, and database serverig;, and suppose there afeproxy servers and
D database servers, the reliability of the system becdimes(1 — R,)?)(1 — (1 — R4)P). The

reliability increases with increasing and P.

3.4.4 ldentifier-based Load Sharing

For identifier-based load sharing (Fig. 3.12), the user identifier space is divided into multiple
non-overlapping groups. A hash function maps the destination user identifier to the particular
group that handles the user record. The example in Fig. 3.12 uses the hash function based on the
first letter of the user identifier. For example, handlesa-h , P, handles-q andP; handles
r-z . A high speed first stage servet, proxies the call request t8,, P, and P; based on the
destination user identifier without contacting any database. If a call is received for destination
bob@home.cont goes toP;, whereassam@home.comoes toPs;. Each server in the second
stage has its own database and does not need to interact with the others. To guarantee almost
uniform distribution of call requests to different servers, a better hashing algorithm such as SHA1
can be used or the groups can be re-assigned dynamically based on the load.

SupposeN, D, T, t andr are as defined in the previous section. Since @aal and

write operation is limited to one database and assuming uniform distribution of requests to the

42

different servers, total time per database will(é%ﬂ)TN . With increasingD, this scales better

than the previous method. Since thdtes do not have to be propagated to all the databases and
the database can be co-located on the same host with the proxy, it reduces the internal network
traffic.

However, because of lack of redundancy this architecture does not improve system reli-
ability. Assuming that the mean-time-to-repair is much less than mean-time-to-failure, and the
reliability of the first stage proxy, second stage proxy and database ser¥&y, &, and R,
and suppose there afg groups, then the system reliability becontes- (R,)? - (Ry)". The
least reliable component affects the system reliability the most and the reliability decredses as
increases.

The only bottleneck may be the first stage proxy. We observed that the stateful perfor-
mance is roughly similar to stateless performance (Section 3.5), hence a single stateless load
balancing proxy may not work well in practice. We use a cluster of proxies in the first stage as

described next.

3.4.5 Two-stage Reliable and Scalable Architecture

al.example.com, a2.example.com
a* @example.com

....< a. exanpl e. com

_sSip._udp SRV 0 0 al.exanple.com
sl.example.com SRV 1 0 a2.exanpl e.com
~ B

s2.example.com
sip:bob@example.com sip:bob@b.example.com

— b* @example.com
s3.example.com “"< b. exanpl e. com
_sSip._udp SRV 0 0 bl.exanple.com

SRV 1 0 b2.exanple.com
_sip._udp SRV 0 0 sl.exanple.com ""<
SRV 0 0 s2.exanpl e.com

SRV 0 0 s3.exanpl e.com

)

)
T

bl.example.com, b2.example.com
[2 B

Figure 3.13: Two-stage reliable and scalable architecture

Since none of the mechanisms above are sufficiently general or infinitely scalable, we

propose to combine the two methods (Fig. 3.11 and 3.12) in a two-stage scaling architecture

43

(Fig. 3.13) to improve both reliability and scalability. The first set of proxy servers selected via
DNS NAPTR and SRV performs request routing to the particular second-stage cluster based on
the hash of the destination user identifier. The cluster member is again determined via DNS.
The second-stage server performs the actual request processing. Adding an additional stage does
not affect the audio delay, since the media path (usually directly between the SIP phones) is
independent of the signaling path. Use of DNS does not require the servers to be co-located,
thus allowing geographically distributed cluster. This provides availability even if the networks

of some of the servers in the cluster is unreachable.

Note that the first stage server uses the destination user identifier to select the second
stage server only for an inbound request to an user in this domain. In a SIP call setup, an optional
outbound proxy may be used by the provider to apply policy decisions such as billing to all the
outbound calls by the users in the domain. If the two-stage cluster is acting as an outbound proxy
of the domain, then the first stage server selects the second stage server based on the hash of the
source user identifier instead of the destination user identifier.

Suppose there arg first stage proxy servers; clusters in the second stage, aBd
proxy and database servers in each cluster. The second stage cluster has one primary server and
B — 1 backups. All the databases in a cluster are replicated using circular replication. Suppose
the REGISTER message arrivals are uniformly distributed (because of the uniform registration
refresh rate by most user agents) with meanandINVITE (or other requests that need to be
proxied such a8#IESSAGE) arrivals are Poisson distributed with meap, such that the total
request rate is=Ar+Ap. Suppose the constant service rates of first stage servey, laad the
second stage server g andy, for registration and proxying, respectively. We assume a hash
function so that each cluster’s arrival rate is approximagly\lote that Fig. 3.8 is a special case
whereS=0, P=1 andB=2. Similarly, Fig. 3.12 is a special case whéteB=1.

The goal is to quantitatively derive the relationship between different service parameters
(1), system load X), and redundancy parameters, (B, P). We want to answer the questions
such as (1) when is first stage proxy needed, and (2) what are the optimal values for redundancy
parameters to achieve a given scalability. Our goal is to achieve carrier grade scalability (10

million BHCA) using commodity hardware. | provide our performance measurement results for

44

scalability parametersS(and P) and system loadX) in the next section.

Suppose each server I8 =99% reliable, andS = P = B = 3, then overall system
reliability is (1 — (1 — R)®) - (1 — (1 — R)B)” = 99.9996%, i.e., “five nines”.

We do not consider the case of load sharing by different proxies in the same cluster,
because load sharing is better achieved by creating more clusters. For handling sudden load
spikes within one cluster, the DotSlash on-demand rescue system [92] is more appropriate where
a backup server in the same or another cluster temporarily shares the load with the primary server

of the overloaded cluster.

3.5 Performance Evaluation

In this section, | quantitatively evaluate the performance of our two-stage architecture for scala-

bility using our SIP registration and proxy serveipd, and SIPstone test suite [9].

3.5.1 Test Setup

| performed the SIPstorferoxy 200 tests, over UDP. The SIPstone test suitelbadersandcall
handlers to generate SIP requests and to respond to incoming requests, respectively. The server
under test (SUT) is a two-stage cluster of our SIP serggpd, implementing the reactive system
model [26]. An example test setup is shown in Fig. 3.14. Each instanspdfwas run on a
dedicated host with Pentium 4, 3 GHz CPU, on a 800 MHz motherboard, with 1 GB of memory,
running Redhat Linux 2.4.20. The hosts communicated over a lightly loaded 100base-T Ethernet
connection. A single external MySQL database, running version 3.23.52 of the MySQL server
was shared by all theipd instances. But this is not an issue becauséttogy 200 test does not
modify the database, but uses the in-memory caclsipaf[88].

To focus on only the scalability aspects | used one server in each group of the second stage
(Fig. 3.13,B=1). | use the conventiof, P,, to represent first stage servers, amd second stage
groups with one server per groupy P, is same as a single SIP proxy server without any first
stage load balancer.

On startup, a number of call handlers (in our tests, four) register a number of destination

45

SIPstone control}er

Generate loaN \ _ »
user identifier

L1l : 04l £ | H1 | A1000-A102

e | 4o | A1025-A1049

H4 A1075-A1099

Load="

A1050-A1074

L4 LoadJ .
E— n
Loaders First stage servers Second stage serversCall handlers
L=4 n=3 m=3 H=

Figure 3.14: Example test setup for S3P3

L oad generator firs sfage (Safelessecond stage (Stateless) Call handler

INVITE O wiTE .

180 Ringing 180 Ringing FM
000K 200 0K - 200K
L A x|
— 3 BYE k BvE
200 OK 200K

2000K =~

Figure 3.15: Example message flow for S2P2: in the first stage INVITE goes via S2, whereas
ACK and BYE via S1, but in the second stage all the requests go via P2 based on the consistent
hash of the destination user identifier.

locations (from non-overlapping user identifier sets as shown in Fig. 3.14) with the proxy server.
Then for theProxy 200 test, a number of loaders (in our tests, four) sendISNATE requests
using Poisson distribution for call generation to the SUT, randomly selecting from among the

registered addresses as shown in Fig. 3.15. If there is more than one first stagesertgrthen

46

the loader randomly selects one of the first stage servers. The first stage server proxies the request
to one of the second stage servers based on the destination user identifier. The second stage
server forwards each request to the appropriate call handler responsible for this user identifier.
The call handler immediately responds witBO Ringing and200 OK messages. These are
forwarded back to the load generators in the reverse path. Upon receiviga@h@K response,
the load generator sends AGK message for the initial transaction anB4E request for a new
transaction. Th&YE is similarly forwarded to the call handler via the two-stage servers to reflect
therecord-route behavior in real operational conditions [9]. The call handler again responds with
200 OK. If the 200 OK response is not received by the loader within two seconds, or if any other
behavior occurs, then the test is considered a failure. The loader generates the request for one
minute for a given request rate. The server is then restarted, and the test is repeated for a higher
request rate. | used an increment of 100 calls per second (CPS).

This process is repeated until 50% or more of the tests fail. Although [9] requires 95%
success, | measured until 50% to show that the throughput is stable at higher loads. There is no
retransmission on failure [9]. The complete process is repeated for different valwesdfn in

the cluster configuratiorfy,, P,.

3.5.2 Analysis

Fig. 3.16 compares the performance of the diffet&n#,, configurations. It shows the average
of three experiments for each configuration at various call rates. A ssijglieserver handles
about 900 calls/second (CPS) (s&g” in Fig. 3.16), which corresponds to about three million
BHCA. When the load is more than the server capacity, the throughput remains almost constant
at about 900 CPS. When the throughput is same as load, i.e., 100% success rate, the graph is a
straight line. Once the throughput reaches the capacity (900 CPS), the gragjPiofiattens
indicating lower success rate for higher load. At a load of 1800 CPS, the system gives only 50%
success rate (i.e., throughput is half of load), and the experiment stops. Note that for all practical
purposes, success rate of close to 100% is desired.

When the server is overloaded, the CPU utilization is close to 100%. Introducing an extra

server in the second stage and having a first stage load balancing proxy puts the bottleneck on

47

the first stage server which has a capacity of about 1050 GP (n Fig. 3.16). An additional
server in the first stageS¢ P) gives the throughput of approximately double the single second
stage server capacity. Similarlg; P; has capacity of approximately 2800 CPS which is about
three times the capacity of the single second stage serveisd@hdhas capacity of 2100 CPS

which is double the capacity of the single first-stage server.

! ! ! ! ! ! ! ! re
T - . —
i | | | | | ; : ; —s2p3 |
T 2000 b gl
8 - :
8 ‘
8 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 52p2;
2 I : : : i : : : : :]
8 1600"
5
[oR
e o H H H H H
e L :Slp2
£ o1
| 1 : : Slplstl ;
400 L]
oW

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
Load - calls/second

Figure 3.16: Server throughput B, P,,, configuration { first stage andn second stage servers.
The results show that the performance increases linearly with the number of servers, i.e., s2p2 is
twice and s3p3 is thrice that of s1pl and sOpl performance.)

The results show that we can achieve linear scaling by putting more servers in the first
and second stages in our architecture. Below, | present the theoretical analysis for the two-stage
architecture.

Suppose the first and second stage servess, i, have capacity of’'; andC,,, respec-
tively (usually,Cs > C,). The servers are denoted gisandP;, 1 < i < n,1 < j < m, for

the first and second stage, respectively. Suppose the incoming calls arrive at an average rate

48

2800 L0 goBmfogT
s3p3 1
2400 i
- D <4
L a9 g Q S
o) U S anv) L&) (9]
o - -
§ 2000 _ Z o © % s2p3 |
8 xgg%%%%&?%&%%&xx |
& L .
= | s2p2 |
8 1600 I
5
o
e L |
S 1200 + —
<) L |
ey [] i
= | slp2 |
800 —
400 + -
O) PR PR | PR " 1 PR 1 PR 1 PR PR | PR PR | " PR 1 PR 1 " PR | PR "
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Load - calls/second

Figure 3.17: Theoretical and experimental capacity for configuratiaf,,

with exponential inter-arrival time. Suppose the load is uniformly distributed among adlftrest

stage servers, so the each first stage server gets a request %atSoppose the hash function
distributes the requests to the second stage server such thi4t seever,P;, gets a fractiony;,

of the calls (Note tha}_ f; = 1). Assuming that all the users are equally likely to get called,
and the hash function uniformly distributes the user identifiers among the second stage servers,
then all f; will be same (i.e.f; = %). However, differences in the number of incoming calls for
different users will cause non-uniform distribution.

The throughputr, at a given loady, is the combined throughput of the two stages. The
throughput of the first stage) = min(\, nCs), which is load (input) to the second stage. The
server,P;, in the second stage has throughpuigfi(\' f;, Cp). Thus,

T(A\) = imin(fj min(\, nCs), Cp)
j=1

Without loss of generality, we assume tifat> f; for i > j. The resulting throughput

49

vs load graph is given by: + 1 line segmentsL;: (\;, 7;) — (i1, Ti+1), for i=0 tom, where

(Ax,) is given as follows:

(0, 0) fork=0
(52, Tt + (O — Mm1)Fr) for 1<k <mif > 2

fr)
(nCs, The1+ (A — A1) F) for 1 <k <m; fi <
fork=m+1

) e
(00, 7im)
where Fy = (1= f)
The initial line segment represents 100% success rate with slope 1. Note that the region
beyond 100% success rate is not of practical interest. At the request I%&dsﬂrverpl reaches
its capacity and drops any additional request load. So the capacity increases at rate equal to the
remaining fraction of requests that go to the other non-overloaded seRers,= 2,3, ..., m.
This gives the slopé} = (1 — (f2 + f3 + ... + fm)) for the second line segment. Similarky
reaches its capacity at Ioa%l, and so on. When all the second stage servers are overloaded the
throughput remains constant, giving the last line segment. At the request load adll the first
stage serversy;, reach their capacity limit. If the second stage seWgs capacity,C), is more
than the load it receives at that timg(nC;), then the system throughput is not limited By.
| used a set of hundred user identifiers for test. The hash function | used distributed these
identifiers as follows: form = 2, f is roughly{0.6, 0.4, and form = 3, f is roughly{0.4,
0.3, 0.3. Note that with 1000 or 10,000 user identifiers, the same hash function distributed the
set more uniformly as expected, but our skewed distribution of hundred identifiers helps us verify
the results assuming a non-uniform call distribution for different users. The capadity arid
C, are 900 CPS and 1050 CPS, respectively. The resulting theoretical performance is shown
in Fig. 3.17 forS1 P, Sy P, SoP3 and S3P; with a system capacity of 1050, 1740, 2100 and
2700 CPS, respectively. Althoughy P»’s second stage can handle0 x 2 = 1800 CPS, the
throughput of the first stage is only50 x 2 = 2100, out of which 60% (i.e., 1260 CPS) goes to
P1 which dropsl1260 — 900 = 360 CPS. So the system throughpuRi)0 — 360 = 1740 CPS.
Our experimental results are plotted as data points (not average, but individual throughput values)

in the same graph for comparison.

50

3.5.3 Non-uniform Call Distribution

If the call requests to the user population among the different second stage servers is non-
uniformly distributed, then the system starts dropping the call requests at a load lower than the
combined capacity of the second stage servers. To prevent this, the user data should be redis-
tributed among the second stage servers to provide an uniform distribution on an average, e.g., by
changing the hash function. Fig. 3.18 compares the two experiments f8s fheconfiguration:

one with the earlier skewed hash function that distributed the user identifiers in ratio 60:40 and
another hash function (Bernstein’s hash [93]), that distributed the user identifiers in ratio 50:50.
For uniform call distribution, the graph shows 100% success rate until about the peak capacity of

1800 CPS, followed by a flat throughput. This is the ideal behavior for uniform call distribution.

I " skewedhash —— |
uniform hash -------
2000

1600

1200

800

Throughput - calls/second

400

O P SR S IS SR SN SR [N SN S SR NN SR TR S RN SR SR S [N SR NN TR NN S SR SR S ST SR SR I SR S S M S S'
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Load - calls/second

Figure 3.18: Effect of user identifier distribution among second stage servers for S2P22. Uniform
distribution gives the best performance, i.e., success rate is close to 100% until the peak perfor-
mance (1800 CPS), whereas for non-uniform distribution the success rate reduces as soon as one
of the server is overloaded (at 1500 CPS).

51

If the number of second-stage groups changes frequently, e.g., due to failure or mainte-
nance, then a consistent hashing function [94] is desirable as it avoids large redistributions of the

user identifiers among the servers.

3.5.4 Performance of Stateful Proxy

So far | have shown the test results using the stateless proxy mode. A SIP request over UDP that
needs to be proxied to only one destination (i.e., no request forking), can be proxied statelessly.
Our SIP serversipd, can be configured to try the stateless mode, if possible, for every request
that needs to be proxied. If a request conlat be proxied statelesslgipd falls back to the
transaction stateful mode for that request. Stateful mode requires more processing and state in

the server, e.g., for matching the responses against the request.

T T T T T T N T T
| H H H Sopl +
f f f slpl x
2000 e e R o stp2 ok
| | | gToT T T T es2pZeTTaT T
: : : O’ 32p3 m O
; ; - © s3p3 o
3 3 -l am g " n" "o
1600 i g
H H '/ .
§ } 3 A O
g ,{ 0. Er"'D"'D"""'D'"'@"'D'"E """"""""""""""
= 1200 - Aty R o -
o : Lt
=] /!F-‘
a ; o
< | 7
(o)) o : ﬂf : :
=] ; s ; ; ; ; ;
S BOO S°JREVIE TR S— R S S S
g . S S
: X
oW o
0 400 800 1200 1600 2000 2400 2800

Load - calls/second

Figure 3.19: Performance 6f, P,,, with stateful proxy in second stage. The results show that the
performance increases linearly with the number of servers, i.e., s2p2 is twice and s3p3 is thrice
that of s1pl and sOpl performance.

52

| ran one experiment by disabling the stateless proxy mode in the second stage. Fig. 3.19
shows the experimental results along with the theoretical throughput using the earlier hash func-
tion. The first and second stage server capacitie§'a®00 andC’=650 CPS, respectively. The
first stage server capacity is less if the second stage is stateful (800 CPS) compared to the case
when the second stage is stateless (1050 CPS), because the stateful second stage server generates
two additionall00 Trying SIP responses fdNVITE andBYE in a call that increases the number
of messages handled by the first stage server (See Fig. 3.20 and 3.15). If a frActmfithe

input load needs to be handled using stateful mode (e.g., due to request forking to multiple callee

2| 2 €l
L oad generator ? Erst;stage (Statelesssecond stage (Staterul) Call handler

devices), then the effective server capacity becofhes f,)C + f;C".
<] 24

INVI

f - INVITE
: 100 trying -——100trying . INVITE
a o : 180Ringing - 180Ringing
o 180 Ri nging - 500 OK | 200 OK
B 2000K - 3 ~—
 ACK - ACK A
. BYE _ : BYE B
| 100 trying = 100trying zEca)g(E)

| ‘ | K

000K = 20030K -

Figure 3.20: Stateful proxy message flow

Our more recent optimizations enhance the single second stage server throughput to 1200

CPS and 1600 CPS for stateful and stateless proxy, respectively, as shown in Section 3.6.

3.5.5 Effect of DNS Lookups

In some of our initial experiments not reported in this thesis, the call handler registered the DNS
host name with the proxy server so that the server performed a DNS lookup for locating the call
handler host. We observed comparatively poor performance, e.g., a single proxy server capacity
with DNS was 110 CPS on the same hardware, compared to 900 CPS without DNS. There were

two problems in our implementation: (1) it used a blocking DNS resolver that waits for the query

53

to complete so the internal request queue builds up if the DNS latency is more than the average
interarrival duration; and (2) it did not implement any host-cache for DNS, so the second stage
server did DNS lookup for every call request. We also observed some fluctuations in throughput
even before the server reached its capacity. This was due to the fact that the DNS server was not
in the same network, and the DNS lookup procedure took between 10 to 25 ms for each call. In
our testssipd sent about 28 DNS queries for each call due to multiple resolver search domains
(six in our tests) and DNS records (e.g., sipd tries NAPTR, SRV and A records, falling back in

that order) used in the implementation.

For example, if the destination domainesample.com, DNS query is sent for (1)
NAPTR record forexample.com, (2) SRV record forsip._udp.example.com, (3)

SRV record forsip.udp.example.com, and finally (4) A record foexample.com,

in that order in our implementation. Since the Linux machine used for testing had six
different search domains, seven queries are sent sequentially for each type of record,
resulting in 28 queries. For example, if search domainscatembia.edu, and
cs.columbia.edu, then a query foexample.com generates three DNS queries for
example.com, example.com.columbia.edu, andexample.com.cs.columbia.edu,
sequentially if the previous query fails. Thus, if NAPTR and SRV records do not ex-
ist for example.com, this results in six wasted queries, before a successful query for

DNS A record ofexample.com.

| implemented a simple DNS host-cachesipd and observed same performance as that without

DNS (i.e., 900 CPS for single second stage server). In practice, the first-stage servers access
records for the second-stage servers within the same domain, thus, doing localized DNS queries
in the domain. It will be interesting to measure the host-cache performance for the real callee host
names by the second-stage servers, instead of a few call handler host names that were cached after
the first lookups until the end of the test run in our tests. One can use an event-based DNS resolver
such asdns [95] to improve the performance and eliminate the potential bottleneck due to DNS

access. Another common technique is to use a local resolver that implements a DNS cache.

54

3.5.6 Other SIPstone Tests

We also performed one experiment witegistration test without authentication. The perfor-
mance is shown in Fig. 3.21 along with the expected throughput values. We used capacity values
asC,=2500 registrations/second (RPS) arig-2400 RPS for first and second stage servers, re-
spectively. Authentication requires two transactions, thus reducing the capacity to half. Thus, the
S3 P53 configuration will be able to support more than 10 million subscribers assuming one hour

registration refresh interval.

7200 T T T T T T T T T T]
: | | | | | | | | sopl__m__]
‘ v slpl X]
: ©
G400 o /O(fa,ogélpz * 3
: | | | | | | | 7T s2p2 0 T
-t s2p3 +
o : : : : : L2 : s3p3 o]
L : : : : : :) : : :]
SB00 | BT
- : : : : : : O e : :]
c E ‘ ‘ ‘ ‘ ‘ ‘ ‘ it
Q [: : : : : : ' : 1 +
Y 3 EDE\:\:\DDDDD ol m : i 1
é [: : : : %:‘DDDDE‘DE‘B ----------- ---------- g
}Z)' [: : : : : : : : : :]
(o)) -]
o F : : : : : : : : : : 1
S C : : : : : : : : : :]
Qo
% [: : : : : : : : : :]
L : : : | A S R F S R S
S 200 AR
= [: : : : : : : : :]
(o T I Low sy [[[[Low sy [Low sy []
0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800

Load - registrations/second

Figure 3.21: Performance fdf, P, with registration server in second stage. The results show
that the performance increases linearly with the number of servers, i.e., s2p2 is twice and s3p3 is
thrice that of s1pl and sOpl performance.

Note that the second stage registrar is always stateful. Moreover, we used the database re-
fresh rate to be more than the test duration, thus, removing the database synchronization variable
from the results. The first stage proxy server capacity for the registration test is more because the

number of messages per transaction that it handles is two in the registration test compared to six

55

in the Proxy 200 test (see Fig. 3.22 and 3.15).

Load generator first stage (Stateless) second stage: registra
REGISTER o REGISTER ‘

200 OK | 200 OK

Figure 3.22: REGISTER message flow

TheProxy 200 test determines the BHCA (busy hour call attempts) metric, whereas the

registration test determines the number of registered subscribers for the system.

3.6 Server Architecture

There are two components in providing high capacity IP telephony services: network-related
components such as bandwidth, server location and load sharing, and server-related components
such as server hardware (CPU, memory), features vs. performance tradeoff, non-blocking 1/0 and
software architecture. In general, scaling any Internet service involves individual server perfor-
mance enhancements and load distribution among multiple servers. We described and evaluated
SIP load sharing in Sections 3.4 and 3.5. This section deals with performance enhancements on
an individual SIP server on commodity server hardware. In particular, we evaluate the effect of
software architecture - events, threads or processes - for the SIP proxy server. We try to answer
the following questions: (1) For a SIP-style server, which of the basic architectures is likely to
perform better in a given situation? (2) Does performance scale with CPU speed or is it memory
dominated? (3) What can be done to improve the performance on a multiprocessor machine?

We built a very basic SIP server in different software architectures using the same set
of libraries for SIP processing. This helps us in understanding the effect of the server architec-
ture on performance. The server includes a parser module and has many simplifications such
as memory-only lookups without any database write-through, noRsitRe header handling,
minimal configuration, only UDP transport (i.e., no TCP or TLS), no programmable scripts, and

no user authentication. We used standard POSIX threads, which map to kernel-level threads on

56

Solaris and Linux. On a multi-processor hardware, concurrency is utilized via multi-threading
and multi-processing software architecture. Our goal is to use commodity hardware without any
custom tweaks, hence optimized user-level threads and CPU scheduler reconfiguration are not

investigated.

UDP | recvfrom
TCP —
(B) (B)

sendmsg

()

DNS ®)

statel ess proxy

Next server
lookup

Figure 3.23: Processing steps in a SIP server. The potentially blocking operations either due to
I/0, events or locks are marked with B

First stage proxy

3.6.1 Processing Steps

Figure 3.23 describes the steps involved in processing a SIP request in any SIP server. Itincludes
both transaction stateless and stateful processing. The server receives a message on a UDP or TCP
socket. We use only UDP in our tests. The message is parsed using our unoptimized SIP parser.
If the message is a SIP request, it is matched against the existing transactions. If a matching
transaction is found, the request is a retransmission and the last response, if any, in the transaction
is returned for the request. If a match is not found, and the request iSRESHPSTER request,

then the user contact records are updated for this registration and a response is sent. For any
other request, the user record is looked up. Depending on the policy chosen, the call is then
proxied, redirected or rejected. In the proxy mode, the server looks up the callee’s current contact
locations, forwards the request and waits for the response. During this process, the server may
need to perform additional retransmissions for reliability. When receiving a response, the server
looks up the appropriate matching transaction for this response and forwards the response. If the

policy decides to redirect the request instead of proxying it, the server sends the response to the

57

caller listing the new contact location(s). The first stage load balancing server selects the next

stage server based on the destination user identifier, without doing any database query. The steps

are based on our SIP server implementation, but are likely to be similar for other implementations.
These processing steps can be implemented in various software architectures for both

stateless and stateful proxy modes.

3.6.2 Stateless Proxy

A stateless proxy does not maintain any transaction state, and has a single control flow per mes-
sage. That means that once a message has been received, it can be processed to the end without
interfering with other messages. We used only UDP transport for our tests and did not perform
any DNS lookups. As shown in Figure 3.15, a sinBlexy 200 test involves six messages.

In Figure 3.23, for an incoming call request, the steps performedeakdrom, initial parsing,

database lookup, modify request asehdmsg. Similarly, for an incoming call response the

steps performed amecvfrom, initial parsing, modify response aséndmsg. A first stage load

balancer proxy is also a stateless proxy, but it does not include the database lookup stage. The

processing steps can be implemented in different software architectures as follows:

Event-based: A single thread for the whole system listens for incoming messages and processes
it to the end. There is no locking or mutual exclusion (mutex). This does nhot take advantage
of the underlying multiprocessor architecture. If DNS is used, then the same thread also

listens for events such as the DNS response and timeout.

Thread per message:A main thread listens for incoming messages. A new parsing thread is
created to do the initial parsing. Then another processing thread is created to perform the
remaining steps depending on whether the message is a request or a response. This archi-
tecture performs independent logical operations in separate threads, making the program
easy to understand. The thread terminates after the steps are completed. DNS lookups, if
any, are performed synchronously in the processing thread. Locks (i.e., mutexes) are used
for accessing shared data such as the database. Potentially blocking operations include

DNS, sendmsg, and database lookup.

58

Pool-thread per message:This is similar to the previous method, except that instead of creating
a new thread, it reuses a thread from a thread pool. A set of threads are created in the
thread pool on server initialization and persist throughout the server lifetime. This reduces
the thread creation overhead and is the original architecture of our SIP server, sipd [26]. To
further reduce lock contention, the user data can be divided into multiple sets (say, 100),
each with its own transaction tables or user records. Thus, access to user records in different

sets do not contend for the same lock.

Process pool: On server initialization, a pool of identical processes is created, all listening on
the same socket. When a message is received, the OS gives the socket message to one of
the listening processes and that process performs all the processing steps for that message.
Shared memory is used for sharing the database among multiple processes. This is the

architecture of the SIP express router [96].

Thread pool: This is similar to the previous method, but it uses threads instead of processes.
Only one thread can cakécvfrom on the listening socket. If a thread has calledvfrom,
then another thread is blocked from calling this function until the first thread finishes re-

ceiving the next socket message.

Software architecture /Hardware 1xP | 4xP | 1xS| 2xS
Event-based 1550| 400 | 150| 600
Thread per message 1300 500| 100| 500
Pool-thread per message (sipd) 1400 850 | 110| 600
Thread pool 1500| 1300 | 152 | 750
Process pool 1600 | 1350| 160 | 1000

Table 3.1: Performance (CPS) of stateless proxy for Proxy 200 test

We ran our tests on four different platforms as follows: (1xP) Pentium 4, 3GHz, 1 GB
running Linux 2.4.20, (4xP) four-processor Pentium 450 MHz, 512 MB running Linux 2.4.20,
(1xS) ultraSparc-Ili, 300 MHz, 64 MB running Solaris 5.8, and (2xS) two-processor ultraSparc-
I+, 900 MHz, 2 GB running Solaris 5.8. The results of our tests are shown in Table 3.1. The

numbers presented in this section are different from earlier load sharing experimesips of

59

in Section 3.5, because these tests were done after some optimizations such as per-transaction
memory pool to reduce memory deallocation and copy [26]. We used a small pool size for both
process pool and thread pool, because the performance degraded if the pool size was more than
two times the number of processors. The performance of different architectures relative to the
event-based model on different platforms is shown in Figure 3.24 (a).

For a single processor system (1xP and 1xS), the performances of event-based, thread
pool and process pool are roughly similar. We found that the thread pool model had a higher
number of context switches compared to process pool. In the process pool model the same pro-
cess keeps getting scheduled for handling subsequent requests. This resulted in the slight dif-
ference in the performance. The process pool model performs the best. The thread-per-message
and pool-thread-per-message models have many fold higher context switches resulting in much
poorer performance. This is because every message processing must involve at least two context
switches. One interesting observation is that both the single processor systems (1xP and 1xS)
took approximately 2 MHz CPU cycle per CPS (call per second) load.

For a multiprocessor system, the performance of the process pool implementation scales
linearly with the number of processors. The performance of the pool-thread-per-message model
is much worse than process pool because the former does not fully utilize the available concur-
rency of multiprocessor hardware. The processor running the main listening thread becomes the

bottleneck.

3.6.3 Stateful Proxy

Unlike the stateless proxy, a transaction stateful proxy needs to maintain the SIP transaction state
for the duration of the transaction. We used only UDP transport for our tests and did not perform
any DNS lookups. As shown in Figure 3.20, a sinflexy 200 test involves six incoming

and eight outgoing messages. In Figure 3.23, compared to the stateless proxy, the stateful proxy
performs additional steps such as transaction (or client branch) matching. The transactions data
structures are locked for exclusive access in a multi-threaded system. The processing steps can

be implemented in different software architectures as follows:

Event-based: Most of the blocking operations are made non-blocking using events. A single

60

(a) Stateless prowy

mevent based 3
Wthread per msg
Opookthread per msg| 2]

mthread pool
u 4

1xPiLinux 4xP{Linux 1x5/50laris 21550 laris

(b] Stateful proxy

mevent based

Wthread per msg

Othread pool (sipd)

(2 stage) thread pool

Lo R N o™ R s N L%

1 = B "l uil

1:PfLinux 4xP/Linux 1x5/Solaris 2x5/S0laris

Figure 3.24: Performance of software architectures relative to event-based on different hardware.
For example, the performance of stateless proxy on 4xP hardware in the thread pool architecture
is approximately three times that in the event-based architecture on the same hardware.

thread for the whole server handles events from a queue (e.g., timer events) as well as
messages from the listening socket. There is no locking or mutexes. There are only two
operations that remain blocking: listening for incoming message on the socket, and lis-
tening for events on the event queue. A single threaded event-based system does not take
advantage of the underlying multiprocessor architecture. Having multiple threads serving

events results in lock contention while accessing the same transaction structures.

Thread per message (or transaction):A main thread listens for incoming messages. |If the
message is a request not matching any previous transaction, then a new thread is created
to handle the new transaction associated with this message. The thread persists as long as

the transaction exists. Similarly, a process-per-message model can be defined that creates

61

a new process for each incoming connection and message.

Thread pool: Thisis similar to the previous method, except that instead of creating a new thread,
it reuses a thread from the thread pool. This reduces the thread creation overhead. Locks
are used for accessing shared data. Potentially blocking operations include DNS lookup,
sendmsg, request matching and database access. This is the original architecture of our

SIP server, sipd [26].

(Two-stage) thread pool: A pool of identical threads is created. Each thread handles a specific

subset of the user population based on the hash value of the user identifier as shown in
Fig. 3.25, similar to the second stage of our load sharing architecture. A request is pro-
cessed in two stages. The first stage thread listens for incoming messages, does minimum
parsing, and chooses the second stage thread based on the destination user identifier. The
message is then handed over to the particular second stage thread. The second stage is
purely event-based with no other locking. Since a single thread handles the requests for the
same set of users, we do not need to lock the database or transaction data structures. The

number of threads in the thread pool is determined by the number of processors.

Figure 3.25: Two-stage thread pool software architecture: the example consists of four threads,
numbered 0 to 3, in the thread pool. Any available thread receives the message, parses it and based
on the hash of the SIP Call-ID value in the message, forwards the message to the appropriate
thread. In the example, the hash is 1, thus both SIP INVITE request and 200 OK response go to
the thread number 1.

62

The models can be further extended to processes as follows. We have not evaluated these exten-

sions yet:

Process pool: A pool of identical processes is created, each listening on the same socket. When
a message is received, the server performs all the processing steps for that message. Shared
memory is used for sharing the transaction and user contacts among multiple processes.

This is the architecture of the SIP express router [96].

Two-stage event and process-basedrhis is similar to the two-stage thread pool model, but
using processes instead of threads. The operating system delivers an incoming message
to any of the first stage processes listening on the UDP port. That process forwards the
message to one of the second stage processes using pipes or Unix sockets, based on the
hash of the SIRCall-ID in the message. Thus, all the messages in a transaction always go
to the same second stage process, and that process does not need to share state with any

other process. Multiple first stage processes can be used to allow more concurrency.

A generic design of thread-per-message is easy to understand and implement. However,
this model suffers from poor performance at higher load [82]. As the load increases the number
of threads in the system also increases. If the thread blocks waiting for a network response, the
maximum number of simultaneous requests active in the system is small. Transaction lifetime
further reduces the system capacity. For example, if the operating system supports 10,000 threads,
and the SIP transaction lifetime is about 30 seconds, then there can be at most 10000/30 = 333
transactions/second processed in the system. Unlike a web server, this is further exacerbated in
a SIP server by the fact that about 70% of calls are answered within roughly 8.5 seconds [97]
while unanswered calls ring for 38 seconds. Thus, a bad design results in insufficient number of
threads. This leads to higher call blocking or call setup delays at high call volume. Thus, we need
to use a true event-driven architecture which requires the threads to be returned to the free-threads
pool whenever they make a blocking call.

Table 3.2 and Figure 3.24 (b) compare the performance of stateful proxy in different
architectures on the same set of hardware, except that 1xS is replaced by a single-processor

ultraSparc-Ili, 360 MHz, 256 MB, running Solaris5.9. Event-based system performs best for sin-

63

gle processor machine. For Aftprocessor machine, the thread pool performance is much worse

thanN times the single-processor performance due to memory access contentions.

Software architecture /Hardware 1xP | 4xP | 1xS | 2xS
Event-based 1150| 300 | 160 | 400
Thread per message 600 | 175| 90| 300
Thread pool (sipd) 850 | 340 | 120 | 300
2-stage thread pool 1100| 550 | 155| 500

Table 3.2: Performance (CPS) for stateful proxy for Proxy 200 test

3.6.4 The Best Architecture

The two-stage thread pool model for the stateful proxy and the thread pool model for the stateless
proxy combine the event and thread pool architectures. They provide an event-loop in each thread,
and has a pool of threads for concurrency on multiprocessor machines. The lock contention is
reduced by allowing the same thread to process all the steps of a message or transaction after
initial parsing. For a multi-threaded software architecture this seems to give the best performance
as per our tests. We have not yet evaluated the stateful proxy in process pool model.

The stateless proxy performance is usually limited by the CPU speed, whereas the mem-
ory utilization remains constant. On the other hand, the stateful proxy may be limited by either
CPU or memory depending of various transaction timers. By default a SIP transaction state is
maintained for about 30 seconds. Thus, a load of 1000 CPS creating 2000 transactions per second
will require memory for about 60 thousand transactions. Assuming 10 kB for storing each trans-
action state, this requires 600 MB. In our tests, we have reduced the timer values significantly so

that memory is not the bottleneck.

3.6.5 Effect on Load Sharing Performance

The software architecture choice of the SIP server further enhances the load sharing results since
the best single stateless proxy capacity is about 1600 CPS on a 3 GHz Pentium 4 with 1GB
memory running Linux 2.4.20. In addition, we have achieved about 4000 CPS throughput for the

64

first stage proxy in a simplified implementation. This means even S1P2 in stateless proxy mode
can achieve close to 3200 CPS, i.e., 11 million BHCA on this hardware configuration. Similarly,

S3P3 in stateful proxy mode can achieve close to 13 million BHCA.

3.7 Conclusions

We have shown how to apply some of the existing failover and load sharing techniques to SIP
servers, and propose an identifier-based two-stage load sharing method. Using DNS is the pre-
ferred way to offer redundancy since it does not require network co-location of the servers. For
example, one can place SIP servers on different networks. With IP address takeover and NATS,
that is rather difficult. This is less important for enterprise environments, but interesting for voice
service providers such as Vonage. DNS itself is replicated, so a single name server outage does
not affect operation. We combine DNS, server redundancy and the identifier-based load sharing
in our two-stage reliable and scalable server architecture that can theoretically scale to any ca-
pacity. A large user population is divided among independent second stage servers such that each
server load remains below its capacity.

We have also described the failover implementation and performance evaluation of our
two-stage architecture for scalability using the SIPstone test suite in our test bed. Our results
verify the theoretical improvement of load sharing for call handling and registration capacity. We
achieve carrier grade scalability using commodity hardware, e.g., 2800 calls/second supported
by our S3P; load sharing configuration roughly translates to 10 million call arrivals per hour,
using six servers. Lucent’s 5E-X&' switch, a high-end 5ESS, can support four million BHCA
for PSTN. This is further increased to 16 million BHCA in our memory pool and event-based
architecture. We also achieved the 5-nines reliability goal even if each server has only uptime of
99% (3 days/year downtime) using the two-stage architecture. Other call stateful services such as
voicemail, conferencing and PSTN interworking need more work to do failover and load sharing
in the middle of the call without breaking the session.

Detection and recovery of wide area path outages [98] is complementary to the individual
server failover. Adaptive load sharing based on the workload of each server is not investigated

in this thesis. It is not clear how useful this will be for Internet telephony because the call dis-

65

tribution is more uniform unlike Zipf distribution of web page popularity. Therefore, a good
static hash function can uniformly distribute the call requests among the servers. Instead of stati-
cally configuring the redundant servers, it will be useful if the servers can automatically discover
and configure other available servers on the Internet, e.g., to handle temporary overload [92].
This gives rise to the service model where the provider sells its SIP services dynamically by be-
coming part of another customer SIP network. The SIP servers in a VoIP provider network can
automatically discover, self-organize and configure themselves as first and second stage servers.
A peer-to-peer approach for SIP service extends this idea to serverless VoIP infrastructure and

proves to be promising for scalability and robustness as we describe in the next part of this thesis.

Part Il

Peer-to-peer IP Telephony

This part describes our peer-to-peer Internet telephony architecture using SIP. The goal is to
build a self-organizing, robust and scalable peer-to-peer network for Internet telephony using

open interoperable protocols.

66

67

Chapter 4

Overview of Peer-to-Peer Internet

Telephony using SIP

P2P systems inherently have high scalability because the capacity scales with user population,
and robustness and fault tolerance because there is no centralized server and the network self-
organizes itself. This is achieved at the cost of higher signaling latency for locating the resources
of interest in the P2P overlay network. Internet telephony can be made as an application of the
P2P architecture where the participants form a self-organizing P2P overlay network to locate and
communicate with other participants. We propose a P2P architecture for the Session Initiation
Protocol (SIP)-based IP telephony systems. Our P2P-SIP architecture supports basic user reg-
istration and call setup as well as advanced services such as offline message delivery, presence,
voice and video mails, and multi-party conferencing. We also provide an overview of practical

challenges for P2P-SIP such as firewall and NAT traversal, and discuss security.

4.1 Introduction

Existing Internet telephony client-server architecture based on IETF’s Session Initiation Protocol
(SIP [4, 3]) or ITU-T recommendation H.323 [99] typically employ a registration server for every
domain. The user agents (or IP phones) of the users in the domain register their IP addresses

with the server so that the other users can reach them. Scalability and reliability of such server-

68

based systems are achieved using traditional redundancy and failover methods as described in
Chapter 3. The majority of the system cost is in maintenance and configuration, typically by a
dedicated system administrator in the domain. It also means that quickly setting up the system in

a small environment (e.g., for emergency communications or at a conference) is not easy.

= client § E = node \®/(@)= peer

()

. server @ = super node
Client-server (Kazaa-like) peer-to—peer (Pure) peer-to—peer

Figure 4.1: Client-server vs peer-to-peer distributed systems

On the other hand, peer-to-peer (P2P) systems [12] are inherently scalable and reliable
because of the lack of a single point of failure. P2P systems, in the purest form, have no concept of
servers as shown in Fig. 4.1. All participants are peers and communicate in distributed, potentially
untrusted environment, to achieve a certain objective such as locating music files or users. Some
file transfer systems with central index server such as the old Napster are hybrid P2P systems.
However, for the purpose of this thesis we use the definitionghet P2P systems do not have
any centralized control. Accordingly, existing SIP and H.323-based systems that have centralized
user location lookup but end-to-end media transpornai®2P.

Peer-to-peer Internet telephony avoids the maintenance and configuration cost of the
server-based SIP architecture, and prevents catastrophic failures of server-based systems. There

are five major components that can be made peer-to-peer:

User location storage: User location information contains a list of current contact host names or
IP addresses of the user. In client-server SIPRESISTER message conveys the contact
location to the registrar. The user location binding information is updated by the user and

read by other prospective callers.

Configuration storage: A user may need to store some configuration information such as his

friends list.

69

Multimedia mail and offline storage: If the user is not available to pick up his phone call, the
call may get forwarded to voice mail. Such offline messages are written by the caller, and

read and deleted by the recipient.

Media relay discovery: Traversing NATs requires use of external media relays in the public In-
ternet. Such components may be distributed in the P2P network, and discovered as needed

by the clients that are in a network with a private address space.

PSTN gateway discovery:A number of VoIP gateways may be available in the Internet to reach
the same telephone subscriber. We need to select a gateway for making a call from IP to
PSTN using a selection criterion such as lower call cost, lower network latency on IP, less

number of hops, same PSTN or IP provider network, or same PSTN area code.

The first three components nicely fit in the hash table data structure, whereas the last two require
some notion of proximity. We use distributed hash table (DHT) as the P2P network in our Internet
telephony architecture.

There are two approaches to combine SIP and P2P: replace the storage of SIP data by a
P2P protocol$IP-using-P2p, and additionally, implement the P2P protocol itself using SIP mes-
saging P2P-over-SIP. In this part, we describe our P2P-SIP architecture using both approaches.
We analyze various design alternatives and present the detailed design of our P2P-over-SIP end-
point that uses Chord [22] as the underlying DHT and our SIP-using-P2P endpoint that uses
OpenDHT [27] as the external DHT. Chord or OpenDHT can be replaced by any other DHT in
our implementation without affecting the architecture as long as the DHT APIs are similar. In ad-
dition to the basic call setup and registration, we also outline advanced services such as “missed
call” notifications, presence and multi-party conferencing in P2P-SIP.

Our novel hybrid architecture allows both traditional SIP telephony as well as user lookup
on P2P network if the local domain does not have a SIP server. For P2P-over-SIP, we show that
SIP can be used to implement various DHT functions in P2P-SIP such as peer discovery, user
registration, node failure detection, user location and call setup by replacing DNS [28] with P2P
for the next hop lookup in SIP without changing the semantics of SIP messages.

We summarize the related work in Section 4.2. Section 4.3 lists the goals for a P2P

70

architecture for IP telephony. Section 4.4 compares the SIP-using-P2P and P2P-over-SIP archi-
tectures. The detailed design and evaluation of SIP-using-P2P and P2P-over-SIP architectures

are presented in Chapters 5 and 6, respectively.

4.2 Related Work

A number of studies have been done to analyze and understand different peer-to-peer (P2P) sys-
tems [12, 100]. P2P systems can be broadly classified into unstructured networks such as Kazaa
and Gnutella with no structure of how the nodes store files, and structured networks such as those
using a distributed hash table (DHT). The unstructured systems have concentrated on practical
problems such as NAT and firewall traversal but search is typically performed by flooding the re-
guest to all the neighboring peers. On the other hand, structured systems such as Chord [22, 23],
Content Addressable Network (CAN) [101] and Pastry [102] focus on optimizing the P2P over-
lay for lookup latency and join or leave maintenance cost [103] instead of using inefficient blind
search by flooding. DHTs are well suited for Internet telephony application because the user
contacts can be stored and looked up based on the user identifier as the hash key. NAT traversal
has not been explored in detail for structured P2P networks.

DHTSs provide distributed implementation of hash tables with two sets of high level API:
data accesgyet, put andremove) and servicejfin, leave andfind). Our peer-to-peer Internet
telephony architecture uses this API of the underlying DHT. Chord is a DHT that has a ring-based
topology where each node stores at mog{ V) entries (or state) in itinger tableto point to
other peers. Lookup is done @®(log(V)) time. Theiterative and recursivelookup styles in
Chord [22] directly map to theedirectandproxybehavior, respectively, in SIP. Research in DHT
is complementary to our work, since our architecture can use innovations and optimizations in

the underlying DHT.

4.2.1 Skype and Related Systems

Skype [21, 104] is a free P2P application based on Kazaa [18] architecture that allows making

calls over the Internet to any other Skype user. Skype has the following problems:

71

1. The protocol is proprietary unlike open standards such as SIP.

2. It provides a single service, making calls or sending instant messages, and not an architec-

ture for new services.

3. Most importantly, it has centralized elements for login authentication [104] which means

that if this element fails, the system may not work.

In a way, the Skype’s architecture is no different from the classical SIP telephony archi-
tecture, except that Skype’s Global Index Server assigsigpar-nodgor a new joining node.

The super-node, similar to the SIP registrar, proxy and presence server, maintains the presence
information for this node, and locates other users by communicating with other super-nodes. A
node that has enough capacity and availability can become a super-node. We believe that the
lookup is based on some variation of flooding, similar to Kazaa, instead of using the more effi-
cient DHT-based lookup.

The main advantage of Skype is that it implements the equivalent of STUN [105] and
TURN [106] servers in the node itself to handle NAT [107], unlike explicit server configura-
tion in existing SIP applications. We use the super-node and ordinary node distinction in our
architecture, too.

Others have developed various P2P multimedia communication applications such as flooding-
based text chat [108] and peer-to-peer collaboration systems [109, 110, 111] for small groups with

centralized components and limited scalability.

4.2.2 P2P-SIP Telephony

SIP-based IP telephony can be treated as a P2P system with static set of super-nodes (SIP servers)
where the lookup is based on DNS instead of a hash key. However, using a pure P2P architecture
instead of static set of SIP servers improves the reliability and allows the system to dynamically
adapt to node failures.

There are some recent P2P Internet telephony applications such as NimX [112] and Pee-

rio [113], but the architectures are not open. Earthlink’s experimental SIPshare [114] provides

72

SIP-based P2P file sharing. It uses SIP mess&@BSCRIBE and NOTIFY, to build and
maintain P2P overlay, file search and content transfer.

Our work is not related to the peer-to-peer third-party call control (3PCC [115]) work in
the SIP community, as the latter focuses on using theREPER message to do call control
directly between the participating user agents in the client-server SIP architecture, whereas our
work focuses on defining a P2P architecture for user location in SIP.

We published our initial architecture of P2P-SIP in 2004 [14]. Since then, P2P-SIP has
been discussed extensively in the IETF with a number of internet-drafts submitted on various
aspects of P2P-SIP [15, 16, 17]. In particular, [17] is similar to our P2P-over-SIP architecture [14,
116]. Our work on using an external DHT (SIP-using-P2P) is inspired by [16], but fills in details

to design and implement such system securely.

4.2.3 IP Telephony vs. File Sharing

There are three broad categories of P2P applications: file sharing, directory service and ren-
dezvous systems. A rendezvous or meeting system initiates communication with users or groups
of users and actively synchronizes different activities such as audio and video communications
and floor control. For example, a user can send alSMATE message to many potentially no-
madic users to invite them to a conference by creating one-to-many bindings. On the other hand,
a directory service provides a structured (e.g., hierarchical) repository of information on people or
resources [117]. Usually the directory information does not change frequently and slightly stale
information is also useful. However, user contact location (i.e., the IP address of her multimedia
rendezvous client) may change frequently. SIP is often labeled as a rendezvous system, but uses
server-based user lookup. Table 4.1 summarizes the similarity and differences among these types.
In particular, for rendezvous systems such as Internet conferencing, data storage is not an issue.
A single P2P-SIP node can handle many more requests than a file sharing node due to the low
data volume. Caching of location information is not useful because compared to the file access
pattern, which often follows the Zipf distribution [118], call access patterns are more uniformly
distributed. Moreover, most residential users are likely to get a new DHCP IP address every time

they connect to the Internet making the cache entry for this user location stale. The file sharing

73

Table 4.1: Different applications of P2P

Properties/Types File sharing directory rendezvous systems
(for user lookup)
Data storage Yes No No
Caching Yes Yes No
Delay sensitive No No Yes
Reliability Having multiple independent Only the intended
copies of data helps user must be found

and directory lookup-based systems can tolerate high lookup latency due to the fact that the user
does not need to wait for the file to download, and the actual file download time tends to be larger
than the lookup latency. On the other hand, an IP telephony caller actively waits for the phone
on the other side to ring. For file sharing applications, multiple almost-exact copies of a popular
file may be available (e.g., independently ripped by different peers). So node reliability does not
matter. On the other hand, in the case of IP telephony, we want to talk to the right person, and not

some similarly named person!

4.2.4 Robustness and Scalability

The primary advantage of P2P is robustness and scalability. Load sharing techniques can be
applied to DHT to provide better performance [119]. DNS-based [67, 68] or same IP address-

based [58] redundancy techniques are not good for P2P because they require significant main-
tenance on join and leave, are server-based or do not work when the nodes are distributed over
the Internet. Load sharing techniques such as those based on load or available capacity with a
central dispatcher do not work well for P2P systems due to heterogeneity of the peer nodes and
absence of central dispatcher [120]. Our work on integration of SIP and P2P also benefits from

the robustness and scalability research in P2P overlays.

74

4.3 Design Requirements

Based on the review of existing P2P systems such as Skype [21] and Chord [22], we propose the

following goals for our P2P-SIP telephony architecture.

Zero configuration: The system should be able to automatically configure itself [20], e.g., by
detecting NAT and firewall settings, discovering neighboring peers and performing initial

registration.

Heterogeneous nodesit should be able to adapt to available resources and distinguish between
peers with different capacity and availability constraints. This favors the distinction be-

tween nodes and super-nodes as in Kazaa.

Efficient lookup: Blind search based on flooding is inefficient [L00]. The system should use
an underlying DHT to optimize lookup. We choose Chord as the underlying DHT for our
P2P-over-SIP system because of its robustness and efficiency in the case of concurrent node

joins and leaves [103].

Multiple systems: Unlike a single global system such as Skype, it should support multiple sys-

tems, e.g., with multiple user identity providers, and interoperate among them.

Advanced services:It should support advanced telephony services such as offline voice messag-
ing, multi-party conferencing, call transfer and call forwarding as well as advanced Internet

services such as presence and instant messaging.

Interoperability: It should easily integrate with existing protocols and IP telephony infrastruc-

ture. We choose SIP [3] as the signaling protocol for interoperability.

Besides these explicit goals, there are some implicit scalability and robustness benefits in the P2P-
SIP architecture compared to the client-server SIP architecture. To incrementally build the P2P-

SIP architecture and to illustrate some design choices, we start from the server-based architecture.

75

Replicate Registrations vs Search on Call Setup

Going back to the simple call setup example of Fig. 1.1 (p. 3), the single server can become the
bottleneck for reliability. It can be improved by having multiple redundant servers. There are two

alternatives:
1. replicate all user location information to all the servers, as shown in Fig 4.2, or

2. search for the correct server holding the destination user location when a new incoming

call is received, as shown in Fig 4.3.

In the first case, although Fig. 4.2 shows multiple registrations, one can alternatively do database
replication to ensure consistent user records among multiple server databases in the cluster. In
the second case, either the caller retries all the servers in some order or the first contacted server

can do the search.

3 (1)REGISTER &) INVITE
(@) INVITE | \ . ‘(1)REGISTER

T L =y @\ ¢ T
= <

Figure 4.2: Design A: all servers store all userFigure 4.3: Design B: search for the server on
records on registration call setup

The disadvantage of the first approach is that it involves synchronization overhead for
each registration. There is a danger of stale user location record on some servers for a brief
interval after the update is done but before all the servers get the updated registration. With
registration refreshes every hour per user, this architecture may limit the total number of users
supported by the system as the synchronization traffic will soon become a bottleneck. In the
second case, the call setup latency is higher due to the sequential search steps. A parallel search
will increase the bandwidth requirement. Both the approaches of Fig. 4.2 and 4.3 tend to falil
when the number of servers is very large. The first approach and its variations are described in

Chapter 3.

76

What Nodes form the DHT?

We can achieve some combination of the two designs using a DHT such as Chord [22] so that the
registration is done on oni@(log N) servers instead of all th&¥ servers, and the search is done

for only O(log N) servers instead of all th&" servers. There can be three alternative designs

for using a DHT. On one extreme, we can limit the DHT to the server farm as shown in Fig. 4.4.
In this case, each client or phone connects to one of the servers. The servers implement a DHT
or a scalable distributed data structure [121] to locate the correct user record. The architecture
is still client-server. The client needs to discover at least one server, preferably lightly loaded,
and connect to it. On the other extreme (Fig. 4.5), a client also acts as a server and implement
a “pure” P2P overlay with all the other clients. The first option does not require modifying the
clients, but provides a scalable and reliable server farm architecture. But it still has some of the

server maintenance and configuration problems, unlike the second option.

Y-y
Clients
Figure 4.4. Figure 4.5: Option 2: Com- Figure 4.6: Option 3:
Option 1: Only plete P2P overlay Intermediate model

servers in DHT

One problem with the pure P2P overlay of all nodes is that not all nhodes have equal
capacity and availability. For example, a node with low bandwidth connection to the Internet or
those behind a firewall or NAT may not be able to fully function in a DHT because it may need
in-bound connections, significant bandwidth for forwarding P2P messages or significant memory
or CPU for maintaining DHT state. This problem can be solved by adopting an intermediate
design as shown in Fig. 4.6. Some of the nodes with high capacity (bandwidth, CPU, memory)
and availability (uptime, public IP address) are made super-nodes. Only the super-nodes form a

DHT. An ordinary node just connects to one of the available super-nodes, similar to Kazaa. This

77

is similar to the first option except that there is no distinction between clients and servers, and
any node can be a super-node or ordinary node, depending on the capacity and availability. Our
goal is to allow a P2P-SIP node to work in any of the above configurations.

The decision to become an ordinary node or a super node is usually local. When a node
starts up it will become an ordinary node. When the ordinary node detects enough capacity and
availability (public IP address and uptime), then it can become a super-node. A node with enough
capacity and availability may be forced to become a super-node when an existing super-node is
leaving or has reached the capacity limit. However, some nodes that are known to have enough
capacity and availability can immediately transition to super-node upon startup.

Having two levels, super-nodes and ordinary nodes, does not affect the search latency
bounds. The search latency is s@il(log V). However, it improves the performance in practice
because the DHT maintenance traffic is reduced if the nodes in the DHT are more stable.

The DHT is logically separate from the SIP operations as described next.

4.4 SIP-using-P2P and P2P-over-SIP

There are two architectures for P2P-SIP: SIP-using-P2P and P2P-over-SIP. These are fundamen-
tally similar because there is a clear separation between the DHT layer and the SIP layer as
shown in Fig. 4.7. The difference is that in P2P-over-SIP the P2P maintenance protocol is also

implemented using SIP. In this section, we compare the two architectures.

P2P-SIP node P2P-SIP node
regular SIP node P2P-SIP node P2P-SIP node regular SIP node((
sip SiP L] <SP sie_ | [
]S] 4] AR
DHT API lookup)
(put,get,remove)
P2P | SIP |
protocol
-~

 —— J (P2P

(e.g., OpenDHT) maintenance)

(a) SIP-using-P2P (b) P2P-over-SIP

Figure 4.7: Difference between SIP-using-P2P and P2P-over-SIP architectures

78

Transport and transaction overhead

In the SIP-using-P2P architecture, the system can use the optimizations and enhancements done
in the external DHT. For example, the message overhead can be reduced for the DHT mainte-
nance. However, the algorithmic overhead of number of messages remains the same and depends
on the particular DHT (e.g., Chord) in use.

Some SIP specific timers (e.g., retransmission timeout) may not be acceptable for some
DHT-based applications, especially if the timers translates to long DHT lookup and update la-

tency.

Choice of DHT

In the P2P-using-SIP architecture, the node needs to implement the particular DHT connector.
If multiple DHTs can be used then such implementations need to potentially implement all such
DHT connectors.

Today, there are multiple P2P protocols that do not interoprate and are not meant to inter-
operate (e.g., Kademlia, Chord, OpenDHT). Moreover, there is no single protocol or mechanism
to talk to any DHT. Thus, the SIP-over-P2P architecture gives us an opportunity to build such an

interface using SIP.

Feature reuse from SIP

Using SIP to build the DHT allows us to reuse the existing naming, routing, and security issues
from SIP. Moreover, the NAT and firewall traversal mechanisms in SIP can also be used to allow
a node behind a NAT to become a super-node. More work is heeded for this.

Secondly, SIP features such as redirect and proxy modes are readily reusable in a DHT's
iterative and recursive modes. Moreover, we can transparently reuse the existing SIP-based com-
ponents such as voicemail and conferencing servers without having them to understand the DHT

protocol to update the DHT indicating that they provide the service.

79

SIP specific protocol

If the DHT interface (lookup and update) is implemented using SIP, REGISTER andIN-

VITE methods), then any other application that wants to use the DHT needs to implement the SIP
protocol stack. This is an undesirable implementation complexity. However, for the use case of
Internet telephony, SIP-based DHT protocol is acceptable since the implementation will already

have a SIP stack.

Security

Using SIP for P2P maintenance burdens the SIP protocol with additional security issues of han-
dling malicious nodes. On the other hand, having a separate DHT simplifies the problem and in

some instances (such as managed OpenDHT) solves the problem.

Service model

The SIP-using-P2P architecture promotes free-riding of SIP endpoint on the external DHT. To
prevent this, the P2P-SIP nodes themselves should form the DHT and use a well-defined DHT
protocol to perform P2P-SIP operations. If the same node implements both SIP and DHT, it is
better to use a single protocol to simplify the implementation.

In summary, we need a clear separation between the SIP and DHT layers, but whether to
use SIP for the DHT maintenance is not yet clear. Either way the gain or loss is not much com-
pared to the advantages of using P2P-SIP versus centralized SIP. Once we have a clear interface
between the SIP and DHT layers, the exact protocol for the DHT maintenance can depend on the
deployment scenario, e.g., use SIP if all the nodes in the DHT are only P2P-SIP nodes, but use
something else if the DHT is an externally managed P2P network.

We describe details of the SIP-using-P2P architecture in the next chapter.

80

Chapter 5

SIP-using-P2P: Using an External DHT

as a SIP Location Service

5.1 Introduction

In this chapter, we describe the SIP-using-P2P architecture that uses an external P2P network for
storing SIP location data. Since the user agents and proxies use a shared P2P network, we need
to define the precise data format for such operations for interoperability, i.e., contacts updated
by one user agent are readable by another. For storing user contact locations, a distributed hash
table (DHT) is enough instead of a full P2P database with various SQL-style search commands.
We provide an example data format for such a DHT-based SIP location service, and guidelines
for implementing a SIP-using-P2P architecture with a managed external DHT based on our im-
plementation experience. We describe what DHT keys and values should be used and how to
sign and encrypt data for P2P-SIP using pseudo-code and examples. We also describe the P2P
presence and offline messaging. We do not propose any new algorithms but just apply existing al-
gorithms to P2P-SIP clients and proxies. The assumption is that the DHT nodes are not malicious
and correctly perform DHT operations. One example of an external DHT is OpenDHT [27, 122]
run on PlanetLab.

We provide background on the DHT API in Section 5.2. Then, we describe the logical

operations such as contact management and key storage in Section 5.4. Section 5.3 gives the

81

motivation for the service model. We explain the P2P-SIP deployment scenarios such as client
and proxy with pseudocode in Section 5.5. Section 5.7 presents some implementation issues.
Security consideration, advanced services and evaluation are presented in Sections 5.6, 5.8 and

5.9 respectively. We present our proposed XML-based data format in Appendix C.

H(v) SHA-1 ofv.

MD5(v) MD5 hash ofv.
{v}k v is encrypted using RSA private kdys or public keyK p.

[v]s,[v]* The subscript encryptsusing shared secretand the superscript decrypts
now the current timestamp.

—

) a small value for time, e.g., few seconds.
vlu concatenation of two parametersandu, possibly using a delimiter
(v, u) a tuple containing andw in that order, possibly stored in XML
al..] a list or vector variableg

v« u assignment from to v
/*..x/ isusedasacommentor remark similar to C

Table 5.1: Notations used in this chapter

5.2 Background: DHT API

The current interface of OpenDHT is described in [27], and summarized her@ulltiev, H(s), t)
method is used to store a valu@ssociated with a kely. The value expires after time-to-livély,

t, and can be removed before that time using the saciite value for the ke¥ can be retrieved
usingget(k). It returns a list of tuples(v, H(s), t), wheret is the remainingtl. The value for
the key,k, can be removed usimgmove(k, H(v), s, t), wheret is more than the remainirtg).

We use the existing interface as the basis to build P2P-SIP services. The interface allows
putting multiple values under the same key, i.e., bdth v;) and(k1,v2) can be stored. For
example, if Bob has many SIP phones, each phone can store its own contact IP address under
Bob’s key, and Alice’s phone can retrieve all these contacts when making a call. The interface
also allows putting the same value under the same key using different secrets. For example, both
(k1,v1,H(s1)) and(ky,v1, H(s2)) can be stored. The secret controls who can remove the value
associated with that key. Finally,pat with same key, value and secret, just updates the time-to-

live (ttl). Thettl can be mapped to tHexpires header in SIREGISTER request for expiry of

82

contact bindings.
An authenticated DHT interface [27] is required for protection against malicious users of

the DHT and to filteget results at the DHT node. This is a planned future work in OpenDHT.

5.3 Data and Service Models

In a server-based SIP architecture, the SIP server performs three logical operations: registration,
proxy (or redirect) and location service, as shown in Fig. 5.1. In addition to storing the contact
bindings, the location service includes service logic such as programmable service scripts. Real
implementations usually combine all these logical operations into a single server suclkiasiour

The protocol for accessing the location service is currently not standardized. A interoperable
location service access protocol allows decomposing the server implementation, and helps in

implementing P2P communication between two users without going through the SIP server.

s~ a
| REGISTER
ST B
| registrar >
\ 200 OK
.- LDAP
.-~ DNS(ENUM)
\ Service logic
L ocation may use who, finger,...
N service e Active badge
. ">~ Location sensors
Y
INVITE SIP INVITE
y = proxy >
\k)

Figure 5.1: Logical operations in a SIP server

There are two approaches to perform location service in P2P-SIP: any user directly up-

dates the DHT (called atata modél or forwards the request to the service node responsible for

83

that user keygervice model

stored data | stored registration

15=>192123 | [SIREGISTER [ob=>192123

EQ [2]lookup . a

%lg [1] put

b S

k=H(Bob) =12 | k=H(Bob) = 12 (1] join
1 (nodeid=12)
INVITE ‘

3 4]lookup(k

gl ; []7 P(k).-

L= 12) get() - Om

Alice ‘ N
! Alice
(a) Data model (b) Service model

Figure 5.2: Data model vs service model

Data Model

In this model the DHT is used as a shared data storage and the P2P-SIP operations are performed
by the user by directly updating the corresponding DHT data. For example, a user stores his
contact information and a caller stores the offline messages in the DHT. Similarly a P2P proxy
updates the data in the DHT on behalf of the user to provide transparent SIP service to non-P2P
users.

There are several limitations to this approach. For example, presence composition [123]
or programmable call routing [49] aret easy to implement. Moreover, the node needs to dis-
cover STUN and TURN servers anyway, but the service discovery does not work well with the
data model as we describe in Section 5.4. An alternative service model solves this problem as

described below.

Service Model

In this model, every P2P-SIP client or proxy joins the DHT for pi2g-sip service. Thep2p-sip
service includes SIP registrar, presence agent, offline message storage, and STUN and TURN

servers at the minimum.

84

When a user, Alice, wants to send a SIP message tosipayob@example.net, she
looks up the DHT to find the service node responsible for this user identifier, and sends SIP
request to that node. The service node acts as the proxy, registrar and presence server for all the
users for which it is responsible. The service node also does any safe programmable call handling
scripts [49] and presence composition [123].

For signed or encrypted data such as contact information, there are two approaches: either
the user sends the signed contacts in the SIP message or the user authorizes the service node
to sign the contacts on his behalf. The first approach requires changes in existing SIP clients,
whereas the second approach just uses a chain of certificates for verification of signed contacts.

The service model is more extensible than the data model. A P2P-SIP service node readily
interworks with any non-P2P clients who just happen to know one or more service node addresses.
The service mode readily extends to P2P-over-SIP architecture since only the service interface
(join andlookup) is used in the DHT, instead of the data interfaget(@andput). Note however
that the ReDIR interface of OpenDHT is in fact built on top of the data interface and resides purely
on the client side without any change in the DHT node implementation. In particular, a balanced
tree of service node identifiers is built and embedded on to the DHT. This prevents overloading a
single DHT node with all the service node identifiers, and optimizes the lookup cost to O(1) on
average. Thus, the service model is suitable for both P2P-over-SIP and SIP-using-P2P, though
we describe only SIP-using-P2P in this chapter.

The rest of the chapter describes only the data model. The service model can be built
using the underlying data model, because the service nodes also use the specified data format for

storage in the DHT.

5.4 Logical Operations

In this section, we identify the logical operations that can be made peer-to-peer for SIP-based In-
ternet telephony. The P2P-SIP design consists of logical operations such as key storage, location

service, NAT and firewall traversal, presence and offline message storage.

85

Location Service (Contact Management)

The DHT interface is used to store the user contact information. For example, Bob stores his
contacts under the DHT ke¥=H (sip:bob@example.net). This simple scheme allows multiple
users to register under the same SIP identifierpedy@example.net. So it is the responsibility

of P2P-SIP to verify the correct identity of the callee. Any public data such as user contacts on
the DHT should be signed by the owner so that others can verify its validity.

A P2P client signs the data on behalf of the user. The user should be able to use another
client and update his contact information. This mode allows the user to pick his own SIP identifier,
as long as he can prove that the identifier belongs to him via certificate(s). There is no dependency
on a SIP server. For example, if the user’s identifiebad@example.net, then the domain
example.net need not be a valid DNS name or need not have any associated SIP server.

A proxy in a P2P server farm (Fig. 4.4) authenticates the user, and then signs the data put
on the DHT. For example, when usaice@home.com registers with the P2P proxy of domain
home.com, the proxy signs her contacts using the signer identityamse.com. To allow other
proxies in the farm to change or remove the contacts, all proxié®wie.com should use the
same key for signing. This allows the user to transparently use any of the proxy in the farm.

The caller verifies that the contacts retrieved from the DHTblmb@example.net are
signed either by the user identiyppb@example.net, his domainexample.net, or a mutually

trusted certificate authority (CA) such as VeriSign.

Cryptographic Key Storage

To avoid any central server, the certificates, cryptographic keys, and any user configuration such
as “friends list” are also stored on the DHT. For example, Bob can store his certificate on the
DHT with k=H (certificate:bob@example.net). Multiple certificates of Bob from different CAs
can be put under the same DHT key. Since the information needs to be available to any potential
caller, the value is unencrypted. There is a danger of other malicious users polluting the DHT
values for this key. However, chained verification of the certificates can be used to retrieve the
correct certificate.

The user can also store his private configuration information such as his private key on the

86

DHT. Thus, he can share the same configuration among multiple clients. However, this sensitive
information must be stored encrypted on the DHT. For example, Bob can store his encrypted
private key withk=H (private:bob@example.net:secret). In addition to encrypting the private key
with a secret, the secret is also used by Bob to generate the DHT key, so that other malicious
users can not pollute the values for Since the user chosen secret password is much easier
to remember for the user than his private key, storing the encrypted private key on the DHT is

helpful.

Presence

Presence data of a user contains three pieces of information: (1) watcher list: the list of users
interested in knowing the presence status of this user, (2) friends list: the list of users whose
presence status is being watched by this user, and (3) watcher authorization list: the authorization
information about the users in the watcher list. The separation allows any one to update this user’s
watcher list, but only this user can update his friends and authorization lists.

Presence data is handled differently because, unlike the contact information, which needs
to be available to all the potential callers, the watcher list should be visible only to the pre-
sentity (the entity being watched). We use a generic DHT key format to store the subscription
request, i.e., watcher list for any event including presence. The DHT key is formatted as “sub-
scribeeventuser. For example, if Alice wants to subscribe to the presence status of Bob, she
puts her signed identity in Bob’s watcher list witke H (subscribe:presence:bob@example.net).
The value is encrypted using Bob’s public key so that only Bob can decrypt the watcher identity.
This mechanism also works for events other than presence.

Additionally, Alice can store her encrypted friends and authorization lists on the DHT
similar to the private key storage described earlier. If a new user Sam appears in the watcher
list, but is not present in the authorization list, then Alice is prompted to authorize or deny the

subscription by this new user, Sam. The result is stored in Alice’s watcher authorization list.

87

Offline Messages

When Alice calls Bob, and Bob is not registered or does not pick up the phone, Alice can store
an offline message (text or multimedia) under keyf (offline:bob@example.net). When Bob
comes back, he can retrieve his offline messages. The signing and encryption is similar to the
watcher list.

The difference between storage of watcher list (presence data) and offline message is that
the watcher list is periodically refreshed by the individual watchers, whereas the offline message

is usually removed by the recipient after retrieval.

NAT and Firewall Traversal

Although NAT and firewall traversal is not a generic P2P-SIP logical operations, we believe that
NAT and firewall traversal is required for successful deployment of P2P-SIP. Hence, we include
this as a basic P2P-SIP operation.

Inbound SIP messages to a client behind a NAT (Network Address Translator) require
connection reuse [124] and symmetric response routing [125]. Additionally, SIP phones use
mechanisms such as STUN (Simple Traversal of UDP through NAT [105]), TURN (Traversal
Using Relay NAT [106]) and ICE (Interactive Connectivity Establishment [107]), to allow me-
dia traversal through NATs and firewalls. This requires publically available STUN and TURN
servers. Our P2P-SIP node implements both STUN and TURN, and provides these services to
other users.

The existing DHT interface of OpenDHT [27] is not sufficient for such service discovery.
Consider the trivial approach where every STUN server stores its IP addresskridestun).

This requires modifying existing STUN servers, or some other centralized entity to register ex-
isting STUN servers’ IP addresses in the DHT. Secondly, this is not scalable because the DHT
node storing this keyk, will soon become overloaded with potentially millions of clients ad-
vertising as STUN servers. There are two alternatives: DHT’s service interface and hierarchical
location-based key. OpenDHT provides additional APl (ReDiR [27]) that addresses this scal-
ability problem to join and lookup for a service. Thus, a P2P-SIP node joins OpenDHT for

“stun” and “turn” services. Alternatively, if a node detects its location as “New York” and au-

88

tonomous system (AS) number of his service provider as 1234, it can store its IP address with
ki1=H(stun:geo:us.ny.newyork) arg=H (stun:as:1234). The use of AS number is useful be-
cause users in the same AS are likely to have good connectivity.

Next, we describe the details of P2P-SIP implementation to perform these logical opera-

tions such as contact management and key storage in different deployment scenarios.

5.5 Deployment Scenarios

As mentioned earlier, a P2P-SIP node can run in different scenarios such as the P2P client, proxy
or an adaptor for the existing SIP phones as shown in Fig. 5.3. In this section, we illustrate these

scenarios using pseudo-code and examples.

alice@home.com
P2P proxy

(s ppeer)

S””R"c. SIP SIPuser agents
home. com @

joe@home.com
adaptor L

(si ppeer) E[|
QS&“ | sam@office.com

NAT/ P2P cli i
SIP user agent . client behind NAT does
@ « firewall STUN server discovery on DHT
bell @phone.net

. Fl g
P2P client 7|EE 8 ML RP
(SIpg) A

bob@example.net Managed public DHT
(e.g., OpenDHT)

P2P client E

Figure 5.3: P2P-SIP: SIP-using-P2P architecture

5.5.1 P2P Client

Consider a user Bob who picks his identifistbob@example.net. For the first time use, he

also picks a secret="mypass”, and generates his RSA public and private kdys, (s). The

user's X.509 certificate [126], either self-signed or signed by some trusted authority, is put on
the DHT under the key H(certificate:bob@example.net) (see procedure 5.5.1). Other users can
get Bob's certificate and hence the public key using his identifier. Bob then encrypts his private

key usingmypass and puts it in the DHT key, H(private:bob@example.net:mypass). Using the

89

password in the DHT key prevents someone else from polluting the value under this DHT key.

Procedure5.5.1: on-startup(identifier;, password:s)
global: id=n, keys=Kp, Kg)
n—1
if k < get(H (privatei:s) failed then
(Kp,Kg) < generate RSA keys
put(H (certificatei), cert(Kp)) /* no H(s) = never remove */
put(H (privatei:s), [Kg]s)
I* [a], means encrypi using secreb */
else
Kg « [k]* I* [a]® = decrypta usingb */
Kp «— extractKey(get(H (certificatei)) verified with K'g

If Bob knows that his certificate issuer’s identity may not be known to the prospective
callers, he can also put his issuer’s certificate on the DHT, say under the key H(certificate:example.net),
if the issuer isexample.net. Any caller should acquire the chain of certificates until she can trust

the issuer.

Procedure5.5.2: put-contact(idi, contact:c, ttl: ¢, password:s)
global: private-keyK g of signern
e «— now +tand o «— {H(i|cle)} kg
v« (c,e,n,o) [* n=ifor P2P client */
r < H(i|c|e|s) I* password in put */
put(H (sipi),v, H(r),t)

Procedure5.5.3: remove-contact(id; contact:c, password:s)
global: keys{Kp, Kg) of signern
(v, H(r),t) < get(sipi) and (c,e, S,0) «— v
if S=nand{c}x, = H(i|c|e) then
v« (c,e,n, o) andr — H(i|c|e|s)
remove(H (sipi), H(v),r,t +)

Now, when Bob wants to register his contact location,spypob@192.1.2.3:5060, he
creates an RSA digital signature of this contact. He then creates a value containing his contact,

signer’s name (which is his own identifier in this case), and the signature. This value is put on

90

the DHT under the key H(sip:bob@example.net). One problem is that a malicious user can fetch
the contacts and signature of Bob, and when Bob’s registration expires, registers him again with
the old signed contact. Alternatively, the malicious user can use this signed contact to register for
some other user, thus messing up with other user’s call routing.

To prevent this problem, one can use the authenticated interface of OpenDHT [27]. We
use the similar signing procedure on top of the existing interface, until OpenDHT implements the
authenticated interface. The signed data includes an absolute expiry time of the registration, the
user’s identifier and the signer’s identifier in addition to the contacts. This will guarantee that the
signature can not be used for another user or after it expires. The pseudo-code to add and remove
a SIP contact is shown as procedures 5.5.2 and 5.5.3, respectively.

When the registration is refreshed, the planned authenticated interface [27] just updates
the TTL of the existing contact record. However, with the existing DHT interface, a registration
refresh creates a new record under the key instead of replacing, since the expiration and hence the
value is changed. Unless the old record is expiring soon, it is recommended that the old record
be explicitly removed to prevent storing dangling contact information in the DHT.

When Alice wants to call Bob, she looks gip:bob@example.net in the DHT. If
Alice knows Bob’s public key, from earlier communication, she can use that to verify Bob'’s
signature. Otherwise, she does another DHT lookup for the signer’s certificate with DHT key,
H(certificate:bob@example.net). If the certificate is found and issuer is trusted, the signature is
verified. Otherwise, the issuer’s certificate is looked up and the process repeats. Any unverified
contact is discarded (procedure 5.5.4). The existing DHT interface may return the same contact
multiple times with different expiration, if the old contacts were not removed by the user on regis-
tration refresh. After removing such duplicate entries, Alice can call one or more contact location
in sequence or parallel. After successfully talking to the right person, Alice remembers his public
key, or at least H(public-key), for future communication. This is like khewn_hosts file in
OpenSSL [126].

Bob may store certificates from multiple issuers in the DHT, in the hope that the caller
will recognize at least one of the issuers, and minimize the numimtafperations on the DHT.

This leads to a friend-to-friend trust model, where after successfully communicating with Bob,

91

Procedure5.5.4: get-contacts(id)
V[..] < get(H (sipz)) I* get all contacts */
ret < ()
forall winV do
(v,H(s),t) —wand (c,e,S,0) v
if e > now and S is ¢ or domain of; then
Kp « get-public-keyf) /* procedure 5.5.5 */
if o0 = {H (i|c|e)}k, then
appendv to ret
return ret

Procedure5.5.5: get-public-key(id)
if C' < get-certificatef) then
return public key fromC'

Alice may herself issue a certificate to Bob. The certificate indicates that Bob is the owner of the
private key corresponding to the signed public key of the certificate. Thus, other users who know
Alice can verify Bob's certificate.

The keys and certificates apet without any TTL indicating that they should not expire,
where as the TTL in the contact data is derived from the desired registration TTL, e.g., usually

one hour for SIREGISTER.

Procedure5.5.6: get-certificate(X.509 subject’'s common name:
Q.enqueue] /* queue of id’s to query */
L — {} I*list of certificates */
repeat
j « Q.dequeue()
for all cin get(H (certificatej)) do
L.appendf)
if c.issuer isnot knownand ¢ is not self-signedhen
(Q.enqueuef.issuer)
until @ is emptyor chainL is not verified
if L can be verified based on our trusted certificties
return certificate of; from L

92

5.5.2 P2P Proxy

When a SIP proxy wants to use the DHT as a location service, it performs similar operations as
the client. If there are multiple proxies in the server farm for donmaime.com, all of them use
the same set of secref)(public (K p) and private keysKs). The proxy can store the domain’s
RSA key and X.509 certificat&,, on the DHT (procedure 5.5.1), so that other proxies in the
farm can retrieve them. When signing a user contact, the signer’s identity ishsmhmcom.

The proxy also stores the appropriate authentication credentials for the users in the do-
main for authenticating SIREGISTER requests. For example, it may store Alice’s credentials
in DHT key H(digest:alice@home.com:mypass) as shown in procedure 5.5.7. Since most digest
authentication [127] implementations use MD5, procedure 5.5.7 stores the MD5 hash of the user

credentials, which is sufficient for digest authentication by the proxy.

Procedure5.5.7: signup-user(identifiet; passwordp)

global: domain=, secrets
h —MDb5(i:n:p) and put(digesti:s, [h]s)

When Alice registers with the proxy, the proxy authenticates her using the stored cre-
dentials. If the authentication succeeds, it updates the contacts using procedure 5.5.2 like a P2P
client (procedure 5.5.8). Similarly, procedure 5.5.3 is used to unregister. Since the contacts are
signed over the absolute expiration time, a RIPGISTER refresh causes one more contact to
be added in DHT. The proxy should then remove the old contact using the expiration value of the
old registration.

A proxy associated with a domaihpme.com, may require that all the incoming regis-
trations belong to its own domain, i.e., user identifier of the fé@home.com. This prevents
users having their contacts certified by unrelated third party, Bane.com proxy will not
certify the contacts dbob@example.net.

Alternatively, there can be hosted VoIP services where the proxy may allow any user
identifier as long as they signup for the service. In such cases, the service provider should verify
that the user is the owner of the identifier, e.g., by sending the signup confirmation on an email to

thatuser@domain identifier.

93

Procedure5.5.8: on-register(SIP messade}

global: domain=, secrets, keys=Kp, Kg)
let i be user id from request-URI d?
h «— get(digesti:s)
if R not authenticated using then
send responsé01 Unauthorized

realm isn, user isi
else
A < get-contactg] /* existing contacts */
let B «— be R.contactg* B := A if “Contact: *" */
for all (c,ttl:t) in B do
if £ > 0then
put-contact{, c, now + t, s) /* add new */
if c existsinA as ¢, e, S, o) then
v« (c,e,S,0)andr — H(i|c|e|s)
remové H (sipi), H(v),r,e — now + §) * old */
else
remove-contact(c, s) /* remove expired */

When the proxy receives a SINRVITE or other request, it looks up the existing contacts
for the destination user and proxies or redirects the call. The lookup is same as that done by P2P

clients (procedure 5.5.4).

5.5.3 P2P Client Adaptor

A SIP proxy may also be used aPaP client adaptorfor existing SIP phones that do not support
P2P-SIP. In that case, the P2P proxy (adaptor) runs along with the SIP phone in P2P clients
scenario, e.g., on the same host or within the same trusted network. The adaptor is logically part
of the user’s phone except that the functionality is split between the phone and adaptor.

It should not be necessary to keep two different passwords, omkgiest authentication
by the phone to the adaptor and the other by the adaptor to sign the contacts in DHT. To solve
this, the adaptor usdmsic authentication instead digest and learns the user’s password on the
fly on REGISTER. The adaptor behaves like a P2P client instead of a P2P proxy, but implements
SIP registrar and proxy. There are two common authentication mbdsi& anddigest. While

digest authentication never transfers the password, basic send passvbaiskég encoded text.

94

Although, basic authentication is not supported in SHsic over TLS is considered safe and
in some case better thaligest if the server stores the hashed user credentiadlifpest without
encryption. In procedure 5.5.8, the secseis obtained from the SIREGISTER request's
Authorization header,n is obtained from thd-rom header, and keysi(p, K¢) are obtained

using procedure 5.5.1.

5.6 Security and Trust

In general, DHT provides some protection against malicious nodes since they cannot subvert a
specific user identifier, but just the (random) user identifiers that happen to land on their node. In
our architecture, we assumed that the DHT is managed, nodes are trusted, and the system will
eject bad nodes with reasonably high probability.

Since anyone can pick any user identifier and store the contacts and keys for that identifier
on the free public DHT such as OpenDHT, there is some risk of talking to the wrong person. On
Unix systems, thé&nown_hosts file contains an encodesth fingerprint for each host that this
machine has contacted througsh. Similarly, the P2P-SIP node can store the fingerprint of the
user after initial communication. The fingerprint contains the user’s identity and public key. The
encrypted fingerprint can be put on the DHT for future verifications. If storing the public keys of
all the contacted users is not space efficient, SHA-1 is used (procedure 5.6.1). When making a
call, the user gets the public key from the DHT and verifies it with the hash stored in his mapping
(procedure 5.6.2). The fingerprints can be used as a “friends” list similar to those maintained in

popular IM clients such as Yahoo and MSN.

Procedure5.6.1: sign(identifieri, public-key: P)

global: private key=g of signer
put(H (i), {H(i|P)} k)

If the callee can certify his identifier, the caller can decide which one to trust based on the
certifying authority in the certificate chain stored on the DHT. For example, if two users signed up
for the identifielob@example.net, where the first is certified bgxample.net and the second

by free-service.com, the caller can pick the first one with high probability of being the correct

95

Procedure5.6.2: verify(identifier:;, public-key: P)

global: public key=Kp of signer
forall cin get(H(i)) do
if [c]k, = H(i|P) then
return true
return false

one.

Alternatively, the DHT may provide a service model in which every user first signs up
with the DHT providing the mapping between the identifier and his public key. The DHT guaran-
tees that there will be only one user with the given identifier at any time, and can verify his public
key when requested. This can be implemented using the existing OpenDHT interface as shown
in procedure 5.6.1 and 5.6.2, but requires a signer to sign every new user identifier. We assume
for scalability that the new identifiers are not created very often. Also, the signer verifies that the
user owns the identifier of the formser@domain, e.g., by requesting confirmation from that
email address as mentioned earlier.

One important difference between our approach and Skype [21] is in the use of central
servers. Skype uses centralized login server(s) to authenticate the user every time the client is
started. On the other hand, centralized certifying authority (CA) in our architecture are contacted
only for issuing the initial user or domain certificate. Subsequent user logins just use the DHT
without contacting the CA. Thus, this is more scalable than the central login server architecture.

In particular, the system can operate even if it is separated from the global Internet.

5.7 Implementation Issues

| have implemented the OpenDHT-based SIP contact management and key storage for P2P client
and adaptor modes in our P2P-SIP implementationp8HR[116]. Additionally, with the help

of Xiaotao Wu, | have implemented the SIP contact management, key storage, service advertise-
ment and discovery of STUN servers for NAT/firewall traversal, presence, and offline instance
message (IM) storage for the P2P client mode in Columbia SIP user ag@nf30]. The mod-

ule that connects to OpenDHT, is callgigpeer-connector, and can be replaced by other similar

96

DHT connectors in future.

The connector connects to the DHT nodes and usegehegout andremove interface
to perform P2P-SIP operations described in this chapter. In this section we describe some of the
implementation highlights of SFEER[116] andSIPc. The SIRPEERImMplementation is done
in C++, using Sun RPC as the OpenDHT interface [122], whe&Bs is in Tool Command
Language (Tcl), using XML-RPC as the OpenDHT interface. Both use OpenSSL [126] for cryp-
tographic routines. SIEERruns on Linux, but can be easily ported to other Unix platforms, and

also to Windows, using our portability librarieSIPc runs on both Unix and Windows platforms.

Redundant Connections

Our implementation periodically downloads the list of OpenDHT nodes from
http://www.opendht.org/servers.txt and connects to two or more nodes. It selects the
closest node, defined as the one to whichdbenect socket call takes the least time, from a
random subset of the nodes list. It periodically does null RPC calls to check liveness. The list of
N (< 8) closest nodes is maintained and periodically updated in the host cache.

Alternatively, we can use the DNS lookup fopendht.nyuld.net, which fetches the IP

addresses of any two OpenDHT nodes close to the client [122].

Data Format

In the current implementation of SHRER RSA keys are generated using 1024-bit modulus and
exponent as 65537. All certificates and RSA keys are currently stored in ASCII PEM (privacy
enhanced mail) format. Appendix C describes a better format based on the W3C’s recommenda-
tions.

In SIPPEER when a collection of data such as in a tuple or a list needs to be evaluated
in a scalar context, e.g., in procedure 5.5.2 for the tuples being put or hashed, the elements in the
tuple or list are concatenated together and delimited by nul character. To prevent the ambiguity if
the actual data has nul character, data may be base64 encoded before concatenating.

We propose an XML-based data format for interoperability among various P2P-SIP im-

plementations. The details are in Appendix C.

97

Data Size

One of the restrictions of OpenDHT is that the data size for epetyis limited to 1024 bytes.

The X.509 certificates sometimes exceed the limit. We wrote another interface layer to put larger

data, by splitting it into chunks of no more than 1024 bytes. The original DHT key stores the

index containing DHT keys to the individual chunks. Assuming, a 20-byte index (SHA1), a one

level indirection can store index of other 50 blocks of 1 kB each, thus giving a total of 50 kB of

data under a key. This is more that sufficient for storing user keys, contacts or presence data in

P2P-SIP.

We use some ugly hack as shown in procedure 5.7.1 and 5.7.2. If the first byte of the

data is the nul character, then the data is assumed to be index of other chunks separated by nul

characters.

Procedure5.7.1: put-large(k,v,H(s),t)
i=()
for all » chunk inv of size<= 1024 bytesdo
put(H (u),u, H(s),t) andi.append¢ul+H (u))
put(k,)

Procedure5.7.2: get-large(k)
listal..] < get(k)
forall (v, H(s),t)inado
if v.firstisnul then
w=()
for all 7 in v tokenized bynul do
if u < get(:) and H(u) = i then
w.append(u)

replacev by w in a

return a

Data Expiration

OpenDHT has a maximum TTL of one week for any data item. Although most user contacts

have much lower TTL, semi-permanent data such as certificates and RSA keys are limited to

98

a maximum of one week. To continue using the system the P2P clients and proxies should
periodically refresh the certificates and keys on the DHT. Alternatively, there can be service

nodes that walk the DHT and slowly refresh all the data.

Storing Time

All expirations and absolute times should be stored in GMT (Greenwich Mean Time) format,
because the data, such as contact information containing expiration may be read by a user in a

different timezone, e.g., contact information.

Fairness

OpenDHT allocates space quota fairly to different clients, identified by IP addresses. This is
achieved by defining a maximum time-to-live (one week) and size (1024 bytes) for stored data,
and rate limiting the put for data internally. This means a single proxy handling a lot of users and
storing a lot of data, may fail if the quota exceeds. Thus, the current OpenDHT fairness policy

favors the P2P client and adaptor modes.

Privacy

Another scenario for the centralized SIP proxy is to use the DHT just as a replacement for back-
end database. This is not a P2P mode, as lookup in this client-server mode is still done via DNS
and SIP [28]. In this case, the proxy encrypts the data stored on the public DHT, so that others
cannot use the data directly. Unlike a P2P proxy, in this mode the proxy works in the server-
based architecture. Our S*BER in this mode, encrypts all user contacts on the DHT using a
password. This mode does not require signing and verification of the user contacts, since the data

is encrypted and not visible to others in the DHT.

Authenticated Interface

Once the authenticated interface is implemented in OpenDHT, some of the procedures of P2P-
SIP can be simplified. In particular, the two sfat-remove process of register refresh (proce-

dure 5.5.8), will be done using a singlat. Also, aget request will return only the desired data

99

if the public key of the creator is specified. Similarly, certificate and key verification can specify

the public-key inget to avoid getting unnecessary data and becomes a single step process.
With the authenticated interface, a caller can invgkei, H (K p)) if she knowsH (K p)

from previous communication. It is desirable that the SIP phone sBiidS-), if known, of the

intended callee in the outgoing SIRVITE or other requests to the P2P proxy. For example, the

SIPrequest-URI can carry this as an URI parametigngerprint.

5.8 Advanced Services

In addition to the user contact locations and keys, configuration such as “friends” list and media
such as voicemails may be stored on the DHT. Any configuration needs to be accessed only by the
owner, hence can be encrypted. On the other hand, subscription requests and offline messages are
stored and retrieved by two different users, but not accessible by any other users. Thus, the P2P
client or proxy encrypts the signed subscription request or offline message using the recipient’s

public key so that only the recipient may read the request or message.

5.8.1 Offline Messages

The details for offline messages are shown in procedure 5.8.1 and 5.8.2. It allows the caller
to store a message and the recipient to read and delete the message. The mdssage,

email format and may have voice attachments. One must be careful in storing large values in
the DHT, since the data size may exceed 50 kB now. Using a Merkle tree [128] instead of the
one-level indirection we described earlier, solves the problem. The idea is to split a large data
into a number of smaller pieces, hash those pieces, and then iteratively combine and rehash the

resulting hashes in a tree-like fashion until a single root hash is created.

Procedure5.8.1: put-offline(callerd, Ags), callee:, Bp), M)
k «— H(offline:b) andt <+ 1 week
u <« (a,b,now+t,M)ando — {H(u)}aq
r « randomand v «— ([(u, o)}, {r}B,)
put(H (offline:b), v, H(H(r)),t I* secretis H(r) */

100

Procedure5.8.2: get-offline(usert(Bs)
for all (v,t) in get(offline:b) do
(w,p) «—vandr — {p}p; and ((a,b,e, M), o) — [w]"
Ap «—get-public-keyb)
if H(a,b,e, M) = {o}a, ande > now then
[* M is valid; read or replayM */
remove(H (offline:b), H(v), H(r),t + 0)

Alternatively, the caller may store the message(a, b, M), signed and encrypted under
any DHT key,H (v), and notify the recipient of the key via email, for example. This method is
preferred to avoid congesting the same DHT key for a given user. Another alternative is to build

a P2P event notification service to notify the recipient of offline messages when he logs in.

5.8.2 Presence

Subscription request for user’s presence is signed and encrypted similar to an offline message,
but stored in the DHT key, H(subscribe:presence:alice@home.com), and value as the subscriber’s

identity, e.g.bob@example.net, if Bob wants to watch Alice.

5.9 Evaluation

In this section, we compare the different deployment scenarios (client, proxy and adaptor) in SIP-
using-P2P architecture using the data model. We also describe the performance and reliability of

using OpenDHT as an external DHT for P2P-SIP.

Comparison of Deployment Architectures

We consider the number and size of lookups and updates in a typical message flow for different
deployment architectures. In our implementation, the lookups for certificates and keys are cached,
hence reducing the number of actual DHT lookups for registration refreshes, and outgoing calls
to the same destination.

A P2P client typically performs ongut operation for every registration refresh, whereas

a P2P proxy does orget, put andremove on an incoming SIREGISTER. Additionally, new

101

registrations for which there is no cache entry, causegehor getting the user’s private key in

a P2P client, and for getting the usedigest credentials in a P2P proxy. In OpenSSL, the RSA
private key includes the public key, so there is no need to explicitly fetch the public key once
the private key is known on startup of a P2P client. For unregistration, the client and server both
make ongemove call, and the server additionally makeget call to get the list of contacts. For
signup or first time registration of the user identifier, a P2P client invokes two addipah&br

RSA keys, whereas a P2P proxy invokes one additipaafor the user'sligest credentials.

An outgoing call typically involves onget for the contacts and one for the signer’s public
key, assuming that there is no intentional collision of the signer’s public key. The signer is either
the callee or the domain of the callee’s identifier.

If certificates are used and assuming that a user uploads his own certificate as well as that
of the domain he belongs to, and a proxy uploads the domain certificate, then the user signup
typically takes twaputs by the client. The proxy uploads its certificate once for its domain. An
outgoing call to a unknown callee but known domain may involve one @sdtdor the callee
certificate, and to an unknown domain may involve two exfed for both user and domain
certificates. In OpenDHT, a singiget andput for a certificate resolves to three calls because the
data size typically exceeds the limit of 1024 bytes.

Suppose the user’s login rate is Poisson distributed with mdagins per second, and
he remains online with duration that is exponentially distributed with mean intgfyakeconds.
Suppose the registration refreshes are periodically done gveegonds, and the maximum TTL
allowed in the DHT i¢,,,, Seconds. Suppose, out of the total call rate oélls per second by
the user agent, a fractighof the calls is to unknown user and domains with user certificates and
« of the calls to unknown users with domain certificates plus unknown users but known domain
with user certificates. Suppose, the user has on an averegetacts. The rate of DHT calls by

a P2P client and proxy can be given as follows:

102

client proxy
get A+ kc(l+2a+28) 3X+ S(ton,tr) +ke(l+2(a+)
put A+ S(ton, tr) + 8/tmax A+ Stons tr) + 4/tmaz
rm A 22 + S(ton, tr)

where S(ton, tr) =1+ > 07 P(ton > nt,) = Z?:O{e*"t"/tv"}

Typically, t,... is very large (one week for OpenDHT) atyds one hour in SIP. A mobile
user with highA generates three times maget and two times moreemove for registrations
and unregistrations when using a P2P proxy instead of a client. This is because a proxy needs
to return a list of current contacts REGISTER response, antemove the old contacts after
put, whereas a client does not generate responseatsdust before the old contact expires for
registration refreshes, hence it does not have to remove the old contact. An office phone which
remains always on typically generates an exted and remove per hour when using a proxy
instead of a client since a registration refresh causes an getrandremove by a proxy. The

rate of DHT calls by an adaptor is similar to that by a proxy.

Performance Evaluation

The maximum request rate is determined by both the number of DHT calls and the data size.
Most data sizes are small and less than 1 KB in OpenDHT. Moreover, the network bandwidth
also depends on the particular DHT algorithm in use.

If authenticated interfaces are implemented in OpenDHT, theremmve needs to be
done for SIP registration by a P2P proxy. However, major benefit of authenticated interfaces is in
get bandwidth since the DHT will not return unnecessary or polluted data.

The OpenDHT itself gives a low average latency of few hundred milliseconds, and 95th
percentile latency of less than 10 seconds [27]. We found similar performance in our quick test of
OpenDHT latency. This is reasonable for a SIP call setup. However, doing DHT lookup for every
instant message (IM) is not desirable. Instead, only the first IM in the session invokeg@&HT

for remote contact information, and subsequent IMs reuse the cached value. Similarly, the IM

103

sent to the user in friends list can reuse the contact address of the user obtained on last presence
notification.

When the client starts up, it gets the presence information of all the users in the friends
list, because this user is more likely to call or send IM to one of the users in his friends list.
The actual performance depends on three important parameters: how often the user changes his
contact information, how many friends the user has in his friends list, and how often the user

sends a message or call request to another user who is not in his friends list.

Reliability

OpenDHT does data replication for reliability. This means the P2P-SIP node itself does not have
to do any replication. The redundant connection (Section 5.7) takes care of fail-over to the next
DHT node if the closest DHT node dies. The service discovery module for locating STUN servers
also fails over to the next serving node if the first looked up server does not respond.

Thus, the SIP-using-P2P architecture provides secure, scalable and robust P2P-SIP with

tolerable call setup latency. We describe the P2P-over-SIP architecture in the next chapter.

104

Chapter 6

P2P-over-SIP: DHT Maintenance using
SIP

6.1 Introduction

Unlike in SIP-using-P2P, the P2P-over-SIP architecture implements the underlying DHT using
SIP. Our P2P-over-SIP architecture supports basic user registration, lookup and call setup as well
as advanced services such as offline message delivery, voice/video mails and multi-party confer-
encing. It uses SIP as the underlying protocol so that it interoperates with existing infrastructure
such as SIP-PSTN gateways and server-based IP PBX such as Asterix and FWD (Free World
Dialup).

A P2P-SIP node can also act as an adaptor that allows existing or new SIP user agents to
connect to the P2P-SIP network without modifying the user agent. For example, it can run on the
same host as the PC-based SIP user agent and act as the outbound proxy for the SIP user agent. It
can also act as a standalone SIP user agent, proxy or registration server. We have implemented a
command line user interface based P2P-SIP noder &R using the algorithms described here.

We describe the design and implementation of BHER for basic user registration and
call setup using pseudo-code and example messages. We also describe how to extend it for ad-
vanced services such as presence and event notifications, firewall and NAT traversal and interdo-

main operations. The modular design allows reusable and replaceable components. For example,

105

Chord could be replaced by another distributed hash table (DHT) without affecting the rest of the
implementation. The open architecture allows installing new services without affecting the ex-
isting design. For example, a new voice mail module can be added to the existing node. Finally,
we discuss the security aspects and advanced services such as firewall and NAT traversal in the
context of P2P-SIP.

We do not propose any change in SIP. It uses existing SIP concepts such as proxy, reg-
istrar and user agent, and messages sudRESGISTER to create a P2P-SIP network among
the participanting nodes. The P2P-SIP node uses existing SIP headers Jo¢ckCastact and
Reason to convey various Chord parameters.

Section 6.2 presents various design alternatives. Section 6.3 gives an overview of the
P2P-SIP architecture, user registration and call setup. Section 6.4 describes the detailed design
of the DHT using pseudo code and example messages. Section 6.5 and 6.6 describe the user
registration and call setup in P2P-SIP. Section 6.7 provides guidelines to extend P2P-SIP for
advanced services. Section 6.9 analyzes various security threats and their proposed solutions.
Section 6.10 predicts performance of the system in terms of scalability, reliability and call setup

latency.

6.2 Background and Design Alternatives

Background on Chord: a Structured P2P Algorithm

Structured P2P algorithms such as Chord [22] focus on optimizing the P2P overlay for lookup
latency and join or leave maintenance cost [103] instead of using inefficient blind search by
flooding. We use Chord as the underlying distributed hash table (DHT) in our implementation
for lookup. Chord has a ring-based topology where each node stores aiog(d$} entries (or
state) in itsfinger table which is like an application level routing table, to point to other peers.
Lookup is done irO(log(N)) time.

Consider an example Chord network with six bit identifiers as shown in Fig. 6.1. The
identifier range is [0-63]. The node identifier is hash of the node’s IP address. The data key is

also hashed to a key identifier in the identifier range. Chord suggests using SHA1 as the hash

106

o 6 L,

distanoi aTn n’e/xt node (and | P address)

1 [11] 13

N

12| 13
14| 15
18| 18
10116126 | 26

32|42| 44

® N

51

50

Find(32):
next = 26

44 22

24

40 . = peer node

39 26

36 28
33 30

Figure 6.1: Example Chord network

function that generates 160-bit identifiers. The nodes arrange themselves in the identifier circle
(or ring) as shown. A node with identifié¥;; and predecessav,,. is responsible for storing
all the keys in the range\,,..q,V;q]. For example, node 22 should store keys 20, 21 and 22 in
this example.

Every node maintains a finger tablelog(/N) = 6 entries pointing to the next-hop node
location at distance’~! (for i=1,2,..,6) from this node identifier. Node 10’s finger table is shown
in Fig. 6.1. The finger table contains first nodes with identifiers greater than or equal to 11, 12,
14, 18, 26, 42 for index i=1,2,...,6, respectively. If the node with identifier 11 does not exist then
the next available node identifier (13 in this case) is used. The nodes in the finger table are 13,
13, 15, 18, 26, 44, respectively, because nodes with identifiers 11, 12, 14, 42, 43 are not present
in the example network. The “next node” column contains both the node identifier and the IP
address of the next hop node.

When node 10 wants tiind key 32, it looks up the finger table to find the closest match
as start value of 26, and sends the query to node 26. Similarly, node 26 in turn sends it to node
30, which finally sends it to node 33. Node 33 is the successor node for the identifier 32 in the
network, hence is responsible for storing information about key 32. At each step the distance to
the destination is reduced by approximately half, resultin@ {fog(V)) lookup latency, if there
are N nodes in the ring.

The rest of the architecture describes the mapping between the Chord algorithm and SIP

107

message processing. We evaluate different design alternatives for user lookup and registration to

meet P2P-SIP goals.

Why is node identifier independent of user identifier?

In our first attempt to design P2P-SIP, we derived node identifier using the hash of user identi-
fier. Users registered their identifiers with the system so that other users could locate them. As
shown in Fig. 6.2 when the user started her client application and indicated her “screen name”
asalice@office.comthe node computed the DHT key (e.g., using SHA1 as in Chord) from the
name and joined the DHT using this user key as the node key. Alice’s key was 42 in the example.
When another user, say Bob, wanted to locate Alice, Bob's node used the same hash function to
calculate the same key, 42, for Alice, and invokedfthd(42) = method on the DHT. The DHT

algorithm located node 42 and then, Bob’s application could talk to Alice’s application.

alice@office.com=42
42

REGISTER alice@office.te

12
bob@home.com=12

sam@work.org=24

Figure 6.2:No REGISTER Figure 6.3:with REGISTER

This scheme could not support offline messages or multiple clients registered for the same
SIP user identitysip:alice@home.comFor example, if Alice is not present then Bob cannot
leave a message for her. On the other hand, in Fig. 6.3, the node key and user key are computed
separately. The SIREGISTER message is used for inserting a node as well as registering a user

identity in the DHT. Each node in the DHT acts as a registrar. When Alice starts her application,

108

the node uses its IP address to compute the node key, 14. In other DHT algorithms such as
CAN [101], it may randomly choose a key. It then inserts itself into the DHT based on its node
key by sending one or more SFEGISTER messages to its prospective neighbors in the DHT.
The node then computes the key on Alice’s name and sends REBBSTER message to the
other node, with key 58, that is responsible for the user key 42. For example, Alice’s node has
a node key of 14 where as Alice’s user key is 42, so the node 14 scREGESTER message
for key 42. The node 58 that is responsible for key 42 accepts the registration and maintains the
state that user Alice can be found at node 14’s IP address. Even if Alice’s application (node 14) is
not available, Bob can still leave offline message with node 58 that can later be delivered to Alice
when she comes online. Similarly, there can be multiple registrations for the same user key 42, if
Alice has multiple active clients.

As an alternative to the SIREGISTER message, one can use the 8IBPBLISH mes-
sage to publish the user location and presence status [129]. Both the messages are handled in the

similar way for the purpose of this chapter, so the choice does not affect the overall architecture.

6.3 Architecture Overview

User interface (buddy list, etc.)

) Signin,
Signout, | g buddi&sI M, Call
On Start OnR transfer Y Y Media path
n Startu ;
P User location

\ Leave
Discover Join F'ndl Py
\ | Audiodevices |

DHT (Chord) REGISTER, | !
peer found/ ; INVITE, |
detectNAT | UIICASIREG REGISTER | MESSAGE | Codecs
r | |

| RTP/RTCP [

ICE

Socket interface

Figure 6.4: Block diagram of a P2P-SIP node

Fig. 6.4 shows the block diagram of the different components in the P2P-SIP node. When

the node starts up and the user signs-in with her identifierdigmver module is activated to

109

initiate NAT and firewall detection, peer discovery and SIP registration. MulticasREIBIS-
TER request, cached peer addresses from last boot cycle and pre-configured bootstrap addresses
are used to discover an initial set of nodes. Tker interface module keeps track of the user’s
“friends list” and invokes theiser location module to locate these friends. User location is ob-
tained using th&IP module or, if this node is a super-node, DET module. Typically a node
with public IP address, sufficient bandwidth and uptime is made a super-node to form the DHT.
In our implementation, we make a node with public IP address a super-node.

The node architecture can be logically divided into two parts: DHT maintenance and user
account maintenance. TBEHT module maintains the peer information (e.g., Chiander tablg
and performs DHT operations suchfaw, join andleave. It provides the underlying topology
for communication. The user account maintenance module deals with maintaining local user

accounts as well as storing remote user registrations. It acts as a SIP registrar and proxy servetr.

6.3.1 SIP Layer

SIP is used as the underlying protocol for maintaining the DHT, locating another user, registering
the user, call setup and instant messaging. The(REBISTER message is used in two contexts

by the node: query and update. ICantact header is present in the message, then it is an update
request indicating that the sender wants to update the bindings for the node identifiefin the
header. Otherwise, it is a query request, where the sender is requesting to@entaet infor-
mation of the node identifier in thE header. Initial discovery uses tREGISTER message for

qguery. This behavior is semantically same as that defined by SIP.

One can argue that the SBPTIONS message should be used in place offfeG-

ISTER message. Since the SCTPTIONS message semantics is to query the media
sessions and supported methods of the recipient end point, but not to retrieve the
contact locations of the recipient, we do not @RTIONS. Moreover, the multicast

SIP registration semantics can also be used for discovery of the initial peer node.

Once the user’s contact location lookup is done, the call setup or instant messages can
be sent directly to the user’s phone. REGISTER refresh andDPTIONS messages are used

to detect node failure. When a super-node shuts down, the registrations are transferred to other

110

super-nodes in the DHT as appropriate. Other SIP functions such as third-party-call control and
call-transfer can be implemented in the similar way. The media path (audio device, codecs and
transport) is independent of the P2P-SIP operation, except that it uses the ICE module in Fig 6.4.
Node and user identifiers are represented using SIP URIs. For example, if a node is
listening at transport address 192.1.2.3:8054 for SIP messages and the Chord’s hash function
computes the key H(192.1.2.3) as 17, then the node’s URI becsimdsd @192.1.2.3:8054.
A node identifier or key (e.g., 10) in the domairample.com, whose transport address is not
known is represented afp:10@example.com. This is needed, for example, to lookup node ad-
dress for node identifier 10 in the DHT, because the node IP address is not already known. Every
local P2P-SIP network is represented using a DNS domain name, whexaagle.invalid is
used for the key that has no domain, e.g., in the global DHT. Such node identifiers are useful for
DHT maintenance, e.g., to query another node’s transport address to populate this node’s finger
table entries.
User Alice can register her identifier agp:alice@example.com. The user’s email is

used as the identifier so that she can use the authentication mechanism described in Section 6.9.

6.3.2 Node Startup and Peer Discovery

In practice, the client node can try to use both P2P overlay and the SIP-based user lookup. When
the node starts up and the user enters her identifier suadltagexample.conthe node finds the
possible SIP server addresses using DNS [28] and sendsRERHIISTER message as shown in
Fig. 6.5. If the SIP registration succeeds, the node can be reachable using standard SIP mechanism
in addition to the P2P mechanism.

The node also tries to discover possible super-nodes so that it can join the P2P overlay.
When the node discovers any one other node in Chord, it can join the Chord DHT based on the

node key. A number of approaches can be re-used from various existing proposals as follows:

e Multicast with very small time-to-live (TTL) value (e.g., within a LAN) can be used to
discover local peers and get more super-node information from these peers. SIP defines
multicast registration address for IPv4 as 224.0.1.75. Multicast-based node discovery may

result in many disconnected DHT components. To prevent this, only existing DHT nodes

111

Ordinary node startup

user id =
ali ce@home.com

SIPreglstranon Peerdlscoverythread
thread

y
send REGISTER
to last seen peers

vfalled redirect
Multicast response
ttl=1 (no loop)
send REGISTER failed
Y
use bootstrap
Success failed peers
Y Y
start refresh | | Start retry
timer timer \
Y
Start refresh

timer expired timer expired timer

timer expired
Figure 6.5: Node startup and outgoing registration
(super-nodes) should respond to multicast discovery requests (i.e., ordinary nodes should

not get discovered). Limited multicast on wide-area means the system cannot rely on mul-

ticast alone.
e Some sort of service discovery can be used, e.g., SLP, to locate super-nodes [130].

e If the peer addresses are cached, then more super-node information can be obtained from
those peers assuming the peers are still active and have not changed their locations since

last seen.

112

e As the last resort, some pre-configured bootstrap peers can be obtained from DNS query to
a well known domain, e.gsippeer.netor can be pre-configured in the application software

(e.g., as implemented in Skype).

The super-node information is cached for subsequent registrations when the user logs out and
logs in again. Hence, the discovery is going to be a one time affair for most installations unless

all the cached super-nodes are found to have moved or disappeared.

6.3.3 User Registration

Once a node detects a set of super-nodes, it picks one and senBEGIBTER messages to
register with it. TheTo andFrom headers in the message correspond to the local user identifier,
e.g., sip:alice@home.com The Request-URI corresponds to the super-node’s address, e.g.,
sip:192.2.1.2:5060

An ordinary node is just a SIP user agent, whereas a super-node serves as the SIP user
agent as well as registrar for other nodes. A super-node send®BEBSTER messages on
behalf of the attached nodes to the destination super-nodes in the DHT. It also joins the DHT
with other super-nodes and actively takes part in user location lookup.

Ordinary nodes periodically seiREGISTER refreshes as keepalive messages to detect
any super-node failures. Super-nodes can periodically send th@SITFONS message among
themselves or to the attached nodes to monitor liveness. The refresh interval can be adjusted
based on the system load. The keepaTIONS message is not sent to a node if some other
message was exchanged with that node in the last keepalive interval.

When an ordinary node receivesREGISTER message either for user registration or
node registration, it sends the SIP redirect response to redirect the sender to its own super-nodes
as shown in Fig. 6.6. When a super-node receiME&ISTER message from an ordinary node
and the sender is part of its attached nodes, the super-node proxies the message to the appropriate
nodes in the DHT as per user key of the sender. If the sender is not part of this super-node’s
attached nodes, it can decide either to accept the new node or reject it. If it wants to reject it, it
redirects it to some other super nodes which may be less loaded than this super-node. The sender

does loop detection to avoid getting into redirection loop.

113

Incoming REGISTER Invoke DHT register
(on transition from node
to supernode or when n

attached peer is accep

recvd on
multicast?

target is local node Locate correct
DHT node for

user key

remote nod
no

super—node
Y
Send REGISTEI’T{’

refresh new DHT node start refresh time

Y Y

accept ang] Timer expires
resettimer 7 ched peer update internal or remote
P DHT info node fails

= N

Y

add this peer to
attached peers list.

no.
(decided to

| not accepy Invoke DHT register
redirect to my . i
super—nodes’ unicast Redirect to the
addresses super—node thgt
should have this
Jf— user key.

Figure 6.6: Incoming registration

6.3.4 Node Shutdown or Failure

When an ordinary node leaves the system it can jJufRRHEGISTER with the attached super-node

which in turn can propagate the un-registration to the corresponding nodes holding this node’s
key. A failure of an ordinary node does not affect the rest of the system. In any case, the attached
super-node can detect the failure by the absence of periodic refresh. It can further confirm the

failure by sending a®@PTIONS message to the failed node to see if there is any response.

114

Node 39
fails

32 Node 16 can ()
still locate 16
node 32

Figure 6.7: Failure of a super-node in the DHT

When a super-node leaves, the state needs to be updated in the attached ordinary nodes
as well as the other super-nodes in the DHT that are neighbors of this node. If a super-node is
shutting down, it gracefully transfers the user records that it holds to the other nodes in the P2P
overlay. This guarantees that others users can locate the record when the DHT node is gracefully
shutting down. It sends a SIREGISTER message to the DHT nodes that will be holding the
user records after this node leaves. It does not need to inform the attached ordinary nodes. The
attached nodes will detect the failure on the next registration refresh and try to discover and
connect to other super-node that holds the record.

When a super-node fails abnormally (Fig. 6.7), the neighboring DHT nodes detect the
failure by detecting failed keepalive message and adjust the DHT to accommodate for the keys
that were held by the failed nodes. However, the mapping is lost unless the originating node
sendsREGISTER refresh. The(REGISTER refresh goes to the new super-node that handles the
corresponding key in the DHT. This make some services such as offline messaging temporarily
unavailable (Section 6.7).

To distinguish a SIP-only application with a P2P-SIP application, we can usgughe
ported header in th®©PTIONS or REGISTER message.

115

6.3.5 User Location and Call Setup

User can watch the presence status of other users by specifying their identities in his “friends”
list. If the user already has a friends list, the node tries to locate those friends on startup. Initially
we assume that the friends list is stored in the local computer for this user. Later we extend this
in Section 6.7 to store any user information (including the friends list) on the P2P network to
provide device independence to the user. The IP addresses of all the friends are cached for future
use.

The only important step for the purpose of this chapter is locating the node that has the
user location record for the destination user. Once the call setup is complete, media packets are
sent end-to-end. A node sends the SIBSSAGE or INVITE message for instant message or
multimedia call, respectively. If the destination address is cached because, for example, this node
made a recent call or instant message to that destination, then the cached address is used. If the
client at the cached IP address does not respond (because there is no client running or the client

is not a P2P-SIP node), then the cache entry is removed and discovery is restarted.

home.com

192.0.2.2

SIP path alice@home.cam

sam@home.com

O
16 henry@office.com
Figure 6.8: User location and call setup
DNS-based lookup [28] and P2P lookup is done simultaneously as shown in Fig. 6.8. For

P2P lookup, an ordinary node senddN&ITE or MESSAGE to the attached super node, which

acts as a SIP proxy. A super-node locates the destination node holding the key in the underlying

116

DHT. Once the mapping is obtained, it can either proxy or redirect the message. Redirection is
the preferred way as it takes the super-node out of the call loop. However, in some cases such as
those involving firewall and NAT, proxy is the only option as we show in Section 6.7.6.

Other SIP functions such as third-party-call control and call-transfer are implemented in
the similar way. For example, the SREFER message for call transfer is routed similar to
INVITE on the P2P overlay. Most of the messages are handled end-to-end directly by the com-
municating nodes without going over the P2P overlay. Only dialog initiating messages such as
INVITE or SUBSCRIBE, or out-of-dialog messages such as fMESSAGE for instant mes-

sages need to use the P2P lookup service.

6.4 Details of the DHT Module

The DHT module takes care of implementing three abstract methtmin; Leave and Find

using SIP. When the node starts up it needs to discover at least one other node in the DHT. Then,
it joins the DHT through that node. When the node is gracefully shutting down, it leaves the
DHT. Higher layer application such as user account maintenance module usésdheethod

to locate the next hop node to send user registration or proxy other SIP messages for call setup or
instant messaging.

This Section describes the details of the DHT module implementation. In particular, we
explain the mapping of the Chord algorithm to SIP messages and processing. We illustrate with
simple examples using 5-bit identifiers. We represent the Bddddentifier asN,4, transport
address (IP and port number) 544, IP address a%/;,, predecessor a¥/,,.q, SUCCESSOr as
Nauee, finger table entry of this node for indéxas ¢, and corresponding start, end and next hop

node URI asl

start?

Fi ,andF! . respectively. The successor list is representel g%, and

ode

it successor a&* . Note thatV!

succ* succ

is same asV,,... Finger table entry for another nodé

is denoted agV :: F*. Note thatNy,.. is same asV :: I, .
The pseudo code to set the finger table entry and to query the closest preceding finger are

described in procedures 6.4.1 and 6.4.2, respectively If. is set tonode, then all subsequent

F]

node

are also set taode as long asF’, ., is beforenode in the Chord ring. To find the closest

preceding finger for a givekey, the finger table is scanned in the reverse order and the alive node

117

Procedure6.4.1: N .set-fingersi(start indexnode:node location)

[* Set the finger table entries starting at/
/* Returns the index of the last finger entry that gets set. */
Ffmde < node

while i <m —1do

it Figir, € [Nia, Floq,] then
F’L+1 ~ FrZLode
else
return ¢
1<=1+1
return ¢

with highest identifier preceding theey is returned. Lookup is also done in the successor list,
Nlist

succ*

Procedure6.4.2: N .closest-preceding-fingek4y)

* Find the closest preceding finger for tihey */
node <= Nyq
for i — m down tol do
if £ . isaliveand F!_,.
node < Ff;ode
break
for all sin N%t do
if sis aliveand s € (N;q4, node) then
node < s
break

return node

€ (Nyq, key) then

6.4.1 Initialization

When the node starts up, it allocates any available port for receiving SIP messages on TCP and
UDP. Our SIPEERapplication can accepp command line option to configure a fixed receiving

port number, instead of using any available port. Typically, there are three listening threads, (1)
for TCP on INADDRANY interface and some pot, (2) for UDP unicast on INADDRANY
interface and same papt and (3) for UDP multicast on address 224.0.1.75 and port 5060. To

allow receiving both multicast and unicast packets on pogad 5060, threads (2) and (3) bind

118

to multicast as well as unicast addresses i 5060, then thread (3) is not created. The UDP
sockets are bound non-exclusively on port 5060, so that multiple instances of the node can run
on the same host.

The node calculates its node identifier using the IP address of the local interface. For
testing purpose we use both IP and port, so that we can start nodes with different node identifiers
on the same host. However, in practice only the IP address should be used. This prevents a single
IP address from disturbing random parts in the DHT if a malicious node does frequent join and

leave to cause high churn.

6.4.2 Peer Discovery

128.59.15.60

'
|

Figure 6.9: Example Chord network with 4 Figure 6.10: After node 7 joins the network
nodes

Consider an example Chord network with four nodes as shown in Fig. 6.9. The node
identifiers arel0, 22, 1 and15, and the node IP addresses 428.59.15.55, 128.59.15.31,
128.59.15.60 and 128.59.15.48, respectively. When a new nodg, (with transport address
Taddr=128.59.15.56:44452) starts up, it invokes it®iscover method (procedure 6.4.3) to dis-

cover possible peers.

119

Procedure6.4.3: N.Discover

if discovery is allowedhen

sendREGISTER sip:224.0.1.75
To: Ny

else
for i := 1tom do

F’rlwde < Nid

Npred <~ Nid

trigger join complete event

TheDiscover method of nodd sends a SIREGISTER message withequest-URI as
Sip:224.0.1.75 (SIP REGISTER multicast IPv4 address) and tiie header as the local node
identifier,7;;. TheFrom header is always the local node identifigy, if the request is generated
for the node. (The mandatory SIP headers that are not needed for understanding P2P-SIP are not

shown, but must be sent as per SIP specification.)

REGISTER sip:224.0.1.75 SIP/2.0
To: <sip:7@128.59.15.56>
From: <sip:7@128.59.15.56>

If the application is started witAN option to suppress node discovery, the node state
is initialized to reflect a singleton node in the DHT. In that case, all finger table entries and
predecessor in the node point to this node’s location.

If some other node, say no@8, receives the multicaREGISTER request, and is al-
ready part of the DHT, it responds with its own unicast addrgs,;.=128.59.15.31, in the SIP

302 redirection response.

SIP/2.0 302 Redirect to unicast
Contact: <sip:128.59.15.31>

If the node receives multiple final responses, it can choose which one to use. Our imple-
mentation uses the first received response. If the node does not get any response within a timeout
(we use 30 seconds), it uses other means of discovery. The following possibilities exist but are

not yet implemented:

120

Service discovery: The node can have a service location protocol (SLP [131]) user agent (UA),
that discovers other nodes in the domain. Once the node joins the DHT it should register
with the SLP directory agent so it other nodes can discover this node. For the Internet,

some wide-area service discovery protocol is more suitable [132].

Bootstrap nodes: The node can be pre-configured with a set of IP addresses or domain names to
probe for possible peers. For example, the node can query DNsofoeer.net domain’s
SIP servers and send the initREGISTER message to them. At least one of the the
initial bootstrap P2P-SIP nodes is assumed to be active for this scheme to work. This may
introduce the centralized component, but is limited in scope only to the initial bootstrap

process. Once the node starts up it caches other peers addresses for subsequent reboots.

If the node cannot discover any other peer, it assumes that it is the first node in the DHT
and initializes its data structures (Chord finger table and predecessor location) accordingly. It

also re-schedules the discovery procedure for a later time, say after five minutes.

6.4.3 Joining the DHT

Once other peer(s) are discovered, the node selects one and senRECBETER message to

its unicast address. For example, ngdsends the following messagei®, ;4,-=128.59.15.31.

REGISTER sip:128.59.15.31 SIP/2.0
To: <sip:7@128.59.15.56>
From: <sip:7@128.59.15.56>

When node2 receives th(REGISTER on its unicast address, it extracts thestination
key 7, from theTo header. Depending on the destination key valyethere are three cases
for node NV to process the request (procedure 6.4.4): (1) i€ (Npreq, N], then nodeN is
responsible for storing, (2) if & € (N, Nsuce), then nodeNg,.. is responsible for storing,
otherwise (3) some other node is responsible for stotingor case (1), hod&’ responds with
a SIP200 success response containing @entact header asV;; and the predecess@ontact
parameter ad/,,..q. Thus, itinserts node2 immediately before nod# in the ring. If the keyg,

is same asV (subset of case (1)), but the addresses are different (e.g., two nodes happen to have

121

Procedure6.4.4: N.OnRegister R:registration object) :request message)

if join is not completehen
ignore M
else if M is a query, i.e.M .Contact is emptyhen
to < M .To.user
if to # Nijg andto ¢ (N4, Nsucc) then
node < closest-preceding-finggr) /* procedure 6.4.2 */
else ifto equalsNg,..'s id, but has different addregisen
node <= Ngyee
else
node <= Nyq
if node = N;4 then
if to = N then
send respons€00 OK

Contact:N;q; predecessor¥,, .
else

send respons00 OK

Contact: Ngycc; predecessory;,
else

proxy M to node

the same hash value for the node identifier), then a global failureg@Response) is returned,
with the Contact header asV;,;. For case (2), it responds with a SEB0 success response
containing theContact header asV,,.. and the predecessor parameteNgs. Thus, it inserts
node22 immediately after nodé/ in the ring. For case (3), it proxies the request to the next hop
node based on the finger tali\e:: F'. Eventually the request reaches the node responsible for
which can respond back with the corré&xntact header.

In our example, key does not belong to nod® or successot (this is case (3)), so the
finger table is used to find the next hop node. Since the laigeswhich N + 2¢~1 < k, where
N=22 andk=7, isi = 4, the next hop i22 :: Fﬁodfladdm hence the request is proxieditg; ;.
Node 1 decides that key:=7 belongs to the successor nodg (case (2) because € (1,10])
and responds with the success response contaldimgact as10,44-. Node22 forwards this

response back to node Note that the predecessor information needed by the Chord algorithm

is conveyed in th@redecessor parameter of the SIBontact header.

SIP/2.0 200 OK

122

To: <sip:7@128.59.15.56>
Contact: <sip:10@128.59.15.55> ;predecessor=sip:1@128.59.15.60

Procedure6.4.5: N.OnRegisterSucces®(registration object} :response message)
if R was a query, i.e.R.Contact is abserthen
if M.To = N,q and Ny, is emptythen
[* set the finger table. */
k < set-fingers(1)M .Contact) + ¥* procedure 6.4.1 */
if &K <mthen
[* more empty entries in finger table. */
/* query for the next empty entry. */
id <= N + 2F1
sendREGISTER M.Contact
To: sipzd@sippeer.net
trigger join complete event
else
[* stabilize here with predecessor. */
sendREGISTER M .Contact
To: Nyreq (OF Nyq if predecessor is empty)
Contact:N;q; predecessor¥,,, .,
else
if 34, such thatF’, ., = M.Tothen
if 2 < m then
/* found a pending query for empty finger table entry. */
i < set-fingers{(, M .Contacty* procedure 6.4.1 */
if i <m then
[* more empty entries in finger table. */
[* query for next empty entry. */
id < Fyin
sendREGISTER Ngyce
To: sipid@sippeer.net
else ifi = m then
if join is not completehen
[* stabilize here. */
SendREGISTER Ngyee
To: Npreq (OF Nyq if predecessor isempty)
Contact: N;4; predecessom¥,,.q
trigger join complete event

When the discovering nodé&, receives the SIR00 response witlTo header ag,q, it

updates its finger table with the successor node locations and goes on to find remaining nodes

123

in the finger table (procedure 6.4.5). For example if Toeheader in the response is this node
identifier, 7,4, and the successor for this nodg,.. is empty, then the successor is set to be the
Contact header in the responsg,,.. := 10. Now, 10 > 7 + 2¢~! for =1 and 2, so nod&

updates its finger tablg! , = F?

node * node *

= 10;4. The next unassigned finger entry for inde:8
needs to be discovered. Nodeends a SIREGISTER message fofF3,,,=11. The domain
sippeer.net is used as logical domain for nodé,; to indicate that the IP address of this key
11 is not known. Alternatively, a domain name suchsgspeer.invalid can be used to prevent

conflict with a real domain name.

REGISTER sip:128.59.15.55 SIP/2.0
To: <sip:11@sippeer.net>
From: <sip:7@128.59.15.56>

Eventually nodé receives the response for this registration, indicating that hoderesponsible

for key11:

SIP/2.0 200 OK
To: <sip:11@sippeer.net>
Contact: <sip:15@128.58.15.48> ;predecessor=sip:10@128.59.15.55

When the node gets the SERO0 response for thiREGISTER, it realizes that thdo

header corresponds 3

tart

and updates the finger table based onGloatact header of the
it updatesF’? . := 15,4. Finally, node7 sends

node

responsef ;. = 15,4. Sincels > Fy,.,,

another SIFREGISTER message to discover nod&, ., = 23, and updates the finger table on

response ag? . = 1l;4.

n

6.4.4 Stabilization

Chord implements a distributed stabilization algorithm to gradually update the finger tables of

various nodes after some node joins or leaves. It also allows a node to add itself to other nodes’
finger tables. The stabilization algorithm is periodically started by each node. In our example, af-

ter nodef fills all the finger table entries, it tries to stabilize the Chord DHT if dloen procedure

is not yet complete. To initiate the stabilization process, it sends &EIBISTER message to

124

Nsuce, sets theéTo header asV,,,..q (or IV;4, if the predecessor is not known or is empty) and the
Contact header pointing taV;;. Assuming the predecessny,.q is known as nodé, then the

node7 sends the following request:

REGISTER sip:128.59.15.60 SIP/2.0
To: <sip:1@128.59.15.60>
Contact: <sip:7@128.59.15.56> ;predecessor=sip:1@128.59.15.60

Procedure6.4.6; N.Stabilize

/* This is called periodically by the ChordNode thread. */
if join is completedhen
if Nsuee # Niq then
SendREGISTER Ngyce
To: Nsucc
Contact:N;q; predecessor¥,, .
else if N,.cq is not emptyand N,,..q # N;q then
/* this is a singleton node in the ring */
set-fingers(1)V,,..q) /* procedure 6.4.1 */
if Npred 7 Nsuce @Nd Nyreq IS NOt emptythen
SeNndREGISTER Nyyeq
T0: Npred
Contact: N;4; predecessom¥ ,,.q

When the node joins the DHT, it also starts its stabilization algorithm. The stabilization
algorithm is periodically invoked by the node to refresh finger table entries, successor and prede-
cessor locations. The stabilization algorithm just initiates the SIP registration for the successor
and predecessor nodes with the local contact address (ahiact header as shown below and
detailed in procedure 6.4.6). It avoids sending duplicate messages if the successor and predeces-

sor nodes are the same, which happens only when there is only one node in the ring.

REGISTER sip:10@128.59.15.55 SIP/2.0
To: <sip:10@128.59.15.55>
Contact: <sip:7@128.59.15.56> ;predecessor=sip:1@128.59.15.60

REGISTER sip:1@128.59.15.60 SIP/2.0

125

To: <sip:1@128.59.15.60>
Contact: <sip:7@128.59.15.56> ;predecessor=sip:1@128.59.15.60

If the node,NV, discovers that the predecessor node is not empty or not same as this node,
and the successor is this node (i(preqa # ¢|Npred # Nid)&Nsuce = Nig), then it concludes
that there is only one node in the DHT. In that case it sets the successor as the predecessor node
and adjusts the finger table accordingl;,..q := N;q.

When the successor or predecessor of this node receives thREBIFSTER message
with the Contact header, it updates its state (procedure 6.4.7). In particular, if the sending node
identifier is closer to the receiving node than the existing predecessor in the Chord ring, then
predecessor is set as the sending node identifier.20Beesponse contains ttseiccessor-list
so that the original stabilizing node can update its state with the successor’s successor list. The
successor-list is sent using th€ontact headers with different preference valuges,0 < g < 1.
The preference value indicates how close the successor is to the key, and hence how likely it
is to store the data for this key. Higher value indicates higher preference. Suppose there are
successors, theff* successor hag:= 1—% fori =0,1,.., k—1. Chord specifies theuccessor-
list to be of sizeO(log(/N)). Nodel0 sends the following response to notdeindicating node

7's successor list{10, 15, 22, 1}.

SIP/2.0 200 OK

To: <sip:10@128.59.15.55>

From: <sip:7@128.59.15.56>

Contact: <sip:10@128.59.15.55> ;gq=1 ;predecessor=sip.7@128.59.15.56
Contact: <sip:15@128.59.15.48> ;0=.8

Contact: <sip:22@128.59.15.31> ;g=.6

Contact: <sip:1@128.59.15.60> ;g=.4

When the stabilizing nodé,, receives the SIR00 success response from its successor,
10, it updates its successor list using Bentact headers in the response (procedure 6.4.8). If
node7 discovers that successor noflEs predecessor lies between this node and the successor,

(7,10), then nod€ sets its successor pointert@'s predecessor.

126

Procedure6.4.7: N.OnRegister R:registration object) :request message)

/* This is appended to procedure 6.4.4 */
if M.Contact is preserhen
if M is not unregister, i.e., expires 0 then
if Npreq is emptyor M.Frome (Npeq, Nig) then
Npreq <= M .From
if M.To =N, then
send respons€00 OK
Contact:N;q; predecessor¥,,,.q; 9=1.0
Contact: successor-list[0]; g=.8
Contact: successor-list[1]; q=.6

else
send respons€00 OK
Contact: Ngyc.; predecessor¥,; ; q=1.0
Contact: successor-list[1]; q=.8

Procedure6.4.8: N.OnRegisterSucces&(registration object) :response message)

[* This is appended to procedure 6.4.5 */
if R was nota querghen
if Ngyee =M. Tothen
pred < M .Contact.predecessor
if pred # N;q and pred € (N;q, Nguee) then
set-fingers(1lpred) I* procedure 6.4.1 */
if pred = N;4then
Nlist — M.Contacts in decreasing q
if join is completedhen
[/* stabilize the next finger entry. */
i < [log Ngyce |
if i < m then
id <= Fyfy
if id € (Nig, Nsuce) then
node <= Njq
else
node < closest-preceding-finget]) /* procedure 6.4.2 */
if node = N;4 then
node <= Ngyee
sendREGISTER node

To: sipid@sippeer.net

127

At this point, noder refreshes the remaining finger table entries beyidnd-or example,
it locates the next hop for the next finger table erfy,,, = 11 > 10, and sends a SIREGIS-
TER query forsip:11@sippeer.net to sip:10@128.59.15.55 as shown below. If the next hop

node for this key belongs to noddtself, then the request is sent to the successgy,..

REGISTER sip:128.59.15.55 SIP/2.0
To: <sip:11@sippeer.net>
From: <sip:7@128.59.15.56>

When noder receives a response for this query for Ray it continues to refresh remain-
ing finger table entries (procedure 6.4.5) by sending RE&ISTER requests. Fig. 6.10 shows

the stable Chord network after nodéas joined.

6.4.5 Node Shutdown (Graceful Termination)

Suppose nod& wants to gracefully leave the network. It unregisters with its successand
predecessor (procedure 6.4.9). Once the notgand1 know that noder has left, other nodes

will eventually know using the stabilization algorithm.

Procedure6.4.9: N.Leave
if Npreq is validand Ny,.qq # N;q then
SendREGISTER Npyeq
To: Nig
Contact: N;q U Nist.
Expires: 0
if Ngyce is validand Ng,.. # N;q then
sendREGISTER Ngyee
To: Ny
Contact: N;q U Nlist,
Expires: 0

To unregister, nod& sends a SIREGISTER request withExpires header with value 0

as follows. TheContact headers are also present in the request indicating the successor list.

REGISTER sip:1@128.59.15.60 SIP/2.0

128

To: <sip:7@128.59.15.56>

From: <sip:7@128.59.15.56>

Expires: 0

Contact: <sip:7@128.59.15.56> ;q=1.0 ;predecessor=sip:1@128.59.15.60
Contact: <sip:10@128.59.15.55> ;0=.8

REGISTER sip:10@128.59.15.55 SIP/2.0

To: <sip:7@128.59.15.56>

From: <sip:7@128.59.15.56>

Expires: 0

Contact: <sip:7@128.59.15.56> ;g=1.0 ;predecessor=sip:1@128.59.15.60

Procedure6.4.10: N.OnRegister R:registration object) :request message)

[* This is appended to procedure 6.4.7 */
if M.Contact is preserhen
to < M.To
if M is unregister, i.e., expires =tBen
if to = Npyeq then
Npred <= M.Contact.predecessor
if to = Ngyee then
Nlist < M .Contacts in decreasing q
set-node-as-inactivif) /* procedure 6.4.11 */
else

[* See procedure 6.4.7 */

When nodel 0 receives the unregistration from nodgeit realizes that its predecessor is
leaving, so it updates its predecessor location usingthdecessor value, 1, in the Contact
header:10,,.q := 1 (procedure 6.4.10). Similarly, when nodereceives the unregistration
from node?7, it realizes that its successor is leaving, so it updates its successor to be the next
active successor iil’s!.. When a node location is made invalid, it is removed frfff,. and

1 :: F. Any inactive finger table node location is changed to the next alive entry in the finger

table (procedure 6.4.11).

129

Procedure6.4.11: N.set-node-as-inactivei.fde)

/* Set the node as inactive il and N5 */
forall nin F andNs do
if node = n then
n.alive < false
/* Update N5t to replace dead nodes */
previous <= Niq

for k < m down tol do

. k . -

if 7 4 isnotalivethen
Ffode <= previous

else

: k
previous <= F7 .

Node7 should wait for confirmation responses (until a reasonable timeout) ftbamd

1 before shutting down.

6.4.6 Node Failure and Failover

Node failure, unlike graceful shutdown, needs to be detected automatically by other nodes when
the SIPREGISTER message fails. If node fails due to some reason, the neighbbpsand1

detect the failure and update their states to reflect it. Our SIP libifasjp++, generate©On-
RegisterFailed event when the outgoinBEGISTER message gets a failure SIP response or
times out. Registration failures can happen due to many reasons and at different stages (proce-

dure 6.4.12):

Global failure or SIP 600 response may be received if a duplicate node identifier is detected.
For example, this occurs if the hash function generates the same node identifier value for
two nodesH (A) = H(B), but A and B have different transport addressesAlis already
in the network, therREGISTER from B will be rejected with a SIRB00 global failure
response. The response contalg, so nodeB can use this addresd 4, as the outbound
proxy instead of joining the Chord network directly. This is highly unlikely if a large hash
space such as 160 bits of SHA-1 is used.

Discovery failure may happen if there is no other P2P-SIP node in the multicast domain. In this

case, other means of discovery should be used, e.g., service location for P2P-SIP server

130

using SLP, or using the bootstrap nodes to join the network. Alternatively, the node can
assume singleton node in the Chord network, and adjust its states accordingly. This is

useful within a single LAN environment such as P2P VoIP within an organization.

Besides duplicate node detection and discovery failure, we want to address the case of
node failures so that the network can failover automatically. When a node detects that another
node has failed, the first node deactivates the failed node’s location from its finger table and
successor list. There are following cases: (1) if the destinatign(To header) and the next hop
node (equest-URI) were same, that node location is deactivated, (2) if the request was not sent
to the successou(i # Ngyuec), the next hop node location is deactivated, but not the destination
key, (3) if the request was a query (@mntact header), the next hop node location is deactivated,
but not the destinatiokey, otherwise (4) the node represented by the destintgr{To header)
is deactivated. If the next hop node is the predecessor, then the predecessor variable is reset
(Npred 1= ¢).

The next step is to re-send the original query request to the new failover hop. If the
successor node failed, then the next successor is chosen and the request is sent again to the new
successor, if one is found. Otherwise, the query is sent to the next closest preceding finger to the
destinationkey. Only theREGISTER query and not updates, are re-sent, because updates are
refreshed anyway in the next stabilization interval. If the new next hop is after the destination key
in the Chord ring, then the query is not re-sent, and is considered a failed query.

The node checks for duplicate identifiers when the initial discovery retara dupli-
cate successor node identifier (procedure 6.4.13). For example, ifsijmden128.59.15.56
discovers the successor sip:7@128.59.15.45, it uses128.59.15.45 as the IP address of its

outbound proxy and does not join the Chord network directly.

6.5 User Registration

The DHT module maintains the underlying P2P overlay network, whereas the user location mod-
ule takes care of user profile and registrations. Both the modules use tIREGEBTER mes-

sages. We describe the user account maintenance in this section.

131

Procedure6.4.12: N.OnRegisterFailedR:registration object) :response message)

to <= M.To
uri < M.uri
if to = N;q and R is a 600-class global failurtaen
/* Discovery failed. Probably duplicate node identifier. */
if M.Contact is preserthen
set-fingers(1).Contacty* procedure 6.4.1 */
trigger join failed event
else ifuri is multicast discovery address, 224.0.1tfién
/* Discovery failed. Assuming singleton node in Chord. */
for i — 1tom do
F’rzwde ~ Nid
Npred <~ Nz’d
trigger join complete event
else
succ <= Ngyee
if to = uri or uri # Ny Or R.Contact is emptyhen
set-node-as-inactive(i) /* procedure 6.4.11 */
if uri = succthen
successor_failed < true
else
set-node-as-inactivif) /* procedure 6.4.11 */
if uri = Npypeq then
Npred <~ 6mpty
node <= Njq
if successor_failed is true then
[* select the next successor. */
if Ngyce is emptyor Ny, = N;iq then
/* Successor not found. Ignore. */
else if Ngyee € (Nig, to] then
node <= Ngyee
else
/* Do not know where to send. */
else
node < closest-preceding-finger(:) /* procedure 6.4.2 */
if node = N;,4 then
/* No more addresses left for successor. */
/* Now resend only query messages if possible. */
if R.Contact is abser@nd node # N;4 and node € (N;q, to] then
R.uri < node
re-register usingk

132

Procedure6.4.13: N.OnRegisterSucces&(registration object) :response message)

* This is appended to procedure 6.4.5 and 6.4.8 */
if Rwas a query, i.e.R.Contactis abserthen
to <= M.To.user
succ <= M .Contact
pred < M .Contact.predecessor
if to = N and succ equalsN;, but has different addressen
/* duplicate node identifier found */
set-fingers(lsucc) /* procedure 6.4.1 */
trigger join failed event
else if M.To = N,y and N, is emptythen
[* See procedure 6.4.5 */
else
[* See procedure 6.4.5 */

Suppose the table of user registrations in the node is representedwash thatA k] is
the user registration for user identifier Suppose the list of local user registrations is represented

asL such thatl’ is the:*" local user registration.

Procedure6.5.1: RegisterUsek(user account or identifier)

L.append(k)
node < N.Find(k;q) [* procedure 6.5.2 */
if node = N;4 then

Alkig] < k
else

sendREGISTER node

To: k;q, From: k;4, Contact:k.ontact

Procedure6.5.2: N.Find (key:identifier to find)

/* Find the next hop node fatey */
if key € (Nig, Nouce) then
node < N;q
else
node < closest-preceding-fingér¢y) /* procedure 6.4.2 */
if node = N;,4 then
node <= Ngyee
return node

133

6.5.1 Registration Handling

When a user registers her identifier, dasalice@example.com, a new local user registration
object is created to represent this user. The next step is to transfer this registration on to the
P2P network to the responsible Chord node (procedure 6.5.1). Suppose the user identifier key is
H(k)=1, then this user registration will be stored in the DHT on the node which is responsible for
this key,1. The DHT’s Find method is invoked to get the next hop location and the request is
forwarded (see procedure 6.5.2). If the local node is responsible for this key, then the registration
is stored locally. For example, when user Alice registers from rodiég. 6.10), the next hop is

1;4 so the followingREGISTER request is sent:

REGISTER sip:128.59.15.60 SIP/2.0
To: <sip:alice@example.com>
From: <sip:alice@example.com>

Contact: <sip:alice@128.59.15.56>

The Request-URI may contain the domain part of the user identifier instead of the IP address.
The receiving node should authenticate any registrations (Section 6.9). The registration is repli-
cated at all the nodes in the successor-list of the responsible téjg,by sending nevREG-

ISTER requests to the nodes in the successor list. The replication can be done either by the
responsible node or the registering user.

When nodel receives the message, it recognizes that the destina¢igim To header
belongs to a user rather than a node. As shown in procedure 6.5.3, there are following cases:
(1) if key € (Nprea, Nial, then this node is the responsible node, (2YVif,.. = N4, then there
is only this node in the Chord ring, so obviously this node is the responsible node, otherwise
(3) find the closest preceding finger for this key and proxy the SIP request to that node loca-
tion. In this example, nodé uses itself as the responsible node and stores the registration for
alice@example.com.

Now, nodel replicates the registration to other nodesl|ff’. (procedure 6.5.4). For
example, it sends the followinBEGISTER message to nod8),,4,-, With To header contain-

ing the destinatioktey alice@example.com, From header containing;; andContact header

134

Procedure6.5.3: N.OnRegister R:registration object) :request message)

to <= M.To
if to is not a node identifiethen
if to € (NpT6d7 de] or Nsucc = INjaq then
[* Register the user locally. */
Ato) « M
else
if to §é (Nid7 Nsucc] then
node < closest-preceding-finger() /* procedure 6.4.2 */
else
node <= Ny
if node = N;4 then
proxy M to Ngycc
else
proxy M to node
else
[* to is a node identifier. see procedure 6.4.10 */

containing original contact location of Alice.

REGISTER sip:128.59.15.55 SIP/2.0
To: <sip:alice@example.com>

From: <sip:1@128.59.15.60>
Contact: <sip:alice@128.59.15.56>

Procedure6.5.4: A[k] < M
Alk] =M
if M.To= M.From or M.Reason = “leaving” then
[* This node is responsible far */
for all Sin N's! do

sendREGISTER S, 44
To: k;q, From: N;4, Contact: A[k]contact

The receiving nodé0 recognizes this to be a registration transfer from one node to an-
other, since thdo header anéfrom header are different. It stores the registration without routing
it further. It should authenticate the sending nddeefore storing the registration. If tHegom

header is also a user identifier, then REGISTER request is a third-party registration (e.g.,

135

secretary registering on behalf of her boss), and should be routed using the P2P-SIP routing algo-
rithm based on th&o header. Third-party and transferred registrations should be authenticated at

each proxy.

6.5.2 Node Shutdown (Graceful Termination)

When a node gracefully leaves the network, it should transfer all stored registrations to the new
responsible node, which is its immediate successor (procedure 6.5.5). For example, when node

leaves, it sends the followinlQEGISTER request tdl sycc = 7addr-

REGISTER sip:128.59.15.56 SIP/2.0
To: <sip:alice@example.com>

From: <sip:1@128.59.15.60>

Reason: SIP ;cause=480; text="leaving"

Contact: <sip:alice@128.59.15.56>

Procedure6.5.5: N.Leave

/* unregister this node using procedure 6.4.9 */
* unregister local accounts it */
forall »in L do

R <= N.Find(u;q)

if R# N;qthen

SendREGISTER Ryq4r
To: u,q, From: u;q, Expires: O

* transfer local registrations */
for all % in keys() do

sendREGISTER Ngyee

To: k;q, From: N,4, Expires: 0, Reason: leaving

When noder receives the registration transfer with tReason field indicatingleaving,
it can decide to assume the responsibility for this registration. Noden also conclude that
nodel is leaving based on the node unregistration message, and assume responsibility for all the
keys that were transfered from notldefore. The decision is local to hodesince assuming

responsibility for registration is an extra load. Even if naddoes not take the responsibility

136

for the transferred registration, when Alice’s user agent refreshes the registration, the appropriate
responsible node (which may 7@ will get the new registration. Suppose nodelecides to
accept the responsibility for this destinatibey, it replicates the registration to all the nodes in

7list That means it sends a SREGISTER to its successor0,44, as follows:

succ*

REGISTER sip:128.59.15.56 SIP/2.0
To: <sip:alice@example.com>

From: <sip:7@128.59.15.56>
Contact: <sip:alice@128.59.15.56>

Node 10 had earlier received the replicated registrationdice @example.com from nodel.
When nodéd 0 receives the nelREGISTER from node7, it concludes that the responsibility for

key alice@example.com has been transferred from noti¢o node7.

6.5.3 Node Failure and Failover

Node failure is similar to node shutdown, except that the failed node does not transfer registra-
tions. The immediate successor detects that its predecessor has failed and owns the responsibility
for the keys from its immediate predecessor. For example, if Adi@dds, nodel0 detects the

failure, and can decide to assume responsibility for the destinations keys sent 3. hiodede

10 decides to not assume the responsibility, it will get the next registration refresh from Alice’s

user agent, at that time it can authenticate Alice and assume responsibility.

6.6 Call Setup and Message Proxy

So far we have described only the registration request routing. A SIP request sR&as
ISTER or INVITE belongs to either an user or a node, based on the destination being the user
identifier or the node identifier, respectively. REGISTER request, the SIFo header is used

for computing the key for routing decision. For all other requests (NYITE, MESSAGE),
therequest-URI is used to make the routing decision. However, this means thateERPmust

not modify therequest-URI on proxy for nonREGISTER requests.

137

Message Proxy

When an incoming noREGISTER request is received, and thequest-URI is a user identifier

(i.e., not a node identifier), and the request does not belong to an existing dialog or local user

on this node, then SHEERIo0ks up for the user key in its registered user mapas shown in

procedure 6.6.1. If no registration is found, the#& response is returned if the key belongs to

this node, otherwise the request is proxied to the next hop node. If valid registrations are found,

the request is proxied to those registered contact locations. Alternatively, a 302 redirect response

can be used.

Procedure6.6.1: N.OnReceiveRequeS§i(transaction M :message)

if M.method == REGISTERhen
/* user or node registration: procedure 6.5.3 */
else if M .uri is some node identifighen
[* this is for the DHT module */
else if M belongs to existing dialothen
/* let the dialog state-machine handle it */
else if M.uriis in L’ then
/* M is for local user on this node */
else if M.uriisnotin A[k] then
/* no registration found */
if M.urie (N.prev, N] or N.Find(}/.uri) failedthen
send respons&04 User not found on P2P/SIP
else
next := N.Find(}/.uri)
proxy M to next without modifying uri
else
[* registration found */
contacts := A[M .uri].contacts
proxy M to contacts using parallel forking without modifying uri

6.6.1 Multimedia Call Setup and Instant Messages

SIPPEER allows initiating or terminating a SIP call using the command line interface. When

the node initiates a request, or acts as an outbound proxy for an existing SIP client, it tries both

traditional DNS lookup for the user domain and P2P lookup for next hop in Chord for the user

identifier. When one branch gets a final response, the other branch is cancelled. Alternatively,

138

some P2P-SIP node can try DNS first and fallback to P2P lookup when it fails to get DNS NAPTR
or SRV records.

If the node initiates a call or acts as an outbound proxy, it does both DNS and P2P lookup,
otherwise it does only P2P lookup. To detect that this node is acting as an outbound proxy
for a third party SIP client, SIPEER uses theReason header field. All requests initiated or
proxied by SIPEER has aReason header field indicating that the DNS lookup was already
done. When a SIPEERNOde receives a message with tRisason it does not invoke another
DNS lookup, but uses only P2P lookup. This is not a standard SIP behavior, though it works for
our initial prototype. Eventually, a new SIP header or parameter needs to be defined to convey
this information.

Usually, theBYE message is sent directly between the two endpoints to terminate the
call, without involving P2P lookup. Other messages sucMBSSAGE for instant messaging
follow similar lookup mechanism d8lVITE. The SUBSCRIBE message handling for locating

users in the friends list on startup is described in Section 5.8.

6.7 Advanced Services

Basic call setup is not enough to be competitive in Internet telephony. This section describes
some of the advanced services such as NAT and firewall traversal, presence, offline message
storage and multi-party conferencing.

Many advanced services can be specified using SIP URIs. For exasipistaff-
meet@conferencing.net can indicate the pre-scheduled conferencing servicedmferenc-
ing.net domain, orsip:dialog.voicexml@ivr.net can reach the generic interactive voice response
service. Such services can be built transparently in the basic implementation. For example, a SIP
conference server can register all the pre-scheduled conferences in the P2P network, an answer-
ing machine module can register to receive incoming calls on behalf of all the registered users,

and a VoiceXML browser can register the specific voice dialog service such as voice mail access.

139

6.7.1 Offline Messages

This section describes problems with offline messaging. When Alice calls Bob or leaves an
instant message for Bob, and Bob is not online, the message should be stored reliably by the
system and delivered to Bob when he comes online.

There are three places where we can store the offline messages: the source, the destination
or some intermediate node in the P2P overlay. The classical PSTN voice mails are stored in the
destination answering machine attached to the callee’s phone, or in some cases in centralized
voice mail server attached to the destination PBX. Similarly, the P2P-SIP client running on the
destination user’s machine can store the message if the destination user did not pick up the phone.

The problem comes when the destination phone itself is not active or the user has not started her

client.
51
4 () Node 58 stores all messages with next
r nodes (r=1 here)
Bob=45's message /O
stored at node 58

(o sender 20 also stores

é\O the message

sam= 32
Sam’s message stored Sender 16 need not store the
at node 32 message since it got delivered to destination

Figure 6.11: Offline message storage

One way to achieve this is by having the DHT peer that is responsible for storing location
of Bob, also store the offline multimedia messages for Bob as shown in Fig. 6.11. In the case
of super-node failure, the offline messages become unavailable until the storage node becomes
online again. To solve this, the node can store the message in multiple places and keep them
consistent similar to the Oceanstore architecture [133]. A P2P file storage system with mes-

sage waiting indication is sufficient to implement offline message storage. POST [134] is a P2P

140

messaging system that can also be used for offline messages.

Another option is for the caller node to cache the message locally and deliver it to the
destination node when the destination becomes available.

The message delivery notification is reliably sent back to the caller. If the message is not
delivered or the storage node fails, then the caller node finds the new storage node and records the
message again without any user intervention. When a node starts up, it checks for any undelivered
message from past boot cycle, and tries to re-send them upon bandwidth and CPU availability.
This has certain security issues if the same machine is used by many users as in an Internet kiosk.

Unlike email system, where the intermediate Mail Transfer Agents (MTAS) are reliable
and delivery confirmation from an MTA is sufficient, in P2P-SIP an end-to-end confirmation is
desirable. Alternatively a third party storage server can take the ownership of the message for the
subscribed user, relieving the sender from keeping a copy.

Some nodes may just cache a summary of undelivered messages (such as subject, date,
headers) instead of the complete multimedia content to save on bandwidth and disk space. Some
nodes may attempt to send the message by alternative means such as email if the email identity
can be cryptographically verified to belong to the destination user.

To receive the offline message, the destination node subscribes to the message waiting
indication (MWI) event with the P2P network and gets notified on startup when a new offline
message is available. The node can then fetch the message using file transfer or real-time multi-
media call to a special URI such sip:bob-vmail@serverAlternatively, the user can buy MWI
service from some centralized service provider that registers with the P2P-SIP network on behalf
of the user to receive her calls.

An alternative approach is to have the user buy the MWI service from some service
providers that register with the system with user identifieb@yahoo.corfor example. When
the caller cannot reach Bob within some time, the server automatically picks up the calls and

stores the offline message. One problem with this approach is that it tends to become centralized.

141

6.7.2 Multi-party Conferencing

In classical telephony, multi-party conferencing is done via pre-arranged dial-in conference bridges
(or conference servers). These conference servers can register the intended conference addresses
such as “staff-meet@columbia.edu” with the P2P overlay. However, the mixing is done by a
centralized server which can become the potential bottleneck for large conferences.

For small scale ad hoc conferencing among the participants, one of the participant who
has good capacity (CPU, memory, bandwidth) can become the mixer and mix audio from other
participants. Since audio mixing requires access to the un-encrypted audio samples from all the
speakers, one cannot pick an untrusted peer as the mixer. One viable alternative is to pick an
existing conference participant as the mixer.

Completely decentralized conferencing [135] can be used to establish a full-mesh signal-
ing and media relationship among the participating members. The protocol works for concurrent
join and leave of members in the conference. This prevents dependency on a single peer node
that does mixing.

Instead of a full-mesh media, a multicast media distribution tree can be used. It assumes
that a small number of members (say one or two) will be speaking at any instant, and the receiv-
ing node can select or mix the audio samples from multiple streams in the session. Several P2P
application layer multicast schemes have been proposed [136, 137], some of which can use the
proximity information available in the underlying DHT [102, 138]. The application level multi-

cast seems to be the best option for large scale conferencing in P2P-SIP because of the scalability.

6.7.3 Device Independence

So far we assumed that a user logs in from a particular node and all the user profile information
such as friends list or privacy policy are stored in the local node. However, similar to file storage
systems or storing offline messages in P2P-SIP, the node can store the encrypted user profile in-
formation also in the P2P overlay network [133]. On startup when the user signs in her identifier,

the node fetches the profile information reliably and uses that.

142

6.7.4 Presence and Event Notification

Presence is an important service in Internet telephony. SIP has methods SIdB&ERIBE
andNOTIFY to watch the presence status of a user and to notify the watchers when the presence
status changes, respectively.

The basic idea is not different from the call setup and registration, where the responsible
node becomes the server for the user identifier. When a watcher subscribes to a user identifier,
the responsible node maintains this subscription state. The responsible node detects any change
in the user’s presence status, either on receipt of incoming registration or explicit publication of
presence information by the user using the BBBLISH message. When the presence status of
this user changes, the responsible node sends the natification to all the watchers. The responsible
node can also perform presence composition in this service model.

Alternatively, to simplify the implementation, the responsible node can use event sub-
scription migration without actually implementing presence. The responsible node receives the
subscription request from the watcher, but terminates the subscription when it detects a change
in status of the user on incoming registration. Thus, the watcher sends aBuB&CRIBE
message, which gets proxied to the current location of the user if the user is available. Thus, this
facilitates end-to-end event notification, without having to implement individual events such as
presence in P2P-SIP.

Our SIFPEERas only a rudimentary support for event subscription and notification [139,
140] such that the node can store and transfer generic event subscriptions without processing any
event package, e.g., presence. Other SIP users agents that support presence or other events can
work in conjunction with SIPEER In particular, SIPEER facilitates subscription migration
from a P2P-SIP node to subscribee’s endpoint and vice versa.

Suppose a subscriber, Alicalice @example.com), subscribes to the presence status of
Bob by sending a SIBUBSCRIBE message tbob@yahoo.com. Note that the P2P-SIP node
may not be able to authenticate the subscription since the subscriber Alice may not be registered
with the P2P-SIP network at all. In this case Alice may provide more information about her

certificate or public key which Bob can be used to verify the identity.

SUBSCRIBE sip:bob@yahoo.com SIP/2.0

143

To: <sip:bob@yahoo.com>

From: <sip:alice@example.com>

If Bob does not have a valid registration in the P2P-SIP network, the responsible node
for Bob’s user identifier keeps the subscription information. It responds with 2&pending
response, and a SIROTIFY message witlsubscription-State of pending (procedure 6.7.1).

If SIPPEERuUNderstands the event-package (e.g., presence package may be implemented in some

P2P-SIP nodes), then it can put appropriate message b&YTHFY to indicate offline status.

SIP/2.0 200 Pending

NOTIFY <sip:alice@example.com> SIP/2.0
Subscription-State: pending

Procedure6.7.1: N.OnSubscribe{:subscription objecl/ :request message)

if no A such thatA.to = S.to then

/* No valid registrations found */

send respons02 Pending

sendNOTIFY S.from

Subscription-State: pending

else if.S was activehen

[* Terminate existing subscription first */

sendNOTIFY S.from

Subscription-State: terminated; reason=deactivated
deleteS

else

forall C in A.contacts do
proxy M to C

if a valid 2xx, 401, or 407 response is receitieen
deleteS
* proxy the response upstream */

else
/* do not migrate. respond locally. */
send respons@02 Pending
sendNOTIFY S.from

Subscription-State: pending

When Bob registers, the subscription is terminated with reason as “deactivated” so that

144

Alice can subscribe again (procedure 6.7.2).

NOTIFY <sip:alice@example.com> SIP/2.0

Subscription-State: terminated ;reason=deactivated

Procedure6.7.2: N.OnRegister R:registration objecfi/:request message)
[* This is appended to procedure 6.5.3 */
for all S such thatS.to = R.to do
if S.eventisnot regthen
sendNOTIFY S.from

Subscription-State: terminated; reason=deactivated
deleteS

If Bob has a valid registered contact, then BHRR proxies theSUBSCRIBE message
to the contact. If there are multiple registered locations, then the request is forked to all the
locations. Once the request is proxied, the SHPrRnode steps out of the subscription path.

When Bob unregisters with P2P-SIP, he sen®dCA IFY message to Alice terminating
the subscription with reason “deactivated”. Alice subscribes again, and the subscription gets
migrated to the responsible P2P-SIP node.

When the responsible P2P-SIP node gracefully leaves the system, it also\&&hdisY
to terminate all the subscriptions for keys stored on that node. Alternatively, the node can send
the SUBSCRIBE message to the new responsible node. However, this approach requires addi-
tional logic for the node authenticating on behalf of the subscriber to the subscribee, hence not
recommended.

Each user identifier4, is associated with zero or more contact locati@ifs,and zero of
more subscriptions$?. The algorithm for handing incomingUBSCRIBE by the responsible
node is shown in procedure 6.7.1, and inconREGISTER for subscription migration is shown
in procedure 6.7.2.

One potential problem could be as follows. Suppose Bob registers with his user agent
which does not support events. So BldBSCRIBE request will be rejected, e.g., b01 not
implemented” error code. This terminates the subscription attempt by Alice, who may not retry

subscribing. To work around this problem, $EERmMay use th@©PTIONS message to Bob to

145

find out if Bob’s user agent suppor®8JBSCRIBE or not. It also intercepts th eUBSCRIBE
response from Bob. If Bob’s user agent fails without notifying Alice, there may be delay before
Alice detects and retries.

The P2P-SIP node should implement the registration event package [140] since it acts as
registrar for some users. The subscription for evegt[140] is handled locally by the node that
is responsible for storing user registrations. This subscription does not get migrated when the
user registers or unregisters. When the node storing the subscription is leaving the network, it
terminates the subscription so that the subscriber re-subscribes to the new responsible node for

the user key.

6.7.5 Adaptor for Existing SIP Phones

A SIP user agent can use the P2P-SIP node as an outbound proxy and take part in the P2P-SIP
network. We have tested our P2P-SIP adaptor,PEHR with various SIP user agents such as

the Columbia University'sipc, the Cisco IP phone 7960, the Pingtel IP phone, Xten Networks’
X-Lite client v2.0 and Microsoft Windows Messenger.

Some phones do not implement outbound proxy as per the SIP specification [3], which
says that the outbound proxy should be treated as a pre-loaded route set. In particular, if the out-
bound proxy doesotrecord route the initialNVITE request, then the subsequent request in the
dialog such aBYE should not be sent to the proxy. Supposedipe useralice@example.com,
INVITES the Cisco phone usdypb@example.com, using P2P-SIP. After the call, Bob hangs
up. The Cisco phone sends tB¥E request to the outbound proxy (P2P-SIP node) but the
request-URI containsalice@pc2.example.com:5060. The P2P-SIP node may not be able to
proxy the request because this URI may not be registered in the P2P-SIP network causing the
DHT lookup to fail. We work around this problem in S#BPER by proxying the request to the

request-URI instead of doing a DHT lookup in this case.

6.7.6 NAT and Firewall Traversal

In an ideal world, ISPs and corporate system administrators should enable their NAT and firewall

devices with SIP proxies or application level gateways (ALG). However, in practice, this is rarely

146

done. This forces the application developers to write customized kludges to work around NAT
and firewall [141, 142].

There are two aspects to NAT and firewall traversal: automatic detection of the type of
NAT and firewall and tunneling though the NAT and firewall devices for inbound or outbound
messages. The detection is done at the application startup when the node connects to a super-
node. The node implements the Interactive Connectivity Establishment (ICE) algorithm [141]
for NAT traversal. UDP is preferred mode of communication. However, if UDP messages cannot
be received (e.g., the firewall blocks UDP), then a persistent TCP tunnel presumably to port 80,
initiated from the internal node to the external super-node can be used for both inbound and
outbound messages.

We refer to firewall or NAT as aniddlebox and the internal network behind the middle-
box as grivatenetwork. If a P2P-SIP node in a private network, it does not join the global DHT,
but instead uses an existing global DHT node as an outbound proxy. When an existing client (C)
uses a P2P-SIP node (P) as an adaptor (outbound proxy), there are three cases: (1) if both P and
C are in public network, it does not involve any middlebox, (2) if P is public and C is private, then
C needs to implement various middlebox traversal mechanisms, and (3) if both P and C are in
private network, then P does not join the global DHT, but uses an existing DHT node as outbound
proxy.

Both signaling and media traffic needs to be traversed through the middlebox. SIP signal-
ing traversal through middlebox is handled using symmetric response routing [125] and connec-
tion reuse [124]. Interactive connectivity establishment (ICE [107]) is used in conjunction with
STUN [105] and TURN [106] to enable media traversal.

We explain how to interwork between P2P-SIP of a private network with the global P2P-

SIP next.

6.8 Inter-domain Operation: Multiple DHTs

In real deployments, it is useful to allow multiple P2P-SIP networks (DHTS) to be interconnected.
For example, individual large organizations can have an internal P2P-SIP network which is con-

nected to the global P2P-SIP network.

147

In this section, we propose a two level network: the global (public) DHT represented by
sippeer.net and a local DHT, which may be behind a firewall or NAT. Note that the inter-domain
operation proposed here is preliminary and needs more experiments as the P2P-SIP work gets

matured in the IETF.

Overview

Our hybrid architecture allows both the P2P-SIP network clouds and server-based SIP infrastruc-
ture to coexist. There are two approaches: cross register all the users of one network with all
the other networks, or locate the user in the other network during call setup. The former method
works for small number of known P2P-SIP networks. The latter approach can be implemented
using a global naming service such as DNS, or an hierarchy of P2P-SIP networks. In the first case,
every P2P-SIP network is represented by a domain name. This is no different from a server-based
SIP network where the domain name resolves to one or more bootstrap nodes in that network [28].
In the second case, P2P-SIP is used instead of DNS to resolve the domain name. For example,
an individual large organization can have local P2P-SIP network which is connected to the global
(public) P2P-SIP network as shown in Fig. 6.12. The local domain-specific DHT has representa-
tive server nodes that are also reachable in the global DHT. For examplerikaie.com maps
to nodes A and C in the global DHT. Any node in the domain-specific DHT can reach the global
DHT, and any node in the global DHT can reach the domain-specific DHT via the representative
server nodes in the domain. The global DHT computes the index based on user identifier of the
form user@domain, and if not found then justomain. The local one computes the index based
onuser for intra-domain calls.

The hybrid architecture allows the user to register with her provider’s SIP server, if avail-
able, as well as the P2P-SIP network. Call setup is sent to the SIP destination, if resolved via

DNS, as well as to the P2P-SIP network.

Registration

Consider the architecture shown in Fig. 6.12 with one global DHT (nodes P, Q, R, S) and two

domain specific DHTs. Domaiprivate.com’s DHT has nodes A, B, C, D anexample.com

148

has nodes X, Y, Z, where nodes C, D and X are representative server nodes.

config: domain=private.com domain={} domain=example.com
next-level=sippeer.net next-level={} next—level=sippeer.net

_global
(sippeer.net) examplejcom

DHT: alice =>A,Q private.com =>C,D zhou =>7
bob =>B example.com => X
paul@columbia.edu => P
ron@columbia.edu =>R
bob@yahoo.com => B

Figure 6.12: Inter-domain P2P-SIP

Every DHT has some bootstrap nodes identified in the DNS entry of the domain. For
example, the bootstrap nodes for global DHT are identified by DNS recasipppéer.net, and
those for local DHTs oprivate.com andexample.com by their respective DNS records. When
a node starts up, it uses its configured domain name and performs DNS NAPTR and SRV lookup
for this domain. If no domain name is configured, it assumes gkippker.net domain. If any
IP address matches any of the local interface, the node assumes it is one of the bootstrap nodes
for the domain. For exampl@yivate.com resolves to IP addresses of nodes C and D, where as
example.com to node X.

There are two configuration properties for each nattenain andnext-level. The for-
mer indicates the domain for the node, wheigpeer.net indicates the global DHT, whereas
the latter indicates the next level DHT’s domain. Bootstrap nodes in global DHT are configured
with domain andnext-level as empty. When the node starts up it does DNS query and detects
that it should be a bootstrap node for the global DHT. Representative server nodes, C and D in
theprivate.com domain are started wittlomain asprivate.com andnext-level assippeer.net.
When node C starts up, it detects that it is a bootstrap node for its domain. Since C is a bootstrap

node and thaext-level is not empty, it registers its domaprivate.com in the next-level DHT

149

via the bootstrap nodes gippeer.net domain. The registration gets stored at appropriate global
P2P node based on the kesivate.com. Similarly, nodes D and X register their domains in the

next-level global DHT.

REGISTER sip:sippeer.net SIP/2.0
To: <sip:private.com>
From: <sip:C@private.com>

Contact: <sip:C_ip_address>

The global DHT stores the mapping thmtvate.com is found at node C and D, whereasam-
ple.com is at node X.

When a domain-specific node, A, starts up, it discovers node C, e.g., using multicast dis-
covery. Node A gets to know idomain andnext-level parameters in thREGISTER response
from node C in new SIP headers. It then joins the domain-specific Dipfivate.com domain.

It also knows that it is not the bootstrap node, so it does not register its domain to the next level
DHT. Existing clients such as X-lite do not need to undersi@dmuhain andnext-level parame-

ters, because they will typically be connected to a P2P-SIP node (outbound proxy), and do not
take part in DHT directly. Internal DHT nodes maintain thedxt-level anddomain properties,

and send that information to other new joining nodes in that DHT.

The domain-specific bootstrap nodes use the P2P-SIP nodes of next-level DHT as out-
bound proxy. If a domain-specific bootstrap node is in public network, it can directly join the
global DHT, in addition to the domain-specific DHT.

Domain administrators may install multiple domain-specific bootstrap nodes to share
load. The next-level may be configured as empty so that the domain specific bootstrap nodes do
not connect to the global DHT. This allows restricting P2P-SIP calls to within a domain. Nodes
may still use DNS [28] to reach outside networks directly without going through the global DHT.
Alternatively, administrators may install only bootstrap nodes in the domain as a replacement for
SIP proxy and registrar of the domain. In this case, the internal SIP phones use server-based SIP

architecture but the domain is connected to global DHT via P2P-SIP.

150

Call Setup

When a useralice@private.com in a domain using node A, wants to call another user
bob@private.com, it discovers that the domain portion of the destination is same adahe
main property, so it call§-ind(bob) in the domain-specific DHT. The domain-specific P2P-SIP
nodes identify the domain, and build the lookup key using only the user part.

Whenalice@private.com wants to calpaul@columbia.edu, the domains do not match,
so it proxies théNVITE request to the domain’s bootstrap node (C or D) resolved via DNS. Nodes
C and D act as proxy to the global DHT, and perform lookup on the global DHT.

When a userpaul@columbia.edu using node P in global DHT, wants to call
ron@columbia.edu, the domains do not match. This is because node P is configured with
domain as empty. In this case it looks up for both kega@columbia.edu andcolumbia.edu.
Supposeton@columbia.edu is registered from node R in the global DHT, then the call is prox-
ied to node R.

Using similar procedure, supposgaul@columbia.edu wants to call al-
ice@private.com, then it first looks up for bothalice@private.com and private.com
keys in global DHT. The latter is found to be registered as nodes C and D, so the request gets
proxied to C or D or both, which further proxies the request to internal node A which registered
asalice@private.com. If such user identifier is not registered, the domain-specific DHT node
sends back appropriate failure response, 480 or 404, to the caller.

Supposealice@private.com on node A, wants to cathou@example.com. ThelIN-

VITE request is proxied to C, which in turn proxies to X, which then proxies to internal node Z

which registered as this user.

Cross-Domain

The system allows a user private.com domain to register with user identifier containing an-
other domain. For example, if user on node B registersas@yahoo.com, the registration
should be propagated to the global DHT. Similarly, a user visiting another network should be
allowed to register with her home domain’s DHT. We assume such cross registrations are limited

in volume and are supported with appropriate authentication.

151

When a user on node B in domainivate.com registers as identifidsob@yahoo.com,
the node compares the domain part, similar to the call setup procedure. Since the domain does
not match, the(REGISTER message is proxied to the domain-specific bootstrap nodes C or D,
which in turn proxies it to the global DHT.

When a user on node P in global DHT, registers as identifiee @private.com, the
REGISTER message is first sent with key as the donmainate.com. If this fails, then the user
key alice@private.com is used for routing. Alternatively, both can be tried in parallel, but will
result in duplicate registrations. Since only a few users are expected to cross register, this is not
bad.

The OPTIONS request tesip:private.com can be used before sendiREGISTER for
alice@private.com to detect if the domain-specific servers existfoivate.com or not.

When user on node Q calllice@private.com, it needs to send twdNVITE re-
guests, one taip:alice@private.com and other tosip:private.com. The latter URI is not
right since the nodes C or D cannot tell where to proxy the request. There are two alterna-
tives: use URI asip:user@private.com?p2p-key=private.com or useOPTIONS method to
sip:private.com to discover nodes C and D, and then s&NWITE to one of those nodes with
URI assip:alice@private.com. Usingp2p-key parameter reduces the call setup round-trips but
looks like a hack. The problem with Q sending INVITE directly to C or D is that C or D may be

behind NAT or firewall and reachable only via P or S, respectively.

6.9 Security

A distributed P2P architecture makes the system more proseciarityissues such as trust (pri-

vacy and confidentiality), malicious node behavior (e.g., call dropping) and DoS attacks [143].
Security is one of the most important problem to be solved for any structured P2P system because
of the potentially untrusted peers [144]. The problems include: (1) authentication (to prevent
unauthorized calls from spammers), (2) encryption (to prevent others not in the call setup path
knowing about the call information), (3) privacy and confidentiality (to prevent sending infor-
mation to untrusted entity and to prevent misuse of information) and (4) dealing with malicious

nodes (what if a peer node happily accepts the call requests but drops them without forwarding

152

to the appropriate node). The first two problems (authentication and encryption) can be solved
using mechanisms similar to those proposed for SIP telephony. For example, end-to-end digest
authentication, hop-by-hop transport layer security (TLS) or end-to-end S/MIME can be used.

We do not solve the security issues for P2P-over-SIP architecture, but highlight some of
the existing work and potential directions for future work. In particular, the P2P trust and mali-
cious node in a DHT such as Chord is not yet solved, but certain simplifications and assumptions
can be made to reduce the problem.

P2P-SIP applications expose existing security threats such as virus and worms to more
networked users, even to corporate networks behind firewalls if the firewall allows SIP traffic.
Unlike the traditional client-server model where the server is more prone to attacks and most
users run only clients, a P2P application acts as a server listening for incoming message on the
user machine. In the context of P2P-SIP, there are a number of different types of threats, some
of which exist in server-based SIP, whereas others in P2P. In this section we summarize various

threats.

Threats: untrusted peers

A number of “untrusted” peers may be involved in user location lookup for a call, unlike the
“trusted” servers in the classical SIP telephony. In the classical server based telephony, as long as
both caller and callee can trust the server for privacy and confidentiality of the call information,
there is no problem. Secondly, the peers may be acting correctly but secretly logging all the call
requests which may later be misused.

Freenet [12] solves this problem by hop-by-hop routing of request and responses where
each hop (peer) changes the source identifier. This prevents any peer in the request path to know
the original sender of the request. Similar techniques can be used in P2P-SIP architecture assum-
ing absence of collusion (i.e., multiple malicious peers collaborating to know the call informa-
tion), but are difficult if a DHT is used as the underlying P2P network.

Detection and control of misbehaving peers in Chord-based DHT is yet an unsolved prob-
lem. There are guidelines that can help reduce the risk. In particular, it is hard to detect a misbe-

having node that routes some calls correctly, but drops others. Secondly, the node may secretly

153

log the call information for later misuse.

The proprietary protocol of Skype makes it difficult for other people to build software
that communicates with the Skype clients. Hence, a Skype client can trust the validity of an-
other Skype client (this is not impossible, as Kazaa-Lite and more recently Skype security analy-
sis [145] shown). On the other hand, P2P-SIP based on open protocols cannot trust the validity of
another peer. Redundant lookup paths can be used to reduce the risk in structured P2P networks.
It will be interesting to answer questions like “how many independent lookups are needed for
99.99% success rate, if at most 5% of the randomly distributed peers are malicious?”

A number of reputation systems have been proposed for P2P [146, 147, 148, 149]. How-
ever, they focus on file sharing systems (not real-time), have centralized components, assume
co-operating peers or have problems of collusion and multiple identities. Further study is needed
to detect the peers who are known to drop calls or do other malicious behavior so that they are
not used in the call routing path and not allowed to become part of the underlying DHT.

Besides untrusted trust peers, some of the other security threats are summarized below.

Malicious program: A malicious P2P-SIP application can allow various forms of attacks, break-
in, or spread virus, spy-ware or worms. Software developed by trusted entities or open
source community can reduce this risk. Even software bugs such as buffer overflow can be
exploited by hackers. Running the application as a regular user instead of an administrator

(on Windows) or super-user (on Unix) can reduce the risk to some extent.

Copyright violation: P2P-SIP architecture can be easily extended to support file transfer. For
example, SIRNVITE can initiate &tp session using appropriate SDP message body. The
problem is similar to other P2P file sharing applications. P2P-SIP does not have an efficient
search method, i.e., search for files using regular expression pattern matching. This also
reduces the threat, since not many people will use this for sharing music files if the files

cannot be efficiently searched.

Stolen identity: The system should prevent a malicious user from stealing the identify of another
user. This threat is sometimes also known as authenticity: when you make a call to a user

identifier, are you sure that you are reaching the correct user? In P2P-SIP, we reduce the

154

risk by requiring that the user identify must be a valid email address. (In future this can
be extended to a valid telephone number.) The system generates a password for the user
identify and sends it to the email address. We describe this mechanism later in this section.
The system should be able to authenticate and securely determine whether the user is who

he claims to be.

Privacy: Certain user information needs to be conveyed to the other peers to allow call routing.
The system should ensure that no sensitive data is conveyed which can be misused later.
In particular all signaling and media communication should be encrypted. Privacy and
confidentiality in a pure P2P system is difficult. Some parts of the problem is addresses in

this section using public key mechanism.

Free riding: There is another kind of threat to P2P systems, called “free riding” [150]. Some
nodes may want to use the P2P services for making and receiving calls but refuse to serve
in the user location lookup process by becoming a super-node. The system should enforce
some policy to discourage such peers. For example, peers can earn some credit for doing
services which can later be used for using the services. Every peer can start with an initial
amount of credit. Peers behind a NAT and firewall may have to pay for the service if they
cannot serve by becoming a super-node. Nodes that run out of credits and refuse to pay are
declined the service. A BitTorrent-like approach is useful: if a peer can be a super-node,

then it can connect to other nodes only if it also routes calls.

If the user identity is easy to obtain (e.gahoo.com email addresses), then people can
always acquire new identities to make outbound calls. However, they won't be able to
advertise their identity for incoming calls for long period, if they do not serve in the P2P
overlay or pay credits to other serving peers. Moreover, making outbound calls does not

entitle them to free gateway access or free PSTN calls.

Besides the above threats there are more threats in P2P systems such as anonymity [12] and ac-
counting. Caller anonymity can be provided by having the SIP outbound proxy hide the identity

of the caller. Call accounting is needed for PSTN calls, and can be provided by the gateway.

155

Accounting within P2P-SIP nodes is not required. Finally, if automatic software updates are in-

corporated in P2P-SIP nodes, then it must be done in a reliable, secure and decentralized manner.
Some of the security problems in P2P are hard to solve. There is a tradeoff between

security risks and convenience of server-less systems. We divide the problem into multiple stages

and analyze each of them below.

Identity Protection

User identifiers can be randomly assigned by the system, chosen by the user as a screen
name (e.g.alicel72@sippeer.net) or chosen by the user as her valid email address @&-g.,
ice@example.com). The first two approaches allow the user to choose her password, but it is
not clear how the P2P node can get the password from the user to verify. We use the last approach
as it allows the system to generate a random password and email it to the user for authentication.
In the first two approaches, if a password is randomly generated by the system, it can be mailed
to the user if theContact header in the SIREGISTER request has an email address.

When a user signs up with the P2P-SIP network for the first time, we need to verify that
the user identifier is valid and indeed belongs to the user. In the absence of public key infras-
tructure (PKI), the system can generate a new password and send it in an email to the user as
mentioned earlier. This requires that the user identifier be same as her email address. For ex-
ample, when Alice signs up with identifiatice@example.com by sending a SIREGISTER
message, the responsible node generates a random password for Alice and sends it in an email
to alice@example.com. It then challenges Alice with digest authentication [127]. We use the
domain part of the user identifier as tte&alm for authentication. The responsible node maintains
the authentication information (user identifier, realm and MD5 hash of “user:realm:password”)
on the DHT. The information is indexed by the user identifier. This information is required and
sufficient for future authentication of any user signing up with the same identifier. A reasonable
time-to-live, say one week, can be used. The information is refreshed when the user subsequently
signs up. So if the user identifier is unused for a week, subsequent sign-in generates new password
sent to the user’s email address.

The email sent to Alice contains the user identifier, realm and password. It also contains

156

the IP address (or other identifying information) of the original sender dqREBE@ISTER request,

so that Alice can report abuse if she was not the one trying to sign up with P2P-SIP. When Alice
receives the password, she signs up again with the appropriate credentials. Subsequent sign-up
follow the same procedure.

When a registrar node (A) shuts down, the registration is transferred to another DHT
node (B). If node B trusts node A, it just needs to authenticate A, otherwise it re-generates a new
password and sends it to the user’s email address. We believe that once we have a P2P reputation
system, only the more trusted nodes will be present in the DHT. The problem is still there if the
registrar node is malicious, and can cause denial of service (DoS).

Sending in email is just one of the ways. Alternatively, if a group of users already have
user certificates from other trusted entity such as VeriSign, they don’t need to do email based cer-
tificates. Another possibility is to also allow telephone number ideritt(RL) if the user can
call from that telephone number (with caller id) to a interactive voice system that verifies that the
user owns this telephone number and issues a new certificate. This way other friends who know
his phone number instead of email address, can also reach him on p2p-sip. Making an outbound
call to a telephone number (similar to sending an outbound email) for identity verification is not

a good idea, unless user pays for the call.

Misbehaving Nodes

Certain guidelines can be followed to detect and avoid misbehaving nodes [151]. For example,
the caller can prefer the redirect (iterate) mode of operation, so that it can monitor at each step
whether the routing is as per the DHT specification. There should be no single point of rout-
ing decision. In our current implementation, the responsible node also does replication. So a
misbehaving responsible node can make the user unavailable.

Generally speaking there are known three models to prevent misbehaving nodes in P2P:
(1) hide the security algorithms and protocols, so that only the single vendor implementation
will be running on the node (e.g., Skype), (2) form a social network of peers in unstructured
P2P system, or (3) keep only trusted nodes in the structured P2P network (e.g., OpenDHT is a

managed P2P network). Since identifying untrusted nodes is difficult, we may want keep both

157

trusted and untrusted nodes in a structured P2P, but nodes should be able to selectively trust other
nodes during call routing and registrations. Thus, the requirement does not fit any of the known
security mechanisms for handling untrusted nodes.

One option is to use redundancy in lookups. However, if at each dbgiéV) steps in
the lookup path, the request is sent to two nodes, then the request can téa{nseodes which
is inefficient. Alternative is to build multiple independent DHTs (e.g., Chord using different hash
functions) using the same the set of nodes, and perform lookup and update on all the DHTs. For
example, if a fractionf, of N nodes are malicious independent of each other, then the probability
of successful lookup isl — f)°&(N), With k independent Chord-based DHTS, the probability of
failed lookup on all the DHTs il — (1 — f)°s(N))%_ For example, if only 1% of the nodes are
malicious, then in a DHT with one million noded’(= 22°), 19% of the lookups will fail. But
with two independent DHTSs this reduces to about 3% failures. This approach increases the DHT
maintenance and state overhead by a factdf, ahd does not work well with highegfor V.

Malicious nodes cause two kinds of problems visible to the user: (1) denial of service
(DoS), i.e., the user identifier becomes unavailable, and (2) intercept, i.e., call goes to the wrong
person. The latter can be detected using end-to-end authentication assuming a previous commu-
nication has happened, or using a chain of certificates assuming both the caller and callee trust
at least one certifying authority (CA). The former (DoS) is difficult to eliminate without a P2P
reputation system. “Node calling itself” mechanism can be used for detection to some extent. For
example, multiple identities can be created per user including the test identities, and the system
periodically makes calls or sends instant messages from one to the other to check correctness.
The nodes can periodically verify the routing correctness, e.g., by making calls to itself through
some other node. Such a probe-based approach assumes that the nodes are not able to distinguish
between a normal request and a probe request.

To build a reputation system one approach is to have separate systems (DHTSs) for user
lookup, and reputation. This is similar to the judiciary or press system in a real world, which
keeps a tab on misbehaving people. The nodes in this reputation system can be selected (or
elected) from the original P2P network. Thus, the node can serve in the reputation system along

with the lookup system. This service should be temporary (i.e., limited in time) to give chance

158

to every node instead of having a few nodes hog the reputation board. The election may be
based on some criteria such as past records of service, or random. Using the past history may be
abused if the nodes provide good service to build the reputation, and finally misbehave when they
serve in the reputation board. However, a random selection is always prone to some fraction of
misbehaving nodes getting elected.

In such a democratic system, it should be emphasized that a single malicious node should
not be able to invite many other malicious nodes in the network. Formally, if only a fragtjon,
of the nodes in the P2P network are malicious, then probabilistically at fnbsiction of the
nodes in the reputation board can be malicious.

The next question is how to detect whether a node misbehaved or not? When a node (A)
detects that another node (B) did not forward its request, or forwarded it incorrectly, it can report
this to the reputation system. The reputation system, which has rough idea about the P2P network
(i.e., which nodes are responsible for what key ranges?) can update the reputation of B, possibly
after consulting and querying B. Such a report from A to B needs to cryptographically verify the
message exchanges as seen by A.

The size of the reputation board is much smaller than the original P2P network. The exact

size of the reputation board will depend on the particular DHT and the election algorithm.

Data Privacy

In addition to the misbehaving nodes which can disrupt the DHT lookups, users also need to
store some information on the DHT nodes, which may be untrusted. There are three types of

information about the user that can be stored on another node.

public: P2P node should be able to see the information for message routing, authentication, or
other processing. For example, user’s encrypted password, contact locatio (et
header including preference value, expiration time and URI), voicemail options (such as
timeout to go to voicemail, maximum message size, etc). Note that this information is not

public to everyone, but only to the P2P nodes that help in lookups.

private: Only the user should be able to see and modify this information. Private data must be

159

encrypted by the user before storing on the node. For example, user’s address book, groups,
calendar appointments, watcher and watchee list, programmable scripts (e.g., LESS, CPL,

SIP CGl or servlet) and other profile information.

protected: User should be able to see and modify the information, but some other user should
be able to create the information. The storing node should not be able to see or modify
the information. For example, voice/video mail, and offline messages. Protected data is

encrypted by the sender using the recipients public key, and decrypted by the recipient.

Programmable Call Routing

The responsible node cannot trust the registered user except that it can store her information and
route her calls. For example, untrusted programmable call routing scripts such as SIP-CGI and
SIP Servlet will not be run by the responsible node on the user's behalf. On the other hand,
trusted and secure CPL scripts can be run by the responsible node. However, this is purely a local

decision by the responsible node.

User Aliases

User can have alias names or other names. For exaalipe@example.com may also have
alias aswebmaster@example.com and other names adice.Smith@example.com. These
are treated as user identifiers and all profile information must be duplicated. Sharing the profile
information among the aliases causes complicated trust requirements. On the other hand, user
will typically have provisions in her user agent to register with multiple user identifiers or line
presence, so that does not require support from P2P-SIP.

Alternatively, a user can maintain a primary identifier suchlage @example.com and
point all other identifiers such adice.Wonderland@yahoo.com andaw76@columbia.edu
by registering them with contact as the primary identifier. This avoids duplicating the profile
information for secondary identifiers, but increases the call setup latency when someone wants
to reach the user by her secondary identifier. To avoid going into a search loop, the responsible
node for the secondary identifier will typically redirect the call request to the primary identifier.

The caller’'s phone then retries search for the primary identifier on the P2P-SIP network.

160

To simplify the implementation, aliases follow the same procedure for first time log-in,
i.e., alias must be a valid email address and the password is sent to the email address represented
by the alias identifier.

To summarize the security discussion of P2P-over-SIP, the security threats such as stolen
identity and privacy can be solved, but the malicious nodes that do not forward the lookup requests

or secretly log the communication are hard to solve without a centralized reputation system.

6.10 Performance Evaluation

In this section we evaluate the P2P-over-SIP architecture in terms of scalability, reliability and

call setup latency.

Scalability

Scalability of the P2P-SIP network depends on the capacity (bandwidth, CPU, memory) of the
individual participating super-nodes. Suppose thereNaiper-nodes in the Chord ring, iden-

tifier space ign-bit long (i.e., the identifier range is 0 & — 1), number of registered users in

the system is: (such that number of keys stored per node is approximatefy), REGISTER

refresh rate to successor and predecessor to keep the Chord ring corredfisesh rate for fin-

ger table entry i, call arrival is Poisson distributed with meamer node, user registration is
uniformly distributed with mean intervalper user, and node joining and leaving are Poisson dis-
tributed with mean\. Because average lookup in Chord travels throOglog(V)) nodes [22],

the finger refresh messages, call arrival messages and user registration refresh messages travel
O(log(N)) hops. There ar®(log(N)) finger table entries per node. Node join and leave gener-
ateO((log(N))?) messages. The average message rate per node is sum of the message rates due

to refresh, call arrival, user registration and node join or leave, which can be given as:
M = {rq +r(log(N))2} + c.log(N) + £ log(I') + 20es(N))?

The message rate in the node determines the bandwidth and CPU utilization for the node.
If each node can handl€ requests per second, then the equaliba- M gives the maximum

possible number of noded/,,.., in the system, which roughly translatesi,,, = 2% for

161

large N, wherer is the refresh rate andis the call rate. Note that is low because nodes which
often join and leave are not made super-nodes.

Suppose the node supports 10 requests per second (which is much less than the typical
capacity of hundreds of requests per second as mentioned in Chapter 3) with minimum refresh
interval of one minutes(= 6—10) and mean call rate of one call per minute per node, then the
maximum number of nodes in the system can2b&3°. Our SIRPEER implementation can
support about 800 outgoing registrations per second, for example. If more nodes join the system,
the super-nodes become overloaded and may deny some incoming call, registration or proxy

requests. However, large valuesiéfalso increases the call setup latency as we describe below.

Reliability

When a node fails the user registrations stored on that node are lost. To achieve reliability, the
refresh rate can be increased (so that node failure detection happens quickly), the user registration
refresh rate can be increased (so the the user record is unavailable only for a brief period of time)
or the user registration record can be replicated at multiple nodes (e.g., store the user registrations
atlog(NN) successive nodes in Chord).

Chord provides reliability against node failure by storing(/V) successor addresses and
replicating keys at some consta\ number of successive nodes. In P2P-SIP, the node update
response contains all theg(/N) successor addresses, and user registrations are replicdted at
successive nodes. The equation for average message rate does not chaingtudes failure
rate along with node join and leave rates.

When a node gracefully leaves the network, it unregisters with its successor and prede-
cessor so that they can update their Chord data structures. It also transfers all the registrations
to the successor. When a node fails abnormally, its successor and predecessor detect the failure
and update their data structures. The stabilization algorithm ensures that the information gets
propagated to other relevant nodes in Chord over a period of time.

The P2P-SIP node that stores the user registration, also proxies the call request to that

user. Once the call setup is complete, the P2P-SIP node is not needed in the call path.

162

Call Setup Latency

The P2P advantages come at the cost of increased call setup latency. For example, with 10,000
nodes in Chord, the average lookup path length is six hops [22], so P2P call setup will take about
six times more than traditional client-server call setup in SIP. With good network condition, single
lookup (NVITE response) in SIP is expected to take less than 200 ms. So one or two seconds
delay before the phone rings in P2P-SIP is tolerable given that on an average the phone will ring
for much longer before the callee picks up.

Due to P2P synchronization latency which depends on refresh rate and node join, leave
and failure rates, there may be delay in updating the user records. In this case, it may take mul-
tiple retransmissions before call setup is complete. This further increases the call setup latency.
Successful user location in Skype takes about three to eight seconds [104].

Some kind of hybrid system may be implemented that takes the advantages of many dif-
ferent structured and unstructured P2P algorithms to further reduce the latency and maintenance
cost. For example, there has been recent proposal on one hop lookups for P2P [152] assuming

large storage space in the peer nodes.

6.11 Conclusions

We have described a pure P2P architecture for SIP telephony. The architecture provides zero
configuration, robustness and scalability inherent in P2P systems, in addition to interoperability
with existing SIP infrastructure. The advantages come at the cost of increased call setup latency.
Note that the media is sent directly between the two parties without going through the SIP proxies
in both the client-server and P2P arcitectures and hence, media delay is uneffected.

For SIP-using-P2P, we have presented an example architecture using OpenDHT as an
externally managed peer-to-peer network. We explained various P2P deployment components
such as clients, proxies and adaptors using pseudo-code and examples. We also presented some
of the design issues based on our implementation. The architecture can be used for other DHTs
with similar interfaces. Based on our analysis, we recommend using P2P clients instead of the

P2P proxies or adaptors as much as possible, and the planned authenticated interfaces [27] when

163

implemented in OpenDHT. This reduces the number of lookup and updates in the P2P network
and, hence, is more scalable. The design and data format presented in this paper can be used by
other P2P-SIP implementations to build an interoperable network of P2P-SIP nodes for contact
management, key storage, NAT and firewall traversal, presence and offline message storage.

For P2P-over-SIP, we analyze various design alternatives, propose a P2P-SIP architecture
using Chord as the underlying DHT, and describe various user location and registration steps
in detail. We also present an overview of various advanced services such as offline messaging,
conferencing, NAT and firewall traversal and security issues.

We have implemented P2P-SIP node in both P2P-over-SIP and SIP-using-P2P architec-
tures for multimedia communication using our SIP C++ library. The SIP-using-P2P architecture
is also implemented in the Columbia SIP user agapt.

We notice that the classical client-server architecture of SIP and the P2P-SIP architecture
are two extremes. For example, in the former case, the per-domain SIP is used to locate the user
in the domain, and DNS is used to locate the per-domain server. In the latter case, P2P overlay
is used to locate the node holding the user location. There can be an intermediate architecture
that can use DNS to locate the server but the servers can dynamically join and leave the system
using dynamic DNS. This gives rise to the service provider model where the provider sells the
SIP service by becoming part of another provider’'s SIP server pool. DotSlash [92] explores this
option in the context of web “hot spots” and uses service location protocol (SLP) to locate the
backup servers. Such approaches need explicit synchronization of registration records among the
participating servers similar to join and leave maintenance in P2P.

More work is heeded in advanced services such as large scale application level multicast
conferencing using P2P, distributed reputation system for peers, and PSTN interworking related
issues such as authentication and accounting. There should be a reasonable incentive to become
a super-node to provide services to other peers.

There are a few open issues: how to turn a node behind firewall or NAT into a super-
node in the DHT. This reduces the load on public super-nodes, since most of the residential and
corporate users typically will be behind some firewall and NAT. Alternatively, the private nodes

in a domain can form a secondary P2P overlay connected to the public DHT via a few external

164

connections to reduce the port utilization on the NAT device.

Some of the P2P open questions described in [153] are relevant to P2P-SIP architecture
also. Some kind of hybrid system may be implemented that takes the advantages of many differ-
ent structured P2P algorithms to further reduce the latency and maintenance cost. For example,
there has been proposal on one hop lookups for P2P [152] assuming large storage space. Apply-
ing this in P2P-SIP is transparent to our architecture.

Finally, we conclude on a note that unless the SIP servers (proxies, registrars) are widely
deployed, we will need P2P based IP telephony tools so that everyone can use the system. Such

P2P-SIP architecture can be extended to other protocols such as H.323.

Part Il

Enterprise IP Telephony

This part describes the components in our multimedia collaboration architecture for enterprise

IP telephony and large scale conferencing. The goal is to build a multi-platform collaboration
architecture using standard protocols that can be accessed from different devices and tools such
as IP phone, regular telephone, email, instant message and web. We also describe our SIP-H.323

translation mechanism.

165

166

Chapter 7

Background: Conferencing, Streaming

and Voice Dialogs

Multimedia collaboration consists of a number of components such as multimedia conferencing,
real-time media streaming and interactive voice dialogs. Before we describe our multi-platform

collaboration architecture, we provide background on these components in this chapter.

7.1 Multi-party Conferencing

Multi-party conferencing is an important telephony service, provided in the PSTN by conference
bridges. Many PSTN carriers offer conference bridges which allow users to take part in a voice
conference by dialing a telephone number and conference access code. We can further enhance
conferencing for Internet telephony by adding video and collaboration. The conference can be
identified by a destination address, and participants can join the conference by making a call to
that address, thus requiring no modifications in end systems. There are currently two Internet
telephony signaling protocols, IETF's SIP [3] and ITU-T's H.323 [37]. SIP identifies the des-
tination via a SIP URI of the fornsip:user@domain, while H.323 used\liasAddress data
structures, which can assume many forms, including URLSs.

There are two different aspects of Internet based conferencing, signaling and media. Ei-

ther SIP or H.323 can be used as a signaling protocol for taking part in a conference. Both SIP

167

and H.323 use the Real-time Transport Protocol (RTP [1, 2]) for carrying real-time media traffic,
such as audio and video. H.323 defines a multi-point control unit (MCU) for handling multi-
party conferences. An MCU consists of a multi-point controller (MC), which can also be part of

a terminal, to handle signaling and control exchanges with every participant in the conference.
An optional component, the multi-point processor (MP), handles mixing and filtering of different
media streams. SIP does not define any conferencing entity as such, as these entities are easily
implemented as SIP user agents. The core SIP specification supports a variety of conferencing
models [50]. In the server-based models, RTP media streams are mixed or filtered by the server
and distributed to the participants. There is a standard point-to-point signaling relationship be-
tween each participant and the conferencing server.

The conference is identified by the SIP URI, egip:discuss@server.com. The stan-
dard user location and routing mechanisms in SIP forward all calls to the appropriate conference
server aserver.com without requiring any extension to the protocol. The SIP message routing
entities (SIP proxies) need not be aware that the request URI corresponds to a conference and not
to an individual person.

The Session Description Protocol (SDP [46]) is used to indicate media capabilities and
media transport addresses. The participant sends the information about his media capabilities
and the transport address where he wishes to receive RTP packets. In the message body of
the 200 success response, the server sends the transport address to which the participant should
send his RTP packets. More advanced scenarios can be accomplished using RieFER
method. For example, an existing participant can invite another user to join the conference.
These conferencing models can be found in [50].

SIP-based authentication can be used to prevent unauthorized participants from joining a
conference. The server can support both pre-arranged conferences as well as ad-hoc conferences
by assigning special meaning to the user field in the request URI. For example, participants who
wish to joinsip:ietf.arranged@office.com will need to set up the conference before hand, while
those who wish to joisip:library-discuss.adhoc@office.com do not need to setup the confer-
ence in advance. In both the cases, the participants have to know the unique conference URI.

The conference state is maintained as long as at least one participant is part of the conference.

168

Participants find out about the conference URL via external means, such as email or a web page.

7.1.1 Conferencing Models

SIP can support many different conferencing architectures. SIP supports various multi-party
conferencing models [50], ranging from mixing in end systems to multicast conferences. When
multicast is not available, centralized mixing, transcoding and filtering of media can be used to
create multi-party conferences.

Conference models can be distinguished based on the topology of signaling and media
relationships. Conferences with a central server are easier to handle for end systems and simplify
keeping track of the conference participants. On the other hand, network-layer multicast is more
scalable for large-scale media distribution and allows a “loose” model of conference member-
ship [154], where each member has only an approximate view of the group roster.

Table 7.1 summarizes the different typeswddia distribution models multimedia con-
ferencing. The table compares the scaling properties, depending on the the number of active
senders M, and the total number of participantd,. Given thatM is almost always one for
typical audio conferences, most of these models scale similarly in terms of processing and band-
width requirements. Note that the centralized model performs better with highiemputs are

summed.

Centralized Conferencing

In the centralized model, a server receives media streams from all participants, mixes them if
needed, and redistributes the appropriate media stream back to the participants (See Fig. 7.1). If
the speaker’s audio is received in the mixed stream by the speaker, he will hear echo of his own
voice. Since senders would have difficulty subtracting out their own contribution due to expensive
audio analysis, the server needs to create a customized stream for each of the currently active
senders and a common stream forMal- M listeners, assuming that they can all support the same
media format. The server needs to decode audio streams before mixing, as mixing is generally
performed only on uncompressed audio. Decodifigand encodingy/ + 1 streams limits the

amount of active sources or conferences. The available outbound network bandwidth at the server

169

Properties centralized fullmesh multicast unicast rx, mund system mix-
ticast tx, ing

Topology Star full mesh m-casttree starand m-cast ad-hoc

Server process- O(M+N) n/a n/a O(M+N) n/a

ing

Endpoint pro- O(1) o(m) o(m) 0(2) variable

cessing

Server band- O(M+N) n/a n/a O(M) using m- n/a

width cast

Endpoint band- O(1) o(M) o(1) 0(1) variable

width

Scaling medium medium large large medium

Heterogeneous yes yes no no yes (partially)

endpoints

Get back your no no no yes no

media

Table 7.1: Types of conferenced/ is the number of active senders aidthe total number of
participants

limits the number of participants in the total conference.

The central server model has the advantage that clients do not need to be modified and do
not have to perform media summing. In addition, it is relatively easy to support heterogeneous
media clients, with the server performing the transcoding. For example, this allows a confer-
ence consisting of participants connected through high-bandwidth networks as well as wireless
networks, each receiving the best possible quality. At the cost of increased inbound bandwidth,
silence detection can be delegated from clients to the server. This is helpful if the phones of the
participants do not support silence suppression.

Also, the server can enforce floor control policies and can control the distribution of video
based on audio activity. Compared to a distributed model, a central server can readily provide a

consistent view of the complete conference membership.

170

(a) Centralized Server (b) Full mesh

D A+B+D (d) Unicast receive and multicast send
(Example network: link bandwidth
requirements are multiple of codec
bandwidth.)

(c) End system mixing

Figure 7.1: Types of media distribution model

Full mesh

In a full mesh, each active participant sends a copy of its media stream to all participants via
unicast, without a central server. End systems sum the incoming audio streams; since most of the
time, only one speaker will be active, the CPU overhead is modest as long as silence suppression
is implemented everywhere, but it fails if the access bandwidth of some participants is just large
enough for a single stream. For video, full mesh does not scale unless, for example, only currently

active speakers send video. In a full mesh, each pair of participants must share a common codec.

171

Multicast

Network-layer any-source multicast is ideally suited for large-scale conferences. A multicast
address is allocated for each media stream, and every participant sends to that address. As in
the full mesh, participants receive packets on the same address from all other participants, and
need to sum or select streams. While the incoming bandwidth is the same as in a full mesh, each
system only needs to generate one copy of the media stream.

Unfortunately, native multicast is not widely available outside network testbeds such as

Internet2. Also, all participants must share a common set of codecs.

Unicast receive and multicast send

This scheme combines some of the benefits of the server and multicast models. Participants
send their media streams using unicast to the conferencing server, which sums them and sends
them out on a pre-established multicast address. Thus, unlike pure multicast, end systems do
not have to filter or mix media streams. Every participant receives the mixed stream, which
includes his own stream. Unless a sender maintains a buffer of the data sent and there is a means
of aligning time scales, it will have difficulty removing its own audio content from the mixed
stream, because of expensive audio correlation analysis. If the sender does not remove his own
audio, he will hear echo. The gain in bandwidth efficiency is largest if the number of simultaneous
senders is small compared to the total group size. This approach lends itself well to single-source

multicast [155, 156].

Endpoint mixing

Instead of in a server, mixing can take place in one of the participating end systems. For example,
if AandB are in a call,A can also invite”. A sends the sum of the media frafnand B to C,
and the sum ofA andC to B. B andC' do not need to be aware of the service performediby
but can in turn mix other participants.

Cascading mixers increases the delay on some of the media paths. Another problem is
that the conference dissolves when the participant who is acting as a mixer leaves the conference.

This model is likely to be suitable only for small conferences of three or four parties.

172

Replication

Besides these, one can imagine a replication model, where the server sends a copy of each incom-
ing media stream to all the participants using unicast. The mixing is done at each end system.
This might be useful for media path authentication as every end system exchanges media packets
only with the server’s IP address. The CPU overhead is modest as long as silence suppression
is implemented. The server however is less loaded than in the case of the centralized conference
since it is now freed from the task of mixing audio streams. This is the model used in the case of

video and text based conferences, since there is inherently no mixing required.

Media vs. Signaling

Media and signaling can use different models in the same conference. For example, one could
combine centralized signaling with multicast media distribution, where the server maintains a
one-to-one signaling relationship with each of the participants. Unfortunately, this requires co-
operation from the end system. The server can indicate a multicast address in its SIP success
response, causing the end system to send media streams via multicast, but the end system will
still expect to receive media via unicast. More sophisticated session description formats may
address this issue.

Also, different media streams can use different models. For example, audio could be
mixed by a central server and redistributed, while video can be sent point-to-point between every
pair of participants as in full mesh.

Thus, as long as multicast is not widely available, server-based conferences will continue

to be the only viable model for mid-size conferences of tens to hundreds of participants.

7.1.2 Requirements for Centralized Conferencing

The main functions of a conference server is the mixing and redistribution of media streams.
Typically, Internet audio streams are added or mixed, while video streams and other media are
simply replicated. However, a video mixer can also create a new composite video image [157].
For audio, the server needs to ensure that a participant does not receive a copy of his own media

in the mixed stream. RTP [158] allows a sender to indicate which sources have been combined in

173

a single media packet. When summing, the server should absorb the jitter in packet arrival times
while introducing minimum delay.

For replication, the server should not need to be aware of the media formats. The RTP
SSRC indication [1, 2] ensures that the receiver can distinguish different sources addressed to the
same network destination.

For either summing or replication, it is desirable if each participant can use different
media types and packetization intervals, to accommodate heterogeneity of end systems and ac-
cess bandwidths. Implementations need to scale to large number of conferences as well as large
numbers of participants per conference.

A media mixing module with a SIP interface can act as a conferencing server component
in the distributed application server component architecture. Advanced system can bundle this
functionality with other services, such as interactive voice response (IVR) and a web-based user

interface.

7.2 \oiceXML: Interactive Voice Response

VoiceXML [35] is an XML-based language developed by the W3C to facilitate interactive voice
response (IVR) that feature synthesized speech, digitized audio, recognition of spoken and DTMF
key input and recording of audio for telephony applications. It converts the traditionally propri-
etary and closed IVR systems into an open programmable architecture.

A VoiceXML interpreter, also known as VoiceXML browser, can fetch Voice XML pages
from a web server, allow user input via spoken audio or touch-tone keys, and submit filled forms
to the server-side scripts to generate another VoiceXML page for subsequent dialogues. The
back-end programmable web CGlI scripts can perform the application logic, such as voice-mail

access or email access by phone.

The following example VoiceXML page prompts the caller with spoken audio: “Enter the
ZIP code ...". When the user presses a sequence of digits, say 10027#, the z@paiiie gets
the value “10027" that gets passed to the URlp://myserver.com/weather.cgi?zipcode=10027.
It is up to the scripiveather.cgi to process the input and generate further VoiceXML pages. If
there is some error or user doesn’t press anything, then the prompt is repeated.

174

<?xml version="1.0"?>
<vxml version="1.0">
<form>
<field name="zipcode">
<prompt>Enter the ZIP code of the location for which you
want weather information.</prompt>
</field>
<catch event="noinput error help">
Enter the ZIP code again followed by the pound key.
</catch>
<block>
<submit next="http://myserver.com/weather.cgi" namelist="zipcode"/>
</block>
</form>

</vxml>

User input, either DTMF or spoken audio, can be specified using a set of rules called as
grammar. A simple DTMF grammar can be used to receive only the DTMF input. A typical
explicit dtmf tag in the VoiceXML page looks like:

<dtmf type="application/x-dtmf">
1121341~
</dtmf>

The MIME type for this grammar is “application/x-dtmf”. Input is either a fixed length string or
terminated by a “#”. A default implicit timeout of five seconds is implemented so that the input
is automatically accepted if the user does not press the terminating “#" key within five seconds.
If no grammar is specified, then the interpreter will accept any input. Special key sequence such
as “**#” may be defined to signal theelp event.

A VoiceXML browser needs a call control engine to handle or initiate telephony events
such as incoming calls or call transfer. The browser fetches the VoiceXML pages or pre-recorded
media files from a web server and presents an interactive dialog to the telephone user. Fig. 7.2
shows an example scenario where the browser, with SIP-based call control engine, is accessed

from SIP phones as well as a regular telephone. The VoiceXML pages can either be statically

175

SIP/PSTN gateway

- -

Fetch VoiceXML pages _‘_ =
ID Web server
Call Request
Ui, \ . CCI, servlet, JSP
SIP user agent il
v Get streaming media
o SIP based Voice XML
browser |
-) (’ \ I -\.
~ ks &
; Media server

SIP phone

Figure 7.2: Example sipvxml scenario

stored on the web server or dynamically generated based on some server side programming logic
like HTTP-CGI (Common Gateway Interface), Java servlet or Java server pages. The media files
can either be stored on the web server or can be streamed in real-time from a media server, such

as ourrtspd, directly to the SIP caller using RTP [1, 2].

7.3 RTSP: Media Streaming

The Real-Time Streaming Protocol (RTSP) [159] allows to control multimedia streams delivered
on the Internet. It is similar to HTTP [7] in syntax and semantics, and defines new methods
such asSETUP, TEARDOWN, PLAY, RECORD andPAUSE, to start and terminate a stream,
perform time-positioned playback, recording and pausing of a stream, respe@EzSCRIBE

and ANNOUNCE requests are used to learn or specify the session description of a stream for
playback and recording, respectively. They use the Session Description Protocol (SDP) [46] in
the message body to describe the session. Unlike HTTP, which downloads the whole media file
in the response, RTSP uses the Real-time Transport Protocol (RTP) [1, 2] to deliver multimedia
streams in real-time. An exampBETUP request is shown below:

176

SETUP rtsp://example.net/bob/movie.rm RTSP/1.0
CSeq: 102
Transport: RTP/AVP;unicast;client_port=8000-8001;mode="PLAY"

RTSP clients such as Apple’s QuickTime [160] and RealPlayer [161] are well known
among Internet users for playing stored audio or video content. However, RTSP can also be used
for playing live content. The SDP contains a multicast address to play a live multicast radio, or
to record a multicast program. In that case, the RTP packets are streamed to or received on that

multicast IP address.

177

Chapter 8

Related Work: Internet Telephony and

Multimedia Collaboration

Internet telephony has been an active area of research and development in the past decade, with
a number of companies such as Vonage, Skype, AT&T, Net2Phone, DialPad and MediaRing
providing PC-to-PC and PC-to-phone calls. Their objective is mainly to provide low-cost call
service to PSTN from the public Internet, whereas our architecture, which is called Columbia
InterNet Extensible Multimedia Architecture (CINEMA), is well-suited for Internet telephony
infrastructure within an organization with many more additional services such as collaboration
and platform independence. CINEMA emphasizes use of existing standards for interoperability
and an open and distributed component architecture instead of closed server box implementing
all the features.

A number of efforts started about the same time as ours in enterprise IP telephony sys-
tems, including but not limited to Cisco Call Manager [162] and Nortel Multimedia Communi-
cation Server [163]. All the systems have evolved over time to contain more or less equivalent
set of features. However, there are certain design issues and tradeoff such as those affecting the
reliability and scalability of the distributed architecture that differ. Our goal is to provide a fully
distributed architecture that allows interoperability among different components from different
vendors. This means that any standard complaint tool can be used in place of existing tools in

the architecture. Secondly, proprietary or single vendor protocols such as Skype [21] and Cisco’s

178

Skinny [164] are not considered for building enterprise IP telephony systems in this thesis.

CINEMA-based Internet telephony can be used to minimize telephone infrastructure and
service costs within an organization. We can configure CINEMA to carry calls between campuses
or branch offices over IP with virtually no added cost.

Several multimedia conferencing products use SIP or H.323 for signaling, e.g., Meet-
ingPoint from CUseeMe Networks [165], Sametime from Lotus [166], and GnomeMeeting [167]
from the Linux community. Our system can provide services beyond standard video conferencing
and can actually incorporate these tools as long as they are standards-compliant.

Computer-supported collaborative work (CSCW) has been studied even before the web [168,
169, 170, 171]. ACM's special interest group on supporting group work, SIGGROUP, explores
topics related to computer-based systems that affects team or group in workplace settings. How-
ever, the focus remained mostly on web-based document sharing and concurrent editing in sys-
tems such as BSCW [172], Lotus Domino [173], Hyperwave [174] or Livelink [175]. Many
researchers have explored specific types of collaboration such as collaborative software develop-
ment [176] or electronic class rooms [177].

Multimedia conferencing using audio, video, and data communication using instant mes-
saging and email, have independently evolved and become popular over the years [178, 179, 180,
181, 182]. Using audio and video for collaborative work is not new [183, 184]. There are a num-
ber of audio/video collaboration systems such as MBone tools [185, 186], MeetingPlace [187]
and GnomeMeeting [167]. The ITU-T's H.323 protocol suite [99, 188] provides video confer-
encing systems along with T.120 for data conferencing and T.128 for application sharing [189].

Most of the technologies used in our architecture, such as shared web-browsing [190],
conference floor control [191, 192, 193, 194], application sharing [195, 196, 197, 198] and web-
based collaboration [199] have been investigated extensively elsewhere. A number of web portals
such as Yahoo! and MSN provide online calendaring, and sharing of information to some extent.
However, the concept of groups has only recently started gaining attention. Our work was the
first demonstration of a SIP-based comprehensive and extensible collaboration system combin-
ing synchronous and asynchronous collaboration mechanisms. Although our approach comes

from a multimedia communication background, it integrates the conferencing and collaborative

179

computing approaches.
Next, we describe related work specific to components of CINEMA, such as SIP-H.323

translation, unified messaging and centralized conferencing.

8.1 Interworking Between SIP and H.323

The problem of interworking between SIP and H.323 had started to attract attention when we first
proposed and demonstrated a translation scheme. Agboh [200] and Kausar and Crowcroft [201]
had addressed the problem of interworking, but had not solved the issues of registration and media
capability translation. Moreover, the translation of call setup from multi-stage H.323 to single
stage SIP was not available until our work. Since the newer versions of H.323 have proposed
a number of enhancements including the single stagConnect call setup procedure, thus,
further simplifying the translation. However, newer versions are supposed to interoperate with
older versions, hence our translation scheme is still valid and useful.

A informal work group was formed later within the IETF to investigate the translation
with the newer versions of H.323. The group developed the requirements for the translation [202].
A number of products are now available that perform SIP-H.323 translation such as from Vocal-
Tec, NexTone and SIPquest.

More recently, vendors such as Cisco and Microsoft have moved to SIP. Thus, with the
gradual disappearance of H.323 systems, especially after Microsoft discontinued the H.323-based
NetMeeting software, the research interest in SIP-H.323 translation is fading. There are lots of
deployed H.323 conferencing systems such as from Polycom and Radvision, and many carriers
have made huge investments in H.323-based infrastructure. Therefore, SIP-H.323 translation is

still needed.

8.2 Unified Messaging using SIP and RTSP

There is a fair amount of early messaging work, in particular, the Etherphone work done at Xerox
PARC [203, 204, 205], but none of it addressed the integration of Internet telephony with voice

messaging. Profiles have been defined for Internet messaging to support voice. In particular,

180

VPIM [206] supports the interchange of voice messages between voice mail systems, unified
messaging systems, email servers and desktop client applications. The basic architecture is to
carry the voice attachments in the electronic mail. None of these addressed the integration of
Internet telephony with the voice messaging system. Moreover, carrying the voice bits across
low-bandwidth links while forwarding the messages is not desirable. It also requires special-
purpose client applications which can understand the profiles.

We proposed and implemented the first voice mail and answering machine system for
SIP-based Internet telephony that combined the power of media streaming and worked without
modifying the existing SIP servers or clients. Subsequently, various schemes have been proposed
to forward a call to a voice mail server in SIP-based Internet telephony systems. The Common
Gateway Interface for SIP [24] or the Call Processing Language [49, 48] can be used to configure
the SIP server to use an external voice mail service. Campbell and Sparks [207] suggest the use
of SIP Request-URI to carry service control information related to voice mail.

Voicemail and answering machine are now common features in SIP-based Internet tele-

phony systems.

8.3 Centralized Conferencing using SIP

Before we started working on our SIP conference server, most of the then existing conference
servers in the market were based on H.323. These included MeetingPoint from CUseeMe Net-
works, Sametime from Lotus and Microsoft Exchange 2000 Conferencing Server. These sup-
ported T.120 for application sharing and whiteboards. MeetingPoint has mechanisms to link
servers together so that conferences can be shared and load-balancing can YWeldoialks [208]
by AT&T Labs is a comprehensive multimedia conferencing system intended to provide a variety
of Internet services such as video conferencing and low cost video-on-demand. It is not based on
SIP.

A number of software (e.g., RAT and NeVoT) support multicast “light-weight” confer-
encing, without explicit signaling support [154]. Etherphone [209] is probably one of the earliest
systems supporting multimedia conferencing.

Our sipconf was one of the first centralized conference server implementation based on

181

SIP. We further extended it to form the core of our synchronous collaboration platform by adding
video, screen sharing, instant messaging and recording. SIP-based conferencing has now become
a common feature in any Internet telephony infrastructure. The IETF's XCON working group

is standardizing centralized conference control protocol for operations such as floor control and

configuration access[210, 211].

8.4 Integrating VoiceXML with SIP Services

The Voice Browser working group of World Wide Web Consortium (W3C) has developed the
VoiceXML [35] specification. VoiceXML applications for interactive voice response are devel-
oped by many commercial organizations.

When we developed our SIP-based VoiceXML browser, there were some existing Voice XML
implementations. For example, Plum Voice Portal Technology [212] could present existing web-
sites or intranet applications to a phone user. It could also deliver follow-up information via email
or fax. Open VXI [213] was an open source VoiceXML interpreter. IBM’s WebSphere provided
HTML-to-VoiceXML transcoding that could be converted to speech by a VoiceXML browser.
Talking E-Mail [214] allowed users to access emails from various interfaces including voice, i-
mode, Web and WAP. None of these applications used SIP for call control. Ours was the first
known implementation of a SIP-based Voice XML browser.

SIP URI for indicating VoiceXML service is specified in [215]. Tellme studio [216]
provided the first SIP based VoiceXML development platform that allows users to test custom
VoiceXML pages or scripts. We used this for initial testing of our email-by-phone system.

In Section 9.6.2, we describe the design of a SIP-based VoiceXML brosygexml, and
its application in our IP telephony test bed. Ours was the first implementation to associate the
VoiceXML transfer tag with the SIFREFER message for a conferencing application. Moreover,
it can be used as a third-party voice application server like Tellme or an integrated component in
CINEMA [89, 217, 88] for campus or enterprise VOIP services. We describe multi-platform col-

laboration in CINEMA, the first complete IP PBX and collaboration system, in the next chapter.

182

Chapter 9

Multi-platform Collaboration in
CINEMA

9.1 Introduction

In many organizations, e-mail and tele-conferencing are the only means of collaboration. More
recently, people have started to use instant messaging (IM) for short interactive communication.
Even though these communication means are not designed for collaborative work, the limited set
of available options causes them to put all their data such as meeting notes, documents, conference
schedules and reminders into the email system.

We need a collaborative environment that seamlessly integrates with the existing commu-
nication means of email and phone as well as newer methods like IP telephony and instant mes-
saging. Consider an IP telephony conference with some participants on phone, and some others
using desktop audio/video clients. Late-arriving participants can browse through the past meet-
ing proceedings, and non-participating group members can be automatically notified of meeting
minutes and other important document locations via email.

Our system is different from earlier conferencing applications in that it integrates the
two modes of collaboration: synchronous that requires active real-time participation and asyn-
chronous that are not real-time. We support multimedia conferencing, instant messaging, shared

web-browsing, file-sharing, discussion forum, voice and video mails. As an example, same group

183

of people can be addressed by video conference, instant message and email, with appropriate
archival of interactions. Secondly, it provides device-transparency by allowing access and inter-
action even if participants temporarily have only a phone or email. Although itis not new, we also
provide hybrid interaction such that one can use phone for audio and PC for IM and document
sharing in the same conference.

Our architecture provides building block tools for any type of multimedia collaboration,
instead of focusing on specific types such as collaborative software development. We want to
support three kinds of typical interactions: long-lived distributed groups that alternate between
synchronous and asynchronous interactions, such as design teams, college classes, committees
and work teams, asymmetric events such as lecture and lecture series, where interaction is mostly
limited to asking questions to the speaker, and short-lived spontaneous interaction among groups
of people.

Our collaboration system is based on standard protocols and tools such as SIP [3] and
Real-Time Streaming Protocol (RTSP [32]) for signaling, Real-time Transport Protocol (RTP [1,
2]) for media transport, VoiceXML [35] for voice-based interaction, Call Processing Language
(CPL [49]) for network-based service creation, Language for End System Services (LESS [218])
for endpoint-based service creation and a web interface for asynchronous collaboration.

In this chapter, we describe the architecture and implementation of our comprehensive
multi-platform collaboration framework. We describe the requirements for comprehensive multi-
media communication and collaboration systems in Section 9.2. Section 9.3 provides an overview
of the architecture and the user interface. Section 9.4 describes the synchronous collaboration ar-
chitecture whereas Section 9.5 details the asynchronous collaboration. Additional services such
as presence, interactive voice response and integration of phone, IM and email are detailed in

Section 9.6. Finally, we present the conclusions in Section 9.7.

9.2 Requirements

The basic requirements for a comprehensive collaboration system consist of a personalized view
of the system, real-time or interactive multimedia collaboration (cajedthronousand loosely

tuned sharing of information (calledsynchronous A web-based user interface provides a

184

portable and personalized way to access the system.

Personalized view

People like to have personalized views of the system such as per-user calendar with appointments
and conferences. However, the system should also allow sharing the view with other users or in a
group after filtering. For example, Alice may not want to see the events posted by Bob. She can

schedule a conference or discussion forum for her project group, and invite members to join.

Synchronous collaboration

The system should allow multi-party audio, video and text conferencing. It may support shared
white-board facilities, shared applications and screen sharing. It should allow restricted confer-
ences with only authorized members as well as public unrestricted ones. The conferences may
be pre-scheduled or created on the fly. It may support both dial-in and dial-out conferences, floor
control, and telephone-based authentication. It should be possible to record, and later, playback
the proceedings of a conference. It may allow time-positioned playback (e.g., play after first 30
min of recorded data), sharing files with other participants (e.g., agenda, slides or meeting min-
utes), playing a media file in the conference, merging two conferences into one, or splitting one

into two conferences.

Asynchronous collaboration

The most basic form of sharing information is via various forms of messaging, e.g., email, voice
and video mails. The system may allow recording and filtering of IM communications. It may al-

low storing messages in various folders, accessing remote email clients or servers for multimedia
messages and listening to the messages via a telephone. The web-based message board may be
accessed via email or telephone. It should be possible to share files and other information within

Oor acCross groups.

185

- sipconf \
Conference
server|
sipum
Unified : N
, messagin ;
rtspd L -

! Media| T Web

! server) : cG VoiceXML

| : scripts
\\ sipd

- Email
sipvxml M
IVR Call .
DASS Server components
T1/E1
L sipc Web Email
RTP/SI user agen browser client
SIP/PSTN
gateway
T &
Regular phone IP-phone Desktop PC with various clients

Figure 9.1: SIP-based collaborative work environment

9.3 Architecture Overview

Our CINEMA architecture consists of a set of distributed server components and user agents as
shown in Fig. 9.1. The SIP registration and proxy seragpd) is used for user location and
forwarding of signaling messages. The multi-party conference sespeonf [34], forms the

core of the synchronous collaboration infrastructure. The media setspd, allows stream-

ing of multimedia content for playback and recording. The unified messaging seimemn,

provides centralized answering machine, and multimedia mail service [33]. A web-based inter-
face provides asynchronous collaboration support. User agents such as regular PSTN phones
via a SIP-PSTN gateway, IP-phones, or desktop based SIP user agerspdilee used for

synchronous collaboration. Interactive voice dialogue via the Voice XML browganiml [36],

186

allows easy access to a telephone user. The SIP server and the SQL database [29] form the core

of the infrastructure for basic call flow.

9.3.1 Web Interface

The CINEMA web-based user interface manages user accounts, voicemails and conferences.
The web pages are generated using the HTTP CGI [219] scripts that access the SQL database
for configuration and profiles. The web pages provide intuitive user interface components and
context-sensitive help. There are multiple levels of details in different user expertise levels. For
example, deginner-level user accesses only basic features to get started wheradgaarced-

level user can configure and manage detailed information. The interface allows configurable
layout of the web pages so that a particular installation of the system can be adapted for each
service provider.

There are two types of usersegular usersand administrators An administrator has
additional privileges compared to a regular user. The first user created during installation becomes
the administrator. An administrator can add additional users as administrator or regular user,
change the user type, or access profiles of other users. New users can also “sign-up” for the

service from the web. The web interface functionality can be further classified as follows:

Call-routing profile: The user can manage profile information, current contact locations, alter-
native names for identification, on-line status of “buddies”, access control as to who can

call, and programmable call handling, e.g., based on time-of-day or caller-id.

Unified messaging: This includes the integrated interface for voice and video mails, emails and

discussion forum on various topics.

Event calendar and conferencing: This provides the personalized calendar for each user. It

allows managing various appointments, events and conferences.

Address book and access group managementhe user can maintain an address book of his
friends’ profile such as name, email address, department, birthday and postal address. The

user can organize his address book entries into groups with different access privileges. For

187

example, people in “my family” group can access his personal calendar whereas others

cannot.

Administration and accounting: An administrator can manage several server configuration pa-
rameters, user privileges, as well as the visual layout of the web pages. He can also assign
various tariff rates for the phone calls and configure the gateway locations for the telephone

destinations.

The web interface is just a front-end to the user profile and system configuration informa-

tion stored in the SQL database.

9.3.2 Personal Calendar and Address Book

Monday June 16, 2003

Day | Week | Month | ¥ear Calendar @
Event groups @
hefore 8 0700 ARI-08:00 &1 Bernind bro to call home {delete) Conferences @
8.00 Notifications @
9:00
1010 5 | B
11:00 11:00 £1-12:00 Pl CHEC serninar (delete)
12:00
1-00 Sunbon Tue ved Thu Fri Sat
- 1 2 3 4 56 7
-0 02:30 PII-03:30 PIV sipguest conference call (delete) & g0 11 1213 14
3:00 153 16 17 18 18920 21
. 22 23 24 25 2627 28
45_33 29 30
g:00 Today is June 28, 2003

after 7 08:15 PI-09:15 PIvI Dinner with new students (delete)

e

Figure 9.2: Personal calendar

When the user logs in from the web, it shows the most recent appointments and voice-

mails. A personal calendar shows the various appointments or conferences scheduled for the user

188

or his group (Fig. 9.2). The user can see the day, week, month or year view for different levels of
information.

The per-user address book allows organizing the contacts into local or global access
groups. Alocal group is visible only to the owner, e.g., “my friends”, whereagabal group is
visible to everyone, e.g., “network research group”. An address book entry can belong to zero
or more access groups. An event, such as an appointment or a class schedule, can have a group-
name with given group-privileges. The read or write access privilege for an event cambeg
group or everyone, similar to Unix file permissions. Theead access privilege specifies who
can view the description and details of the event. Whige access privilege tells who can modify
the event attributes. A personal appointment typically tnaser privileges for read and write,

whereas a seminar series lygeup read access armvner write access privileges.

9.3.3 Events and Event-groups

An event is an individual event or appointment. Awentgroup is a collection of related events,
e.g., an university course for which individual classes, or events, happen weeklye\Eatitan
belong to areventgroup. An eventgroup can have zero or momvents. Aneventgroup can
optionally have aepeat indicator, e.g., every month, every year. The repeat indicator is useful if
one does not want to itemize individual events, e.g., yearly birthday reminders.

An event-group may be associated with an optional conference name, e.g., on-line lecture
series. While amventgroup defines a group of events used in calendar, a conference is strictly a
synchronous collaboration with additional attributes like supported media-types, dial-in numbers,
recording formats, default audio sampling rate, public or private conference type and public or
private participant list. Various SQL tables for storing the information and their relationships are

explained in the CINEMA technical reports [88, 220].

9.4 Synchronous Collaboration

A multi-party multimedia conference is the simplest form of synchronous collaboration. In the

absence of multicast, centralized conference servers provide an attractive solution for small to

189

medium scale conferences. Moreover, a centralized control integrates easily with other collab-
oration requirements such as floor control. For example, the organizer can control who gets to
speak at any instant if there are multiple speakers, and enforce the policy at the server.

A conferencing server consists of a signaling and a media module. The signaling mod-
ule receives SIP requests to join or leave the conference, while the media module receives
and sends RTP media streams from and to the participants. The participants dial the con-
ference URL, e.g.sip:staff-meet@cs.columbia.edio join the dial-in conference. The con-
ferences can be pre-scheduled from the web interface, or created on the fly, e.g., by dialing
sip:letsmeet.adhoc@conference-server

The conference can have heterogeneous endpoints used by various participants with dif-
ferent media capabilities. For example, some user agents connected to low bandwidth links can
have only low bit-rate audio codec whereas others on high bandwidth links can support high-
quality codecs along with video. When a user agent joins a conference, it indicates its capabilities
to the server. The server selects a subset of capabilities based on the intersection of user agent
capabilities and the server capabilities on per-participant basis.

Our conference servesjpconf, consists of a number of features such as audio mixing,
video forwarding, instant messaging, shared web browsing, screen sharing and conference con-

trol.

9.4.1 Audio Mixing

When the participants join the conference, the server mixes and redistributes the audio such that
a participant hears everyone else except herself from the server. The server decodes the incoming
audio from the participant, and puts it in a per-participant queue as shown in Fig. 9.3. On periodic
interrupt, the participant audio is mixed, and redistributed back to the participant after encoding.
The server acts as an RTP mixer [1, 2] for the audio. However, since each receiver can potentially
have different audio stream mixed from audio streams of all the participants except herself, and
each call leg in the conference forms an independent RTP session between the server and the

participant, the conference represents multiple logical RTP mixers.

190

Play-out delay
G711 Mu Linear Penqdm timer interrupt

%A :P]]]]ﬂ X=A csst.??nflt?wﬁ

DVI Linear

X-B

1 Send to B
3 DVI

Mixed Linear Strea

X-C Sendto C

| G.711 M
= Audio Encoder E = Audio Decoder

Figure 9.3: Audio mixing

GSM Linear

Decode-mix-encode

In Fig. 9.3, participantd supports the G.711 codeB, DVI codec andC both GSM and G.711.
Participants list the codecs they support in their SDP component of théNMFE requests.

The server selects an intersection of the algorithms supported by the participant as well as by the
server. This selection is returned in the success response to the participant. These algorithms are
listed in order of preference in the SDP of iNVITE or its response.

The mixing algorithm follows alecode-mix-encodeequence. When an audio packet
arrives at the mixing module, it is decoded into 16-bit linear samples and appended to the per-
participant audio buffer queue. Each buffer is labeled with the corresponding RTP timestamp.
The jitter in packet arrivals is absorbed by a play-out delay algorithm. Every outbound packetiza-
tion interval, a timer triggers a routine that mixes a range of the samples from one of more input
buffers from each active participant into a combined packet by simple addition of the sample
values. The timer is adjusted to account for processing delay in each interval.

To allow input and output packets to have different packetization intervals, the mixer
routine can grab samples from one or more input buffers. Using a linked-list of buffers saves
memory compared to a circular buffer of maximum size, and makes it easier to detect when a
particular source is silent. For each of the participants, the linear sample values from the per-
participant queue (e.g4) is subtracted from the mixed datX | and the resulting dataX{ — A)

is encoded using the preferred audio compression algorithiin ©he encoded data is packetized

191

and sent to that participant. If there are participants, then both mixing and redistribution will
take M additions andV/ subtractions. Note that the receive and transmit audio algorithms need
not be same for each participant.

While the decode-mix-encodeequence is the most straightforward approach to imple-
menting an audio mixer, there are alternative approaches. For instance, one can build an addition
or subtraction table for G.711 samples, so that conversion to linear is not required to do mixing.
This only works for G.711, not for codecs with cross-sample dependencies such as G.723.1 or
GSM.

Also, instead of subtraction, one could creafe+ 1 different streams directly, one for

each talker and one for the listeners. However, that reqoifésdditions.

Optimizing the Mixing Logic

It is possible to optimize the mixing logic, although we have not implemented any optimizations.
One such scheme (Fig. 9.4) combines the encoding step for the output streams that have same
mixed audio data and uses the same encoding algorithm. For all the participants who did not speak
in the last timer interval and who have a common subset of supported receive audio algorithm,
we can call the encoder only once. However, if a stream stops being active, it will receive the
general listener packet stream rather than its own version, so that the predictor will be wrong. It

is not clear how much this would matter in practice.

Packetization Interval

Although RTP implementations are supposed to handle a wide range of packetization intervals,
we found 20 ms to be the only one that worked across a range of media clients such as RAT [52]
or Microsoft NetMeeting. End systems permitting, it may be useful to dynamically change the

packetization interval for outgoing packets, as smaller packetization intervals decrease delay, but

increase network bandwidth and computational effort.

192

>

m O O W

T

A-D support G.711; E and F support GSM.

Figure 9.4: Possible optimization in decode-mix-encode sequence

Inactivity Detection

The system should be able to detect if a particular participant becomes inactive, e.g., due to user
agent failure. Failures can be detected by observing ICMP errors or sudden discontinuation of

RTCP reports.

Automatic Gain Control

If the participants use different types of devices, it is possible that some users are heard louder
whereas some others are hardly audible due to different speaker and microphone volumes. The
server can do automatic gain control for both incoming and outgoing audio. However, this puts
additional processing overhead on the server and reduces scalability. Alternatively, the server
can indicate the volume level if it is too high or too low to the participant, who can then adjust
her microphone and speaker volume, or it can selectively implement automatic gain control for
participants who want it. For example, using VoiceXML a participant can press 6 to increase her

microphone volume, or press 7 to reduce her speaker volume.

193

Playout Delay Algorithm

Playout delay algorithms help absorb the jitter in network packet arrival due to network conges-
tion. Adaptive playout delay further allows an application to adapt to changes in the amount of
jitter, thus giving minimum delay in the audio stream. Playout delay compensation takes place be-
fore mixing, stretching or shrinking silence periods between talkspurts to adjust the time between
arrival and mixing [221, 222]. In the absence of silence periods, time stretching or companding
can be used, albeit at much greater computational cost. We have used Algorithm 1 from [221],
with o = 0.95, for our implementation. The algorithm is basically a linear recursive filter. The
adapted delay at any instant depends on the measured delay (using RTP timestamps) plus the pre-
vious adapted delay, with a weighting facter The playout delay depends on both the adapted

delay and the variation in the adapted delay.

9.4.2 Video Forwarding

Unlike audio, mixing does not make sense for video. Every participant may want video from ev-
eryone else in the conference. The server implements transparent packet forwarding for video. A
video packet from a participant is distributed to every other participant in the conference without
modification. In this case, the server does not implement the RTP stack for video session. The lip
synchronization between the audio and video sessions is done at the participant’s user agent on
receiving the two streams.

Alternatively, the server can send only one video stream oathiwe speaker to all the
participants, or the chair can decide whose video stream needs to be distributed. Organizing the
participants’ video in a single stream (NxN tile) puts additional processing load on the server,
degrades quality, and is undesirable.

If the user agent does not indicate video capability, i.e., no video port, then video is
disabled for this call leg. The participant can dynamically change the capability. For instance,

she can start with audio, and later, switch to audio and video sessions.

194

9.4.3 Instant Messaging

The instant message (IM) handling in the conference server is similar to video forwarding.
When alice@office.nesends an IM tobob@home.comthe SIP server ahome.condomain
proxies it to the current location of Bob’s phone. An IM sent to the conferencedifdtaff-
meet@servers.coim intended for all the conference participants. If the conference is not active
or there is no other participant, then the server indicates the error to the sender. If the sender is
not already in the conference, then the server can either indicate an error to the sender, or still
continue to distribute the IM to the participants. In a way, the server provides a group address to
send IM to, similar to email-groups.

MESSAGE sip:alice@office.net SIP/2.0

From: <sip:staff-meet@servers.com>

To: <sip:alice@office.net>; tag=Uo018a
Content-Type: Message/CPIM

SIP headers
From: Bob Wilson <im:bob@home.com>
To: Alice <im:alice@office.net>
Content=Type: text/plain IM headers
Meet me at Tom’s at 8:00.

IM text

Figure 9.5: Example SIP MESSAGE for instant messaging

An example SIIMESSAGE sent by the server is shown in Fig. 9.5. It indicates that the
SIP message is sent from the conference server to the participant, Alice, and the IM is originated
by the user Bob. The server can also forward indications [223] that allows Alice’s user agent to
display status such as “Bob is typing a message”.

The server should allow transitioning from an IM session to a full multimedia session,

and vice-versa, when the participant changes her media capabilities accordingly.

9.4.4 Shared Web Browsing

The SIPMESSAGE method can be used not only for instant messaging, but also for some

additional control. For examplajpc can capture the browser event on navigation and indicate

195

that HTTP URL to the remote party. The server forwards the message like any other IM, thus,
readily supports shared web browsing among multiple participants. The message is similar to
Fig. 9.5 except that the IM head€ontent-Type is text/uri-list and the IM text contains

the HTTP URL. If the remote party understands this content, it can also invoke the browser

pointing to the given HTTP URL.

9.4.5 Screen Sharing

We have added support for the open source Virtual Network Computing (VNC [224])-based
screen sharing isipconf. VNC is a client server protocol, where the server shares its screen to a
viewer or client. To avoid authenticating the client, we initiate the session from the VNC server
to the listening client. If a participant shares her screen, her user agent invokes the VNC server
application whereas all the other participants invoke the VNC client application. The conference
server merely forwards packets similar to video forwarding. The data packets containing the
screen buffers are forwarded from the VNC server to all the VNC client applications whereas
the control packets such as mouse and keyboard input are sent from the VNC client to the VNC

server application. The VNC protocol can be tunneled through SSH for secure sessions.

9.4.6 Conference Control

In a hybrid conference using phone for audio and PC for IM, it should be possible to control
the conference from either phone or IM client. Simple IM to the server can be used as control
commands, e.g., if a participant sends IM text as “list”, the server returns the IM text containing
list of all the active participants. Similarly, when a new participant joins or one leaves, all the
existing participants are notified by the server via IM.

Conference floor control [210] means controlling who gets the exclusive access of the
shared media channels or resources. For example, typically only one participant should speak in
a conference. In case of multiple contenders, the conference chair can decide who gets to speak.
There are many ways to do advanced floor control such as using Simple Object Access Protocol
(SOAP) to run Remote Procedure Calls (RPC) on the server, web interface, and via touch-tone

phones. We have implemented SOAP-based floor control in our server.

196

SIP and SOAP: Conference floor control consists of two parts: notifying the participants about
who is holding the floor [139], and allowing the moderator and the participants to re-
motely control the floor. For example, a moderator can grant or deny a floor request
and a participant can claim or release a floor. We use XML-based platform independent
SOAP [225, 226]) for encapsulating and exchanging the floor-control commands instead

of creating a new RPC (remote procedure call) protocol.

Web interface: The control messages can be sent from the web via CGI scripts or Java ap-
plets. The moderator can grant or reject floor to other participants from the web. For the
web-based floor control, the web components communicate with the conference server and

indicate the appropriate control message.

Interactive voice response:This allows a telephone user to control the conference via limited
touch-tone keys. For example, “press 1 to ask for floor”. The DTMF (Dual-tone multiple
frequency) digits are typically detected and translated to special RTP packets [227] at the

telephony gateway.

9.4.7 Dial-in vs Dial-out Conferences

Although most of our earlier discussion focused on dial-in conferences, dial-out mode is equally
important, for example, a participant invites another user in the conference, or the server sends
out call invitations to the intended participants at a scheduled time. Usually some form of audio
and text announcement indicates the purpose of the call to the user. To avoid the dialed-out call
going to answering machine, the server may prompt the user to press certain digits to actually

join the conference.

9.5 Asynchronous Collaboration

There are a number of related events during or after the conference that need to be shared with
others even when the conference is not active. For example, the recorded conversation or meeting
minutes may be needed in subsequent meetings, off-line discussion on the topics covered in the

conference needs to be co-ordinated in the same way as the conference was controlled or the notes

197

may be edited remotely using WebDAV [228]. The primary objectives of these collaboration
mechanisms are to avoid duplicating shared data and to provide some form of change control on
shared data.

As mentioned earlier, every conference is associated with verggroup. An event-
group can be associated with various forms of asynchronous collaboration mechanisms, such as
file sharing and discussion forum. Conference participants can share meeting notes, agenda or

other documents via the web.

9.5.1 File Sharing

Shared files for CNRC network seminars

Wiew events | Edit group | Add event | Discussions | Conference

guotes.txt Kundan Smgh SOTTLE IOTE %| Sep 17,2002 1EKB @ %

quates

wectare Kundan Singh bogample C [Mow 28, 2001 2 kB @ %
=

cods tar gz hz80i@es colubia... % Maow 28, 2001 24 kB @ @

cVertexlist java Kundan Singh & java file. test. Sep 17, 2002 131;5@ @
Y Mowv 28,2001 2kKB @ @

Compeor.htral Kundan Singh

Figure 9.6: File sharing

The web interface allows uploading shared files as shown in Fig. 9.6. The shared file
attributes consist of the creator’s user identifier, name of the file, MIME-type [229] for display, a
brief textual description, date of creation and last modification, and the access privileges for read,
write and delete. The read access privilege can be fogridnep or public, whereas the write and
delete access privilege can be for treup or owner. The group name of the file is inherited

from the associateeventgroup. The users can register to get notified via email when the shared

198

file is modified or deleted.

9.5.2 Discussion Forum

Message boards and discussion forums facilitate asynchronous discussion on a particular topic.
One advantage over email-based discussion is that it can systematically display the various dis-
cussion threads, postings and replies. The message information stored in the SQL table includes
the message subject, content, sender identifier, date and time, assecgtEpoup identifier, a
unique message identifier and the message identifier of the parent message. If there is no parent
message, then this message is the start of some thread. If there is a parent message, then this
message is a reply to that parent message. The assoeiatptijroup specifies the read and
write access attributes for the message board.

The users can also register to receive new posts or replies in their email. They can use
email to post a message or reply to the discussion thread. Fig. 9.7 shows an example web inter-

face. Integrating email with the system is discussed in detail in Section 9.6.3.

9.5.3 Conference Event Recording

CINEMA allows recording of the audio, video and IM communications in a conference. The
audio recording at the conference can be done either when the media packets (RTP) are received
from the participant or when the mixed stream is created as in Fig. 9.3 (p. 190). In the former case,
the recording is done by dumping the raw RTP (and RTCP) packets along with packet size and
time-stamp, in afile. This “rtpdump” format can later be played out using our media stspet,

The server does not need to understand any specific media file-formats, such as MPEG or “wav”,
but works as long as the playing client understands the codec used by the recording client. On the
other hand, a mixed audio stream can be recorded in standard Sun “snd” or Microsoft “wav” file
format. Only rtpdump recording format is needed for video, since the server does not generate
any mixed video stream. The system allows recording in a local file or to remote media server
using an RTSP URL. A per-conference quota on maximum recorded file size can be imposed.
The recorded file path or URI information is stored in the SQL table for each conference instance

(or event), whereas recording format preference is indicated for each conference (or event-group).

199

Cdmin | Biling | Help | 4

or CNRC network seminars ©

i | Edit qroup | Add event | Share files | Conference

Dec (2, testing 0 Eundan 51 %

2002 kns...

Sep 16, Testing annther 0 Kundan Singh %

2002 knz...

Jul 03, 2002 Re: new conference 0 _ %

Jul 03, 2002 nevwr conference 0 Cranran %
EKhandpur ...

Iiay 16, Conference shout routers 1] Crauran %

2002 Khandpur ..

Blaw 15, Dvlaw 14th Tecture location] Graurav _%

2002 change Ehandpur ...

iay 14, BEouting alzorthims-seroinar 1] Cranray %

2002 11th Ivlay Ehandpar ...

Dlay 14, Presentation by Dr. Henning 2 Crauray %

2002 EKhandpur ...

Treqlster kns10&columbia.edu

Figure 9.7: Web-based discussion forum

The conference proceedings can be displayed using a time-line on the web interface as
shown in Fig. 9.8. The first time-line indicates the complete conference duration with the impor-
tant events, such as the new user join, leave, file uploads and instant message interaction. The
second time-line is the zoom-in view of a part of the conference duration as selected in the first
time-line. A user can click on the appropriate icon to playback the recorded media (audio, video),

instant message or view the uploaded file. User can click on the time axis to jump to that location.

200

Conference timeline ©

] 5 17 15] 25 3 3 4 4 A0 55,
FLES TN W SLT R Troeeed

n J'j rr H M‘L T Lk

T L J

F|

Total time &7 min: 14:/36:23 to 151748

5 min interval: D:3D—D:3S,\51\arLi[1g at 14:50:23
1

) s

vyt et M

Alice

Bob

B

Jef... 3 M ek by M

Mark M

Mixed WWWW# fpieirh

designndf — current design, please comment \
@ Teffrey: should we wait more for A17 Chick to listen

Figure 9.8: Web interface for conference recording

Different colors are used to identify a small number of active participants.

9.5.4 Unified Messaging and Multimedia Mall

The ability to send multimedia messages to other individuals or a group is an important feature
of collaboration systems. Registered users can listen to their voice/video messages, recorded
conference proceedings or view their emails from the web.

The basic requirements of a voicemail service are secure recording and playback of mes-
sages, ease of access and navigation, touch-tone interface, new message notification and call
reclaiming by the receiver, i.e., if the receiving user picks up the phone while the caller is record-
ing the message, he should be able to talk to the caller. Additionally, an Internet-based voicemail

service should integrate with email, web and instant messaging.

201

Answering Machine and Message Recording

The voice and video mail is recorded at the media sertspd, by the centralized answering
machine and voicemail servesipum. The sipum, directly connects the media path between

the caller and the media servetspd, hence scales to large user population. Secondly, it uses
the standard protocols such as SIP and RTSP, and existing features such as “request-forking”,
hence does not require any modification to the current infrastructure and can work well even if

the voicemail provider is different from the Internet telephony provider.

bob@sbb.cs.columbia.edu -

2

INVITE

1 INVITE 5
CANCEL
200 OK
- ;
6 @cs.columbia.edu
- - _ ~ 2
alice@home.com T~ INVITE
> N .
. vm.cs.columbia.ec
A
. T
R N g
N
\
'\ Voicemail
P oo o server

L Alice calls Bob through server at cs.columbia.edu

i 2. The SIP server proxies the call to Bob's phone
and also to the voicemail server.

3. After 10 s, voicemail [or multimedia mail] server sends
two SETUP requests to RTSP server (for playback of
wel come message and recording of voice mail).

4. Voicemail server acceptsthe call

5. SIP server cancels the other branch
6. SIP server forwards the final response

RTSPserver
rtsp.cs.columbia.ec
R. RTP/RTCP packets are exchanged directly between

the RTSP server and Alice's phone.

Figure 9.9: Forwarding the call to voicemail

Fig. 9.9 shows an example of recording voicemail. A SIP server handles all the users in

202

a particular domain, e.g., cs.columbia.edu. Different users register their current location with the
SIP server, so that the server can contact the user on receipt of an incoming call. The voicemail
server also registers its location on behalf of all the users it is serving. From the SIP server's
perspective, there are two active locations for every user, one is his actual SIP based phone and
the other is the voicemail server.

When a user Alice, glice@home.com) calls Bob, bob@cs.columbia.edu, the SIP
server proxies the call to both locations. If the user picks up the phone, the branch to the voice
mail server is cancelled and a hormal SIP call proceeds betMeamnandBob.

The voicemail server is configured to wait for some time, say 10 seconds, before accepting
the call. So, ifBob does not pick up the phone in 10 seconds, the voicemail server is going to
accept the call on his behalf. Before accepting the call, the voicemail server sets up the media
path with the RTSP server. It sends an RIS UP message to the RTSP server to play back the
voice prompt toAlice for leaving a voice message. The voice prompt for the outgoing message
can be generated using a recorded media file, or, if configured, by converting the Bott'sf
vacation message to speech. The voicemail server sends aB&heiP message to the RTSP
server to record the message.

Once the caller has finished recording, he hangs up and triggersBY&Pequest. The
voicemail server informs the RTSP server to stop recording. Media data for the outgoing and the
recorded message is exchanged directly between the caliee) and the RTSP media server
using RTP [1, 2].

Having sipum register with the SIP server on behalf of the user is very simple and does
not need any intelligence in the SIP user agent or the SIP server. However, there is a race con-
dition, as to whether the us&ob or sipum picks up the call first. If both pick up the call at
approximately the same instartlice will receive two final responses. It is up to the caller to
keep one or both the call legs. The response should indicate whether it is from a multimedia
mail system or a human user. This will help the caller’'s user agent automatically seBY BIP
request to one of the call legs.

This approach does not distinguish between a busy callee and no response from callee. In

either case the multimedia mail server will wait before accepting the call. This might be desirable

203

if the callee’s user agent implements call waiting service.

There are several other ways to forward an incoming call to a multimedia mail server:
the callee’s phone can forward the call to voicemail after few rings, the SIP server can transfer
to voicemail if the callee is busy or there is no response. The transfer can be based on either
a programmable script or global server configuration. The phone-based forward does not work
if the callee’s phone is dead or unreachable. Secondly, such intelligence in an user agent is not
always possible, particularly in low cost SIP enabled embedded devices. The programmable
script such as CPL or sip-cgi allows more precise per-user control over the service. For example,
Bob can use the script of Fig. 9.10 to selectively forward the call to his voicemail depending on
caller address, time of day, etc. However, this approach requires programmable SIP servers such

assipd.

<?xml version="1.0" ?>
<IDOCTYPE cpl SYSTEM “cpl.dtd">

<cpl>
<subaction id="voicemail">
<location url= "sip:bob@vm.cs.columbia.edu"><redirect /></location>
</subaction>
<incoming>
<address-switch field="origin" subfield="host">
<address subdomain-of="cs.columbia.edu">
<location url= "sip:bob@sbb.cs.columbia.edu">
<proxy>
<busy><sub ref="voicemail" /></busy>
<noanswer><sub ref="voicemail" /></noanswer>
<failure><sub ref="voicemail" /></failure>
</proxy>
</location>
</address>
<otherwise><sub ref="voicemail" /></otherwise>
</address-switch>
</incoming>
</cpl>

Figure 9.10: CPL script for forwarding a call to voicemail

204

Scalability

The voicemail server has both SIP and RTSP parts. On one side it can receive Internet telephony
calls using SIP, and on the other side it behaves as a RTSP client and can perform playback,
recording and other control on the multimedia mail residing at the remote RTSP server.

The RTSP server acts as a storage server for the multimedia mails. Separating the voice-
mail server from the storage server helps in building scalable systems. For example, a single
voicemail server can serve all students of an university, while using the departmental RTSP
servers for load balancing. Since the voicemail server does not have to handle the media stream,
processing speed is not a bottle-neck.

POP3 [230] and IMAP (Internet Message Access Protocol [231, 232]) are not used di-
rectly because they do not support media streaming. One can implement a POP3 or IMAP inter-

face to fetch the voice message similar to text based electronic mails.

Notification of New Messages

The server notifies the user of new incoming messages, e.g., using email, and indicates the pointer
or URL to listen to the message. It allows sending the media content instead of the pointer in
the email, if the user wants that way. That is, forwarding of the voice message as a MIME
(Multipurpose Internet Mail Extensions [45]) attachment to electronic mail is supported. It also
implements message waiting indication so that the SIP phones can receive notification when a

new message arrives.

Retrieving Voicemail

Our system offers five choices for retrieving multimedia mail messages:

1. Existing RTSP based media players can be used to directly play the voice messages from
the RTSP server. For instance, the Ufdp://server.com/bob/inbox/6532.au can be
used to retrieve the message number 6532 from the RTSP sseveer.com, for user

Bob.

2. Bob can also use his SIP phone and call the WiRtbob-6532-retrive @voicemail.com

205

to retrieve his message from his voicemail serweicemail.com. The call is received
by the voicemail server which in turn contacts the RTSP media server and retrieves the
message. The media data for the message is directly sent from the RTSP s@wkisto

SIP phone.

3. Bob can dial the auto-attendant or voicemail number, and navigate through the interactive

voice prompts using the touch tone keypad of his telephone.

4. Alternatively, the multimedia mail server can be configured to send the message as an

attachment t@ob’s email address, as mentioned earlier.

5. The preferred approach is to access the voicemail from a web page using a web browser,

as described next.

Unified Display of Messages

_Folders |

. inbox (6)
. junk (1)
. - MewWwane
test
> Mar22, 2002 B8 Kyden" <sipkns] 0es.colurdhia . 14775 an (noaly 1812k . zcripts

- Mlar22, 2002 B2 Kiundan” <sipknel 0fes colunhia. . 320836 au (noraaly 1 siEk

—_—

e Mowve checked mails to.. * || Showfalder .. | B
Show falder...

finbio:

ICreate MNew

You are using
0.032% of your 2MB
storage.

kns10i@calumbia.edu

mare options==

Figure 9.11: Voice messages user interface

An example web page is shown in Fig. 9.11. Basic features like folder management,
password change, customizing the voice response, deleting messages and sorting the messages
based on different parameters (e.g., date, subject, size) are implemented. The system provides

an integrated set of facilities to ease user administration and to share common resources such as

206

address books, calendar and group messages, and can also be extended to use other email and
calendaring tools if the user prefers. The web interface is extended with a simple IMAP-based
client to fetch and display the email from user’s other email accounts.

One possible enhancement is that the conference invitation sent in an email is automati-
cally added to the user’s personal calendar if she accepts the invitation. Alternatively, she can use
her own email client to read these messages. She should be able to send multimedia messages to
a group of people, such that the message appears in the group member’s “inbox” folder. The user
can delete or move the message pointer to another folder, and still share the media content across

the group.

Call Reclaiming

Another implicit requirement for the voicemail system is to allow reclaiming an already trans-
ferred call. If the callee arrives and picks up the phone when the voicemail is being recorded,
the system should provide an option for the user to stop the recording and continue talking in a
normal call. This is not trivial if the voice mail system is not part of the callee’s user agent.

One approach is to use SIP call control to support call reclaiming. In the previous example
(in Fig. 9.9), when the call gets transferred to the voicemail server, the voicemail server invites
the intended usehob@sbb.cs.columbia.edu, in the existing call. 1fBob picks up the phone
while the voicemail is being recorded, he joins the existing call to form a three party conference
between the callerAfice), the voicemail server and himself. The voicemail server then drops
out of the conference by sending a 8FE. If Bob does not pick up the phone, the voicemail
server cancels the call once the message #dioe has been recorded. However, it is not clear
how the voicemail server can cddbb without having the SIP server fork a branch back to the
voicemail server. One can extend the caller preference [233] to include a description of the user
agent picking up the phone.

Another approach is to use third party call control, with the voicemail server as the third
party. It simply sends atNVITE to Bob, with Alice’s session description. Bob picks up, it
also changeslice’s session description via i&NVITE, so that the two now talk directly to each

other media-wise. To avoid any confusionBob, the voicemail server may prompt him that

207

Alice’s message is being recorded.

A third approach uses call state notificatioBob subscribes to call events from the
voicemail server and cdiNVITE himself to the call. This requires further study.

It might be desirable to have the user decide whether to stop the recording or not. The
caller may not want to repeat the long message if he has already recorded most of it.

It is not clear how essential a call reclaiming feature is in practice, given that most users
using the centralized voicemail system of the mobile phone service provider do not currently have
this feature and are not complaining. Since implementing the call reclaiming is complicated, it
may be desirable to leave it for simplicity.

The voicemail server uses the SIP request-URI to identify the purpose of the call. For
instance, if the call is directly made to the voice mail server to leave an announcement or a

reminder in user’s mail box, the server should not try to contact the intended recipient.

Deletion of Messages

The architecture assumes that the RTSP media server stores the multimedia messages. However,
there is no explicit mechanism to delete a resource in RTSP, in its current form.

One option is to define a new method, $2iLETE, to delete a resource or a media file
on the RTSP server.

The other approach is to pretend as if you are recording the file, but terminate the RTSP
connection without actually recording anything. To be more specific, an FSESRJP with
record mode is sent to the server, immediately followed by an RTERRDOWN, without
sending ERECORD message. Our RTSP server interprets this as a command to delete the file.
Even otherwise, the recorded file will be empty, and of no use.

While the first method is more direct, it requires modifying RTSP. We have implemented

both approaches.

9.5.5 Notifications and Announcements

The system can notify the user of various appointment reminders, conferences schedules or

changes in shared files, message board or incoming multimedia message. The natification in-

208

formation stored in the SQL table and can be associated widvamt and aneventgroup. The
information also contains the destination for notification such as phone number, SIP URI, email
address or IM address, time relative to the eventin seconds (e.g., notify 60s before the event), and
the identifier of the scheduled notification. The notifications are scheduled using the “at” com-
mand on the Unix platform. The user can schedule the same notification to multiple destinations.

It supports different kinds of notifications:

e Birthday, appointment or other event reminders for which the notification is sent before the

event occurs.

e Scheduling any text or media as a notification (e.g., wake-up call) that automatically creates

an associatedvent. The notification is sent when the event occurs.

¢ Notification for theeventgroup, in which case the notification is sent for every individual

event in thateventgroup.

While an email or IM is an one-time event with no interaction, a phone-based notification
can prompt the user with more options via interactive voice response. For example, “press 1 to
get notified again after 5 min, or press 2 to listen to the details of the event”. The system can
allow scheduling the natifications from the web interface or via telephone using the touch-tone
input.

Itis possible to send a phone announcement @vantgroup, in which case all the group
members get the announcement, or to a set of SIP addresses or phone numbers. For example, an
announcement to 1-212-93970?? will be received by all the valid telephone subscribers in the
range 1-212-9397000 to 1-212-9397099. The announcement server makes SIP calls to all the
numbers specified, and if successful, speaks out the announcement. It attempts multiple times on
busy or no-answer. To avoid leaving the announcement to an answering machine, the server can
prompt the recipient to press some digit to confirm user presence. Such announcement system

will also be useful in the case of an emergency.

209

9.6 Additional Services

So far we have discussed the synchronous and asynchronous collaboration tools in CINEMA.
There are other interesting services that assist both synchronous and asynchronous collaboration.
For example, a conference server can dial-out a scheduled meeting only when all the required
participants are on-line. An IM user can join a tele-conference and interact via speech-to-text
and text-to-speech conversion between the IM text and other participants’ audio. The location
information published by the user can determine her availability. We describe some of these

enabling technologies in this section.

9.6.1 Presence

The presence information gets used quite often in people’s daily life. People are used to checking
online status before starting a conversation with their IM “buddies”. In our system, we base our

presence information handling on the SIP event notification architecture [139].

presentity
bob
macrosoft.com
presence server
PUA
PA REGISTER
alice@
exanpl e. com i
_SUBSCRIBE _ N
UA - , PUA
NOTIFY ;
1
=
1
: PUA
\

NOTIFY

Figure 9.12: SIP-based presence

The presence information is maintained either on the SIP servers residing in networks or

on the presence-enabled SIP user agents as shown in Fig. 9.12. If a user Alice is interested in the

210

presence status of another user Bob, then she subscribes to his afotiass@macrosoft.com

for the event package of “presence”. Our SIP sersgd, proxies theSUBSCRIBE message

to the registered user agents with presence capability of Bob. If the user agent wishes to handle
the subscription, it sends a 200-class SIP responsiptb Therefore sipd disables the internal
presence agent for this subscription. On the other hand, if therejgets (600-class response),

then thesipd stores the decision in the SQL database so that future subscription from Alice to
Bob are also rejected even if Bob’s user agent is off-line. For other responses such as the user
agent is not presence-enabled, $ifgd enables the built-in presence agent for this subscription.
However, before the actual presence information can be conveyed to Alice, the subscribee Bob
must approve the subscription from the web.

The web interface displays the list of subscribed users (buddies) as well as all the others
who are interested in knowing the presence status of this user as shown in Fig. 9.13. Note that
a subscription can be handled only by the server or the user agent but not simultaneously by
both [234]. It is possible to transfer the subscription from the user agent to the server and vice-
versa.

More recently, our SIP servesipd, has been simplified by extracting the presence agent
part as a separate server.

The network-based presence agent is useful when the end devices are not presence-
enabled such as location sensors or magnetic swipe-card reader. For example, Bob can use a
passive device, such as a magnetic swipe-card or an iButton [235] and the card or button reader
delivers the location information to the server. Alternatively, when Bob’s wireless pREiGe
ISTERSs with the server, the server can publish his on-line status to the subscriber, Alice.

Pushing the presence information to the end systems also has some benefits. In Internet
telephony, end systems are the only entities where signaling and media flows converge whereas
intermediate proxies only handle signaling. The means that several services can only be per-
formed in the end system.

The SIP event notification can be applied to non-presence events, e.g., the voicemail

server can notify the user’s phone of any waiting messages [236].

211

Your buddy list and presence status @

knarigifics columbia edn 'ﬁ @

wantacw@cs colurebia edu

[approved =]
—

Other people watching you @

sankaran@cs colurbia.edu Ipending vI [add [add |

Figure 9.13: Web-based presence

9.6.2 Interactive Voice Response (IVR)

We have discussed a number of examples involving user interaction via touch-tone input from
a telephone. Ousipvxml is a SIP-based VoiceXML browser that allows a SIP phone, or a
regular telephone via a gateway, to interact with the back-end application logic [36]. We have
implemented only a subset of VoiceXML tags as needed in our applicatiesign, audio,

block, catch, clear, disconnect, dtmf, error, exit, field, filled, form, goto, help, noinput,
nomatch, prompt, submit, value, var andvxml. We do not support any client side script (e.g.,
JavaScript) usually needed for arithmetic or string operations in the browser, as the same effect

can be achieved using server side processing.

Operation of the Browser

Fig. 9.14 shows the components of our SIP-Voice XML browsipyxml. We use Apache’s XML
parser [237] with DOM interface, an HTTP fetcher [238] for getting hon-XML pages and CMU’s

212

.....SIPinterface......... .
SIiP > Onnewincoming (€] Web
INVITE © SIPcall | =5 __ o | AML T sever
: ! L@ “*\\\\\ /(’2)” parser
v ‘ - //
TR N Interpreter 4
b thread

RTP 0
interface ” i)
‘ i (12) _Detect N
‘ receive ; (13)

N <

,'? Speech Grammar [~ 4 Form
. recogniion | | matching »| Interpretation
S rules (15) algorlt\hm
;o " \')
5 'E;E\‘ ? ©) | e
RTPIRTCP | thread / I:‘ O e
. - EEEEN
@) T | textto
(20 speech SDK

Figure 9.14: Operation of sipvxml

FLite text-To-speech (TTS) for speech synthesis [239].

(1) When the browser receives a new incoming SIP call it creates three different threads: an
RTP receive thread, an RTP send thread, and the VoiceXML interpreter thread. The RTP re-
ceive thread receives media packets from the caller and invokes the DTMF detection module.
The RTP send thread streams out media packets to the caller. A separate send thread helps in
maintaining the constant bandwidth (e.g., 64 kb/s for G.711 audio) for outgoing packets and
irrespective of the speed of the speech synthesizer. The initial VoiceXML page URL can be
preconfigured in the browser or encoded in the SIP request [207]. For example, if the caller
dials sip:dialog.vxml.http%3a//dialogs.server.com/ script32.vxml@vxmlservers.com then

the call will reach the browser runningatmiservers.corand it will fetch the initial VoiceXML

page fromhttp://dialogs.server.com/script32.vxml. On the other hand, if the request-uri is
sip:7137@cs.columbia.edu, then the interpreter is invoked with the default pre-configured ini-
tial VoiceXML URL, e.g., that of the conferencing service.

(2-5) The interpreter thread calls the XML parser with the initial URL. The XML parser fetches
the page from the web server or a local file system (based on the initial URL). It presents the

returned XML document into a tree data structure. The interpreter thread invokes thénter-

213

pretation Algorithm(FIA [35]) on the selectefbrm from the VoiceXML document.
(6-8) FIA invokes various other modules based on the content of the VoiceXML document. For
example, it can invoke the text-to-speech SDK to synthesizepamyipts. The current imple-
mentation does not use any speech recognition engine because user input is via touch-tone keys.
FIA can also invoke the HTTP fetcher module to fetch an external grammar file or a media file
for an audio prompt. XML parser internally has its own HTTP client to fetch VoiceXML pages.
The HTTP fetcher implements a simple HTGET method to retrieve a document.
(9-10) The media file retrieved from the web server using HTTP fetcher is fragmented into 20 ms
packets for interactive telephony, and enqueued for streaming out to the caller by the send thread.
The speech synthesizer output is also fragmented and enqueued for sending out to the caller.
(11) The VoiceXML document can specify the grammar rules in various scopes in the document.
FIA can set the active grammar for the matching engine based on the current execution scope in
the VoiceXML page.
(12-14) The RTP receive thread receives the RTP media packets and invokes the DTMF detec-
tor. Any detected DTMF digit is passed to the grammar matching engine. DTMF tones can be
transported from the caller to the browser in a number of ways. One approach is to not distin-
guish them from the spoken voice by encoding them using the same audio codec. However, a low
bandwidth audio codec may distort the properties of the in-band DTMF tones making them hard
to detect. A second, preferred way is to use “telephone-event” [227] containing the digit codes
instead of the encoded audio in RTP packets. In the first case, the browser has to do the DTMF
detection, whereas in the second case the caller or the gateway has to do the DTMF detection.
The RTP receive module forwards telephone-events directly to the grammar matching engine.
We have implemented both these methods. A third method of transporting DTMF INB®
message is not used in our implementation.
(15-16) The grammar matching engine tries to match the received digits with any active grammatr,
and informs the FIA if a match is found. The RTP send thread periodically sends media packets
to the caller. No packets are sent during silence.

We have developed some CGl-based applications for voicemail access and conference

participation. Each registered user gets a unique telephone PIN (personal identification num-

214

ber) for authentication. The voicemail script announces the humber of new and old messages,
and prompts the caller to listen to the messages. The conferencing application prompts for the

conference number and transfers the call to that conference.

Joining a Conference via IVR

Consider a SIP conferencing system where users join the conference by dialing in a conference
URI such assip:staffmeet@conference.com. A regular telephone user with only a touch-tone
phone cannot dial such a generic URI. We can assign one phone number per conference for
Direct Inward Dialing (DID). However, it is preferred that the user always dials the number of
the VoiceXML browser or some auto-attendant that in turn prompts him for the authentication
PIN (personal identification number) and conference number. Once the user is authenticated the
browser transfers the call to the selected conference. One can also use a single PIN to identify
both the participant as well as the conference.

Fig. 9.15 shows how an user, say Alice, interacts with the browser before joining
the conference. (1) Alice dials the browser's phone number, 212-9397137, or SIP URI,
sip:7137@server.com. (2) The browser accepts the call and prompts the caller to enter PIN
for identification. (3) Alice keys in her PIN, 1-2-3-4, followed by a terminating # key. The
DTMF digits are sent in RTP. (4) The browser looks up the database and identifies the caller
as “Alice”. (5) Based on the privileges, the browser prompts her with a list of conferences to
choose from. (6) Alice picks up the conference with identifier 23. (7) The browser again checks
if Alice is allowed to join the conference identified by number 23, which in this example is
sip:staffmeet@conference.com. (8) Once the authentication is done, the browser transfers the
call to the actual conference server using the BEHFER method [77] containing the SIP URI
of the conference. (9) Alice’s phone accepts the transfer and initiates a new call to the conference
server. (10) Alice’'s phone exchanges audio with the conference server directly, without going

through the browser.

215

(a) Message flow

z

User SIP phone VoiceXML browser 4) (7)

(1) INVITE sip:7137@server.con

200 OK (accepted)

- / 7
ACK (cnfirmed) @‘{

(2) Welcome, please enter you . 9) |

B four digit PIN code. Database —@—

(3) 1-2-3-4-# (4) user auth/
;dentlflC&thi 1234=>Alice

(5) enter the conference
identifier you want to join

(6) 2-3-#

= (7) is user B
Aa”OWed to joﬂ,]r?23—>5taffmeet
- | Alice is allowed
(8) REFER to sip:staffmeet@conference.com ‘
B with credentials T
202 Accepted - Conference server
BYE

200 OK (call closed)

(9) INVITE sip:staffmeet@conference.com
200 OK (accepted

_ (10) User talks/listens to the copference server directly

BYE (user ends the call)
200 OK (call closed)

Figure 9.15: Method 1: Joining a conference in blind transfer mode

Call Transfer

Note that the user authentication, conference look up and transfer are actually invoked by the con-
ference service CGI scripts, whereas the browser just interprets the VoiceXML pages generated
by the scripts to do the actual transfer or prompt the caller. For instance, the service script may

216

generate the followingransfer tag for the call transfer in step (9).

<block>
<prompt>
Your call is being transferred, please wait.
</prompt>
</block>

<transfer dest="sip:staffmeet@conference.com" bridge="false" />

There are two ways to transfer a call from the browser to another phone in VoiceXML.
The blind transfer sends the SIREFER message, and terminates the original call leg between
the caller and the browser. The caller user agent is then responsible for placing another call to the
Refer-to location. Thebridgedtransfer causes the browser to place another call to the destination,

and join the media path between the original caller and the destination.

(a) Message flow (b) Architecture

|

B i Rl

User SIP phone VoiceXML browser

. Call request+authentication _ | gy |\v/|TE sip:staffmeet@donference.com @ (7)
1)-(7) with credentials _ S
202 Accepted

(9) User talks/listens to the broyser

BYE (user ends the call)

o BYE l
~ 200 OK (call closed) = —@—
= 200 OK f

Figure 9.16: Method 2: Joining a conference using bridged mode

Fig. 9.16 shows the bridged transfer case with the browser as a back-to-back-user-agent
(B2BUA) bridging the audio path between the user phone and the conference server. Steps 1to 7
are same as in the blind transfer case. Instead of sefRRl#ER, the browser sends a new call
request to the conference server identifying the confersifcstaffmeet@conference.com in

the Request-URI of the SIPINVITE message. The browser acts as an application level packet

217

forwarder in both directions for RTP and RTCP media traffic.

We have implemented both blind and bridged transfesipvxml. The advantage of
bridged transfer is that the browser remains in the media path and can terminate the call (e.g., if
the calling-time exceeds the quota) or accept future control commands (using DTMF) from the
user phone. For conferencing, it may be useful to interpret DTMF, e.g., 6-6-# to mute your audio
or 6-8-# to join another virtual chat/conference room. Secondly, the browser needs to forward
other signaling messages also, e.g., re-INVITE from the caller to the conference server. Moreover,
maintaining packet forwarding states for the duration of the conference limits the scalability of
the browser on how many simultaneous callers it can handle. The browser may issue re-INVITEs
with updated transport addresses for media to both the caller and the conference server such that
the media path is direct. However, this still needs to maintain the call signaling state for the
duration of the call. On the other hand, a blind transfer does not require any call state in the
browser for the duration of the conference. But it expects that the caller’s IP phone supports the

SIPREFER method.

Instant Message as Input and Prompt

To allow PC-based SIP phones that do not have touch-tone dial-pad, our browser also accepts

input via IM text. The prompts can be sent both in audio and IM for such phones.

Distributed Component Architecture

In a distributed component architecture it may be desirable to separate the text-to-speech and
speech-to-text functions from a VoiceXML browser, as different modules. Our RTSP server,
rtspd, can convert the text supplied in URL to speech and stream to the client. Alternatively, a
SIP “text-audio” converter can convert between the text in IM and the audio in the call session.
Such external components can be invited in the existing sessions for applications such as email

by phone, as we describe next.

218

9.6.3 Interaction among Email, Telephone and IM

Today, email is the most common form of electronic communication. However, the convenience

of email is limited by the necessity of an Internet connected computer. A system that allows
interworking of email with other communication means such as telephone or IM, will enhance
user experience. Such system can be used to reach those users who only have email access via
IM, define certain incoming emails as important and forward them to IM, get a virtual-IM account

to interact with other IM users via email, access emails via phone, get notified of any important
email on phone, and text-chat with other IM users or in a conference via phone. We describe the

SIP-based architecture and on-going implementation of such interactions in CINEMA.

Email by Phone

Assuming that wherever you go there is a telephone, using a telephone to check email is a sensible
solution. Ouremail-by-phoneystem provides a way to check and even send email from a touch-
tone telephone [240]. The application runs as Java Servlet on a web server, generating Voice XML
pages for telephony dialogues, and interacting with back-end IMAP or POP3 email-servers as
shown in Fig. 9.17. We have also implemented Tcl-based CGI scripts for the email-by-phone

service to better integrate with the rest of our system that uses Tcl scripts.

&, B &
Internet

IP—phone PSTN phone IP-phone

Internet

PSTN phone

SIP SIP

T(tes(t
sipvxml | VoiceXmL speecfr—~| IM/call
browser
SIP O
(3) * "_Subject:.*[ll]mportant.*
Email to IM I sipte
HTTP siptc 0c

IM/call

convertor .
example .procmailrc

3

Important | * “From:.*Alice.*

Email

P> Servlet I_ Incoming email @ emails . LSipte
| 2 procmail I
Figure 9.17: Email-by-phone architecture Figure 9.18: Email notification to phone

The caller is prompted to listen to old or new messages, compose a new message, reply

219

to an existing message, delete a message, forward a message, advance through the messages, and

switch between new and old messages for playback.

Email to Phone

Asynchronous event notification is useful when polling for the event is inefficient. For example,
the email-by-phone system can be modified to notify the user of any important email by calling
user’s cell phone. The definition of “important” email can be programmed by the user. The
architecture is shown in Fig. 9.18.

Incoming email filtering on Unix is relatively simple usipgocmail [241]. On other plat-
forms, such as windows, one can periodically poll the IMAP-based email-server for new emails.
An exampleprocmail script of Fig. 9.18 treats the subject with “important” or “Important” key-
word, or sender as “Alice”, as important and forwards togimtc script.

Thesiptc script extracts the email body and other information, e.g., subject, priority and
sender address, creates a SIP instant message, and sends it to the IM-call converter. The IM text
is truncated if it is too big. Théorwarded-from, replied-to or signature part in the email are

ignored as shown in Fig. 9.19.

email instant message
From: Alice <alice@of.. From: Alice <alice..
To: Bob <bob@home.c.. To: Bob <bob@ho..
Subject: RE: your server— Subject: regarding y..
Hi Bob, Hi Bob,
The server is down.
> you can use the SIP Kindly restart.

> server on home.com

The server is down.
Kindly restart.

Alice alice@office.net

Figure 9.19: Example translation used in email to phone system

The IM-call converter acts as a translator between the SIP-based IM and audio call. In

the reverse direction, it can notify the IM over phone. In the absence of session-based IM, it uses

220

the various headers in the SBESSAGE to associate the IM session with the audio call. This
avoids making a new SIP call, if IM is received for an existing session. The SIP call destination
can be pre-configured or derived from the IM destination address, which can be an IP user or a
telephone subscriber via a gateway. Separating the converter from the email to IM translation
allows running the email system and speech system on different hosts in the network.

Once the call is established the converted text is spoken out to the destination phone.
After that, the system may transfer the phone call to an IVR system, e.g., to prompt the user to

repeat the message or connect toghwil-by-phoneystem.

IM-call Converter

The IM-call converter described in the previous section can be extended to a generic translator
to allow a phone user to initiate an IM conversation. It uses both text-to-speech and speech-to-
text. Suppose Bob’s IP telephony service provider allocates a telephone extension say 7155 for
his IM address. When Alice dials the extension, the service provider maps the destination to
sip:Ym9iQGhvc3RC@servemhere Ym9iQGhvc3RC is base64-encoding [45bob@hostB

The translatorsimvoice, running onserverCreceives the call request and sends an initial IM
greeting tosip:bob@hostBIt maintains the association between the caller and the final IM des-
tination for the duration of the call.

When Alice speaks, the audio is converted to text using CMU Sphinx speech recognition
engine [242]. To send an IM, the user can indicate the end of a speech message by pressing a
DTMF key. Alternatively, the converter can assume the end of a speech message when it receives
some audio followed by a few seconds of silence.

In the reverse direction, when Bob sends an IM texsitavoice, it invokes the Flite
text-to-speech engine [243] to convert and send it to Alice as voice.

If Alice hangs up, the association is lost. If thienvoice can not find an associated call
for an incoming instant message, it replies with another instant message indicating the error. The
IM user should be allowed to initiate the session using session-based IM

In a collaboration environment, the converter allows the users with different system ca-

pabilities such as telephone and IM to interact. This helps the deaf, hard of hearing and speech-

221

impaired individuals to collaborate easily in a multimedia conference [244].
Often we have found that the speech-recognition quality is poor. The converter should
provide feedback to the speaker by sending the converted IM text as well to the phone using

text-to-speech.

Email to IM

In the email to IM direction, Alice can email to a special address suchmgs
server+bob@office.nktwhich is received by Bob as IM. Therocmail script of my-
server@office.nakeceives the email, finds the IM destinationbad, translates the email’s text
content to IM and sends it toob@office.netAlternatively, Bob can advertise his email address
asbob+im@office.neto send him an IM. The difference is that theocmail is configured at
myservein the former and at Bob’s email in the latter case. A third approach is that Bob defines

certain emails as important and automatically forwards them to his IM address.

IM to Emaiil

In the reverse direction, Alice can also use the services fryserversuch that Bob can send

IM to myserver+alice@home.corithe server should put the appropriate erRaply-to header
pointing to the sender vimyserver so that the email replies can be sent back to the IM user
correctly. Alternatively, Alice can sign-up with her SIP-provider to run a programmable call-
routing using SIP-CGI [24] that identifies important IMs and sends her an email with the content

when she is not on-line, as shown in Fig. 9.20.

9.7 Conclusions

This chapter describes a SIP-based collaboration framework that integrates with telephony, in-
stant messaging, email and web using existing protocols and tools. We have discussed seamless
integration between two types of collaboration modes: synchronous and asynchronous. The con-

ference server and user agent in our CINEMA infrastructure allow synchronous multi-party mul-

INote that some email servers allow sending email to user+something@domain, which will be delivered to the
inbox of user@domain.

222

(2) MESSAGE @

" homecom | Alice phone
| /alice@home.com
| '< *(3) not handled
i N T O
Bob'sPC | ¢ l | ="
ffice. R "
bob@office.net : : Alice' s PC and
l §IGP| | IM client offline
| \

, (4) send email to alice@nyu.edu
Meet for lunch?

Figure 9.20: SIP-CGI for IM to email translation

timedia collaboration via audio, video, instant message, screen sharing and shared web-browsing.
The personalized user profile, calendaring, address book management, event and conference man-
agement, and system configuration can be done from the web interface. It also facilitates docu-
ment sharing and asynchronous discussions among the group members. Moderators can monitor
and control various synchronous and asynchronous activities. The messaging and notifications
are used to reach the users when they are off-line.

We have described the architecture of our Internet telephony installation consisting of
the SIP server, SIP-PSTN gateway, RTSP media server, unified messaging server, conferencing
server, interactive voice response server and SIP-H.323 translator. It provides enterprise IP tele-
phony architecture for corporates and campuses. We have used CINEMA in our department as
an example of real world deployment. We have also built various components addressing a com-
mercial deployment such as security, billing, and interworking with the corporate firewalls and
Network Address Translators (NATs). A similar architecture can be deployed at other campus
and organization networks who want to benefit from the services provided by Internet telephony,
in particular SIP.

A SIP-based architecture allows to easily extend the infrastructure with new features, e.qg.,
presence-enabled calls and programmable call routing. Interactive voice response provides easy

access to the system from a telephone, whereas various text-to-speech tools allow interaction via

223

plain email. This facilitates access to the system transparent to the end user device. Hence, we
claim CINEMA to be a comprehensive multi-platform collaboration architecture. Moreover, the
system allows hybrid interaction, e.g., phone for audio, PC for IM and document sharing in the
same conference.

Based on our implementation, SIP provides a suitable multimedia conferencing protocol
that allows advanced scenarios and services without requiring that end systems are conferencing-
aware. Our conference server supports audio mixing based on various codecs such as G.711
u-law and A-law, GSM, DVI ADPCM, high quality G.722 and, more recently, Speex. The video
codecs are transparent to the server, because the server does not need to decode video and can
just do packet forwarding to other participants. In addition to audio and video conferences, var-
ious other services are provided at the conference server such as instant messaging and screen
sharing. Our SIP-H.323 gateway permits the participation of H.323 clients in the SIP-based con-
ference. Participants can also join conferences from the PSTN via a SIP to PSTN gateways using
interactive voice dialogs.

VoiceXML is a powerful technology for interactive voice dialogs that allows telephone
users to access services that are typically available to web users. SIP interface to a VoiceXML
browser allows such services from a IP telephone as well as a regular telephone, via a gateway,
using the call transfer feature in an interoperable manner. We have implemented a SIP VoiceXML
browser and used it to allow telephone users to connect to our conferencing server. This along
with other services that we have implemented will help users to join a conference, check mails
and stay informed from anywhere thus enabling ubiquitous availability.

We have described a multimedia mail architecture for Internet telephony, using SIP and
RTSP, and shown how it meets the general requirements for a voicemail service. Various ap-
proaches are possible to utilize the voicemail service in the Internet telephony environment. Ap-
plicability ranges from a single user subscribed to a voicemail service to a whole university using
the campus wide service. Separation of the voicemail server from the signaling and the storage
servers helps in building scalable systems. We have also described some of the protocol issues,
in particular, reclaiming a transferred call and deleting a mail, based on our implementation.

Our architecture is being enhanced and licensed by SIPquest Inc., to over a hundred com-

224

mercial sites for evaluation or deployment. We have used a number of components of CINEMA
in various other projects in our lab. For example, the NG911 project uses the conference server to
bridge the emergency caller, emergency responder and any third party medical or police assistant.

Total physical lines source lines of C/C++ code of various CINEMA components mea-
sured using SLOCCount [245] is about 180,000 including some external software. Out of this
my contribution is more than 60,000 in C/C++ and an additional 30,000 in Tcl.

We have described the various collaboration tools in CINEMA and how they interact to
achieve new services. Collaborative work is a vast research area incorporating numerous tech-
nologies such as networks, multimedia, object oriented concepts, virtual reality and artificial
intelligence. Our aim is to complement these research innovations by providing a framework
over which other collaboration tools can be built or integrated. Although CINEMA's main focus
is on real-time synchronous communication, we also correlate the two modes of collaboration
for an enhanced end-user experience. CINEMA can be used within an organization as well as
in portal mode by application service providers. We have not yet implemented the recording of
conference events such as join or leave, and the programmable conference server behavior.

We evaluate the performance of our conference server in the next chapter.

225

Chapter 10

Scalable Centralized Conferencing

10.1 Introduction

Multimedia conferencing forms the core of synchronous collaboration described in the previous
chapter. Section 9.4.1 (page 189) describes our centralized conference server and audio mixing
algorithm. In particular, the server implements ttecode-mix-encodsgteps to perform audio
mixing such that each participant can listen to all the other participants.

Providing reliability using server redundancy is not trivial because the conference server
maintains call state unlike the call stateless SIP proxy servers. In this chapter, we describe the
techniques for reliability and scalability of conference servers. We also evaluate the performance
of our conference server for single server as well as distributed cascaded server architecture.

Vendors have built DSP-based customized hardware that are specialized in processing
audio. However, one of our main goals is to provide carrier grade services on commodity hard-
ware such as desktop PCs and workstations. We measure the conference server performance on
commodity hardware running Linux.

Scalability and reliability of different media are handled differently. There are two types
of media handling: mixing and forwarding. Audio is typically mixed whereas video or instant
message is forwarded without any mixing in the conference server. For the purpose of this chap-
ter we focus only on audio mixing. We only examine the media path, and do not explore the

performance effect of high signaling churn, i.e., high rate of participants join and leave.

226

10.2 Scalability

Conference size is measured in terms of number of participants. A small scale conference con-
tains two to ten participants, medium scale ten to few hundreds and large scale over thousands of
participants. Broadly speaking there are two metrics to quantify the load on a conference server:
(P) the number of simultaneous participants in a single conference,@nth¢ number of si-
multaneous conferences with small number (three or four) of participants each. High load on
the conference server requires more processing and bandwidth at the server and can hamper the

quality of service metrics such as deldy)(jitter (J) and packet lossl{).

10.2.1 Requirements

Performance is typically limited by three factors: server’s network bandwidth, CPU and memory.
Which of these becomes the bottleneck in turn depends on other parameters such as media codec
and packetization interval. For example, high bandwidth G.711 codec imposes less CPU overhead
whereas the low bandwidth GSM or G.723.1 codecs are CPU intensive.

The goal of performance measurement of a conference server is to understand the effect
of load (P, C) on the limiting factors (CPU, bandwidth, memory) for a given set of parameters
(codec, interval). Thus, we identify the bottleneck for the given hardware and measure the max-
imum capacity Lnq.,Cmaz) Without affecting the quality of service. In particular, more than
5% of packet loss or more than 150 ms of mouth-to-ear delay will hamper smooth bidirectional

conversation, and we pick those as indicating that the server has reached its performance limit.

Server bandwidth

On average, only one participant is speaking in a conference at a given time. Otherwise the
listeners may not be able to understand the conversation. In large conferences, participants should
perform silence suppression to reduce the mixing load on the conference server. If the codec
bitrate isB, then P participants in a conference with one active speaker at any instant and the
others performing silence suppression, requires an inbound bandwidghaoid an outbound

bandwidth ofP - B at the server.

227

CPU

An audio mixer withC' conferences and® participants per conference requiresP + (5)C
instructions per second, whete corresponds to the per-participant processing artd per-
conference processingx includes encoding of the receiver’'s audio and any copying of data
among buffers, whereasincludes decoding of speaker’s audio and any processing of periodic
interrupt for the conference. A simple codec such as G.711 requires minimal encoding and de-

coding effort, but imposes heavier burden on buffer copying due to the large message size.

Memory

The memory at the server is usually not an issue. A real-time conference server needs to keep the
delay and hence the buffer size small, thus it does not use lots of memory in audio buffers. Nev-

ertheless, each conference and participant requires some call signaling (SIP) state at the server.

Increase in parameter valueCPU Bandwidth| Delay
Packetization intervall() reduces | reduces increases
Codec bitrate B) increaseg increases | N/A
Codec complexity /) increaseg N/A N/A
Network jitter (J) N/A N/A increases

Table 10.1: Effect of various parameters on the server performance

Table 10.1 summarizes the effect of various parameters on performance. Note that the
delay column indicates the base delay under normal load. At high load, when CPU utilization is
close to 100%, the delay and loss increase abnormally.

To derive a mathematical relationship among these parameters, consider a single confer-
ence server witl’ conferences, each with participants. Each participant is using audio codec
with bitrate B kb/s, and complexity of\/. and M, cycles of CPU for encoding and decoding,
respectively. Suppose the packetization interval ies and the network jitter in the speaker to
server path is/ ms. The packet size includes the audio payload size as well as the packet header

for IP, UDP and RTP, which i20+8-+12 = 40 bytes. The packet header contributes a bandwidth

228

of 49x8 — 320 kp/s. Thus, under normal load on the conference server, we get the following:

IP packet size = % + 40 bytes

Inbound bandwidth = C(B + 32)kb/s
Outbound bandwidth = C(P — 1)(B + 22)kb/s
Delay at server <T+4Jms

CPU usage x (P + 3)C

=((Me+a.Bi+b)P+ (Mg+c.B1+d))C

where By = B + %

The termT + 4 x J assumes the adaptive playout algorithm as described in [221], which adjusts
the playout delay as four times the variance in packet arrival time. kebeg, d are constants
that can be derived using experiments. For G.711 cddgand M, are negligible. Usually the
constant factor$ andd are small because most of the processing depends on the packet size,
and hence bandwidth. Thus, CPU usage becaftesP + ¢)(B + 222) wherea andc are some
constants. For G.71B is 64 kb/s, and if the packetization intervdl, is changed from 20 ms to
40 ms, the CPU usage reduces by a factor of 0.9, thus giving a better performance.

For CPU-intensive codecs such as GSM and G.723.1Mhend M,; components are
significantly higher than the other components, thus the CPU usage roughly beComdes” +
My). The packetization interval does not have much effect since the buffer copying and packet

processing are masked by more CPU intensive encoding and decoding operations.

10.2.2 Performance Evaluation

To measure the performance of our conference sesygronf, we built a load generator using

our sippeer application in user agent mode and a built-in audio toggos. The audio tool
generates incremental patterns in the media packet instead of using a real encoded audio. For
example, the first packet has payload with all bytes set to 1, second with all bytes setto 2, and so
on. The pattern wraps to 0 on overflow. The conference server is configured to send the speaker’s
audio in the mixed stream back to the speaker for the measurement. On receiving the media
packet, the audio tool compares it with the actual sent pattern and infers the quality of service

(QoS) characteristics such as delay and loss.

229

We did not use the QoS statistics from RTCP because the RTP/RTCP session is
established between the participant and the server, and does not indicate the QoS of
the voice traffic end-to-end from the speaker to the listener. For example, the packet

loss and delay introduced by the server is not captured in the RTCP statistics.

Controller

Start test clients ".measure CPU and

and measure Jossand defay " memory
T1 | SIP user agent| P1,P2 P
v 1 v

P3.Q1

SIP user agent

T2

conference server ﬁ,/ ﬁ / \
S = server instance

Tn SIP user agent T =test client
Q2,Q3 P,Q = participant — SIPINVITE (cal setup)
C = conference ---» RTP media(audio)
Figure 10.1: Physical configuration Figure 10.2: Logical configuration

An example test setup is shown in Fig. 10.1. The ser¥gr,hosts two conferences;; and

C5. The controller starts three test cliens,, with six participants,”; and Q;, to join the

two conferences as shown in Fig. 10.2. In each conference, the first participant is the speaker
and everyone is listening. The first participant gathers the QoS statistics for speaker-to-listener
voice path. The controller collects the QoS statistics from the test clients as well as the periodic
performance statistics (CPU and memory utilization) from the server host, and summarizes the
resulting server performance.

The server and test clients were running on Pentium 4, 3 GHz CPU machines with 1 GB
memory running Linux 2.6. All the hosts were connected to the same 100 Mb/s Ethernet switch.
All the participants used G.71i-law audio codec with 20 ms packetization interval. The confer-
ence server also used 20 ms packetization interval and did not implement the optimization (see
Section 9.4.1, p. 191) to reduce the number of encode operations. Each test host ran at most two
test clients, and each test client emulated at most 40 participants. This ensured that the load on

test machines was light (less than 30% CPU usage in our experiments) so that the test machine

230

never became a bottleneck.

We conducted two tests to measure the number of particip&is @ single conference,
and the number of four party conferencé§ (respectively. Each of the tests was repeated three
times and we did not see any significant deviation in performance between these repetitions.

In the test, we increased the participant count incrementally in steps. Each step ran for
two minutes. For the first test, a single conference was used and the number of participants was
increased by 40 in each step. In each step, the participants joined the conference at the rate of
one participant per second. Thus, out of 120 s of a step, first 40 s indicates churn, and next 80 s
indicates steady state, i.e., the number of participants remains constant. For the second test, each
conference contained at most four participants and the total number of participants was increased
by 40 in each step, i.e., the number of four-party conferences was increased by 10 in each step.
Note that only one participant in each conference was an active sender of media packets.

timeline (seconds)
0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

100 ! ! ! ! ! ! ! ! ! ! ! ! 20
90 |- : 718
| | ‘ ‘ ‘ ‘ ‘ ‘ ‘ CPU usage |

w

é : : : : : : : : : : oo :

D : : : : : : : : : L : :

© :)
B S : S
3 L ‘ IS
e S0 ——-memery-{MB)—— 10 4
s :)
@ : : : : : : 6
S 40 f 48 g
& =
(] H H H H H H H H H H H

[2) ! ! R ! R ! ! ! ! ! !

o] e : L : : : : : : :

o T . : : :

(@) P : : [: : : : : : : :

20 [delay (ms) o 4

S ‘ ,«f/_jzyefffii:f:a»f*f;t»:tfTif;ff:T,‘fi;—i’ri’f’_ffifT,’T’%’T,’,TT,’T“}’,, . 4 2

} } } } } } } } © % lost
ol i i i i i i i i i vl alluall 0
0 40 80 120 160 200 240 280 320 360 400 440 480
Participants count

Figure 10.3: Server performance with increasing number of participants in a single conference

231

timeline (seconds)

0 120 240 360 480 600 720 840 960 1080 1200
100 !) ! ; T T ——T 20
: : : : : .. CPUusage

’a H H H H H v‘ ' 1’, H H H
é : : : : : ! : : : :
Q H H H H H ‘, H H H H
S | | | | N | | |)
© : : : : N : : : : o
B : : : L : : : Lo <)
(e} : : : : J : : : : [©
> | | | } | R | 2
S 40 [B = S %
% : : : g ! S — =
[}
1] ; ;
S 30 - : e)
E o L L worst% Ioss seen by any part|C|pant
° 5 _ R SR L ,, . _.delay. (ms)/ d a4

10 _,i\T‘,’T,',ij,’f’f[?,’gf,jf¥T}L,,, TTo A ’,) u\ it MM W MMH 2

0 40 80 120 160 360 400

Participants count (—four times conferences count)

Figure 10.4: Server performance with increasing number of four-party conferences

CPU utilization

Fig. 10.3 and 10.4 present the results for the two tests, respectively. In particular, our hardware
(3 GHz, Pentium 4) can support about 440 participants in a single conference and about 80 four-
party conferences with G.714-law audio while keeping the server CPU utilization below 80%.

At 500 participants in a conference, the server CPU usage reaches close to 100%.

The timeline {-axis top) can be co-related to the participant counaxis bottom)
as follows: 0-120 s corresponds to the first step with 40 participants, 120-240s cor-

responds to 80 participants, and so on.

Memory utilization

Memory utilization at the server is about 11 MB for 500 participants. The memory is mostly

allocated for call state with about 20 kB per call. The memory graph shows that in each step of

232

120s, there is a linear increase in memory for first 40 s and then the memory remains constant
for the duration of that step. This is because the fourty participants join during the first 40 s in
each step. The later parts in the memory plot are flat because thadpgnéommand gives MB
resolution instead of kB resolution after 9 MB. Thus it does not show the linear increase in each

step after 9 MB. As seen here, memory is clearly not the bottleneck.

Audio delay and loss

The speaker-to-listener delay is less than 20 ms, which is the packetization interval. This excludes
any wide-area network delay because the experiment is done on the same LAN. The delay is
measured from the time the packet leaves the speaker application, to the time it is received by
the listener application. Thus, it does not include the playout delay at the receiver application.
In the absence of any network jitter on the same LAN, the adaptive playout algorithm at the
mixer calculates the average playout delay as half the packetization interval, i.e., 10 ms. Fig. 10.5
shows the difference in delay experienced by the first and the last participants a single conference
as the number of participants increase. Because the conference server sends the media packet
from the first to the last participant in that order in every packetization interval, the delay for
the first participant remains constant whereas that for the last participant gradually increases
from 10 ms to 24 ms when the participant count increases from 40 to 440, as long as the CPU is
below 80% utilized. When the CPU usage is close to 100% the delay as well as the packet loss
suddenly increase. This is expected because as long as all the processing can be done within the
packetization interval, the QoS doesn't get degraded. Once the processing takes more than 20 ms
and spills over to the next interval, an additional processing keeps accumulating, resulting in
packet loss of UDP media packets and additional delay in sending the packets to the participants.
A packet loss of less than three packets per five seconds of logging interval is ignored by the

listener when counting the number of packet losses.

Audio bandwidth

The bandwidth for G.711 codec payload is 64 kb/s. Adding the headers (RTP, UDP and IP) for

every packet in 20 ms gives a packet size of 200 bytes, i.e., 80 kb/s above the link layer. Thus,

233

timeline (seconds)
0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

50 ! ! ! ! ! ! ! ! ! ! ! !

40 b

30 i i
) ¢
£ : : : : : : : : : : o
B 25 e Last participant (receiver) -
g | | | | | | | | | e
[a) ! ! ! ! ! ! ! ! I

L T N

P73 A R N A v v

fnn_T

R SRS M *First participant (receiver)

0 I I I I I I I I I I I I
0 40 80 120 160 200 240 280 320 360 400 440 480
Participant count

Figure 10.5: Speaker-to-listener delay for first and last participant to receive packets from the
mixer

a server on a 100 Mb/s duplex Ethernet can support up to 1,250 outbound media streams to the
participants, ignoring any control traffic such as SIP and RTCP. With Gigabit Ethernet, the server
bandwidth is never a problem for a single conference server for medium scale conferences. In

practice, the access link bandwidth of the server may impose a stricter limit on the conference

capacity.

Sockets — open file descriptors

Currently, we use separate RTP and RTCP sockets for each participant. Thus,paitticipants,

the server open3P sockets for media. If the operating system imposes a limit of 1024 open
file descriptors for ordinary users, the server running as ordinary user can support up to 512
participants. However, this can easily be fixed either by increasing the open file descriptors limit

or by modifying the server to reuse sockets among multiple participants.

234

Effect of packetization interval

A 20 ms interval in the conference server seems to be the most interoperable. For example, Robust
Audio Tool (RAT) cannot correctly handle intervals that are not multiples of 20 ms. Moreover,

a small packetization interval also guarantees that the maximum delay incurred by the server
processing is bounded by this value under normal load.

On the other hand, using a larger packetization interval such as 40 ms causes less overhead
in terms of header bandwidth and buffer copying at the server. However, this can increase the
delay to at most 40 ms at the server with heavy load. Hence, we recommend using 20 ms if the
load is well below the server capacity.

timeline (seconds)
0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

100 ! ! ! ! ! ! ! ! ! ! ! !

90 - -
E f f f f f f f f bt f f
B B0 | CPU usage for 20 ms« - , B e
3 1 1 1 i 1 and 4Q ms interval b ‘ oS
g sof N e -
()
[o)] : : : : : : N\ 7 : o : : :
-} ‘
o ; ; ; ; P
O 0 T S R |

j j CS D -delay (ms) for Z(i ms and 40 ms interval
10 | e 1
P A | | | | i i i i i i

0 40 80 120 160 200 240 280 320 360 400 440 480
Participants count

Figure 10.6: Effect of packetization interval on performance

Fig. 10.6 compares the performance using the packetization intervals of 20 and 40 ms. As
shown, at 50% CPU utilization we can support about 320 and 400 participants with 20 and 40 ms

intervals, respectively. Thus, 40 ms interval improves the performance by a factor of approxi-

235

mately 1.25 over 20 ms interval. Due to the smaller packet size, the header overhead in 20 ms
interval is larger. The IP layer bandwidth required for 20 m%i& 1.11 times that for 40 ms. If

we include the Ethernet packet overhead of 18 bytes per packet, the factor b%omdsl&

We conclude that the performance benefit in using the larger packetization interval is due to the
lower packet size, and hence lower buffer copying and processing.

We also observe an increase in the speaker-to-listener delay from about 12 ms to 24 ms
when changing the interval from 20 ms to 40 ms. This is expected, since the average delay caused
by the server is half of the packetization interval if there is no jitter. The memory utilization is
independent of the packetization interval, but depends on the number of participants.

Extrapolating the performance for 40 ms interval, the server can support about 720 partic-
ipants in a single conference. However, the current implementation needs to be modified to share
socket connections across different sessions to support these many participants, or the operating
system’s default limit on per-process open file descriptor count needs to be increased to about

1500.

Performance on Sun SPARC vs Pentium

Fig. 10.7 shows the conference server performance on a Sun SPARC Ultra 5/10 with 256 MB
memory and a 360 MHz CPU, using a 20 ms packetization interval. One difference with the
earlier measurements on Pentium running Linux, is that on Sun machine the quality of service
(delay and loss) degrades as the CPU utilization becomes more than 50%. The server can support
about 60 participants in a conference without degrading the audio quality.

Compared to the capacity of 480 participants on Pentium 3 GHz CPU, which roughly
translates to 6.25MHz of CPU cycles per participant (or MHz/participant), the Sun machine
gives similar performance of 6 MHz/participant. Thus, there is not much difference between
Sun SPARC and Pentium 4 in our conference server test. Most of the processing at the server
involves buffer copying and network I/O. With 40 ms interval, the performance improves to about
4.2 MHz/participant on Pentium.

Our earlier measurement of the conference server in 2001 [34] on the same Sun hardware

gave the server capacity of about 80 participants in a single conference with one active speaker, or

236

timeline (seconds)

0 120 240 360 480

100 , , : 20

90 1 18

B [] 16
’a H H H
§/ H H H
B TO e GPU-UsAGE | 14
o) : : : el
s | | |)
© : : : o
2 xdelay\(ms) 2
< 50 e 10 8
> /
~ : . . ! e
< i 1 Y < S
() - : kK : /
=) 4 : 2 ; / =
M | H . H /
(%) - : : J : /
2 : ; ; /
a , L
O : : / %

o QLN I S S E ‘»v¥’\’\’T('\'M’H‘H'\-w-\ ------ H\ A R W I‘ M‘\H\TMH‘\H 0
0 20 40 60 80

Participant count

Figure 10.7: Server performance on 360 MHz Sun/SPARC as the number of participants in a
single conference increases

about 15 three-party conferences with all participants as active speakers supporting:&Gw11
audio, without degrading the audio quality. The server sent packets at 40 ms intervals whereas
the participants sent at 20 ms intervals. Thus, the performance was roughly 4.5 MHz/participant,
which is slightly worse than the current performance of 4.2 MHz/participant on a Pentium pro-
cessor with 40 ms interval. Even at that time, the CPU was the primary bottleneck. Since then the
architecture of our conference server has improved from a thread-per-participant and a thread-

per-conference to a single-threaded event-based architecture.

Performance of various audio codecs

The codec performance is an important factor in the overall server performance. For example, if
the encoder takes/.=50us to encodd’=20 ms worth audio to each participant, then the server

cannot encode more than 400 streams. Thus, the encoder and decoder performance can impose

237

Table 10.2: Comparison of various audio codecs: time taken for encoding and decoding of 20 ms
of audio on Pentium 4, 3 GHz CPU running Linux 2.6.9 in our test-bed: E means encoder, and D
means decoder. G.711 and G.722 are ITU-T’s, and DVI is Intel/IMA's

Codec bitrate | 3 GHz Pentium 4 360 MHz Sun/Spar¢ 900 MHz Sun/Sparg
(kb/s) | E(us) | D(us) | E(s) | D(us) | E(us) | D(us)

G.711u-law 64| 538 | 1.63 51.21| 13.86 20.18| 6.22

G.711 A-law 64| 5.47 1.77 54.03| 14.48 22.56 9.24

DVI (ADPCM) 32| 5.08 | 2.76 50.24| 19.66 17.36| 10.09

G.722 (wide-band 64 | 69.51 | 49.69 1005.69| 613.66 | 382.29| 233.23

GSM 06.10 13| 73.98 | 29.13 718.17| 488.49 | 327.80| 206.16

an upper bound o, andC,q -
T

az < Me
< T
= 3.M, + My

Table 10.2 shows the time taken for encoding and decoding of 20 ms of audio on different

P,

Cn

platforms: 3 GHz Pentium 4, 360 MHz UltraSparc, and 900 MHz UltraSparc. Fig. 10.8 compares
the relative performance in terms on kilo-cycles (1024 cycles) of CPU on these platforms for
G.711u-law, G.722 (wide-band) and GSM codecs (low bitrate). The GSM and G.722 codecs are

many times more expensive than the G.711 codec.

Effect of multi-processor hardware

Since the current implementation uses a single thread event-based architecture, it does not take
advantage of a multi-CPU hardware. This can be easily enhanced to a thread-pool implementation
similar to the SIP proxy server architecture (Section 3.6, p. 55). WitlVgrocessor machine,

the thread-pool can haw¥ threads, where each thread can process akoultthe participants.
However, for a single conference splitting the participants among the processors does not help.
To reduce the implementation complexity, on every packetization interval only a single thread
sends packets to all the participants in the conference. Alternatively, another buffer can be used
to synchronize the mixing operation with the send operation, thus utilizing multi-processor archi-

tecture. On the other hand, for video packet forwarding (i.e., no mixing step) multiple processors

238

400

300

@ 3 GHz Pentium
W 360 MHz Sparc| 200
1900 MHz Sparc

100 ~

G.711 encoder
G.711 decoder
G722 encoder
G722 decoder
GSM encoder
GSM decoder

Figure 10.8: Relative audio codec performance in terms of CPU speed on various platforms for
processing 20 ms audio. The y-axis provides numbers in Kilo cycles (1024 cycles). For example,
GSM encoder took about 300 Kilo cycles on a 900 MHz Sparc, which mggisizd s ~

325/1.

can help a single large conference since the receiving thread can distribute the packets to all the

participants without waiting for it to be mixed.

10.2.3 Cascaded Conference Servers

We have shown that a single conference server can support medium scale conferences with up to
a few hundred simultaneous participants. For large conferences, a cascaded server architecture
can be deployed. This section describes and evaluates our cascaded server architecture.

For large conferences, it is possible to create a cascaded conference server architecture,
where each server appears as a participant to the server at the aggregation level above it (Fig 10.9).
Such a tree adds packetization and playout delay, but can approximate the bandwidth scaling
benefits of network-layer multicast if participants select the closest server. Since itis common that
corporate conferences consist of a large number of participants spread across a relatively small
number of facilities, having a server in each LAN is likely to be a common mode of operation.

There are two approaches to cascading the conference servers: tree-based and full mesh,

239

which we describe below.

Tree-based

In the simple tree based approach (Fig. 10.9), all the conference seéfyeese connected in a

tree topology. Each server can have a bunch of participants limited by the single server capacity.
Each server treats the other server that it is connected to as another participant in the conference.
The example shows three servers and nine participants. Sgrveews S, andSs as additional
participants and uses the decode-mix-encode logic to send packets to each participant. Thus, each
link carries the audio packet containing mixed audio from all the participants on the originating

side of the link in the tree as shown in Fig 10.9.

=

[

Si] St}
@7 —@ S = conference serve E @ S = conference serve
t P = participant P = participant

PL+P2+P3 PL+P2+P3
PL+P2+P3+ PL+P2+P3+
P7+P8+PQ P4+P5+P6
P4+P5 P4+P5+P6 P7+PgH

P8 prepgPo

2 _ Pupsies
P— - BN @\32‘——33‘k/®

" e sy T

Figure 10.9: Tree-based cascadedFigure 10.10: Full mesh cascaded
servers servers

Each stage in the conference adds additional delay. For example, audio from participant
P4 to Py goes through three servers;, S; and S3. Assuming each server operates at 20 ms
packetization interval, the worst server processing delay will be 60 ms. The delay is in addition
to the transport delay between the four application-level hops in the path®idmPy. Hence,
a tree with a diameter larger than two is not desirable if the conference requires low delay.
Secondly, each stage in the cascaded architecture causes transcoding, and thus degrades
the perceived audio quality. For high quality codecs such as G.711 with Mean Opinion Score
(MOS) of 4.5, two steps of transcoding may be acceptable. However, for codecs such as GSM
with MOS of 3.5, the two steps is not acceptable. This is because a MOS value smaller than 3
is not suitable for smooth audio communication, requiring considerable effort to comprehend the

spoken audio.

240

If each server supporty participants, then the two stage cascaded tree containgd’
conference servers, and can suppsrt (N — 1)=0O(N?) participants. On our hardware, this
translates to 0.23 million participants with 481 conference servers.

Most large scale conferences are lectures with communication from a single speaker or a
small number of panel speakers to a large audience. In this case the delay is not an issue, the tree

can have any diameter, and hence the cascaded architecture can scale to any population size.

Full-mesh

To avoid the large delay of four application hops in the tree-based architecture, the conference
servers can form a full mesh network for media distribution as shown in Fig. 10.10. In this case,
the server treats the attached server different from the attached participant. The media sent to the
participant follows the normal decode-mix-encode cycle. However, the media sent to the attached
server contains the audio mixed from the participants that are directly attached to this server only,
instead of including the media from other servers. For example, \ghesends media t®s it

does not include the media froffy in Fig. 10.10.

Since the speaker-to-listener path contains at most two servers and three application-level
hops, the delay due to server processing is at most 40 ms, assuming 20 ms packetization interval
at each server.

If each server can suppoN participants, then this full-mesh architecture can contain
N/2 servers, each attached Ay'2 participants, giving a total user population%i for a single
conference. On our hardware, this is about 58 thousand participants. Thus, compared to the tree-
based architecture, the full-mesh architecture gives four times lower capacity, b%t\mamto
number of servers) an%i (due to number of application level hops) times lower delay and uses

half the number of servers.

The optimal number of serverd]/2, is derived as follows. With: servers connected
in full mesh such that each server is connected-tol other servers, each server can
haveN — (z — 1) participants due to its capacity of participants. Thus, the total

number of participants is(N — z + 1). This is maximum when integer~ .

241

Note that this analysis is only theoretical. In a real deployment other factors such as link band-

width and heterogeneity of servers will affect the total performance of the cluster.

Performance evaluation

To verify the scaling property of the cascaded architecture, we modified out test setup as follows.
Instead of one conference server, two servers are started. Then, the two sgned,S,, are
connected in cascaded mode for conferefigdoy making an outbound call frorfi; to Sy. In
particular, a SIREFER message is sent t8), with Refer-To header containing the conference
URI on Sy. Thus,S treatsS; as a dial-in participant in conferen€g, whereasS; treatsS; as a
dial-out participant in its conferencg,. This two-server configuration is the common subset for
both tree-based and full-mesh cascaded architecture.

The earlier loopback mode in the server is not enough in this configuration. This is be-
cause we want to measure the speaker-to-listener delay that goes through the two servers, instead
of looping back from the first server. The audio taapqos, is modified to work with our SIP
user agent such that two instances of the audio tools from the two independent calls can be asso-
ciated as speaker and listener for measurements.

The results of our experiment confirms linear increase in capacity. In particular, for the
two servers we can support close to 1000 participants, which doubles the single server capacity,

without degrading the audio quality. The results are summarized in Fig. 10.11.

We have not measured the packet loss in this case, because the current method of
matching the received packet with the sent packet to detect the loss does not work
for multiple transcodings. In particular, when the encoded audio is decoded and
re-encoded at the first server, it causes some false negatives, i.e., samples that are
mismatched even though there is no packet loss. When the transcoding is done again
at the second server, the number of false negatives further multiplies, thus causing

incorrect inference of packet loss.

The SIPREFER message can be used to connect any number of servers in the tree-based cas-

caded architecture without modifying the current implementation of the server. On the other hand,

242

timeline (seconds)
0 240 480 720 960 1200 1440 1680 1920 2160 2400 2640 2880

100 ! ! ! ! ! ! ! ! ! ! ! !
90 B H H H
| | 1 1 : : | CPU usage of two servers :
ZJ T AR 0 HRNS R WEN R RS NSNS W Y SRS SN,
E‘ : : : : : : : :
2 f
g i
d.) H
2 40| E——
[%2] :
g :
o) i i i i i i
B 30 | -
o Sy 3
<ot delay-(ms) -
o Lt | | | | | | | | | | |

0 80 160 240 320 400 480 560 640 720 800 880 960
Participant count

Figure 10.11: Performance of two cascaded conference servers for a single conference

the full-mesh architecture requires modification in the current implementation to treat participants

differently from the other conference servers, as described earlier.

10.2.4 Distributing Conferences

To scale to a large number of (small) conferences instead of a single conference with large popula-
tion, a SIP proxy server can act as a load distribution system and direct incoming requests for new
conferences to different servers. Alternatively, the conference server itself can redirect a request
to an alternate server. We have implemented a time-based load distribution for pre-scheduled
conferences, where an incoming conference request is redirected to a relatively less loaded con-
ference server based on the scheduled conference times and expected number of participants of

the conferences.

243

10.2.5 Handling Overload: Graceful Denial and Admission Control

As we described earlier, when the CPU utilization goes above 80%, the audio quality degrades,
i.e., delay and packet loss increase. This affects the existing calls as well as new calls in the
current implementation. This is clearly undesirable for the existing calls. Thus, if the server is
overloaded, it should reject any new participant or redirect her to the cascaded server.

Since the system load depends on the codec used, the server may also try to restrict the
codecs for the new participants or change the codecs of the old participants using mid-call session
update via SIP réNVITE.

A server should detect the bottlenecks in real time. Identifying bottlenecks of CPU and
memory are easy. For bandwidth the server can rely on packet loss statistics using RTCP. Usually
if participant’s access is congested only that participant will see losses. If server's access is
congested, many participants will see losses. Since the server sequentially sends RTP to all
participants every interval, say 20 ms, the first few participants do not see any loss but subsequent
ones will, because of the bursty traffic. To prevent this the server can spread the packets sent
throughout the 20 ms interval. This increases the delay for some participants but prevents loss.
Randomizing the participant order while sending is not useful as it will increase the jitter, thus
increasing the playout buffer and hence the delay. In large group conferences such as lectures,
some delay doesn’'t matter but packet loss is undesirable.

If all else fails, the server should give priority to the existing participants, and gracefully

reduce the audio quality of the new participants.

10.3 Reliability

When the conference server fails for some reason during a conference, all the participants stop
receiving media. A secondary server can be used to restart the conference. However, the con-
ference state such as the list of participant addresses and their session description is lost. There
are two alternatives: the participants reconnect to the secondary server after detecting failure, and
secondary server uses the shared state from the failed server to reconnect to all the participants.

We explore some of these techniques to improve the reliability of the conference server.

244

The techniques can be classified into two types: reactive and proactive. The reactive
mechanisms do failover after the failure is detected, whereas the proactive mechanisms provide

redundancy to continue the conference even when the conference server fails.

10.3.1 Reactive Failover

Existing techniques for web server failover can also be applied to conference server failover
where the primary and backup servers share conference state. For example, the backup server
can take over the IP address of the primary server if the primary server fails, without affecting
the participants. This scheme works only when the primary and backup servers are in the same
subnet. Alternatively, IPv6 mobility can be used in which the conference server represents a
mobile node with a fixed home address which gets bound to the particular foreign address of
the primary or backup server. Multi-homing further enhances the reliability in case of network
failures.

SIP allows dynamic updates in a session. Thus, if the primary server fails, the backup
server can send a I&VITE to all the participants and update their sessions to the backup server.
This means the primary and backup servers may be geographically distributed and get can located
using DNS.

However, the primary and backup servers still need to share state regarding the ongoing
conferences and participants. At the minimum, this state consists of the SIP call (dialog) state
between the server and every participant. ThEN'éITE message sent from the backup server
to the participant uses the existing call dialog established between the primary server and the
participant. The call state can be stored in the SQL database shared between the primary and the
secondary server, e.g., using MySQL replication described in Section 3.3.6.

Connecting to the participants from the backup server does not work if the participant
user agent does not support mid-session updates in the media transport addresses. In that case the
participant can dial-in again to the conference, which is now hosted by the backup server.

One problem with reactive failover approach is that when a failure happens, there is some
delay before the backup server takes over. The delay depends on a number of factors such as

keep-alive interval and database replication latency. An alternate approach is to have multiple

245

redundant conferences at the same time as described next.

10.3.2 Proactive Redundancy

In this approach, the participants are connected to two conference servers via two independent
media paths when they join the conference. The participants send the same media streams to
both conference servers, and receive the same media stream from both the servers, under normal
operations. The player plays only the first stream, as long as the primary server is active. If the
first stream stops working, the user agent switches to the second stream.

Having media traverse multiple paths also improves network redundancy if the two servers
are distributed in the network causing independent network paths from the participant to the two
servers.

Alternatively, IP anycast [246] can be used to send media packet to any of the server in
the cascaded architecture. This mechanism does not require two streams, but dynamically picks
the appropriate server.

There are two approaches to implement this: client-based and server-based. In the client-
based approach the client connects to the two conference servers, say using two lines on his
phone. In the server-based approach, when a participant joins the primary server, the primary
server informs the secondary server, which in turn calls back the participant’s phone. Thus, the
participant is in two active calls, one with each server. The second approach doesn’t work if
the participant needs to be billed or is connected via some complex dialog interaction through a
gateway which does not allow call in the reverse direction (e.g., calling cards).

The two servers are cascaded. The second call is usually put on hold either by the partic-
ipant or the server to save bandwidth. When the primary server fails, all the participants are still
connected to the secondary server and can hear each other. This mechanism does not work on
most IP phones without manual switching, e.g., the user has to manually unmute the secondary
call on failure. This mechanism assumes enough capacity in terms of bandwidth and CPU to
support twice the number of calls.

If the call state is easy to create and does not cost anything, then the proactive approach

is better than reactive approach because the failover time is less. In the reactive failover case,

246

the secondary server needs to detect failure and send new call invitations to all the participants,
which can take time for large number of participants. However, for small and medium sized
conferences, it is desirable to do reactive failover to avoid the complexity and overhead of the

proactive mechanism.

10.4 Conclusions

We have shown that it is possible to build medium scale conference servers in software running
on commaodity PCs that can support a few hundred participants. The performance can be further
improved to large scale conferences with tens of thousands of participants using a cascaded server
architecture. Furthermore, if delay is not a problem such as for large scale lectures or panel
discussions, then the tree-based cascaded architecture can scale to any user population.

We have performed our evaluation with only G.711 audio codecs. Most user agents sup-
port G.711 to allow interoperation with PSTN, for example. The performance data will be differ-
ent for other codecs. Moreover, advanced audio features such as echo cancellation and automatic
gain control in the server will further affect the performance. In a complex heterogeneous confer-
encing environment with various participants using different codecs, the limiting factors such as
CPU, memory and bandwidth can be calculated and the bottlenecks identified using the analysis
shown in this chapter.

A number of features can be added to our current implementation. For example, the
server currently has a limited dial-out facility because the outbound calls to the participants are
not authenticated. Conferences could also be bounded in duration. However, since the resource
consumption of inactive conferences is very small as long as media streams are muted, it is quite
feasible to set up permanent conferences in work groups, for hoot-and-holler applications. The
seamless transition from centralized conferences to full-mesh and multicast conferences, as well
as hybrid solutions, needs to be supported in the conference server.

As shown in Chapter 9, we can use our SIP-H.323 gateway and commercial SIP-PSTN
gateway to provide a multi-protocol distributed conferencing server that can be contacted from
any of the SIP, H.323 or PSTN networks. To integrate PSTN users, we have implemented inter-

active voice response, e.g., to prompt for conference and participant access codes. The server can

247

further be integrated with a text-to-speech and speech recognition system to allow text-only par-
ticipants in an audio session. We can use an external streaming client for recording and playback
of media (Section 9.5.3). An automatic transcript can be created using speech-to-text. Speaker

indication can be done via instant messages.

248

Chapter 11

Interworking Between SIP/SDP and
H.323

There are currently two standards for signaling and control of Internet telephone calls, namely
ITU-T Recommendation H.323 [37, 99] and the IETF Session Initiation Protocol (SIP) [3, 4].
We describe how a signaling gateway can allow SIP user agents to call H.323 terminals and vice
versa. Our solution addresses user registration, call sequence mapping and session description.
We also describe and compare various approaches for multi-party conferencing and call transfer.

Both SIP and H.323 run over IP (Internet Protocol) and use RTP (Real time Transport
Protocol [1, 2]) for transferring real-time audio/video data, reducing the task of interworking
between these protocols to merely translating the signaling protocols and session description.
Since no media data needs to be translated, a single gateway can likely serve thousands of end
systems.

Interworking between SIP and H.323 requires transparent support of signaling and session
descriptions between the SIP and H.323 entities. We call the server providing this translation a
SIP-H.323nterworking function(IWF). Note that the earlier version of our paper [42] called this
a signaling gateway (SGW). We refer to the set of terminals speaking H.323 and SIP as the H.323
and SlPclouds(or network$, respectively, even though they are likely to be intermingled on the
same IP network. We use the temative networkto refer to the network used by a particular

terminal, while theforeign networkis the network whose access is mediated by the IWF. For an

249

H.323 terminal, a SIP terminal is in a foreign network.

When addressing a terminal using another signaling protocol, there are two approaches.
First, the user can explicitly identify the protocol as part of the address, for example, by inventing
some form of H.323 URL [247] such d823:alice@columbia.edu. If, for example, an H.323
URL is used by a SIP terminal, it would then be the responsibility of the SIP terminal to find the
appropriate IWF.

Alternatively, a terminal using a particular signaling protocol sees all other terminals as
being native, and does not know or care that a particular address refers to a terminal in the foreign
network. Indeed, an address could well change between being native and foreign, depending
on what equipment the owner of the address happens to be using. This approach is preferable,
but requires that user registrations are exported into the foreign network. Depending on the type
of information sharing between H.323 or SIP elements and the IWF, different architectures are
possible to provide the transparent address resolution and call establishment, as we discuss below.

This chapter describes the details of interworking between SIP version 2.0 [3] and H.323
version 2.0 [37], including the translation between H.245 and SDP. However, since an H.323v2
terminal may or may not support FastConnect (Section 11.4.1), solutions without using this fea-
ture are also detailed. Only a simple call scenario is presented. We list general requirements
for such a translation and a solution which meets those requirements. We describe the call setup
via message flows and pseudo code. Issues related to a new enhanced version of SDP (Session
Description Protocol [46]) is kept open while discussing the solution, so in the future any change

in SDP can be handled easily.

11.1 Background and Requirements

11.1.1 Protocol Overview

H.323 includes various other subprotocols: H.225.0 [248] for connection setup and media trans-
port (RTP), resource access and address translation, H.245 [249] for call control and capability
negotiation, H.332 [250] for large conferences, H.235 [251] for security, H.246 [252] for inter-
operability with the PSTN, H.450 [253, 254] for supplementary services like call transfer.

250

In H.323, a simple call is established as follows. If a user (say Alice) wants to talk to
another user (Bob), Alice first sends an admission request to its gatekeepgatékeepeacts
as a management entity in H.323, which grants access to resources, controls bandwidth and maps
user names to IP addresses, among other things. The gatekeeper finds out the IP addresses at
which Bob can be reached and informs Alice. After that, Alice establishes a TCP connection to
the IP address of Bob. This is followed by a ISDN-ligall signalingprocedure. Alice sends
a Q.931 [255]SETUP message and Bob responds with a Q. @XONNECT message. Once
the first stage of Q.931 signaling is complete, H.245 takes over. H.245 messages are used to
negotiate terminal capabilities, i.e., the support for various audio and video algorithms. The H.245
OpenLogicalChannel procedure is used for opening different unidirectional media channels. A
media channeis defined as a pair of UDP channels, one for RTP and the other for RTCP. Audio
and video packets are encapsulated in RTP and sent from one end system to the other. Depending
on the version of H.323, Q.931 and H.245 steps can be combined in various ways.

The message flow for normal call connect in H.323 between two terminals registered
with different gatekeepers is shown in Fig. 11.1. More details of individual messages and the
information conveyed are described later as needed.

SIP sets up calls with alNVITE message and a response from the called party. Both
INVITE and the response contaisession descriptiomdicating terminal capabilities, typically,
but not necessarily, encoded using SDP. Proxy and redirect servers are responsible for translating
between user names and the called party’s IP address.

An endpoint is either a SIP user agent or H.323 terminal. We use thesigrmalingto
mean the protocols specified by Q.931 [255], H.245 [249] or SIP [3]. Data traffic refers to RTP

and RTCP encapsulated multimedia data.

11.1.2 Translation Requirements

Basic requirements for any SIP-H.323 IWF are summarized below:

Protocol compliance: The IWF should use the components of H.323 and SIP. The IWF should
handle all mandatory features of H.323 as well as SIP. Common call scenarios should be

simple to implement.

251

H.323terminal 1 GK1 GK2 H.323 terminal 2
GRQ GRQ
,,,,,,,,,,,,, <---—-%-----1{ (gatekeeper
S LS e N S GCF . discovery)
RRQ RRQ) .
T ReE T ~ " Rer 1 (registration)
ARQ
************* "l LRQ (admission)
LCF
L ACE T
Setup
Call proceeding (Q.931 setup)
< ARQ |
77777 ACF | (admission)
Alerting (Ringing)
Connect (Q.931 successfu

Terminal Capability Set
Terminal CapabilitySetAck
Terminal Capability Set
Terminal CapabilitySetAck

= (H.245/CESE)

<... master slave determination and round trip delay not shown...>
OpenL ogical Channel
OpenL ogical Channel Ack
OpenL ogical Channel
OpenL ogical Channel Ack

= (H.245/LCSE)

A

A

l< EndSessionCommand o
EndSessionCommand | (Terminating)
ReleaseComplete
,,,,, DRQ . Drg | (eide=d
~_ DCF l L 77777 DCF (RAS disengage)

Figure 11.1: H.323 call without fast-connect

User registration: The IWF should use the user registration in both the H.323 and SIP clouds
to resolve the user name (alias or URL) to an IP address. In other words, it should provide
a framework in which the user may dial any address without actually knowing whether it

belongs to the H.323 or the SIP cloud.

Mapping between H.245 and SDP:The IWF should be able to map all the mandatory H.245
messages to appropriate SDP messages and vice-versa, without the endpoint being aware
that such conversion is taking place. Other optional features of H.245 and SDP should be

mapped as much as possible to facilitate maximum interworking between the two clouds.

Direct data traffic between the endpoints: Where possible, the IWF should route RTP and RTCP

traffic directly between the endpoints involved in the conference without going through the

252

IWF. This reduces the delay for media packets and helps building scalable IWFs.

Transparent support for audio and video algorithms: The IWF should provide transparent sup-
port for audio and video algorithms, i.e., the IWF should not restrict the capabilities of the

endpoints in terms of audio/video algorithms supported.

Call sequence mapping: The IWF should map the message sequence between H.323 and SIP
in such a way that every important decision (accept or reject a call, choose an algorithm for
a logical channel, and so on) is taken by the endpoints involved in the conference and not
by the IWF itself.

We assume throughout most of this chapter that the session description given by a SIP
endpoint refers to both the transmit and the receive capabilities of the SIP endpoint. This may not
be true in a particular application. If that is the case then the SIP endpoint is expected to give that
information in SDP usingecvonly or sendonly media attributes.

The analysis of SIP-H.323 interworking can be split into simple call setup, mapping ad-
dresses, finding a subset of capabilities described by H.245 and SDP, conferencing, call services,
security and authentication. Section 11.4 describes call setup and teardown; while Section 11.3
describes address mapping and section 11.5 the capabilities calculation. Security and authentica-

tion is not covered in this thesis.

Call Setup Translation

Three pieces of information are needed for establishing a call between two endpoints, namely the
signaling destination address, local and remote media capabilities, and local and remote media
transport addresses at which the endpoint can receive the media packets. In H.323, this informa-
tion is spread over different stages of the call setup, while SIP conveys itIM\AATE message
and its response.

Translating a SIP call to an H.323 call is straightforward. The IWF gets all three pieces
of information in the SIRNVITE message and can split them across multiple stages of the H.323
call establishment. However, in the reverse direction, from H.323 to SIP, the different stages of

H.323 call establishment have to be merged into a singld WPTE message. We describe and

253

compare various approaches in Section 11.4. The H.323v2 (version 2.0) Fast Connect procedure
is a step towards simplifying the multi-stage signaling of H.323. However, it is optional and an
H.323v2 entity is required to support the traditional multi-stage signaling. Thus, we describe call

setup both with and without Fast Connect.

User Registration

SIP-H.323 translation also has to solve the user registration problem. User registration in-
volves mapping of user names, phone numbers or some other human-understandable identifier
such as email addresses to network addresses. By allowing users to be reached by location-
independent identifiers, user registration provides personal mobility. For instance, a call destined
at sip:bob@mydomain.comeaches user Bob no matter what IP address he might currently be
using.

In SIP, proxy and redirect servers access a location server, often a registrar that receives
user registration information. A servermatydomain.comvill map all the addresses of the form
sip:xyz@mydomain.como the appropriate IP addresses, depending on wkyrés currently
logged in. In H.323, the same functionality is performed by the H.323 gatekeeper. The IWF
should use the user registration information available in both networks to resolve a user name to
an IP address. The IWF can contain a SIP registrar server, an H.323 gatekeeper or neither, as

discussed in Section 11.2.

Session Description

An IWF also must map session descriptions between the two signaling protocols. H.323 uses
H.245 for session description. H.245 can negotiate media capabilities, provide conference floor
control, and establish and tear down media channels. In H.245, media capabilities are described
as a set of capability descriptors, listed in decreasing order of preferencapahbility descrip-

tor, also called a simultaneous capability set, is a set of alternative capability sets, where each
alternative capability set contains a list of algorithms, only one of which can be used at any given
time. For instance, a capability descriptdu, as|[v1, v2][d1]} has three alternative capability

sets: [a1, as], [v1,v2], and[di]. The curly bracket indicates conjunction, i.€4 B} meansA

254

and B, and the square barcket indicates disjunction, j4,B] implies A or B. Thus the ex-
ample capability descriptor above indicates that the terminal can support audio, video and data
simultaneously. Audio can use either code®r a2, video codea; or vy, and data formad; .

SIP can, in principle, use any session description format. In practice, however, only SDP
is used. SDP lists media types and the supported encodings for each. Unlike H.245, SDP cannot
express cross-media or inter-media constraints, however. For example, SDP cannot indicate that
for a particular media type, the other side can only choose subsstsubsetB of the listed
codecs, but not codecs from both subsets. Similarly, SDP cannot express that certain audio codecs
can only be used in conjunction with certain video codecs.

Thus, a SIP media capability can be easily described in H.245, however the reverse is
more complicated. One approach is to carry multiple SDP messages in the message body of
SIPINVITE requests and responses, using the “multipart” content type. Each SDP message then
represents one capability descriptor of the H.245 capability set. One problem with this is that it
does not interoperate with many existing SIP user agents that do not understand multipart body.

In Section 11.4 we describe how sending multiple SDP messages can be avoided.

Multi-party Conferencing

Ad-hoc conferencing among SIP and H.323 end systems is not possible without modifying one
or both of these protocols. Ad hoc conferencing is defined as the one in which the participants do
not know in advance whether the call will be point-to-point (two-party) or multi-party. The par-
ticipants can switch from a point-to-point call to a multi-party conference or vice-versa during the
call. Itis possible for the participants to invite a third party in the conference or for the third party
to join the conference. Both SIP and H.323 individually support ad hoc conferencing. In SIP,
conference topology can be a full mesh with every participants having a signaling relationship
with every other participant or a centralized bridged conference (star topology) in which every
participant has a signaling relationship with the central conference bridge. It is possible to switch
from a mesh to a bridged conference. In H.323, conferences are managed by central entity called
a Multipoint Controller(MC). An MC can be part of an H.323 terminal, gateway, gatekeeper, or

MCU (Multipoint Control Unit). H.323 conferences have inherently a star topology with every

255

participant having an H.245 control channel with the MC. The MC is responsible for deciding the
common media capabilities for the conference, conference floor control, and other conferencing
functions. All the participants are required to obey the media capabilities given by the MC. Be-
cause of the difference in the topology of the conferences in the SIP and H.323 (star like in H.323
and full mesh or star like in SIP), the transparent support of multi-party conferencing cannot be
achieved without modifying the protocols. However, with some simplifying assumptions, basic

conferences can be set up, as described in Section 11.6.

Call Services

Advanced call services like call forwarding and call transfer are supported by both SIP and H.323.
H.323 uses H.450.x for these supplementary services. SIP has support for call hold, blind transfer,
operator assisted transfer, call forwarding, call park and directed call pickup [256]. These ser-
vices are not yet widely deployed, so that translation is not critical at this moment. Section 11.6

describes some of the related issues.

Security and Quality of Service

Other problems in SIP-H.323 translation include security and quality of service (QoS). Both, SIP
and H.323, individually support these. However, translating from the open architecture of SIP,
where security and QoS is independent of the connection establishment, to H.323, where security
and QoS go hand-in-hand with the call establishment, remains an open issue. For example, an
H.323 terminal communicates its QoS capabilities, whether it is able to reserve bandwidth, during
registration and call admission to the gatekeeper, which is a signaling entity. On the other hand,
QoS is handled end-to-end in SIP without involing proxies and registrars. Thus, an IWF that

remains in the signaling path only, cannot translate QoS capabilities.

11.2 Architecture for User Registration

In this section, we describe different architectures for user registration and address resolution.

User registration serverare the entities in the network which store user registration information.

256

SIP registrars and H.323 gatekeepers are user registration servers. It simplifies locating users
independent of the signaling protocol if the IWF has direct access to user registration servers.
The user registration server forwards the registration information from one network, to which it

belongs, to the other.

11.2.1 IWF Contains SIP Proxy and Registrar

SIP-H.323
IWF

REGISTER| gip proxy/ | RRQ RRQ _
SIP User Agent registrar | * Gatekeeper [------ H.323 Terminal

(a) Interworking function contains a SIP proxy/registrar

SIP-H.323
IWF

RRQ

REGISTER REGISTER

SIP proxy/ | ©=22 0= e L i
SIP User Agent regipstral}/ - Gatekeeper | H.323 Terminal

(b) Interworking function contains an H.323 gatekeeper

SIP proxy/

I Gatekeeper
registrar

‘{TIONS LRQ//(~_RRQ
SIP-H.323 |~ ,
H.323 Terminal
IWF

(c) Interworking function is independent of proxy or gatekeeper

REGISTER

SIP User Agent

******* +* H.323 message

— > S|P message

LRQ = Location request
RRQ = Registration request

Figure 11.2: Architecture for user registration in SIP-H.323 interworking

Our first approach combines an IWF with a SIP registrar and proxy server, as shown
in Fig. 11.2(a). In this approach the registration information is maintained by the H.323 gate-

keeper(s). Whenever the SIP registrar receives aREBISTER request, it generates a regis-

257

tration requestRRQ) to the H.323 gatekeeper, translating a SIP URI into H.323 Alias Address.
H.323 users register via the usual H.225.0 procedure. Since the SIP registration information is
also available through the H.323 gatekeeper(s), any H.323 entity can resolve the address of SIP
entities reachable via the SIP server/IWF. In the other direction, if a SIP user agent wants to talk to
another user, who happens to reside in the H.323 network, it sendsiIB\AIFE message to the
SIP server. The SIP server multicasts H.323 location requeRi@)to the H.323 gatekeepers.
The gatekeeper to which the H.323 user is registered responds with the IP address of the H.323
user. Once the SIP server knows that the address belongs to the H.323 network, it can route the
call to the destination.

One drawback of this approach is that the H.323 gatekeepers are burdened with all the
registrations in the SIP network.

This approach only makes those SIP addresses handled by the registrar available to the
H.323 zone. Typically, a registrar is responsible for a single domain,calgmbia.edu. Thus,
each H.323 zone would have to have an IWF. If an H.323 user wants to call a SIP terminal, first
the H.323 terminal locates, using DNS TXT records [257, p. 57], the appropriate gatékeeper
which in turn uses the registration information conveyed by the IWF to discover that this address

is actually located in the SIP network.

Translation specification details

When receiving a SIREGISTER request, the IWF generates an H.323 RAS RRQ request to
its local GKs. ThecallSignalAddress of the RAS message contains the network address of the
IWF; the terminalType is set to “gateway” and thterminalAlias is derived from the SIHo
header or th&Request-URI, as described in Section 11.3.

Thus, any address resolution request coming from the H.323 cloud to a SIP address can
be resolved by H.323 gatekeeper(s) using H.323 RAS requests. Any request coming from the SIP
cloud to H.323 is forwarded to the H.323 gatekeeper(s) by the IWF. H.323 gatekeeper(s) resolve
this address using RAS/H.323.

During initialization, the IWF registers its own alias address (ey@l) with its local

LIt is not clear how widely implemented this approach is.

258

H.323 gatekeepers, so that anybody from the H.323 cloud can reach SIP endpoints by directly
connecting to the alias address of the IWF and by providing a SIP address in the remote extension

address of th&ETUP message of H.323.

Fig. 11.3 shows the message flow sequences for successful initialization.

H.323 terminal IWF SIP user.agent
(henry@home.com) GK1 GK2 (gwl) (sam@office.net)
< RRQ(gw1) |
|____RCF___
RRQ _ REGISTER
””””””” ot . RRQ To:sam@office.net
henry @home.com) T @officenel)
LR RCF |
200 OK

Figure 11.3: Initialization of SIP and H.323 terminals, and the IWF when IWF contains SIP
proxy and registrar. The registration may get stored on two independent gatekeepers in the H.323

cloud.
Address resolution from SIP to H.323 is shown in Fig. 11.4, while address resolution

from H.323 to SIP is shown in Fig. 11.5.

H.323 terminal

(henry@home.com) IWF SIP user_agent
192.1.2.2 GK1 GK2 (gw1) (sam@office.net)
H.323 terminal| _____ RRQ___,|
isinitialized henr{gj)zhfg%com) U "
1.2, ser makes
RCF INVITE outgoing call
ISR [To:henry@home.com
L ARQ 100 Trying
. LRQ (henry@home.com) 200 OK
henry @home.con)
:CF

fffffffffffff - ACF

Figure 11.4: Address translation from SIP to H.323

This scheme assumes that the IWF is aware of the client part of the H.323 RAS protocol
so that it can talk to the gatekeeper. Each SIP user agent (UA) that registers with the registrar also

appears in the gatekeeper’s database.

259

SIP user agent
H.323 terminal IWF (sam@office.net)
(henry@home.com) GK1 GK2 (gw1) 128.3.4.4

user agent
REGISTER |isinitidized
RRQ T o:sam@office.n

Tsam@officenetfontact:128.3.4.4

Usermakes, . . | pe-ee-omeo-- - 200 OK
outgoingcall - __ ARQ

Figure 11.5: Address translation from H.323 to SIP

11.2.2 IWF Contains an H.323 Gatekeeper

This architecture, shown in Fig. 11.2(b) is similar to the previous approach except that the SIP
proxy server maintains the user registration information from both networks. Any H.323 registra-
tion request received by the H.323 gatekeeper is forwarded to the appropriate SIP registrar, which
thus stores the user registration information of both the SIP and H.323 entities.

To the SIP terminal, H.323 terminals simply appear as SIP URLs within the same domain.
(See Section 11.3 on how H.323 addresses are translated to SIP URLSs.) If an H.323 entity wants
to talk to a user who happens to reside in the SIP network, it sends an admission r&RI@sto
its gatekeeper. The gatekeeper multicasts the location redurR®) fo all the other gatekeepers.

The GK-IWF server captures the request and tries to find out if the address belongs to a SIP user.
It does so by sending a SIPPTIONS request, which does not set up any call state. If the address

is valid in the SIP network and the user is currently available to be called, the IWF responds with
the location confirmatiorL(CF), letting the H.323 terminal know that the destination is reachable.

This approach has the similar drawback as the previous approach (Section 11.2.1) in that
the proxy has to store all H.323 registration information.

However, this approach has the advantage that even if some H.323 gatekeepers are not
equipped with a IWF, the address resolution works: If an H.323 gatekeeper cannot resolve a called
address, it multicasts a location requéRQ) to the other gatekeepers in the network. As long as
at least one H.323 gatekeeper exists with the SIP-H.323 signaling translation capability, the SIP

user can be located from the H.323 network. Note that the previous approach (Section 11.2.1)

260

required that all the SIP registrars/proxy servers must be equipped with IWFs.

Translation specification details

Address resolution from SIP to H.323 is shown in Fig. 11.6. while address resolution from H.323

to SIP is shown in Fig. 11.7.

H.323 terminal
(henry@home.com) IWF+GK SIP server SIP user agent
192.1.2.2 (gw1) (home.com) (sam@office.net)

H.323terminal] = RRQ |
isinitialized (henry@home.com) REGISTER

192122 Fohenry@home.com
Contact:henry@gw1

200 OK User makes

- RCF | = < INVITE |outgoing call
To:henry@home.com
302 Moved

Contact: henry@Ewl

INVITE henry@gwl
To:henry@home.com

Figure 11.6: Address translation from SIP to H.323 when IWF contains an H.323 GK

IWF+GK SIP user agent
H.323 terminal (gwl) SIP server (sam@office.net)
(henry@home.com) 128.3.1.1 (office.net) 128.3.4.4
SIP user agent

L REGISTER | ginitialized
To:sam@office.n
Contact:sam@128.3.4.4

200 OK

&

User makes
outgoing cal ARQ
(sam@office.net OPTIONS
To:sam@officenet OPTIONS

200 OK

200 OK

ACF -

b L

(128.3.4.4)

Figure 11.7: Address translation from H.323 to SIP when IWF contains an H.323 GK

261

11.2.3 IWF is Independent of Proxy or Gatekeeper

In the third approach, shown in Fig. 11.2(c), IWF is not co-located with either an H.323 gate-
keeper or a SIP proxy server. User registration is done independently in the SIP and H.323
networks. However, when a call reaches the IWF, the IWF queries the other network for user
location. Here, we assume that the IWF is capable of interpreting and responding to the location
request (RQ) from the H.323 network.

The address resolution mechanism works as follows. Suppose the SIP user Sam wants to
talk to Henry, an H.323 user. Henry has registered with its own gatekeeper in the H.323 network
and the gatekeeper knows Henry’'s IP address, conveyeR4. When Sam contacts the SIP
proxy with Henry’s name, the SIP proxy has no registration for Henry, but is configured to contact
the IWF in case the called party is in the H.323 network. The IWF, in turn, multicasts the location
request(RQ) for Henry to all gatekeepers. If there is no positive response from the gatekeepers
of the H.323 network within a timeout period, the IWF concludes that the address is not valid in
the H.323 network and the branch fails.

In the other direction, Henry sends an admission requd3€)) to its gatekeeper. Since
this gatekeeper does not have the address mapping for Sam, it multicasts the location request
(LRQ) for Sam to the other gatekeepers in the network. In addition, the IWF is tuned to receive
theLRQ. The IWF then uses the SIPPTIONS request (as in Section 11.2.2) to find out if Sam
is available in the SIP network and informs the GK if the request succeeds. This is followed by

H.323 call establishment between Henry and the IWF and a SIP call between the IWF and Sam.

Translation specification details

When a call arrives at the IWF from SIP cloud, the IWF sends a RR® request to the H.323
cloud. If the address cannot be resolved or if the RAS request times out, it sends an appropri-
ate response to the SIP endpoint. Similarly, calls from the H.323 cloud are translated into SIP
requests and sent to a proxy or end system.

This approach works well if calls are identified by URLSs indicating the signaling scheme,
i.e., if an H.323 request is directed to a SIP URL or vice versa. In that case, it is sufficient if the

GK or proxy is pre-configured with the address of the IWF.

262

If the destination address does not indicate the signaling protocol, a SIP proxy server
has to forward all incoming requests to a local IWF, just in case the destination happens to be
reachable via H.323.

In this architecture, the IWF must implement the RABQ (location request) and LCF
(location confirmation) messages. When a call is initiated by an H.323 entity, its gatekeeper
will send an LRQ request to other gatekeepers at the well-known GK multicast address. The
IWF captures the LRQ message and can use one of two approaches to find out if a SIP end
point is available at that address. In the first approach, the IWF seREGASTER request
without Contact information to the domain identified in the request (see Section 11.3). If the
registrar has information about the endpoint, it returns this information iilCtrgact headers
of the response. The IWF then translates this information and responds to the H.323 cloud with
a LCF (location confirmation) message. If the registrar returns a negative indication, the IWF
responds with a LRJ (location reject) message or remains silent. (Note that it is permitted that
a terminal responds to LRQ messages, so that a gatekeeper is not needed as a part of the IWF
application.) This approach is equivalent to SIP third-party registration and will not work if the
registrar requires authentication. The second approach use®FSTRONS messages, but is

otherwise identical.

Direct Connection: No User Registration

The IWF should support direct H.323 connections. For instance, a SIP user (Sam) should be
able to call an H.323 user (Henry) through an IWF (sg323.columbia.edu) by placing a
call to sip:henry@sip323.columbia.edu. Similarly, the H.323 user should be able to reach
a SIP userdip:sam@office.net) by establishing a Q.931 TCP connection to IWF and provid-
ing the destination address or the remote extension address in the 8E931P message as
sip:userl@office.net. The direct connection does not involve user registration and the caller is
expected to know that the destination is reachable via IWF.

If an IWF receives a Q.933ETUP message, the IWF tries to parse the Q.€8&tina-
tionAddress. If the destinationAddress is not of the IWF itself and if it is able to resolve it to a

SIP address, then the procedure described in section 11.4 is used to establish the call. (Note that

263

the user registration steps are not involved in this scenario.) Otherwise, if the destination address
is that of the IWF and a remote extension address is present BER&P message of Q.931,
then the IWF should use the remote extension address to determine the SIP address. The IWF

MAY also be configured to forward all requests to a pre-defined SIP proxy.

11.3 Signaling Address Translation

While user registration exports identities into the foreign network, address translation is per-
formed by the IWF to create valid SIP addresses from H.323 addresses and vice versa. In SIP,
addresses are typically SIP URIs of the form sger@hostwhereusernames can also be tele-
phone numbers. However, SIP terminals can also support other URI schemes, for example “tel:”
URIs for telephone numbers [258] or H.323 URLSs [247]. Generally, SIP terminals proxy calls to
their local server if they do not understand a particular URL scheme, in the hope that the server
can translate it.

In H.323, addresses (ASNAliasAddress) can take many forms, including unstructured
identifiers ©323-ID), E.164 (global) telephone numbers, URLs of various types, host names
or IP address, and email addressemdil-ID). Local user names and host names appear to be
most common. For compatibility with H.323 version 1.0 entities, HB23-1D field of H.323
AliasAddress must be present.

For SIP-H.323 interoperability, there should be a consistent and unique way of mapping
a SIP URI to an H.323 address and vice-versa. Translating a SIP URI to an Alid28ddress
is easy: We simply copy the SIP URI verbatim into th@23-1D. The user andhost parts of
SIP-URI are used to generate an email identifieiséi@host, which is stored in theemail-ID
field of AliasAddress. Thetransport-ID parameter is copied from thest part of SIP-URI if
the latter is given numerically. Thel64 field is extracted from thaser part of SIP address if it
is marked as a telephone number.

Translating an H.32&liasAddress to a SIP address is more difficult since multiple
representations (e.@164, url-ID, transport-ID) need to be merged into a single SIP address. In
the easiest case, the alias containsldD with a SIP URI, in which case it is simply copied into

the SIP message. Otherwise, if th823-ID can be parsed as a valid SIP address (e.g., “Alice

264

<sip:alice@host” or “alice@host”) it is used. Next, if th&ransport-ID is present and it does
not point to the IWF itself, then it forms the host and port portions of the SIP URI. Finally, if the
H.323 alias has aemail-ID, it is used in the SIP URI prefixed with “sip:” URI scheme.

Note that the translated address may not necessarily be valid. On the H.323 side, it may
be desirable to configure a gatekeeper to route all calls that are not resolvable within the H.323
network to the IWF, which would then attempt a translation to a SIP URI. This would allow H.323
terminals to reach any SIP terminal, even those not cross-registered.

If the IWF is configured to route all calls to a default proxy, then it will forward whatever
SIP addresses it can form (from the H.323 Alias Address) to the proxy. This may be needed when
the IWF implementation is split into two (physically separate) parts, namely an H.323 terminal
and a SIP user agent. The H.323 terminal receives the call, maps the H.323 address to the SIP

address and forwards the request to the SIP proxy server.

11.4 Connection Establishment

A point-to-point call from Alice to Bob needs three crucial pieces of information, namely the
logical destination addresgl) of Bob, the media transport addre83 @t which each of the users
is ready to receive media packets (RTP/RTCP) and a description of the media capabilities (

the parties.

Logical Destination address @): This is the SIP address fo header oRequest-URI, or the

destination alias address in the Q. &ETUP message.

Media Description (M): In SIP,M is the list of supported payload types as given by SDP media
description (“m=") lines. In H.245) is given by the Terminal Capability Set (TCS).

Media Transport Address (T): The media transport address indicates the IP address and port
number at which RTP/RTCP packets can be received. This information is available in the

“c=" and the “m="lines of SDP and the Open Logical Channel message of H.245.

Alice should knowA, T and M of Bob and Bob needs to know AliceB and M. The

difficulty in translating between SIP and H.323 arises becalys&/, andT are all contained in

265

the SIPINVITE request and its response, while H.323 may spread this information among several

messages.

11.4.1 Using H.323v2 Fast Connect

With H.323v2 FastConnect, the protocol translation is simplified because there is a one-to-one
mapping between H.323 and SIP call establishment messages. Both theSEBR® message

with FastConnect and the SIRVITE request have all three components (/ andT). If the

call succeeds, both the H.3ZDNNECT message with Fast Connect, and the 3P response,
including the session description, have the required componeh&@T of the call destination).

Call scenarios are shown in Fig. 11.8 and 11.9.

H.323 terminal SIP user agent
(henry@home.com) IWE (sam@office.net)
192.1.2.2 (gw1) 128.3.4.4
B INVITE
To:henry@home.com
- Setup c=IN [P4128.3.4.4
fastStart={ g711Ulaw,Tx}, m=audio 8000 RTP/AVP 0
{ g711Ulaw,Rx,128.3.4.4:8000}
Connect _
fastStart= 200 OK
{g711Ulaw,Tx,192.1.2.2:3456} | c=IN I1P4192.1.2.2
{ g711Ulaw,Rx} m=audio 3456 RTP/AVPO0

Figure 11.8: Call setup from SIP UA to H.323 terminal with FastConnect

11.4.2 Call Translation Without using Fast Connect

Since Fast Connect is optional in H.323v2, an H.323 entity must be able to handle calls without
the Fast Connect feature for backward compatibility. Thus, it is likely that the IWF receives
incoming calls from the H.323 network without Fast Connect PDUSs. In particular, the IWF must
accept a non-Fast Connect call from the H.323 side. In the other direction, the IWF should try to
use H.323v2 Fast Connect, but must be prepared to switch to the multi-stage call establishment

procedure if the response from the H.323 entity indicates that this is not supported.

266

H.323 terminal SIP user agent
(henry@home.com) IWE (sam@office.net)
192.1.2.2 (gw1) 128.34.4
Setup _
destination:sam@office.net
fastStart={ g711Ulaw,Tx}, INVITE .~

{g711Ulaw,Rx,192.1.2.2:3456}| T o:sam@office.net
c=IN P4 192.1.2.2
m=audio 3456 RTP/AVPO

Connect 200 OK

“c=IN IP4 128.3.4.4

TastStart= !
(g711Ulaw,Tx,128.3.4.4:8000}, a“d'oA%)EO RTPIAVPO

{ g711Ulaw,Rx} -

Figure 11.9: Call setup from H.323 terminal to SIP UA with FastConnect

When the call is initiated by a SIP UA all the call informatiod, (M andT) is present
in the SIPINVITE message and can be used to format H.323 messages. The responses from the
H.323 side are collated and forwarded to the SIP side, as shown in Fig. 11.10.

But when the call is initiated by an H.323 termindl, M and7 are present in different
messages. In a H.323 call without FastConngdcis found in the Q.93BSETUP message, the
TerminalCapabilitySet of H.245/H.323 containd/ andT is present in the H.245 OpenLogi-
calChannel message. There are different ways in which these can be combined to form a SIP
INVITE message.

One obvious approach is to accept the H.323 call without informing the SIP user agent.
The H.323 call proceeds between the H.323 terminal and the IWF as if the IWF is just another
H.323 terminal. The interworking function may get the media capabilities of the SIP user agent
using the SIPOPTIONS message. Media capabilities of the H.323 terminal are obtained via
H.245 capability negotiation. Once the logical channels are established from the IWF to the H.323
terminal, the IWF knows\/ andT' and can place a SIP call by sendingI&YITE. The media
transport address from the 200 response is conveyed to the H.323 terminal while acknowledging
the OpenLogicalChannel requests of the H.323 terminal.

While this approach is pretty simple, it has the disadvantage that the IWF accepts the call
without even asking the actual destination, leading to caller confusion if the SIP destination is not

reachable. This is undesirable if the caller is billed for the call setup.

267

SIP user agent IWF H.323 Terminal

INVITE
C1 = capability set

Y

SETUP

\i

AN CONECT

A

"~ - | TerminalCapabilitySet

_|
AQ
3.
-
QD
@)
3
&
i
I
Q

_____ A_Ck_______>

Foral C1ACc2=M | OpenLogical Channel

B 200 OK
Session description =M

ACK

Figure 11.10: Call from SIP terminal to H.323 terminal without Fast Connect

This problem can be solved if the IWF sends a SNIRITE without session description
or a session description without media transport information when receiving the QER1P
message from the H.323 terminal. Only after the SIP user agent has accepted the call, the IWF
forwards the confirmation (Q.932ONNECT) to the H.323 terminal. The rest of the call estab-
lishment proceeds as before, except that the(GPHIONS message is not needed because the
200 response from the SIP user agent describes the media capabilities.

The media capabilities of the H.323 terminal are received in the HT2dfminalCapa-
bilitySet message and are forwarded to the SIP user agent as partACenessage or via an
additionallNVITE. The media capabilities of the SIP user agent are found in the session descrip-
tion of the200 response to thiNVITE request.

The different interpretations of media capabilities by H.245 and SDP potentially cause

problems during the call. In SDP, a receive media capability of G.711 and G.723.1 means that the

268

sender can switch between these algorithms at any time during a call without explicitly informing
the receiver. However, in H.245, the sender chooses an algorithm from the capability set of
the receiver and explicitly opens a logical channel for that algorithm. The sender cannot switch
dynamically to another algorithm without informing the receiver. The sender has to close the
previous logical channel and re-open it with new algorithm. Alternatively, the receiver can use a
H.245ModeRequest to request the sender to use a different algorithm.

This problem can be addressed by having the RTP/RTCP packets from SIP to H.323 be
intercepted by the IWF. If the IWF detects a change in coding algorithm, it initiates the required
H.245 procedures. However, this approach is not advisable, as it scales poorly.

Another approach limits the media description sent to the SIP side to only one algorithm
per media (or per alternative capability set). This can be achieved by maintaining a maximal

intersection of the SIP and H.323 terminal capability sets (Section 11.5).

H.323 Terminal IWF SIP user agent
SETUP
- INVITE N
No session description
200 OK
CONECT

-

C1 = capability set

-
-

~_ Terminal CapabilitySet | « -~

Terminal CapabilitySet | = C2

OpenL ogicalChannel
< JAck_if presentinC1_ |
~ OpenlL ogical Channel

Foradl C1rC2=M
M is operating mode

ACK _
Session description = M

Figure 11.11: Call from H.323 to SIP terminal without Fast Connect

269

Call from H.323 Cloud to SIP Cloud with H.245 TerminalCapabilitySet (TCS) Mapped to
SDP

A first approach has the IWF send a SINVITE request when it receives a Q.9SETUP mes-

sage. The SDP body of tHBIVITE request contains a default session description. The default
session description must be either empty or contain media description (m=) lines indicating the
minimal capabilities of any H.323 terminal handled by the IWF. Currently, these minimal ca-
pabilities include only PCMU audio. If the session description is not empty, the IWF has two

choices:

1. The IWF controls an RTP translator that can forward RTP packets between two different IP
addresses. The SDP “c=" line indicates the address of the translator, with the port indicated

in the “m="line.

2. The connection (“c=") line indicates a zero address and the media (“m=") line a zero port.

When the IWF receives a 200 (OK) response forlt&ITE request from the SIP cloud,
the IWF transmits a Q.93CONNECT message to the H.323 endpoint. The IWF initiates the
H.245 capability with the TCS (Terminal Capability Set) sent to the H.323 endpoint. On receipt
of the TCS from the H.323 end point, which has a list of media supported by the H.323 endpoint,
a SIPACK message is formed with an updated session description reflecting the TCS. However,
T is still unknown at this point, so that the SDP “m="and “c=" lines remain as described above.

When the IWF receives an H.245 Open Logical Channel (OLC) message, the IWF ac-
knowledges it with session information derived from the session description received from the
SIP UA in the 200 (OK) response. When the first RTP packet of any media is received by the
IWF from the SIP cloud, the IWF knows what payload type is used by the SIP UA for that media
type and it can send OLC to the H.323 cloud. RTP packets received until OLC Ack is received
are ignored or buffered for future transmission.

The problem with this approach is that RTP packets from the SIP UA cannot directly go
to the H.323 terminal, but are instead routed through the RTP translator, violating requirement

4 in Section 11.1. This problem can be solved by having the IWF sendNM&-E to the SIP

270

endpoint after the logical channels have been opened. Thi$NMIWE message indicates media
transport addresse®’) of the H.323 endpoint and not that of the translator.

A second problem is caused by the different interpretation of dynamic payload type
switching in H.323 and SIP. When the TCS is mapped to SDP, the “m=" line is likely to list
more than one payload type. This indicates to the SIP-controlled media agent that it may switch
dynamically between all the payload types listed, without any H.323 or SIP signaling. However,
in H.323, switching payload types requires Open Logical Channel signaling. This problem can
be solved by restricting the SDP sent to the SIP endpoint to contain only one payload type per
media description line. It is not clear how this payload type should be chosen or how the SIP
endpoint can then switch payload types.

A third problem is that mapping a generic TCS to SDP requires enhancing SDP or SIP
so that it can indicate multiple H.245 capability descriptors. For example, we could use SIP mul-
tipart message bodies, with each body part containing the SDP mapped from a single capability
descriptor. Alternatively, the IWF could send a SIPTIONS request to the SIP UA and use

that to calculate the common subset of capabilities (Section 11.5).

Call from H.323 Cloud to SIP Cloud Mapping H.245 Open Logical Channel (OLC) to SDP

In the second approach, on receipt of a Q.SETUP message, the IWF sends a IN¥ITE re-
guest as before. The IWF performs the H.323 capability exchange with the H.323 cloud without
involving the SIP UA. The IWF then calculates the subset of capabilities from the H.323 TCS and
the SDP contained in the 200 (OK) response tdM&TE. The IWF then sends an H.2&pen-
LogicalChannel message for each of the media present in this subsetOpkalLogicalChan-
nelAck message received from H.323 terminal will have the media transport addré3sefs (
the H.323 terminal. On receipt @penLogicalChannelAck for all the OpenLogicalChannel
messages, the IWF sends a 8IBK message with the new transport addresses. This call scenario
is shown in Figures 11.12 and 11.13.

Dynamic switching of H.245 Mode or Logical Channels is accomplished usingesIP
INVITE. For example, if video logical channel is opened from H.323 to IWF after initial call

setup procedure (i.e., Logical Channels for audio are already opened), then the IWF sends a re-

271

H.323 terminal IWF SIP user agent
(henry@home.com) (gwl) (sam@office.net)
192.1.2.2 156.5.6.6 128.34.4
Setup ~ INVITE (default SDP)
destination:sam@office.net [To:sam@office.net
no fastStart c=IN P4 156.5.6.6
m=audio 0 RTP/AVP O
- 200 OK
- Connect c=IN P4 128.3.4.4
= m=audio 8000 RTP/AVP 8
TCS(g711Alaw: tx and rx) ACK
. TCSAck | -
TCS(g711Alaw, g711Ulaw)
TCSAck

. OLC (mode=g711Alaw)

OLCAGK (M=192.12.2:3456) (e

OLC (mode=g711Alaw) | To:sam@office.net

OLCACK (=128.34.4:8000) matudio 3486 RTPIAVPS
200 OK

ACK

Y

Figure 11.12: Call from H.323 to SIP with conversion between OLC and SDP

INVITE message to the SIP side with new SDP describing the video capability also. When the
IWF receives 200 response from the SIP side, it séasnLogicalChannelAck to H.323 side

with the media transport address as received in SDP in the response. The IWF will also initiate
OpenLogicalChannel procedure for the video channel in IWF to H.323 direction.

If the media transport address of SIP UA changes during a call for a particular logi-
cal channel, (e.g., as a result of re-INVITE initiated by the SIP side) then the IWF &ads
guestChannelClose H.245 message to the H.323 terminal for the logical channel. H.323 termi-
nal will close the logical channel and will re-open it usi@genLogicalChannel. The changed
media transport address of SIP UA can then be returned to H.323 terminaDpeaLogi-
calChannelAck message.

In this approach, RTP packets can be sent directly between the two endpoints. However,

the SIP UA is restricted to algorithms chosen by the IWF. Since these algorithms are derived from

272

H.323 terminal IWF SIP user agent
(henry@home.com) (gwl) (sam@office.net)
192.1.2.2 156.5.6.6 128.34.4
P INVITE
- Setup To:henry@home.com
destination:henry @office.com | c=IN |P4 128.3.4.4
fastStart={ g711Ulaw, Tx}, m=audio 8000 RTP/AVP 0

{g711Ulaw,Rx,192.1.2.2:8000}
Connect (no fastStart)

. TCS(g711Ulaw: tx and rx)
o TCSAck
~ TCS(gr1lAlaw, grllUlaw)

. TCSAck

- OLC (mode=g711Ulaw)

(OLCACK (X=192122:3458) o0 o
 OLC (mode=g711Alaw) | c=IN1P4192.1.2.2

. OLCACK (1x=12834.4:8000) ™10 ¥ORTRAVPO

Figure 11.13: Call from SIP to H.323 with conversion between OLC and SDP

the common subset of H.323 and SIP capabilities, communications should still be possible.

A small problem with this message flow sequence is &@K timeout on the SIP side
and OLC timeouts on H.323 side may not match. This may result in lots of retransmissions in
the SIP network. To avoid this, the IWF may choose to send@K immediately upon receipt
of the 200 (OK) response from the SIP UA and thedN®ITE with an updated SDP after all
OpenLogicalChannelAcks have been received from the H.323 endpoint.

We prefer the mapping of SDP to and fra@penLogicalChannel because mapping
OLC is simpler than mappingerminalCapabilitySet to SDP, which requires modifications to

SIP or SDP, and it avoids the introduction of a temporary RTP translator.

11.5 Calculating a Common Subset of Media Capabilities

The capability setof a terminal or a user agent refers to the set of algorithms for audio, video

and data that it can support. It also conveys information about constraints in the selection of

273

algorithms it may have. For example, due to limited bandwidth, a terminal may indicate that it
can use either G.711 without video or G.723.1 with H.261 video.

Theoperating modef a call refers to the algorithms which are used for the actual transfer
of media. To determine the operating mode for a call it is necessary to find out the intersection of
the capabilities of the endpoints in the conference. This section presents a way to calculate this
intersection of the capability sets described by H.245 Terminal Capability Set (TCS) and that by
SDP.

A maximal intersectiof two capability sets is a capability set which is a subset of both
the capability sets and no other superset of the maximal intersection is a subset of those capability
sets. It can be proven thatif is an operating mode for capability <&t as well as for capability
setC'2, thenM will be an operating mode for maximal intersectionCaf andC'2. Thus, we fulfill
requirement 5 described in Section 11.1.

H.245 definesTerminal Capabilitiesas a list of capability descriptors, ordered by de-
creasing preference. Any one of the capability descriptors can be used for selecting operating
modes. Each capability descriptor includes a simultaneous capability set. Each element in the
simultaneous capability set is an alternative capability set. Each element in the alternative capa-
bility set represents an algorithm. Each algorithm has a payload type and can be fully described
by the payload type, a profile and some optional attributes.

As mentioned earlief{ } represents capability descriptor or simultaneous capability set
(conjunction), and] contains alternative capability set (disjunction).

Let al, a2, a3, a4, a5 be audio algorithms and v1, v2, v3 be video algorithih®pre-

sents a capability set with two capability descriptors:

Cl = { [al, a2, a3] [v1, Vv2] }
{ [a1, a4, a5] [v1] }

Operating modes could be (al, v1), (al, v2), (a4, v1), (a5), etc. Note that (a4, v2) is not
an operating mode since a4 and v2 are drawn from different capability descriptors.

Let C2 be another capability set.

C2 = { [al, a4, a?] [v1, v2, v3] }

274

{ [al, a2, a5] [vi, v3] }
The maximal intersection of C1 and C2 is

C = { [al, a2] [v1, v2] }
{ [a1, a4] [v1] }
{ [al, a5] [v1] }

Note that there are other capability sets which are intersections of C1 and C2 (e.g.,

{[al,a2][v2]}), but they are subsets of C and hence can be derived from C.

Algorithm for Finding Maximal Intersection of Capability Sets

An algorithm to find the maximal intersection of any two capability séisand C2 is given

below:
1. Setthe resulf’ to the empty set.
2. Outer loop: for each pair of capability descriptaf$,(d2), whered1 is from C'1 andd?2 is
from C2, derive the permutations of alternative setisands2.

Inner loop: for each such permutation, whetds fromdl ands2 is from d2, intersects1

ands2 (written ass=s1" s2) and adds to C'.

3. Remove duplicate entries frofi

Using the example witld'l andC2 given above, the outer loop runs for four iterations,
sinceC'1 andC2 both have two descriptors.
1. d1 = {[al,a2,a3][v1,v2]},
d2 = {[al,a4,a2][v1i,v2,v3]}

The inner loop runs for 2 iterations:

1) {[al,a2,a3][al,a4,a2],[v1,v2]"[v1,v2,v3]}
= {[al,a2][v1,v2]}

2) {[al,a2,a3][v1,v2,v3],[vl,v2][al,a4,a2]}
= {[IlI} /* Empty set */

275

2. dl1 = {[al,a4,a5][v1]},
d2 = {[al,a4,a2][v1i,v2,v3]}
1) {[al,a4,a5][al,a4,a2], [v1] "[vi,v2,v3]}
= {[al,a4][v1]}
2) {[al,a4,a5][v1,v2,v3][v1l][al,a4,a2]}
= {[IlI} /* Empty set */

3. dl1 = {[al,a2,a3][v1,v2]},
d2 = {[al,a2,a5][v1,v3]}
1) {[al,a2,a3][al,a2,a5],[v1,v2]"[v1,v3]}
= {[al,a2][vi]}
2) {[al,a2,a3][v1,v3],[vli,v2][al,a2,a5]}
= {00y /* Empty set */

4. dl1 = {[al,a4,a5][v1i]},
d2 = {[al,a2,a5][v1,v3]}
1) {[al,a4,a5][al,a2,a5],[v1]"[v1,v3]}
= {[al,a5][v1]}
2) {[al,a4,a5][v1,v3],[vl][al,a2,a5]}
= {[lI} /* Empty set */

After these iterations the intersection set becomes

{ [al,a2] [vi,v2] } { }
{[alaz] v1 T} {}
{[alad4] v1 T} {}
{[a1a5] v1 T} {}

After removing duplicates, the maximal intersection is

{ [al,a2] [vi,v2] }
{ [al,a4] [v1] }
{ [a1,a5] [v1] }

276

Since H.323 does not require that all algorithms listed within a single alternative capabil-
ity have the same media type, we need the inner loop to find out all the possible combinations.

For example, if C1 {[al,a2,a3] [al,a4,v2,v}l]and C2 ={[al,a4,v2] [v1,v2,v3}, then
the above algorithm correctly finds the intersectiod[ad] [v1,v2]} {[al,a4,v2}

As an example, let the SIP capability set f€CMU,PCMA,G.723.1] [H.261] and
H.323 capability set b¢[PCMU,PCMA,G.729] [H.261} {[G.723.1] [H.263} (i.e., the SIP
user can support PCMU, PCMA or G.723.1 audio and H.261 video, whereas the H.323 user
can support either one of the PCMU, PCMA, G.729 audio with H.261 video or G.723.1 au-
dio with H.263 video). The maximal intersection as calculated by the IWFREMU,PCMA]
[H.261]} {[G.723.1]}. The IWF derives an operating mode by selecting a capability descrip-
tor from the maximal intersection and selecting one algorithm per alternative capability set (e.qg.,
{PCMU,H.261). The IWF conveys only the PCMU audio and H.261 video to the SIP user agent.
If the SIP side sends addition&lVITE with a different capability se{(G.729,G.723.1][H.261),
the new maximal intersection becomd&.729][H.261]{[G.723.1]}. The IWF derives a new
operating mode{(G.729,H.261}) and initiates the H.245 procedure to change the PCMU audio
to G.729.

11.6 Translating Advanced Services

Both SIP and H.323 support advanced services like multi-party conferencing and call transfer. In

this section we propose possible approaches for translating these services.

11.6.1 Multi-party Conferencing

A transparent support for multi-party conferencing can be achieved by having the IWF mirror
the endpoint(s) in each direction. Fig. 11.14 shows a scenario in which two H.323 terminals (H1
and H2) and two SIP user agents (S1 and S2) are involved in a conference. From the H.323
side, the interworking function (IWF1) looks like a single H.323 terminal. From the SIP side, the
interworking function acts as a single SIP user agent.

This approach fails if S1 invites another H.323 user H3 via a different interworking func-

277

Multipoint . .
Controller Interworking function J
@7 IWF1)/
®/ ! , \,\®
! | ’
i \ ,
I 1 //
1 1 // Pis g

IWF3 IWF2

CIC

Convention: Hn: H.323 terminals; Sm: SIP user ¢

Figure 11.14: Ad-hoc conferencing among SIP and H.323 endpoints

tion (IWF2). For example, the participant H2 cannot know when H3 joins the conference. Al-
ternatively, if H1 invites a SIP user, S3, S2 will not know of the presence of S3. One way for
the participants to know about the existence of the other participants is to rely on the RTP/RTCP
packets. This goes against the idea of H.323 conferencing where H.245 messages are used to
convey the existence of new participants.

We can solve this problem by forcing all invitations to pass through the IWF. Fig. 11.15(a)
shows a conference managed by an MC where H.323 terminals are directly connected to the MC
and SIP user agents are connected through interworking functions. A SIP user agent is allowed
to only invite other SIP UAs through the IWF, so that the IWF can update the MC state. In a
SIP-centric architecture, Fig. 11.15(b), the H.323 terminals take part in the conference through
the interworking functions.

We recommend a SIP-centered architecture because the SIP conferencing model is more
general, allowing full mesh with distributed control or centralized bridged conferences. In gen-
eral, translating services is greatly simplified if an operator adopts a primary signaling protocol,
with services offered only in that protocol. Terminals using another protocol are restricted to
making calls through the IWF.

Supporting H.332 loosely coupled conferences is straightforward, since SDP is used by

both H.323 and SIP in that context.

278

\ /' ‘\\
IWF P \ T AWE
/// \‘ // \\
- \ / @ SIPcloud '\
| + \
O PR C ®
\ I : /
‘. H.323 cloud IWF N @ /
N T N

SIP cloud IWE // @ T IWF™> 1 -

Sl H.323 cloud

(a) H.323 centered conference (b) SIP centered conference

Figure 11.15: Different conferencing architectures
11.6.2 Call Transfer

Call transfer is one of the many supplementary services needed for internet telephony. The idea is
to convert a call between two entities (say, A and B) to a call between B and C. Fig. 11.16 shows
the message sequence in H.323 and SIP and a possible translation when A and B are H.323
terminals and C is a SIP user agent.

A difference between SIP and H.323 arises because of the different philosophies of pro-
tocol extension. H.323 designers identify a supplementary service such as call transfer, call for-
warding, call hold and define a new set of messages to accomplish it. This results in different
procedures for different advanced services (e.g., H.450.2 for call transfer, H.450.3 for call diver-
sion, H.450.4 for call park and call pickup). In SIP, crucial information needed for call services
is identified and is encapsulated in new message headerRepaces, Requested-By). Dif-
ferent call services are then designed using these building blocks. SIP also defines call transfer
using theREFER method. The translation is similar.

A number of open issues remain when translating advanced services, including whether

all call parameters can be translated and how security and authentication are to be handled. Since

279

A B C A B C
Original Call Original Call
FACILITY} BYE
Invoke Call transfer Also: C
Initiate SETUP
Invoke Call |
Tranfer Setup < 200 OK
INVITE N
- CONNECT - 200K
" Return Result
RELEASE ACK _
 COMPLETE
Return Result ‘Nevv Call . - New Call .
(a) Call transfer in H.323 (b) Call transfer in SIP
A (H.323) B (H.323) IWF C(SIP)
Origina Call
FACILITY;
Invoke Call transfer SETUP
Invoke Call

Tranfer Setup| INVITE

200 OK
COMPLETE | ReturnResult| ACK
Return Result

(c) Call transfer in mixed network. A and B are H.323 tert
and Cisa SIP user agent.

Figure 11.16: An example of call transfer mapping
the two protocols, H.323 and SIP, have many differences, a complete one-to-one translation is not
possible for all advanced services, especially for end-to-end security and authentication.
11.7 Conclusion

We have described a framework for interworking between SIP and H.323. The challenges include

call sequence mapping, address translation and mapping session descriptions. The implementa-

280

tion requirements and detailed interworking function behavior are specified in Appendix D.

Ad-hoc conferencing among SIP and H.323 participants is not possible without modify-
ing one or both of these protocols. The problem can be made tractable by keeping an interworking
function aware of all call state changes.

H.323 has picked up a number of features from SIP, such as Fast Connect and UDP-based
signaling. It is possible that further convergence may occur, although not without fundamental
changes to either SIP or H.323.

We have implemented a basic interworking function using the OpenH323 [259] library
and a SIP signaling stack developed by us as part of CINEMA, and demonstrated a simple au-
dio call setup between SIP user agents and Microsoft NetMeeting. My implementation was later
adapted and commercialized by SIPquest, Inc., and licensed to a number of people including car-
riers. SIPquest engineers had also load tested the software for more than 10,000 simultaneously
active connections.

The translation described in this chapter is not complete in all respects, but facilitates
simple call setup. Overlap sending of dialed digits is not described. Data Application (T.120),
encryption, security and authentication are not covered in this chapter. We have not addressed the
issue of multistage translation, where two H.323 users communicate via a SIP gateway. It is not
yet clear how common such a scenario would be, given direct network connectivity between the

two parties.

281

Chapter 12

Conclusions and Future Directions

We conclude this thesis by emphasizing the need for reliability and scalability in Internet tele-
phony. Although the Internet is perceived as less reliable than the Public Switched Telephone
Network (PSTN), people expect PSTN-grade reliability and performance from Internet telephony.
There are four high-level areas that must be addressed before Internet telephony can be adopted
by the masses: reliability, scalability, quality of service and security. This thesis addresses only
the reliability and scalability issues in the Session Initiation Protocol (SIP)-based Internet tele-

phony systems.

12.1 Summary of the Problems and Contributions

We have addressed the following specific questions:

1. Can SIP servers provide carrier-grade reliability and scalability using commodity hard-

ware? What factors affect the SIP server performance?

2. How can we build a server-less self-organizing peer-to-peer Internet telephony system in a

standards compliant way?

3. Can SIP-based communication be extended to multi-platform collaboration using existing
tools? How well does multi-party conferencing scale on a commodity hardware? How

does SIP interoperate with another competing protocol, ITU-T's H.323?

282

These problems are addressed in this thesis in three parts:

Server redundancy

We used server redundancy to provide failover and load sharing in a server-based SIP infras-
tructure (Chapter 3). We implemented failover using database replication. We developed the
two-stage architecture for SIP load sharing, which scales linearly with the number of servers.
We quantitatively verified using real measurements, not just a simulation, that a cluster of six
commodity PCs costing a few thousand dollars can support 10 million busy hour call attempts
(BHCA), and 10 million users, and thus, exceeds the performance of a typical class-5 PSTN
switch costing millions of dollars. We quantitatively compared the performance of various thread
and event architectures in a single SIP server software. Our two-stage thread architecture gives
the best performance for a stateful SIP server implementation compared to other event and thread

models.

Peer-to-peer

To reduce the configuration and maintenance cost of a server-based system, we developed and
implemented mechanisms to build a peer-to-peer network for Internet telephony using SIP, while
keeping the syntax and semantics of SIP messages (Chapters 4, 5 and 6). Additionally, we built
mechanisms to securely use an external P2P network as a SIP location service (Chapter 5). The
advantage of using SIP is that it can interoperate with existing SIP-based infrastructure such as
gateways and conferencing servers. The hybrid architecture allows a user to be located in both

peer-to-peer and server-based infrastructure.

Enterprise IP telephony

We extended our Internet telephony architecture, CINEMA, to a multimedia collaboration system
(Chapter 9). We built software pieces for both synchronous collaboration such as highly interac-
tive conferencing as well as asynchronous collaboration that does not require simultaneous active
presence of the participants. We evaluated the performance of our conference server and quanti-

tatively verified that it can support large scale audio conferences with thousands of participants

283

in a cascaded mixer architecture (Chapter 10). We also developed and implemented a translation
scheme between SIP and H.323 so that our SIP-based components can interoperate with H.323

infrastructure (Chapter 11).

12.2 Connecting Themes

There are three main themes that connect various parts of this thesis: reliability, scalability and

interoperability.

Reliability

There are two aspects of PSTN reliability: equipment reliability and network availability. PSTN
switches have a “5 nines” reliability requirement, i.e., are available 99.999% time. PSTN has
call success probability of three to four nines. On the other hand, current Internet telephony has
99.5% probability of call success, and 1.5% probability of call abortion due to poor audio quality,
giving 98% availability [260]. The SIP server reliability determines the equipment reliability in
Internet telephony. The failover architecture described in Section 3.3.6 can be used to achieve “5
nines” reliability of SIP servers. The overall availability depends on a number of other factors
such as underlying routing infrastructure and DNS.

Peer-to-peer (P2P) systems are inherently more reliable and robust because there is no
central point of failure, and the network self-organizes itself when a node fails. Data stored on
the P2P network is replicated to improve the data availability. Our P2P-SIP architecture benefits

from the robustness of the underlying P2P network.

Scalability

We have shown that unlike web server redundancy, a simple server farm with identical redundant
SIP servers is not scalable, because user registration needs to be propagated to all the servers
or databases (Section 3.4.3). We built the two-stage scalable architecture which allows linear
scalability with the number of servers (Section 3.4.5). The two-stage architecture can also be

applied to a multi-threaded transaction stateful server implementation to reduce lock contention

284

among multiple threads (Section 3.6).

We also evaluated the performance of our conference server, and showed the performance
gain in a two-stage cascaded mixer architecture.

P2P systems are inherently scalable because a hew node also serves other nodes in lookup,
unlike a server-based system where a new client only adds load on the server. Our P2P-SIP

architecture benefits from the scalability of the underlying P2P network.

Interoperability

When extending the SIP-based multimedia communication system to a comprehensive multi-
platform collaboration system, a number of new components are included, e.g., unified mes-
saging, document sharing and screen sharing. Instead of using proprietary extensions, we have
reused existing protocols and tools as much as possible in our architecture. For example, we use
RTSP for voice mail recording and playback, so that existing media tools such as QuickTime can
be used to listen to the messages. Shared web browsing uses tMESFAGE request to con-

vey the browsed URL. We use VNC for screen sharing, and SOAP and VoiceXML for conference
control. The components interoperate with other implementations based on these open standards.

We also presented interworking between basic user registration and call between SIP and
H.323, so that our SIP-based components can interoperate with other H.323 infrastructure.

One of the distinguishing factors between our P2P-SIP and Skype is that Skype uses a
proprietary protocol, thus supports only a single vendor and single identity provider model. On
the other hand, our P2P-SIP uses SIP for Internet telephony signaling, and can also interoperate
with the client-server SIP infrastructure. Using an open standard allows us to have systems from

different vendors and service providers, instead of a single vendor Skype system.

12.3 Server-based vs. Peer-to-peer Internet Telephony

We have described two architectures for scalability and robustness of Internet telephony: server
redundancy and peer-to-peer. The main problem with a server-based system is that it usually

requires a dedicated system administrator to configure and maintain the servers. The system

285

relies on external dependencies such as DNS. On the other hand, P2P systems automatically
configure themselves, and the P2P network self-organizes itself. This reduces the configuration
and maintenance cost.

Secondly, server-based systems are prone to catastrophic failures, e.g., if all the servers
in the cluster are destroyed in a bomb explosion, the users become unreachable even if the user
machines and parts of the underlying IP network are functioning. On the other hand, a P2P
network is implicitly fault tolerant.

Peer-to-peer systems have significantly higher lookup latency. For example, unlike a sim-
ple request-response message in the server-based system, a lookup in Chord-based P2P network
of NV nodes can result itog IV application level hops. However, for Internet telephony call setup
this delay of a few seconds is not a problem.

The security of a structured P2P network against malicious node behavior is still an open
issue. Additional challenges are in building a pure P2P reputation system and working around spy
nodes. On the other hand, in a server-based system, the clients can trust the server, and transport
security of the messages (e.g., using TLS) can guarantee the system security.

Both P2P and server-based systems are scalable. We showed that our two-stage cluster
architecture performs linearly with the number of servers. Therefore, we can achieve any desired
performance by adding more servers in the cluster. P2P networks are inherently scalable, because
a new node also shares the total cost of service, i.e., user lookup.

PSTN interoperability via a gateway is achieved using additional protocols such as ENUM
and TRIP. A P2P system can use the server-based infrastructure for PSTN interoperability similar
to Skype, or allow discovery of PSTN gateways co-located with peer nodes.

Given the tradeoffs between P2P and server-based architectures, and wide deployment of
server-based Internet telephony infrastructure, we predict that both the systems will exist for quite
some time. Thus, we need to interoperate between the two. Our open standards-based P2P-SIP
architecture provides a hybrid system where lookup can be done in both P2P or DNS, and allows

interworking between the two architectures.

286

12.4 Implications of this Research

Internet telephony is more rich in features compared to the PSTN, and allows extending the
system for new services easily. For example, VoiceXML-based telephony applications can be
easily developed using existing web infrastructure. On the other hand, PSTN switches are closed
systems. It is hard to add new services. A result of Internet telephony research in the past
decade is that many organizations and universities are gradually replacing the local PBX with a
SIP-based IP PBX, such as our CINEMA system. SIP-based systems can provide all the PBX
features such as voice mail, conferencing and call transfer, albeit at a lower cost and better quality
and performance, e.g., wide-band audio codec such as G.722 can be used in Internet telephony
instead of only G.711 in PSTN.

Cost is an important factor in determining research directions. For example, Internet
telephony saves long distance cost of PSTN calls, and a P2P network saves the configuration and
maintenance cost of a server-based system. This translates to zero-cost PC-to-PC calls on the
Internet, similar to free emails and instant messaging. The user has to pay only when the call
crosses into the PSTN.

Using open platforms with existing protocols calls for a plethora of new services. We
have built a number of applications in our CINEMA test-bed. CINEMA is also being used in a
number of other experiments and new systems in our lab. For example, the NG911 project uses
the centralized conference server, a Verizon sponsored project builds a firewall and NAT control-
ling proxy using CINEMA, and another project extends the two-stage architecture to presence
scalability. A number of students have done projects using CINEMA, e.g., an auto-attendant ap-
plication using Voice XML, without having to modify the existing components because CINEMA
uses open standards.

We have shown how to build a scalable cluster of SIP servers, and identified which soft-
ware architecture performs well in terms of threads and event-based implementations. This gives
us a better understanding of scalability and system design issues for SIP-based systems.

There are two types of factors affecting the system scalability: server and network. There
is a limit on single server scalability even with any number of optimizations. Thus, load distri-

bution on the network of servers is more promising to address the growing performance needs of

287

Internet telephony systems. We have shown this for both SIP call setup and conference mixer.
Our systems are modular. The logical components are separated, and usually imple-
mented as independent software. This promotes modular architecture, e.g., keeping the P2P layer
separate from the SIP layer allows extending the system to the external DHT architecture. Fur-
thermore, this promotes DHT-as-a-service model, to save the cost of building new P2P systems

from scratch.

12.5 Future Directions

We have described both server-based and server-less (peer-to-peer) Internet telephony scalability.
We also described how P2P can be used in a server farm to reduce the configuration and main-
tenance cost of servers. This is very promising particularly for carriers with lots of servers, e.g.,
the SIP proxies in the 3GPP architecture can be extended to automatically configure themselves
to serve different roles for different networks.

We have described how to use the shared and managed OpenDHT in P2P-SIP securely.
However, handling malicious nodes in an unmanaged distributed hash table is an open problem.
Unless this is addressed, a global public DHT for P2P-SIP where the user’s phone becomes a
DHT node cannot be deployed securely.

Another interesting question to ask is: what is the performance overhead of security and
guality of service in Internet telephony? Our performance evaluation used UDP transport. How-
ever, in a real deployment on the Internet, TLS is preferred. Although the cluster architecture
we presented can potentially scale to other transport protocols, the absolute performance of the
individual server may be quite different.

SIP-based Internet telephony allows adding new services such as presence, instant mes-
saging and multi-player gaming. The user model and load for these services are different than
the simple user registration and call arrivals that we analyzed. Although our scaling architecture
forms the building block for these SIP-based services, the performance evaluation needs to be
redone to verify the performance gain.

A number of open issues remain in P2P-SIP. In particular, we need to explore the effect of

NAT and firewall traversal on the DHT performance given that many residential users are behind

288

NAT, interworking with PSTN without using a centralized server-based system, optimization for
locating the best media relay in the P2P network to forward media packets to nodes in a private IP
address space, and extension of Internet telephony communication to a multimedia collaboration

in P2P using standard protocols.

289

Appendix A

Design and Implementation of the
Columbia SIP Library

| have implemented a modular SIP library in C++ and used it as the underlying SIP implementa-
tion in all our SIP-based components in CINEMA, such as voice mail server, conference server,
peer-to-peer client adaptor, and VoiceXML browser. This chapter describes the SIP library,

sip++ and the implementation overview of various components in CINEMA.

A.1 Background

Thelibsip++ is derived from the Columbia SIP servsipd, and reuses the parsing and trans-
action handling fronsipd. This section describes the components needed for understanding

libsip++ design.

Call Routing

This section describes hogipd handles an incoming call. This is useful in understanding the

design of the SIP library and other components, such as our voice mail stpuen,

290

Canonicalization

An incoming call is processed as shown in Fig. A.1. Here, Algip;alice@cs.columbia.edu

calls Bob, sip:Bob.Wilson@cs.columbia .edu. Through DNS SRV records, Alice’s user
agent finds out that the hosbnductor.cs.columbia.edu serves SIP requests for the domain
cs.columbia.edu. We assume that Bob can be reached in many different ways, for example, as
bob, Bob.Wilson, bob_wilson, Bob.V.Wilson andwebmaster.

sip:Bob.Wilson@conductor.cs.columbia.edu

hostname conductor.cs.columbia.edu ==> cs.columbia.edu
mapping

sip:bob@cs.columbia.edu
Database
authentication ___Canonicalizaton _____________ Y

X failure, ” sip:Bob.Wilson@cs.columbia.edu

| ,’ alice@cs.columbia.edu

| o - - =~ User lookup=-- bob@cs.columbia.edu

| success|, .

o policy: failure
Contact list CPL, Ci" Gy

henning@cs.columbia.edu hgs

~ alias -Ej bob.wilson@cs.columbia.edu bob
namemapping :
success 7042@cs.columbia.edu hgs

phone numbers

O e e 7134 sip:bob@cs.columbia.edu
P - 7[01]77 tel:+1212939%

no match

Figure A.1: Canonicalization, authentication and routing for a call

After validating the syntax of the call request, the server transforms the callee address to
a canonical user identifier for database lookup, by first transforming the host portion and then
the user name portion. For example, the domain portonductor.cs.columbia.edu is canon-
icalized tocs.columbia.edu. This is done by matching the domain portion of the request URI

against a list of possible domain names and IP addresses for SIP requests to this proxy server.

201

In our case, this includes the domain nacsecolumbia.edu and the host name and IP address

on whichsipd is running. If the canonicalized host name does not match, the server is being
used as an “outbound proxy server” and just routes the request to the SIP server for the domain,
without any processing. Outbound proxy servers are useful for logging and firewall control, for
example. Outbound proxies are not needed for “sip” URLS, but SIP requests with “tel” URLs
need to designate such a proxy to translate the telephone number into a routable SIP identifier.
This SIP identifier can either point to a PSTN gateway or be a regigarser@host URL.

The server first checks whether the SIP identifier is present in @@ltable. If it is
present, then thasername is used unchanged and is the canonical user identifier. If it is not
present, then the server tries to translate the username into a canonical form by two transforma-
tions. In the first, the SQlaliases table is checked to see whether an alias entry is present for
the user. If an alias is present, it is resolved to its canonical identifier user. In the second step,
the name mapper function searches the $@tson table to see if it can deduce a username,
by comparing the user part of request URI to various combinations of the first, last, and middle
names recorded in that table. (In the example, the name mapper determines froenstbre
table that the name “Bob Wilson” corresponds to usa.)

Finally, the server checks whether the user identifier is a telephone number
or not. A request URI for telephone numbers can be of the form: nftetbef,
“sip:numbe@domainuser=phone”, or “siplumbe@domairi. Note that for the “tel” URL, the
domain portion does not exist hence there is no need to canonicalize the domain parinities
can have an optional prefix of “+” to indicate a globally routable number, €1g212-9397000.

The first and second cases specifically tell the server that the address is a telephone subscriber.
A heuristic is used to determine if the address matches the third case. A database lookup is
done to compare the address against the available user names and aliases to find a match. This
allows to create telephone number as user identifier or to create telephone number aliases for
user@domainlf the resulting address is still a telephone number, it is canonicalized using a dial
plan. If none of the rules match, the user identifier is returned unchanged to the server.

The SIP server then retrieves contact and policy information for the user

bob@cs.columbia.edu. The policy information describes how the call is handled, for exam-

292

ple whether it is to be proxied or redirected. Bob’s preferences and policy are then executed.
These may, for example, demand that a calling user be authenticated, refuse or redirect calls, or
apply preferences about where Bob wants to be reached. If the server determines that Bob's cur-
rent policy allows Alice’s call to reach him, it contacts Bob's list of registered locations. Bob’s
current SIP phones ring, he picks up the handset and starts talking to Alice. When they are done,
either of them can terminate the call.

If the callee’s contact location is a telephone number, then the dialplan matching is done
on the contact location. The dialplan leads to a gateway to reach the PSTN destination.

If there are multiple contacts found for the user, then all of the contact locations are used.
The preference values (g-value) of the contacts are used to order the contact locations. The more
preferred value is tried first, and if it fails or times out, the next preferred location is used. If
multiple contacts have the same or simijavalues, then the server forks the call request to all
those locations in proxy mode. In redirect mode, it returns all those contact information back
to the caller. For example, if ussales@company.cqrhas locationsepl@pcl.company.com
(preference 1.0yep2@pc2.company.cofpreference 1.0yep3@pc3.company.cofpreference
0.8), senior-rep@company.cofpreference 0.3) anthanager@company.co(preference 0.3)
then a call tesip:sales@company.casifirst forwarded to both repl and rep2. If they do not pick
up the phone or the call fails, then rep3 is tried. If rep3 also does not answer the call, then it is
forwarded to senior-rep and manager simultaneously. The forking behavior with the configurable

priorities for different contact locations can achieve enhanced automatic call distribution (ACD).

Programmable Call Handling

Sipd supports both CPL and SIP-CGI. SIP Servlet [261] implementation is also partially imple-
mented. The piece of software which alters the server behavior, either a SIP-CGI or a CPL script,

can be uploaded to the server using a SIP UA sudiges or from the web interface.

Database Lookup

Database lookup for locating the contacts of the users constitutes a substantial fraction of the

processing power in a SIP proxy server. Higher delay in database lookup (approximately 10

293

Web
Interface

SQL
database

Periodic
-~71 " Refresh

External Database In-memory cache

Figure A.2: SQL vs FastSQL

ms per query) increases the response time/delay of the transaction, hence the performance and
the scalability. We have implemented an in-memory database scheme to speed-up the database
access time in our SIP servesigd) as shown in Fig. A.2. This involves loading the various
database tables (e.g., user information, contact locations, aliases) into the main memory, instead
of doing lookup into the database for every transaction. Since each table entry takes less than
few hundreds of bytes it is perfectly reasonable to use it in an enterprise environment with only

a few thousands of users for improved performance. However this optimization causes another
problem related to synchronization of the in-memory and external database. In particular, care
must be taken to updated the in-memory database when a new contact is added from the user
interface. We define a periodic refresh interval (About two minutes for contacts table and half an
hours for user information and aliases tables) to refresh the in-memory database. The contacts
table is written out to the external database from in-memory database periodically. We read only
those entries that are modified since last read and write only modified entries back to the database

during refresh.

294

CINEMA Libraries

Many of the architectural components of CINEMA described in chapter 9 are implemented in
C/C++, e.g., SIP servesipd), media serverr(spd), conference servesipconf), SIP-H.323
interworking function ¢iph323) and voice mail servers{pum). All these pieces of software

share the common code base wherever possible. The common part is identified and abstracted as
a set of libraries. Then the applications are built on top of these libraries. This section describes
the various modules used for implementing the system and discusses the design details of the SIP

library.

Other Applications

RTSP server v A

RTSP API SIPUA SIP

f API TOX
RTP |[RTSE/ -
Media Stre SIP transaction .

: Client Branch
HTTP Message Parsing
Transport layer (TCP/UDP)
[Pv4 ” [Pv6

Architecture overview

Figure A.3: Software design modules

The layered hierarchy of various sub-modules is shown in Fig. A.3. The lowest transport
layer is assumed to be TCP or UDP. We use the stanstzgklet interface for this layer. A
generic HTTP message parsing layer is used for parsing various HTTP-like messages, SIP and
RTSP. RTSP and SIP-specific routines are added above this layer. In particular, the RTSP trans-
action layer maintains the state for a media session, while the SIP transaction and client branch
layers maintain the state for a SIP transaction. The SIP transaction layer is used in implementing

the SIP proxy server. The SIP user agent librdibs{p++) uses the transaction layer, and imple-

295

ments the call control state machine above that. Both internal and external libraries are used to
build various applications as shown in Fig. A.4.

CINEMA applications

RTSP media SIP proxy SIP/H.323 SIP/RTP SIP/RTSP SIP/VoiceXML
server server gateway conferencing unified messaging browser
LDAP OpenH323 ViaVoice

Xerces-C PWLV \ Xerces-C

CINEMA libraries

libNT libcine libsip librtsp libsip++ librtp libmixer libdict libdb++ libsnmp ‘
V| wina2 Utilities Basic RTSP SIPUA | | RTP RTP Hash MySQL SIP :
| arsing SIP i i i i i !
1| stub P - client library library audio table interface MIB |
: IPv6 library mixer !
'\R"VSQ'- Parsing, SIP, SDP, RTP, MySQL interface, SNMP interface, portability stubs, etc. |
I esparse :

Figure A.4: Software library and applications

The CINEMA libraries are briefly described below:

libcine: libcine is a generic library with general-purpose utility functions for parsing HTTP mes-
sages, manipulating URIs, logging requests, MD5 functions, database access, software
license check, TCP/UDP wrapper, dynamic string, resolving host names, logging debug

information. This library is shared by both SIP and RTSP implementations.
libdict: libdict is a general-purpose library for dictionary or hash-tables in C.

libdb++: We use the MySQL database in our environment to store various user and system
configuration. This module is a high-level C++ interface for accessing the database tables
built as a wrapper over tHdmysqlclient library. It also provides an in-memory database
mechanism to speedup database access. It also implements a file based authentication to

allow non-database type simple applications like user agent libraries.

libsip: libsip is a SIP library in C that implements the SIP transaction and client branch layers.

296

It allows different authentication mechanisms used by SIP. It also contains the database

interface tdibdb++.

libsip++ (or libsipapi): libsip++, which was later renamed to libsipapi after complete upgrade
to C++, is a SIP user agent library that implements the call control for establishing, main-
taining and terminating a SIP call. It also has SDP parsing routines. Itlisgs for

implementation of transaction and client branch layers.

libmixer (or libconf): libmixer, which was later renamed to libconf, is an RTP audio mixing

library and video distribution library used by the conference server.

libmedia: This library is used for transcoding between different audio codecs, and writing and

reading from audio file for media streaming and recording.

libnat: This library handles NAT and firewall traversal issues using STUN, TURN and ICE

protocols.
rtplib++: The RTP library written is written in C++.

NT: NT library implements the basic portability stubs on the Microsoft Windows platform for the
commonly used Unix functions. In particular, it contains routinesal@ses , crypt |,
hashtable ,inet ,regex , getopt , andpthread . These stubs allow us to use the

same code base for both the Unix and Windows platforms.

| am the primary author of libsipapi, libconf, libnat, and libmedia. Rest of the chapter

describes the libsipapi library.

User Agent Policy

A SIP transactionis identified by theCall-ID, To, From andCSeq SIP headers and the SIP
request URI. A transaction roughly corresponds to a request and all its responses plus their
retransmissions.

A transaction can be of two types: proxy transaction and user agent transaction. A proxy

transaction is associated with a set of client branches. When the mrosivesa request from

297

an upstream client it creates the transaction object then forwards the request to the downstream
server(s) using client branches. The responses received by the client branches from the down-
stream server(s) are forwarded to the upstream client. A user agent transaction can either receive
a request and terminate it or can originate a request and wait for responses. Thus, the user
agent transaction can be further classified into incoming transaction (without any client branch)
and outgoing transaction (with only one client branch). Contrast this with the proxy transaction
which can have one or more client branches. More than one client branches signify the forking
proxy behavior. A forking proxy forwards a call to several possible locations simultaneously and
completes the call setup by connecting the caller to the first location answering the call. A client
branch represents a possible location where the destination can be reached.

Once a request is received it can be processed in a variety of different ways: proxy it
(proxy transaction), send a redirect response, inform the user (user agent transaction), or reject it.
The decision to choose appropriate behavior can be governed by differiéiesas shown in
Fig. A.5.

A.2 User Agent Library

The user agent libranjibsip++, is built on top of the user agent policy interface and uses the
underlyinglibsip’s transaction and client branch architecture. As mentioned earlier, there are two
types of user agent transactions: outgoing and incoming. The state machine for the outgoing
transaction is similar to thproxy policy except that it handles only one client branch. Incoming
transaction’s state machine is more simple as there is no client branch. The user agent library

primarily focuses on the following two things:

Call control: A SIP/SDP multimedia call signaling is implemented using the state machine

shown in Fig. A.6.

Outgoing registration refresh: The user agent library can perform outgoing registrations to the
remote SIP registration servers suchsgsl. A single one time registration does not need
any state machine, but if one wants to implement an automatic registration refresh mech-

anism, the state machine shown in Fig. A.7 is useful. The state machine handles the

298

Upstream clients; SIP library transactions and client branches . Downstream servers

(3) bob@H1
Cl ! Hl
(4) 200 OK

(3)bwilson@H
C2 - @ H2
(7) CANCEL

(1) INVITE Bob

(8) 200 OK

" (1) INVITE Bob
- Redirect 1
I (2) 302 moved |

Transaction object
Client branch object

Figure A.5: SIP transaction and client branches

299

IDLE
CANCEL
OnCallCancelled
Hangup
CANCEL ”
Initiate INVITE
INVIT QnincomingCall
3xX, 4xx,5x%/6xx, Timeout .
- Reject, Hangup
OnCaltRejected
4X%,5xX,6XX
Redirect
OUTGOING 3xx INCOMING
180
Hangu
OnRingin BYIE—ZJ : Accept
ging 2xX
401/407 (passwd\exists)
BYE

INCOMING_ACK

2XX
OnCallEstablished

Reinvite, SetSelfSessionDescrip
re-INVITE

re-INVITE
OnRemoteSessionChanged

1xx-6xx: SIP response from transaction layer (remote))
METHOD: SIP request from transaction layer (remote) Notation:
Method: C++ API methods in the library

Event
Action

Figure A.6: call control state machine

outgoing SIPREGISTER method for an user agent.

The user agent library also has functions for parsing the SDP message body. However
the media transport or encoding and decoding of the multimedia data is outside the scope of this
library.

A similar state machine is implemented for other SIP methodsRIKEER for call trans-
fer, SUBSCRIBE andNOTIFY for presence and event notification. Most of the other methods
(e.g.,DO andMESSAGE) do not require any state machine and can be used in the application

without any libsip++ modification.

300

3XX—6XX
OnRegistrationFailed

Register
REGISTER
401/407 (passwd exists)
401/407 (pasgwd exists)

A
&4 OUTGOING(1) §

2XX
OnRegist

Unregister
REGISTER

Refresh ol 6UTGOING(3)
ACTI\B\re—REGISTER
"
Unregister
_Jnregister. Unregister
REGISTER CANCEL
s~
TERMINATING
1xx—6xx : message from transaction layer (remote)
Exit METHOD: sip message from transaction (remote)

Method: C++ API methods

Figure A.7: Outgoing registration state machine

Design Philosophy

There are two popular kinds of API design for signaling protocols such as SIP: polling or events.
Polling involves periodically checking if some event such as incoming call has occurred (e.g.,
Unix select call). This puts an unnecessary burden on the application to check for events. On
the other hand a event driven system nicely fits in the call-back or event-based API.

In the event model there are various object-oriented designs. The JAIN community pro-
posed a SIP API that is based on the listener and provider concept. For example, there can be
a SIP provider object, which implements the SIP stack, and invokes specific methods from the
listener object, to signal events. This kind of design is good for lower level SIP library where you
define how to send or receive a message. Using this API, the application or higher layer has to to
do lots of processing to maintain higher layer states such as transaction state or call state for such
designs.

On the other hand, another model is to provide abstract classes for the notion of call or

301

end-point and let the application create the actual instances derived from these interfaces. Thus,
the events are now handled in the object itself, instead of transferring to another listener object.
Since the application derives from the abstract classes for call and end-point, it can implement
more specific functions such as display alert on an incoming call. We have used this design model

for our SIP user agent library (libsip++) as well as the wrapper for the OpenH.323 library.

Applications

Our SIP user agent library is meant for implementation of user agent type of applications. This
includes, besides a traditional user agent, a conferencing server, an unified messaging system
and a signaling gateway in CINEMA. | have written a SIP user agaptia, that is used for
testing various SIP features of other applications such as proxy, and conference server. The P2P-
SIP implementationsippeer, also includes the functions of a SIP user agent. | have written a
Java-based visualization tool for monitoring various peer nodes. The tool receives parameters
such as node identifier and message exchange from vagippeer instances and displays the
Chord-based P2P network graphically.

The total physical source lines of C/C++ code of various CINEMA components measured
using SLOCCount [245] is about 187000, out of which my contribution is more than 60000 in
C/C++, and an additional 30000 in Tcl.

302

Appendix B
Two-way Replication in MySQL

This section describes the steps needed to setup two-way replication in MySQL. Please refer to

Fig. 3.8 (p. 35) for the following steps:

1. Edit/etc/my.cnf to set the unique server-id f@; and enable binary logging:

[mysqld]
server-id = 1
log-bin

Restarimysqld.

2. Create areplication user dm, with appropriate privileges fab,’s IP address.

GRANT SELECT,PROCESS,FILE,SUPER,RELOAD,
REPLICATION CLIENT,REPLICATION SLAVE ON
** TO replication@"sip2.cs.columbia.edu”
IDENTIFIED BY "somepassword";

3. Then copy thelata/sip directory tosnapshot.tar file

4. Get the master status (file name and position) of the binary log.

SHOW MASTER STATUS;

Suppose it shows file g#hone-bin.001 and position as 73.

10.

11.

12.

13.

303

. Shutdownmysqld and start it again. Make sure no updates are happenitg, iar D-

while setting up the replication. Make sut® is dead.

. Create a replication user dm, similar to D¢, but with permissions for IP address bf;,

so thatD; can acces®)s.

. Copy and uncompress teaapshot.tar from D to the D, data directory. This will

ensure the content ths#p database oD is same as that ab; when for the given master

status ofD;. Some fields in theip database, such aghema::sipdhost should store

the actual host name of the machine running the server. These fields can be populated with

sip2 for D5 using the SQLSLAVE_SKIP_.COUNTER global in MySQL.

. Edit/etc/my.cnf of Dy, similarto D1, except that theerver-id is 2 for Ds. (server-id

values are not important as long as they are unique for a given replication setup.)

. Startmysqld on Ds.

SetupD,, as slave ofDy, by running following command oPs:

CHANGE MASTER TO
MASTER_HOST="phone.cs.columbia.edu’,
MASTER_USER="replication’,
MASTER_PASSWORD="somepassword’,
MASTER_LOG_FILE="phone-hin.001’,
MASTER_LOG_POS=73;

START SLAVE;

The log file and position are same as that recorded ffamAt this point we haveD; to

D, replication complete.

Now record the master status Ba. Suppose it shows file &ip2-bin.002 and posi-

tion as 79.

Copy all thersbin.* (binary logs) fromD,’s data directory toD;’s data directory.

Not setD; as slave ofD, by running following command o®;:

304

CHANGE MASTER TO
MASTER_HOST="sip2.cs.columbia.edu’,
MASTER_USER="replication’,
MASTER_PASSWORD="somepassword’,
MASTER_LOG_FILE="sip2-bin.002’,
MASTER_LOG_POS=79;

START SLAVE;

At this point D5 to D, replication is also complete. To allow access from other hosts, it
may be required to remove the no-authentication line from the MySQL permissions table.

USE mysql;
DELETE FROM user WHERE User=";
FLUSH PRIVILEGES;

To bring upD; after a failover, tables o, should be read-locked to prevent database
inconsistency. In case failover messes up for some reason, the whole procedure can be repeated

to setup the failover from scratch without losing the dat#®in

305

Appendix C

Data Format for SIP-using-P2P

In this section we propose an XML-based data format for storing SIP-related information on the
DHT for interoperability among different P2P-SIP implementations. The data format applies to
both existing and planned authenticated DHT interfaces [27].

An example user contact of usdrob@example.net stored in the DHT at key

H(sip:bob@example.net) is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<contacts xmlns="urn:ietf:params:xml:ns:p2p-sip">
<contact>sip:bob@192.1.2.3:5060</contact>

</contacts>

For unauthenticated DHT interface, we needdkgires anduser attributes as part of theontact
information, so that the signature can not be misused as described in Section 5.5. These are not
needed for the authenticated DHT interface, since they can be securely derived using other means
such adtl returned byget interface and DHT key, respectively. An example signed contact is

shown below:

<?xml version="1.0" encoding="UTF-8"?>
<contacts xmlns="urn:ietf:params:xml:ns:p2p-sip" 1d="One"
user="sip:bob@example.net">

<contact display-name="Bob Wilson" expires="2006-01-31T18:22:38Z">

306

sip:bob@192.1.2.3:5060
</contact>
</contacts>
<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa-shal"/>
<Reference URI="#0One">
<Transforms>
<Transform
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</Transforms>
<DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<DigestValue>j6lwx3rvEPOO0OvKtMup4NbeVu8nk=</DigestValue>
</Reference>
</SignedIinfo>
<SignatureValue>MCOCFFrVLtRIk=...</SignatureValue>
<Keylnfo><KeyName>bob@example.net</KeyName></Keylnfo>

</Signature>

Any signature is formatted using W3CSignature element [262]. The URI irReference tag
points to the data signed. TlkeyName refers to the user identifier of the signer or the form
user@domain.

The user’s certificate is stored using tKeyinfo element [262] in the DHT at key

H(certificate:bob@example.net) as follows:

<?xml version="1.0" encoding="UTF-8"?>

<KeyInfo xmins="http://www.w3.0rg/2000/09/xmldsig#">

307

<X509Data>
<X509SubjectName>

CN=bob@example.net,0=P2P Inc.,ST=New York,C=US
</X509SubjectName>
<X509Certificate>MIID5]CCAO+gA...IVN</X509Certificate>
</X509Data>

</Keylnfo>

A user Bob can subscribe for presence statualicE@home.com, by storing the fol-

lowing information in the DHT at key H(subscribe:alice@home.com).

<?xml version="1.0" encoding="UTF-8"?>

<watchers xmlns="urn:ietf:params:xml:ns:p2p-sip">

<watcher event="presence" entity="alice@home.com"

expires="2006-01-31T718:22:382">
sip:bob@example.net

</watcher>

<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">

</Signature>

</watchers>

Since this information needs to be encrypted, it gets stored as follows, using the B&i3C's

cryptedData element [263]:

<?xml version="1.0" encoding="UTF-8"?>

<EncryptedData Type="urn:ietf:params:xml:ns:p2p-sip#watchers

xmins="http://www.w3.0rg/2001/04/xmlenc#">

<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-chc"/>

<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2001/04/xmldsig#">
<EncryptedKey CarriedKkeyName="TempKey"

xmins="http://www.w3.0rg/2001/04/xmlenc#">
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsal_5"/>
<CipherData>
<CipherValue>xyza21212sdfdsfs7989fsdbc</CipherValue>
</CipherData>
</EncryptedKey>
<ds:KeyInfo>
<CipherData>
<CipherValue>A23B45C564587</CipherValue>
</CipherData>
</EncryptedData>

An offline message is also stored asEmcryptedData element. Thelype attribute

refers to text or audio format for offline text or voice message, respectively.

Complete schema definition

The complete schema definition fam:ietf:params:xml:ns:p2p-sip is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:ietf:params:xml:ns:p2p-sip"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmins:p="urn:ietf:params:xml:ns:p2p-sip"
elementFormDefault="qualified"

attributeFormDefault="unqualified">

<import namespace="http://www.w3.0rg/XML/1998/namespace"

schemalocation="http://www.w3.0rg/2001/xml.xsd"/>

<element name="contacts" type="p:contactsType"/>

309

<complexType name="contactsType">

<seguence>

<element name="contact" type="p:contactType

maxOccurs="unbounded"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>

</complexType>

<complexType name="contactType">

<simpleContent>

<extension
<attribute
<attribute
<attribute
<attribute

<attribute

base="anyURI">

name="Id" type="ID" use="optional"/>

name="user" type="anyURI" use="optional"/>
name="display-name" type="string" use="optional"/>
name="expires" type="dateTime" use="optional"/>

name="priority" type="p:priority" use="optional"/>

</extension>

</simpleContent>

</complexType>

<simpleType name="priority">

<restriction base="decimal">
<pattern value="0(.[0-9]{0,3})?"/>
<pattern value="1(.0{0,3})?"/>

</restriction>

</simpleType>

<element name="watchers" type="p:watchersType"/>

<complexType name="watchersType">
<sequence>
<element name="watcher" type="p:watcherType"
maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>

</complexType>

<complexType name="watcherType">
<simpleContent>

<extension base="anyURI">

<attribute name="Id" type="ID" use="optional"/>
<attribute name="entity" type="anyURI" use="optional"/>

<attribute name="expires" type="dateTime" use="optional"/>

</extension>
</simpleContent>

</complexType>

</schema>

310

311

Appendix D

Implementation Details of SIP-H.323

Interworking Function

In this chapter, we list the implementation requirements and details of SIP-H.323 interworking
function (IWF). This is an appendix to Chapter 11.

In this chapter, the key words/UST”, “MUST NOT’, “REQUIRED', “ SHALL", “ SHALL
NOT”, “ SHOULD", “ SHOULD NOT’, “RECOMMENDED', “MAY”, and “OPTIONAL” are to be in-

terpreted as described in RFC 2119 [264].

D.1 Implementation Requirements

This section lists the messages whichsT be supported by the signaling IWF. It also highlights

the typical values for parameters for the messages.

H.323 (H.225.0 and H.245)

All the messages which are mandatory in the Q.931 portion of H.225.0 and #ad5 be
supported. RAS is optional; if used, all messages that are mandatory imRA&8be supported.
Parameter values (if not specified in this documentsT be derived from H.225.0 version 2.0

and H.245 version 4.0 for Q.931 and H.245 messages, respectively. This assures that requirement

1 in Section 11.1 is fulfilled.

312

Handling of Q.931 Messages

The IWF sHoOULD support the Q.931 messages listed in Table D.1. An entry of “not applicable”

in the table means that it is not visible to the SIP endpoint and is only local to the IWF's H.323

stack.

Message IWF sends to H.323 H.323 sends to IWF
Alerting Supported Supported

Call proceeding Supported Supported

Connect Supported Supported

Progress Not applicable Not applicable
Setup Supported Supported

Setup Ack Not applicable Not applicable
Release Complete Supported Supported

User Information

Not applicable

Not applicable

Information Not applicable Not applicable
Notify Not applicable Not applicable
Status Not applicable Not applicable
Status Inquiry Not applicable Not applicable
Facility Not applicable Not applicable

Table D.1: Support for Q.931 messages
A “Not applicable” entry in the table means that it is not visible to the SIP endpoint and is only

local to the IWF's H.323 stack.

The IWFMuUST NOT close the call signaling channel after the call is established. How-
ever, if the call is routed through a gatekeeper and the gatekeeper closes the call signaling channel,
the IWFMUST comply with H.323 anadiusT NOT assume that the call is closed as long as H.245
channel is open. If the Q.931 TCP connection is closed without closing the call signaling chan-
nel, then the IWFSHOULD try reopening the TCP connection, as specified by H.323. In case of
failure such as TCP connection refused or TCP connection timeout, thesAM3BLD close the
call on the SIP side also by sendin®¥E.

Q.931-specific information elements, other than user-user information element (UUIE),
do not affect the operation of this IWF, however they are required for interoperation with other
H.323 entities. The specific fields of UUIE used in translating to SIP message are given in Ap-

pendix D.3.

313

Bearer Capability: Information transfer capability (octet 3, bits 0-5): Unless some other re-
strictions apply (e.qg., the IWF is connected to a bandwidth-restricted ISDN network),
the parametesHOULD be set to “unrestricted digital information” or “restricted digi-
tal information” on outgoing side. If the IWF knows that the call is going to be voice
only, it may choose to set it as “speech” or “3.1 kHz Audio”. The IWF ignores this

field on incoming requests.

Information Transfer Rate and Rate multiplier: If bandwidth information is available
from the gatekeeper or some external means (e.g., from bandwidth information in
SDP message), then information transfer rate and rate multiplier may be set to values
reflecting the bandwidth, else they should be set to some high value as appropriate.
This way the bandwidth is not limited to 64 kb/s or 128 kb/s. On the incoming side
these valuesHOULD be ignored. Note that in a Q.931 message the only possible

values are multiples of 64 kb/s.

Layer 1 protocol (octet 5, bits 1-5): For outgoing Q.931 messages, the parameter is set
to H.221 ('00101"), indicating an H.323 video phone call, unless the IWF knows that
the call is going to be voice only (e.g., if this is hardcoded in the IWF). In that case,

it may encode the parameter as G.711 A-law or mu-law to indicate this.

For incoming Q.931 messages, the IWF ignores this field.

Calling or Called party number: For outgoing Q.931 messages, the IWF translates the SIP
request-URI into ane164 number, as described in Section 11.3. The calling/called party
subaddress is not included in Q.931 messages originating from the IWF.

For incoming Q.931 messages, the IWF relies on user-user information element for ad-
dresses (e.g., sourceAddress and destinationAddress fields of UUIE) and ignores the Q.931
parameter. However, if the calling/called party number is present and e164-1D is not present
in the H.323 Alias Address then the calling/called party number is used instead of e164-1D
while translating address in section 11.3.

H.323 specifies that the called and calling party Subaddress fields are needed for some circuit

switched call scenarios and theypouLD NOTbe used for packet based network side only calls.

Display: For incoming Q.931 messages, the IWWRY copy the Display IE to thelisplay pa-

SIP status

314

releaseCompleteReason

400 Bad Request

401 Authentication Required
402 Payment Required

403 Forbidden

404 Not Found

406 Not Acceptable

407 Proxy Authentication Required

409 Conflict

410 Gone

413 Request Entity Too Large
414 Request-URI Too Large
415 Unsupported Media Type
420 Bad Extension

480 Temporarily not available
483 Too Many Hops

484 Address Incomplete

485 Ambiguous

486 Busy Here

600 Busy Everywhere

603 Decline

604 Does not exist anywhere

undefinedReason
noPermission
undefinedReason
noPermission
unreachableDestination
undefinedReason
noPermission

undefinedReason

undefinedReason
undefinedReason
badFormatAddress
undefinedReason
badFormatAddress
unreachableDestination
undefinedReason
badFormatAddress
badFormatAddress
destinationRejection
destinationRejection
destinationRejection
unreachableDestination

Table D.2: Mapping between SIP status codesraadon fields

rameter of the SIHo header field.

Similarly, for outgoing Q.931 messages, fhsplay parametemAy be copied from the

display parameter of the SIfo field.

Cause: For incoming Q.931 messages, the Q.931 Cause information element and/or the UUIE
reason field are mapped to the appropriate SIP status response code, as described in Ta-
ble D.2. H.225.0 [248] specifies that either the Cause information element or the releaseC-
ompleteReasomuUsST be present. It also gives a mapping between the Cause information
element and the releaseCompleteReason. Table D.2 gives the mapping between releaseC-

ompleteReason and the appropriate SIP status response.

Similarly, for outgoing Q.931 messages, the Q.931 Cause information element and the

UUIE reason field are derived according to Table D.2.

315

User-User-Information-Element: Below, we detail the fields in UUIE which are relevant to

H.323-SIP conversion. Other fields are interpreted as defined by H.225.0.

sourcelnfo /destinationinfo : In all messages from the IWF, this fiedthouLD be set to
indicate that this endpoint is a gateway. However, the sequence of supported protocols

in “GatewaylInfo” may be empty.

H.245SecurityMode , tokens , cryptoTokens : These fields are interpreted as in H.323.
Note that since H.245 is terminated at the IWF, this kind of security information is

not relevant to the SIP cloud.

fastStart : FastStart PDUs contain ti@penLogicalChannel (OLC) messages. The IWF
converts incoming OLC messages to a SDP message body. One SDP media descrip-
tion line (“m=") is generated for each distinct session-ID. All logical channels with
same session-ID appear as payload types in a single SDP media description line.
When converting SIP to H.323, the SDP message is converted to aOgtssfLogi-
calChannel messages, one per payload type. H.323 endpoint will select at most one
OLC per session-ID. This selected OLC is returned by the H.323 endpointfadhe
Start field of Q.931Connect message. When converting H.323 to SIP, each OLC
in fastStart corresponds to a payload type of SDP. All the OLC messages with same

session-ID form a single media description (“m=") line.

The parameters for the Q.98ETUP message are listed below.

sourceAddress : Converted to/from SIP headErom field as described in section 11.3.
destinationAddress : Converted to/from SIP headé&o field as described in section 11.3.

destCallSignalAddress : If the To SIP header field contains a numeric host identifier then

destCallSignalAddress is set to the IPv4 address represented by the numeric identifier.

conferenceGoal : Set to ‘treate” in outgoing Q.931 messages. (Additional values may be

supported in future versions of this specification that support conferencing.)

316

remoteExtensionAddress : Not present in outgoing Q.931 messages. For incoming Q.931
messages, this parameter is combined witlHestinationAddress parameter to generate

the SIPTo header field and theequest-URI.

mediaWaitForConnect : Set to “false” in outgoing Q.931 messages. Ignored in incoming

Q.931 messages, as media transmission is transparent to the IWF.

canOverlapSend : Set to “false” in outgoing Q.931 messages and ignored in incoming Q.931

messages since this version of the specification does not support overlap sending.

Use of the Q.932 facility message for call redirection is for further study.

Handling H.245 Messages

Table D.3 details how an IWF handles H.245 messages. An entry of “not applicable” means that
the message does not affect the behavior within the SIP cloud.

The remainder of this subsection lists the possible values of some of the fields of H.245
messages. Refer to H.245 version 4.0 for description and details of the ASN.1 structures for

H.245.

MasterSlaveDetermination : TheterminalType parameter is set to indicate that this terminal
is a gateway. H.323 specifies a set of numerical values of terminalType for different types of
terminals. For example, a gateway without a multipoint controller (MC) has a terminalType
of 60; A gateway with a MC and no multipoint processor (MP) has a terminalType value
of 80. Other values of terminalType are not relevant to this IWF in the case where media

traffic is transparent. See H.323 [37] for other possible values of terminalType.

TerminalCapabilitySet : multiplexCapability::h2250Capability: maximumAudioDelayJitter
should be set to max possible value as specified by H.323. MultipointCapabilities
should reflect minimum capability of Centralized Control/ Audio/ Video/ Data. Other
conferencing capabilities are for further study. RTCP videoControlCapability should

be set to false because anyway H.245 indications have to be used for this purpose.

317

Message REQUIREDOr Not applicable
MasterSlaveDetermination/Ack/Rej/Rel Not Applicable
TerminalCapSet/Ack/Reject/Release REQUIRED

Send TerminalCapabilitySet Not Applicable
OpenLogicalChannel/Ack/Reject REQUIRED
OpenLogicalChannelConfirm Not Applicable
CloselLogicalChannel/Ack REQUIRED
RequestChannelClose OPTIONAL
RequestMode/Ack/Rej/Rel RECOMMENDED
RoundTripDelayReg/Res Not applicable
MaintenancelLoopReqg/Ack/Reject Not supported
MaintenanceLoopOffCmd Not supported
CommunicationModeReg/Res/Cmd For further study
ConferenceReq/Res/Cmd/Indic For further study
EndSessionCommand REQUIRED
FlowControlCommand For further study
Encryption Command For further study
Jitter Indication For further study
User Input OPTIONAL
H2250MaxSkewlIndic For further study
MClocationIndication For further study
FunctionNotUnderstood Not Applicable
FunctionNotSupported Not Applicable

vendorldentifier
MiscCommand/Indication

Not Applicable
For further study

Table D.3: Support for H.245 messages.
An entry of “not applicable” means that it is not visible to the SIP endpoint and is only local to
the IWF’s H.323 stack.

MediaPacketizationCapability should contain the information about the dynamic pay-
load types used by SIP endpoint. Transport Capability should be absent. redundan-
cyEncodingCapability should be absent as this is not supported in this version. log-
icalChannelSwitchingCapability may be supported by the IWF's H.323 stack. This
makes mapping SIP re-INVITE easier. t120DynamicPortCapability is set to false

because T120 data is not supported in this version.
CapabilityTableEntry and

CapabilityDescriptor are mapped from the session description given by SDP. A single

318

capability descriptor is used in H.245. All the payload types on a single media de-
scription line (m=) are combined to form an alternative capability set in H.245. All
such media description lines are combined to form a simultaneous capability set (or
a capability descriptor). Mapping multiple SDP received in multipart body of SIP to

multiple capability descriptor is for further study.

Capability : H233Encryption is not applicable.
H235Security is not applicable.
DataApplication capability is not supported in this version of the specification.

ConferenceCapability is for further study and is not supported in this version of the

specification.

UserlnputCapability may be supported by the IWF. This is used to convey DTMF dig-
its. Use of the SIP INFO method is being considered for this purpose.

maxPendingReplacementFor is not applicable.

Audio and Video: A capability in H.323 represents a payload type. Refer to
http://www.iana.org/assignments/media-types/media-types for a list of MIME
types andttp://www.iana.org/assignments/rtp-parameters for a list of static RTP
payload types. Use of static RTP payload types in SDP is discouraged. The IWF
should maintain a list of all currently available payload types and media formats and
the corresponding RFC numbers. (An intelligent IWRY periodically download

and parse these HTML pages to update its database).

The predefined audio and video capabilities are mapped to appropriate media for-
mat and RTP payload type. This mapping is given in this document for ease of
reference. This mapping should be used by the IWF to convert the H.323 capabil-
ity to an SDP media description. When converting from H.323 to SDP, the IWF
SHOULD use dynamic payload type. When converting from SDP to H.323, the IWF
SHOULD NOT use dynamic payload types because many current implementations do
not support these. However, the IWHUST be able to receive dynamic payload

types, in bothH2250Capability.MediaPacketizationCapabilty. RTPPayloadType

319

H.323 IANA payload type clock/channels RFC
g711Alaw64k PCMA 8 8000/1 RFC1890
g711Ulaw64k PCMU 0 8000/1 RFC1890

g711Alaw56k N/A
g711Ulaw56k N/A

g722-64k G722 9 8000/1 RFC1890
g722-56k N/A

g722-48k N/A

g7231 G723 4 8000/1 None
g728 G728 15 8000/1 RFC1890
g729 G729? Dynamic/18? 8000/1 -
g729AnnexA ? Dynamic 8000/1 ?
g729wAnnexB ?

g729AwB ?

g7231AnnexC ?

gsmFullRate GSM 3 8000/1 RFC1890
gsmHalfRate GSM-HR Dynamic 8000/1 -
gsmEnhFullRate GSM-EFR Dynamic 8000/1 -

Table D.4: Audio capability mapping

and inH2250LogicalChannelParameters.MediaPacketization. When dynamic
RTP payload type are used, H225LogicalChannelParameters.dynamicRTPPayloadType

MUST match the payload type description given in mediaPacketization.

AudioCapability : A subset of IANA-registered formats and H.323-supported capabili-
ties are listed in Table D.4.
Note that H.323 only supports a clock rate of 8000 Hz; other values cannot be mapped
to H.323. SDP attributeptime” gives the maximum length of time in milliseconds
represented by media in a packet. This can be used for defining the maximum packet

length.

VideoCapability : The mapping of video encodings is shown in Table D.5. The Video

MPI (Mean Picture Interval) is mapped to the SDP attribditarherate” as follows:
mpi = 30 / framerate

It is assumed that 29.97 Hz is rounded to 30 Hz when calculating the framerate. So

MPI of 1 become framerate 30.0, similarly MPI of 2 becomes framerate 15. However,

320

H.323 IANA Payloadtype clock RFC
h261VideoCap H261 31 90000 RFC2032
h262VideoCap *?

h263VideoCap H263/H263+? 34 90000 RFC2190/2429?

Table D.5: Video capability mapping.

the IWF shall do proper rounding error correction on the incoming side. So framerate
of 29.97 should also map to MPI of 1. Note that in SDP any possible value for
framerate is allowed, but in H.323 only multiples of 1/29.97 are allowed. The IWF
should convert the framerate to the next lower value allowed in H.323. For example,
a framerate of 12.3 frames per second in SDP is converted to an MPI value of 3 which

is equivalent to 10 frames per second.

DataApplicationCapability : Not supported in this version of the specification.
Use of RSVP (Resource reservation protocol) to handle QoS (Quality of service) is for
further study.
D.2 Signaling Address Translation

A SIP address can be either a SIP URL or any URI. This document only describes the translation

of the SIP (5ip:"), telephone (tel:") and H.323 (‘h323:") URL schemes.
The BNF of a SIP address is given below for reference:

SIP-Address = (name-addr | addr-spec)

name-addr = [display-name] "<" addr-spec ">"

addr-spec = SIP-URL

SIP-URL = "sip:" [userinfo "@"] hostport url-parameters
[headers]

userinfo = user["™” password]

hostport = host["" port]

host = hostname | IPv4address | IPv6address

url-parameters = *(";" url-parameter)

url-parameter = user-param | ...

In the url-parameter, only theuser-param parameter is relevant. Theser name may

be a telephone number.

321

H.323 addresses are typically sequences of Alias Addresses (see H.225.0 [248]). The
ASN.1 description of an H.323 Alias Address is:

H323-Alias-Address ::= CHOICE

{
el164 IA5String (SIZE(1..128)) (FROM("0123456789\#*,"),

h323-ID BMPString (SIZE (1..256)),

url-ID 1A5String (SIZE(1 .. 512)), -- URL Style address
transport-ID TransportAddress, -- IPv4, IPv6, IPX etc.,...
email-ID 1A5String (SIZE(1..512)), -- rfc822 compliant email address
partyNumber PartyNumber

The PartyNumber parameter is not described in this document. Telephone num-
bers can be conveyed vid 64 field of H323-Alias-Address or called/calling party

number fields of Q.931 message.

D.2.1 Converting SIP Addresses to H.323 Addresses
h323-1D

The SIP-Address is stored as is in thé@323-ID of the Alias Address. If theSIP-Address
contains more than 256 characters, onlydldr-spec part is copied. If theddr-spec exceeds
256 characters, the IWF generates a SIP response of 414 (Address Too Long). Eath BMP
character irh323-ID stores the corresponding text character in the SIP Address.

Theh323-1D MusT always be generated so that a terminal running version 1.0 of H.323
(which supports onlg164 andh323-ID, but does not suppottansport-1D, url-ID or email-ID)

can still decode the address.

!BMP stands for basic multilingual plane, i.e., Basic ISO/IEC 10646-1 (unicode) character set.

322

ele4d

If the SIP-Address’s user is atelephone-subscriber, user-param is set tophone and the
user part does not contain a “w”, it is converted to ##64 field of Alias-Address. Theel64

field only allows characters from the set “0123456789#*,". Thus, any leading “+” is removed
from the SIPtelephone-subscriber part, as are any visual separators “-” and “.". The pause “p”

is replaced with “,".

url-ID

The SIP-URL part of the SIP address is copied verbatim tathéD parameter. If the SIP URL
exceeds 512 bytes in size, the IWF generates the SIP status 414 (Address too long).

email-1D

The user andhost parts are used to generate an email identifier, asigei@host, which is
stored in theemail-ID field of AliasAddress. If the size exceeds 512 characters, the IWF gener-

ates the SIP status 414 (Address Too Long).

transport-1D

If the host part of the SIP-URL is indicated as a dotted quad, e.g., 192.1.2.3, itis translated into a
transport-ID. If a port parameter is present in the SIP address, the number is used. Otherwise, the
port number depends on the context. For example, for the destination address oSH.B2B

messages, it is set to 1720, otherwise it is set to 0.

Although a numeric IP address requires no further address resolution, it is worth
noting that other fields (e164, url-ID, h323-ID) are also needed. If the destination
is a VolP gateway, for example, then an Internet telephony gateway destination is

mapped from the e164 field or the called party humber.

323

Examples

e The SIP Address “sip:j.doe@big.com” is converted to an H.323 Address sequence with
three elements{ h323-ID = “sip:j.doe@big.com”, url-ID = “sip:j.doe@big.com”, email-
ID = "“j.doe@big.com”}

e The SIP Address “sip:+1-212-555-1212:1234@gateway.com; user=phone” is converted
to the H.323 Address: { el64 = “12125551212", h323-ID = *“sip:+1-212-555-
1212:1234@gateway.com”, url-ID = “sip:+1-212-555-1212:1234@gateway.com”, email-
ID =“+1-212-555-1212:1234@big.corh”

e The SIP Address “sip:alice@10.1.2.3” is converted to H.323 Addre$s:h323-
ID = “sip:alice@10.1.2.3", url-ID = “sip:alice@10.1.2.3", transport-ID = IPAddress
10.1.2.3:1720, email-ID = “alice@10.1.2.3"

e The SIP Address “A. Belksip:a.g.bell@bell-tel.cont is converted to H.323 Address:
{ h323-ID = "A. Bell <sip:a.qg.bell@bell-tel.cort, url-ID = “sip:a.g.bell@bell-tel.com”,
email-ID = “A. Bell <a.g.bell@bell-tel.com” }

D.2.2 Converting H.323 Addresses to SIP Addresses

In H.323, addresses are typically a sequence of Alias Addresses (referred to as H.323 addresses
in this chapter). Since it is not possible to convert all the different representations of the address
to a single SIP Address, the IWF will have to drop some of the addresses. However, ainiWF
try more than one converted addresses either sequentially or in parallel.

The conversion is done in the following order. If the conversion succeeds in one step,
the conversion concludes and the remaining steps are ignorecurHia is present and it is a
SIP-URL, then it is used as is in the SIP Address. Ifr@823-ID is present and it can be parsed
as a validSIP-Address, it is used. This is needed when talking to an H.323 terminal running
version 1.0. If thetransport-ID is present and it does not identify the IWF, then it forms the
hostport portion of the SIP URL and the user portion is constructed usB&3-1D or e164. If
theemail-ID is present, then it is used in the SIP-URI. Tdmeail-ID is prefixed by the scheme

name Sip:”.

324

If all these efforts fail, then the IWMAY attempt to construct a legal SIP Address using
the information available. For exampled23-ID may become thelisplay-name, €164 may

become theiser andhost may be some default domain name.

D.3 Detailed Description of IWF Behavior

This section describes how messages are processed by a SIP-H.323 signaling IWF. The discus-
sion is split into two subsections, with SIP-originated requests discussed in Section D.3.1 and
H.323-originated requests in Section D.3.2. Only fields relevant to the conversion are presented
here. Other parameters are specific to either H.323 or SIP and can be generated by the respective
protocol engine in the IWF without conversion.

The IWF maintains, apart from other call-state information, the capability sets and oper-
ating mode for each call. Capability sets are maintained for each H.323 and SIP endpoint, both
receive and transmit directions. Operating mode contains the modes in each direction (SIP to
H.323 and H.323 to SIP).

D.3.1 SlIP-originated Requests
IWF ReceivesREGISTER

The IWF sends a RARRQ message to the H.323 GK, where ttalSignalAddress is the
address of the IWF, thierminalType is set to “gateway” and thierminalAlias is mapped from
theTo header of th®ISTER request.

The IWF stores the SIEontact header field. A “200 OK” SIP status response is sent

after receiving a RARCF message.

IWF ReceivesINVITE for a New Call

The IWF MAY respond with a 100 (Trying) response to the SIP entity that sentNKETE
request. It stores the SDP information as the terminal’s SIP capability and converts the capability

to H.245 format.

325

If the IWF is registered with a gatekeeper, sends a RRE) message to the gatekeeper,
where thedestinationinfo anddestCallSignalAddress is derived from thelo SIP header, the
srcinfo is derived from thé&rom SIP header field ansfcCallSignalAddress is the call signaling
address of the IWF itself. The gatekeeper assigns an endpointldentifier during registration. That
value of endpointldentifier is used in tkadpointldentifier field of theARQ message.

Next, the IWF should receive either a RAEF or ARJ message. If al\CF message
is received, establish a Q.931 channel as described below. ARdnmessage is received, the

behavior depends on tlieason parameter:

CalledPartyNotRegistered : The IWF responds with 404 (Not Found).

callerNotRegistered : The IWFMAY register, witha RARRQ message, the SIP address with
the gatekeeper and then retransmit the RAS request, witbrithgointldentifier returned

in RCF. Alternatively, itMAY send a 400 (Caller not registered) response to the SIP entity.
incompleteAddress : Send 484 (Address Incomplete) response to SIP entity.

Other reasons: Send 400 (H.323 translation failure) response to SIP entity.

If the IWF times out waiting for an ARQ response, it sends a SIP 504 (Gateway time-out)
response.

If the IWF is not registered with a gatekeeper and it is able to resolve the SIP address to
a H.323 address or if the IWF is registered and has received an ACF for the registration request
from the gatekeeper, the IWF sends a Q.SHTUP message to the H.323 entity, where the
sourceAddress is derived from the SIFFrom header, thelestinationAddress is derived from
the SIPTo header or from the RAS ACF responsiestCallSignalAddress is derived from the
RAS ACF response or from th&o SIP header. TheemoteExtensionAddress is copied from
RAS ACF if present or extracted fromio SIP header if possiblesourceCallSignalAddress
is the call signaling transport address of the IM#stStart PDUs are mapped from the session
description in théNVITE message body.

Each SDP payload type entry is converted to an OLC message. All the payload types

on the SDP same media description line have the same session id in the OLC messages. This

326

identifies them as belonging to the same group and the receiving H.323 entity will select one of
these.

If the IWF receives a Q.93CallProceeding message, it sends a 100 (Trying) response
to the SIP entity, if not already sent. If fastStart PDUs are present, it stores them.

If the IWF receives a Q.93Alerting message, it sends a 180 (Alerting) response to the
SIP entity, indicating that the final destination is ringing. If fastStart PDUs are present, it stores
them.

If the IWF receives a Q.93Connect message, the behavior depends on whetlieisi
Start indication is present.

If a FastStart indication is present, the IWF maps the received OLCs to the SDP payload
types contained in the originBVITE request. Format a new SDP packet with more constrained
media description and correct media transport address of the H.323 entity. Now each media
description line will contain a single payload type, depending on which OLC PDUs are present.
The operating mode and H.323 capability set are set to this reduced set of payloads.

The SDP message is sent in a 200 (OK) response. The IWF then waits faCHKe
request from the SIP entity. If the IWF times out, it declares the call closed and terminates the
H.323 call. Once a®\CK has been received, the IWF may proceed with other H.245 signaling
(CESE, RTDSE and so on).

If the H.323 entity does not suppdrastStart, the IWF proceeds with H.245 signaling as
described below. First, it sends a TCS to the the H.323 entity and uses the stored SIP capability
set to generate the H.245 capabilities.

If the IWF receives an H.245 TCS message, it updates the H.323 capability set and cal-
culates maximal intersection of H.323 and SIP capability sets (callhisDerive a suitable
operating mode frond’ (say, M). For each element i/ (for the data from the SIP UA to the
H.323 terminal), send an H.245 OLC message to the H.323 entity. Use the transport address of
the SIP capability set, derived from the SDP received in the origiMITE message.

If the IWF receives a©OLC message and the logical channel is present in the operating
mode from the H.323 terminal to the SIP UA, the IWF send©agcAck to the H.323 terminal.

The OLCAck contains the transport address from the SIP capability set, again derived from the

327

SDP in theINVITE message body. If the logical channel is not present in that operating mode,
the IWF sends a®LCReject.

Once the IWF has received &LCAck or OLCRej for all outstandingOLC requests,
it updates the operating mode and sends a 200 (OK) response to the SIP entity. The session
description in that response is formed using the new operating mode and the transport addresses
received in the H.24®LCAcks.

The IWF should wait for théACK request from the SIP entity. If the IWF times out, it
should close the H.323 call. This concludes the description of the non-FastStart handling.

If, at any time, the IWF receives a Q.9BkleaseComplete message, a H.323 call could
not be established. The IWF sends a 400 (Client Failure) with reason phrase “H.323 call failed”.

If the Q.931SETUP times out, the IWF sends a 504 (Gateway time-out) response.

If the SIP address is not resolved to an H.323 address, send a 501 (Not Implemented)

response to SIP entity.

IWF ReceivesINVITE for Existing Call

e Update the SIP capability set.

e Recalculate the operating mode, minimizing changes. An H\2d&e Request message
is sent if the operating mode has changed. If Made Request fails, either close the

media channel or the call.

IWF ReceivesBYE Request

The IWF sends an H.24Endsession to the H.323 entity. Upon receipt of a response or on
timeout, the IWF sends a Q.9%ReleaseComplete to H.323 entity. If the call was admitted by
a GK, send a RA®RQ (Disengage Request) message to the GK.

IWF ReceivesOPTIONS Request

There is no equivalent message in H.323 to query H.323 capabilities without establishing the call.

328

D.3.2 H.323-Originated Requests
IWF Receives RASGRQ

The IWF sends a RA&CF (Gatekeeper Confirm) responseG&Q (Gatekeeper Request) only

if the IWF also contains a gatekeeper implementation.

IWF Receives RASRRQ

This is possible only if the IWF also contains a gatekeeper implementation. On recBRI(Df
(Registration Request) the IWF sends a REEGISTER message to the SIP server whereThe
SIP header field is derived from therminalAlias parameter; th€ontact SIP header field indi-
cates the IWF’s location. TheallSignalAddress received in RRQ message is stored internally
by the IWF. The IWF may send multipREGISTER requests if the sequenceterminalAlias
can be mapped to multiple SIP addresses
Once the IWF receives a 2xx response to REGISTER, it sends a RARCF (regis-
tration confirmation) message to the H.323 entity. If it receives any other status response or the

REGISTER request times out, the IWF sends a RRJ (registration reject) to the H.323 entity.

IWF Receives RASARQ

This is possible only if the IWF also contains a gatekeeper implementation. Receipt of this
message indicates that the H.323 entity knows that the destination is reachable via this IWF. One
simple implementation is to accept the admission request givingah®ignalAddress of the

IWF itself. Alternatively, a procedure similar to that given for RRBQ, below, can be followed.

IWF Receives RASLRQ

If the IWF receives a RAS.RQ (Location Request) message, the IWF send©O®TIONS
message to the SIP entity, where the SIP entity address is resolved from the H.323 address.
TheTo SIP header field is derived from tliestinationAddress. The IWFMAY send multiple

forking OPTIONS requests if the sequencedsstinationAddresses can be mapped to multiple

SIP addresses.

329

If it receives a 2xx response for t@PTIONS request, it sends a RASCF message to
the H.323 with theCallSignalAddress of the IWF itself. If any other response is received or the
request times out, the IWKHAY choose to remain silent or it may send a RIASJ to the H.323

entity.

IWF Receives a Q.931Setup

The IWF generates an ARQ/ACF sequence if required here as per H.323 standard. However, that
is local to the H.323 stack and does not affect translation.

If fastStart is present, convert it to H.323 capability set, else build some default H.323
capability set. The IWBMAY send a Q.93LCallProceeding message to H.323 entity.

The IWF then sends dNVITE, where theTo SIP header field is derived from the Q.931
destinationAddress and/ordestCallSignalAddress. If destinationAddress is the IWF itself,
then useremoteExtensionAddress. The From SIP header field is derived frosourceAd-
dress and/orsrcCallSignalAddress. The session description is constructed from the H.323
capability set.

If the IWF receives a 2xx response for ttVITE, it updates the SIP capability set using
the session description in the response body. It then sends a Q@8ilect message to the
H.323 entity.

Then, the IWF sends alCK request to the SIP entity.

Then, it sends an H.245 TCS to the H.323 entity using the SIP capability set.

If it receives a TCS, it updates the H.323 capability set and calculates the maximal in-
tersection of the H.323 and SIP capability sets, cafledFrom C, the IWF derives a suitable
operating mode (say/). For each element id/ in the direction from SIP to H.323, send a
H.245 OLC to the H.323 entity. The OLC messages use the transport addresses of the SIP capa-
bility set, derived from the session description in the 2xx response body.

If the IWF receives a®LC and the logical channel is present in the operating mode from
H.323 to SIP, it responds with adLCAck. The OLCAck uses the transport addresses of the
SIP capability set. If the logical channel is not present in the operating mode, the IWF sends an

OLCReject

330

Once the IWF has receivédl CAck or OLCRej for all the requests, it updates the oper-
ating mode. Then, the IWF sends alMYITE. The session description is formed using the new
operating mode if it is different from what was sent in the filVITE message and the transport
addresses received DLCAcks. The IWF should wait for a 2xx response from the SIP entity
and respond with aACK request. If it times out or if it fails, it should close the call.

If the IWF receives a 180 (Alerting) SIP response, it sends a QM&ing message to
the H.323 entity.

If the IWF receives any other 1xx SIP response, it sends a QCg#Proceeding mes-
sage to H.323, but only if one was not already sent for this call.

If no response is received or a failure response is received, the IWF sends aR@931

leaseComplete message to the H.323 entity.

IWF Receives Mode Request or Change in Logical Channels

Update operating modes, Send¢ITE to SIP entity. If that fails then reject the Mode Request
or Open Logical Channel request.

IWF Receives H.245EndSession

If the IWF receives a H.24EndSession, it closes the H.245 call. Send H.2EfdSession and
Q.931ReleaseComplete to H.323 entity and send RABRQ to gatekeeper if it admitted the
call.

IWF Receives Q.931ReleaseComplete

If the IWF receives a Q.93ReleaseComplete, the H.323 side of the call is closed. The IWF
sends BYE to the SIP entity if the call has been established.

IWF Receives RASDRQ

If the call is active, close it. Send RASCF (disengage confirm) to H.323 entity.

331

IWF Receives RASURQ

If the IWF receives a RA®RQ (unregister request) message, the behavior depends on whether
the IWF also acts as a gatekeeper. If the IWF also contains a gatekeeper, unregister the endpoint
as specified by RAS. Otherwise the request must have come from a gatekeeper. Close all the
associated calls on both SIP and H.323 sides and send alURAS(unregister confirm) to the

H.323 entity.

3GPP
AAA
ACD
ACL
API
ARP
B2BUA
BHCA
CAN
CaGl
CINEMA
CPL
CPS
CPU
DHCP
DHT
DID
DNS

Appendix E

Glossary

Third Generation Partnership Project
Authentication, Authorization and Accounting
Automatic Call Distribution
Access Control List
Application Program Interface
Address Resolution Protocol
Back-to-Back User Agent
Busy Hour Call Arrivals (or Attempts)
Content Addressable Network
Common Gateway Interface
Columbia InterNet Extensible Multimedia Architecture
Call Processing Language

Calls Per Second
Central Processing Unit
Dynamic Host Configuration Protocol
Distributed Hash Table
Direct Inward Dialing

Domain Name System (or Service or Server)

332

333

DoS Denial of Service (attack)

DTD (XML) Document Type Definition

DTMF Dual-Tone Multiple Frequency

ENUM Telephone Number Mapping

FIA (MoiceXML) Form Interpretation Algorithm

GMT Greenwich Mean Time

GSTN Global (or Global) Switched Telephone Network (same as PSTN)
H.323 ITU-T recommendation for multimedia communication over packet networks
HTML Hyper-Text Markup Language

HTTP Hyper-Text Transport Protocol

MD5 Message Digest version 5

IETF Internet Engineering Task Force

IM Instant Message (or Messaging)

IMS (3GPP’s) IP Multimedia Subsystem

I/O (Device) input and output

I0S (Cisco) Internetwork Operating System

P Internet Protocol

IPv6 IP version 6

ISDN Integrated Services Digital Network

ISP Internet Service Provider

ITU International Telecommunications Union

ITU-T ITU - Telecommunication standardization sector
ITSP Internet Telephony Service Provider

IVR Interactive Voice Response

LAN Local Area Network

LESS Language for End System Services

LDAP Lightweight Directory Access Protocol

MAC Medium (or Media) Access Control (or link layer)

MIB Management Information Base

MIME
MOS
MTBF
MTTR
NAPTR
NAPT
NAT
P2P
PBX
PC
PCM
PIN
POSIX
POTS
PSTN
PUT
QoS
RADIUS
RAT
RPC
RPS
RTP
RTCP
RTSP
SAP
SDK
SDP
SHA
SIP

Multipurpose Internet Mail Extension

Mean Opinion Score

Mean Time Between Failures

Mean Time To Recover

(DNS) Naming Authority Pointer

Network Address and Port Translator (see NAT)
Network Address Translator

Peer-to-Peer

Private Branch eXchange (telephone switch)
Personal Computer

Pulse Code Modulation

Personal Identification Number

The Portable Operating System Interface
Plain Old Telephone Service (also PSTN)
Public Switched Telephone Network

Primary User Table

Quality of Service

Remote Authentication in Dial-In User Service
Robust Audio Tool

Remote Procedure Call

Registrations Per Second

Real-time Transport Protocol

Real-time Transport Control Protocol (also RTP)
Real Time Streaming Protocol

Session Announcement Protocol

Software Development Kit

Session Description Protocol

Secure Hash Algorithm (also SHA1)

Session Initiation Protocol

334

335

SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol (also RPC)
SRV (DNS) Service resource record

SQL Structured Query Language

STUN Simple Traversal of UDP through NAT
Tcl Tool Command Language

TCP Transmission Control Protocol

TLS Transport Layer Security

TRIP Telephony Routing over IP

TTL Time-To-Live

TURN Traversal Using Relay NAT

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

URI Universal Resource Identifier

URL Universal Resource Locator

VNC Virtual Network Computing

VoiceXML Voice eXtensible Markup Language
XML eXtensible Markup Language

[1]

2]

[3]

[4]

[5]

[6]

336

Appendix F
Bibliography

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for

real-time applications,” RFC 1889, Internet Engineering Task Force, Jan. 1996.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for

real-time applications,” RFC 3550, Internet Engineering Task Force, July 2003.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler, “SIP: session initiation protocol,” RFC 3261, Internet Engineering

Task Force, June 2002.

H. Schulzrinne and J. Rosenberg, “Internet telephony: Architecture and protocols — an
IETF perspective,Computer Networks and ISDN Systendsl. 31, pp. 237-255, Feb.
1999.

International Telecommunication Union, “Network grade of service parameters and tar-
get values for circuit-switched services in the evolving ISDN,” Recommendation E.721,

Telecommunication Standardization Sector of ITU, Geneva, Switzerland, May 1999.

F. Schmidt, F. G. bpez, K.-D. Hackbarth, and A. Cuadra, “An analytical cost model for
the national core network,” consultative document, Wissenschaftliches Insiitiiom-

munikationsdienste, Apr. 1999.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

337

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
“Hypertext transfer protocol — HTTP/1.1,” RFC 2616, Internet Engineering Task Force,
June 1999.

H. Schulzrinne and J. Rosenberg, “The session initiation protocol: Internet-centric signal-

ing,” IEEE Communications Magazin®ol. 38, Oct. 2000.

H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle, “SIPstone - benchmarking SIP
server performance,” Technical Report CUCS-005-02, Department of Computer Science,

Columbia University, New York, New York, Mar. 2002.

G. Patel and S. Dennett, “The 3GPP and 3GPP2 movements toward an All-IP mobile
network,”|EEE Personal Communications Magazinel. 7, Aug. 2000.

M. Martin, “Input 3rd-generation partnership project (3GPP) release 5 requirements on the

session initiation protocol (SIP),” RFC 4083, Internet Engineering Task Force, May 2005.

D. Milgjicic, V. Kalogeraki, R. M. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, and Z. Xu, “Peer-to-peer computing,” technical report HPL-2002-57
20020315, Technical Publications Department, HP Labs Research Library, Mar. 2002.
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.html.

K. Singh and H. Schulzrinne, “Peer-to-peer internet telephony using SINO8SDAV
2005 (Skamania, Washington), June 2005.

K. Singh and H. Schulzrinne, “Peer-to-peer internet telephony using SIP,” Tech. Rep.
CUCS-044-04, Department of Computer Science, Columbia University, New York, NY,
Oct. 2004.

S. Baset, H. Schulzrinne, E. Shim, and K. Dhara, “Requirements for SIP-based Peer-to-
Peer Internet Telephony,” Internet Draft draft-baset-sipping-p2preq-00, Internet Engineer-

ing Task Force, Oct 2005. work in progress.

A. Johnston, “SIP, P2P, and Internet Communications,” Internet Draft draft-johnston-

sipping-p2p-ipcom-01, Internet Engineering Task Force, Mar 2005. work in progress.

338

[17] D. Bryan, B. Lowekamp, and C. Jennings, “A P2P Approach to SIP Registration,” Internet
Draft draft-bryan-sipping-p2p-02, Internet Engineering Task Force, Mar 2006. work in

progress.
[18] “Kazaa: peer-to-peer file sharing software application.” http://www.kazaa.com.
[19] “Gnutella: peer-to-peer file sharing software application.” http://www.gnutella.com.

[20] “Zero configuration networking (zeroconf).” http://www.ietf.org/html.charters/zeroconf-

charter.html.
[21] “Skype: Free internet telephony that just works.” http://www.skype.com.

[22] I. Stoica, R. Morris, D. R. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A scal-
able peer-to-peer lookup service for Internet applicationsSIBCOMM Symposium on

Communications Architectures and Proto¢dqSan Diego, CA, USA), ACM, Aug. 2001.

[23] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and H. Bal-

akrishnan, “Chord: A scalable peer-to-peer lookup protocol for internet applications,

IEEE/ACM Transactions on Networkingol. 11, pp. 17-32, Feb. 2003.

[24] J. Lennox, H. Schulzrinne, and J. Rosenberg, “Common gateway interface for SIP,” RFC

3050, Internet Engineering Task Force, Jan. 2001.

[25] J. Schwartz, “Collaboration: More hype than realityjternetWeek (online newsletter)

Oct. 1999. http://www.internetweek.com/trans/tr99-bp1.htm.

[26] J. Lennox, “Services for internet telephony,” PhD. thesis, Department of
Computer Science, Columbia University, New York, New York, Jan. 2004.

http://www.cs.columbia.edUlennox/thesis.pdf.

[27] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Rathasamy, S. Shenker, I. Stoica, and
H. Yu, “OpenDHT: a public DHT service and its useSJGCOMM Computer Communi-
cation Review\Vol. 35, no. 4, pp. 73-84, 2005.

339

[28] J. Rosenberg and H. Schulzrinne, “Session initiation protocol (SIP): locating SIP servers,”

RFC 3263, Internet Engineering Task Force, June 2002.
[29] MySQL AB Co., "MySQL home page,” http://www.mysqgl.com.

[30] X. Wu and H. Schulzrinne, “sipc, a multi-function SIP user agent,7ih IFIP/IEEE
International Conference, Management of Multimedia Networks and Services (MMNS)

pp. 269-281, IFIP/IEEE, Springer, Oct. 2004.
[31] X.Wu, “Columbia university sip user agent (sipc).” http://www.cs.columbia.edu/IRT/sipc.

[32] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” RFC
2326, Internet Engineering Task Force, Apr. 1998.

[33] K. Singh and H. Schulzrinne, “Unified messaging using SIP and RTSRP ifelecom
Services WorkshggAtlanta, Georgia), pp. 31-37, Sept. 2000.

[34] K. Singh, G. Nair, and H. Schulzrinne, “Centralized conferencing using SIRiitarnet

Telephony WorkshggNew York), Apr. 2001.

[35] S. McGlashan, D. Burnett, J. Carter, S. Tryphonas, J. Ferrans, T. User, B. Lucas, and
B. Porter, “Voice extensible markup language (VoiceXML) version 2.0,” tech. rep., World

Wide Web Consortium (W3C), Feb. 2003. http://www.w3.org/TR/voicexml20/.

[36] K. Singh, A. Nambi, and H. Schulzrinne, “Integrating voicexml with SIP services.,” in
ICC 2003 - Global Services and Infrastructure for Next Generation Netwokehorage,
Alaska), May 2003.

[37] International Telecommunication Union, “Packet based multimedia communication sys-
tems,” Recommendation H.323, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Feb. 1998.

[38] International Telecommunication Union, “Narrow-band visual telephone systems and ter-
minal equipment,” Recommendation H.320, Telecommunication Standardization Sector of

ITU, Geneva, Switzerland, May 1999.

340

[39] International Telecommunication Union, “Terminal for low bit-rate multimedia commu-
nication,” Recommendation H.324, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Feb. 1998.

[40] H. Schulzrinne and J. Rosenberg, “A comparison of SIP and H.323 for Internet telephony,”
in Proc. International Workshop on Network and Operating System Support for Digital

Audio and Video (NOSSDACambridge, England), pp. 83—86, July 1998.

[41] 1. Dalgic and H. Fang, “Comparison of H.323 and SIP for IP telephony signaling,” in
Photonics East(Boston, Massachusetts), SPIE, Sept. 1999.

[42] K. Singh and H. Schulzrinne, “Interworking between SIP/SDP and H.323,TPin
Telephony Workshop (IPtelBerlin, Germany), Apr. 2000.

[43] H. Schulzrinne and J. Rosenberg, “Signaling for Internet telephonitémnational Con-

ference on Network Protocols (ICNRAustin, Texas), Oct. 1998.

[44] T.Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): generic

syntax,” RFC 2396, Internet Engineering Task Force, Aug. 1998.

[45] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part one:
Format of internet message bodies,” RFC 2045, Internet Engineering Task Force, Nov.

1996.

[46] M. Handley and V. Jacobson, “SDP: session description protocol,” RFC 2327, Internet
Engineering Task Force, Apr. 1998.

[47] J. Rosenberg and H. Schulzrinne, “An offer/answer model with session description proto-

col (SDP),” RFC 3264, Internet Engineering Task Force, June 2002.

[48] J. Rosenberg, J. Lennox, and H. Schulzrinne, “Programming Internet telephony services,”

IEEE Network\Vol. 13, pp. 42—-49, May/June 1999.

[49] J. Lennox, X. Wu, and H. Schulzrinne, “Call processing language (CPL): a language for
user control of internet telephony services,” RFC 3880, Internet Engineering Task Force,

Oct. 2004.

341

[50] J. Rosenberg, “A Framework for Conferencing with the Session Initiation Protocol (SIP),”

RFC 4353, Internet Engineering Task Force, feb 2006.
[51] UCB/LBNL, “vic — video conferencing tool.” http://www-nrg.ee.lbl.gov/vic/.

[52] M. A. Sasse, V. J. Hardman, |. Kouvelas, C. E. Perkins, O. Hodson, A. I. Watson, M. Han-
dley, and J. Crowcroft, “RAT (robust-audio tool),” 1995.

[53] J. Highfield and K. Hasler, “Whiteboard tool,” 1995. http:/iww-

mice.cs.ucl.ac.uk/multimedia/software/wbd/.

[54] M. Handley, C. Perkins, and E. Whelan, “Session announcement protocol,” RFC 2974,
Internet Engineering Task Force, Oct. 2000.

[55] H. Schulzrinne and K. Arabshian, “Providing emergency services in Internet telephony,”

IEEE Internet Computingvol. 6, pp. 39-47, May 2002.

[56] H. Bryhni, E. Klovning, and @ivind Kure, “A comparison of load balancing techniques for

scalable web serverdEEE Networks\ol. 14, July 2000.

[57] K. Suryanarayanan and K. J. Christensen, “Performance evaluation of new methods of
automatic redirection for load balancing of apache servers distributed in the Internet,” in

IEEE Conference on Local Computer Networid&a, Florida, USA), Nov. 2000.

[58] O. Damani, P. Chung, Y. yu Huang, C. M. Kintala, and Y. Wang, “ONE-IP: techniques for
hosting a service on a cluster of machiné&sgmputer Networksvol. 29, pp. 1019-1027,
Sept. 1997.

[59] D. Oppenheimer, A. Ganapathi, and D. Patterson, “Why do internet services fail, and what
can be done about it?,” iith USENIX Symposium on Internet Technologies and Systems

(USITS '03) (Seattle, WA), Mar. 2003.

[60] A.C. Snoeren, D. Andersen, and H. Balakrishnan, “Fine-grained failover using connection
migration,” inUSENIX Symposium on Internet Technologies and Sys{8ans Francisco),
Mar. 2001.

342

[61] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and implementation of zap: A
system for migrating computing environments,Rroceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI 2@@aston, MA), Dec. 2002.
pp. 361-376.

[62] High-Availability Linux Project, http://www.linux-ha.org/.

[63] Cisco Systems, Failover configuration for LocalDirector,

http://www.cisco.com/warp/public/cc/pd/cxsr/400/tech/laagf. htm.

[64] G. Hunt, G. Goldszmidt, R. P. King, and R. Mukherjee, “Network dispatcher: a connec-
tion router for scalable Internet service€dmputer Networks/ol. 30, pp. 347-357, Apr.
1998.

[65] C.-L. Yang and M.-Y. Luo, “Efficient support for content-based routing in web server
clusters,” in2nd USENIX Symposium on Internet Technologies and Sys(Bmslder,
Colorado, USA), Oct 1999.

[66] Akamai Technologies, Inc. http://www.akamai.com.

[67] A.Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for specifying the location of services
(DNS SRV),” RFC 2782, Internet Engineering Task Force, Feb. 2000.

[68] M. Mealling and R. Daniel, “The naming authority pointer (NAPTR) DNS resource
record,” RFC 2915, Internet Engineering Task Force, Sept. 2000.

[69] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic load balancing on web-server sys-

tems,”|IEEE Internet Computingvol. 3, no. 3, pp. 28—-39, 1999.

[70] N. Ohlmeier, “Design and implementation of a high availability SIP server architecture,”
Thesis, Computer Science Department, Technical University of Berlin, Berlin, Germany,
July 2003.

[71] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and Mxén, “Reliable IP telephony ap-
plications with SIP using RSerPool,” World Multiconference on Systemics, Cybernetics

and Informatics (SCJ)(Orlando, USA), July 2002.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

343

M. Tuexen, Q. Xie, R. Stewart, M. Shore, J. Loughney, and A. Silverton, “Architecture for
reliable server pooling,” Internet Draft draft-ietf-rserpool-arch-10, Internet Engineering

Task Force, Jan 2006. work in progress.

M. Tuexen, Q. Xie, R. Stewart, M. Shore, L. Ong, J. Loughney, and M. Stillman, “Re-
guirements for reliable server pooling,” RFC 3237, Internet Engineering Task Force, Jan.

2002.

L. G. M. Bozinovski and R. Prasad, “A state-sharing mechanism for providing reliable SIP
sessions,” inbth International Conference on Telecommunications in Modern Satellite,

Cable and Broadcasting Servicéslis, Serbia and Montenegro), Oct. 2003.

H. S. M. Bozinovski and R. Prasad, “Maximum availability server selection policy for ses-
sion control systems based on 3GPP SIP3é@venth International Symposium on Wireless

Personal Multimedia Communication®adova, Italy), Sept. 2004.

A. Srinivasan, K. G. Ramakrishnan, K. Kumaran, M. Aravamudan, and S. Naqvi, “Optimal
design of signaling networks for Internet telephony,Piroceedings of the Conference on

Computer Communications (IEEE Infocqr(Wel Aviv, Israel), Mar. 2000.

R. Sparks, “The session initiation protocol (SIP) refer method,” RFC 3515, Internet Engi-
neering Task Force, Apr. 2003.

J. Rosenberg, “Requirements for management of overload in the session initiation proto-
col,” Internet Draft draft-rosenberg-sipping-overload-reqs-00, Internet Engineering Task

Force, Feb 2006. work in progress.
Emic Cluster for MySQL, http://www.emicnetworks.com.

J. Janak, “SIP proxy server effectiveness,” Master's Thesis, Department of Computer Sci-

ence, Czech Technical University, Prague, Czech, May 2003.

V. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An efficient and portable web server,” in

USENIX Annual Technical Conferen¢dontery, California, USA), Jun 1999.

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

344

M. Welsh, D. Culler, and E. Brewer, “SEDA: an architecture for well-conditioned, scalable
Internet services,” ilBymposium on Operating Systems Principles (SQ&PRateau Lake

Louise, Canada), ACM, Oct. 2001.

R. Behren, J. Condit, F. Zhou, G. Necula, and E. Brewer, “Capriccio: scalable threads for
internet services,” iIMCM Symposium on Operating Systems Principles (SA8BIton

Landing, NY), 2003.

S. Mishra and R. Yang, “Thread-based vs event-based implementation of a group commu-
nication,” in Proceedings of the 12th IEEE International Parallel Processing Symposium
and 9th IEEE Symposium on Parallel and Distributed Processing (IPD@8)ando, FL),

Apr 1998.

J. Ousterhout, “Why threads are a bad idea (for most purposed)SENIX Technical
Conference (Invited TalkfAustin, TX), Jan. 1996.

Cisco IP phone 7960, Release 2.1, http://www.cisco.com.

J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and the effectiveness
of caching,” INACM SIGCOMM Internet Measurement Worksh{an Francisco, Cali-
fornia), Nov. 2001.

K. Singh, W. Jiang, J. Lennox, S. Narayanan, and H. Schulzrinne, “CINEMA: columbia
internet extensible multimedia architecture,” technical report CUCS-011-02, Department

of Computer Science, Columbia University, New York, New York, May 2002.

W. Jiang, J. Lennox, S. Narayanan, H. Schulzrinne, K. Singh, and X. Wu, “Integrating
Internet telephony servicedEEE Internet Computingvol. 6, pp. 64—72, May 2002.

J. Ousterhout, “Tcl: A universal scripting language,USENIX Symposium on Very High
Level LanguagegSanta Fe, New Mexico), Oct. 1994. Invited Talk.

P. Srisuresh and D. Gan, “Load sharing using IP network address translation (LSNAT),”
RFC 2391, Internet Engineering Task Force, Aug. 1998.

345

[92] W. Zhao and H. Schulzrinne, “Dotslash: A self-configuring and scalable rescue system
for handling web hotspots effectively,” imternational Workshop on Web Caching and

Content Distribution (WCW)Beijing, China), Oct. 2004.

[93] B. Jenkins, “Algorithm alley,” Dr. Dobb’s Journal Sept. 1997.
http://burtleburtle.net/bob/hash/doobs.html.

[94] D. R. Karger, A. H. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. lwamoto, B.-
J. J. Kim, and L. Matkins, “Web caching with consistent hashi@pimputer Networks
Vol. 31, pp. 1203-1213, May 1999.

[95] I. Jackson, “GNU adns: advanced, easy-to-use, asynchronous-capable DNS client library

and utilities.” http://www.chiark.greenend.org.Ulkdn/adns/.
[96] “SIP express router (ser): a high performance free sip server.” http://www.iptel.org/ser.

[97] F. P. Duffy and R. A. Mercer, “A study of network performance and customer behavior
during-direct-distance-dialing call attempts in the USBgIl System Technical Journal

Vol. 57, no. 1, pp. 1-33, 1978.

[98] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Resilient overlay net-

works,” in 18th ACM SOSRBanff, Canada), Oct. 2001.

[99] J. Toga and J. Ott, “ITU-T standardization activities for interactive multimedia communi-
cations on packet-based networks: H.323 and related recommenda@Gonsguter Net-

works and ISDN System¢ol. 31, pp. 205-223, Feb. 1999.

[100] Z. Ge, D. Figueiredo, S. Jaiswal, J. F. Kurose, and D. Towsley, “Modeling peer-peer file
sharing systems,” itEEE Infocom 2003Mar. 2003.

[101] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-
addressable network,” iBIGCOMM Symposium on Communications Architectures and

Protocols (San Diego, CA, USA), ACM, Aug. 2001.

346

[102] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems,1kP/ACM International Conference on Distributed

Systems Platforms (MiddlewaréHeidelberg, Germany), pp. 329-350, Nov. 2001.

[103] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the evolution of peer-to-
peer systems,” ilCM Conf. on Principles of Distributed Computing (PODlonterey,
CA, USA), ACM, July 2002.

[104] S. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer internet telephony

protocol,” inIEEE INFOCOM 2006(Barcelona, SPAIN), Apr. 2006.

[105] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN - simple traversal of user
datagram protocol (UDP) through network address translators (nats),” RFC 3489, Internet
Engineering Task Force, Mar. 2003.

[106] J. Rosenberg, R. Mahy, and C. Huitema, “Traversal Using Relay NAT (TURN),” Internet
Draft draft-rosenberg-midcom-turn-08, Internet Engineering Task Force, Sep 2005. work

in progress.

[107] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Methodology for Network
Address Translator (NAT) Traversal for Offer/Answer Protocols,” Internet Draft draft-ietf-

mmusic-ice-06, Internet Engineering Task Force, Oct 2005. work in progress.

[108] F. Strauss and S. Schmidt, “P2P CHAT - a peer-to-peer chat protocol,” internet draft, In-

ternet Engineering Task Force, June 2003. Work in progress.
[109] “Groove workspace software.” http://www.groove.net.

[110] “Magi p2p technology being adopted across vertical industries.”

http://www.endeavors.com/PressReleases/partnersl.htm.
[111] “Apple iChat AV: Videoconferencing for the rest of us.” http://www.apple.com/ichat/.
[112] “Nimcat networks.” http://www.nimcatnetworks.com/.

[113] “Popular telephony.” http://www.populartelephony.com/.

347

[114] “SIP beyond voice and video.” http://www.research.earthlink.net/p2p/.

[115] J. Rosenberg, J. Peterson, H. Schulzrinne, and G. Camarillo, “Best current practices for
third party call control (3pcc) in the session initiation protocol (SIP),” RFC 3725, Internet
Engineering Task Force, Apr. 2004.

[116] K. Singh and H. Schulzrinne, “SIPpeer: a session initiation protocol (SIP)-based peer-
to-peer Internet telephony client adaptor,” white paper, Computer Science Department,
Columbia University, New York, NY, Jan 2005. http://www.cs.columbia.edu/IRT/p2p-
sip/papers/sip-p2p-design.pdf.

[117] M. Wahl, T. Howes, and S. Kille, “Lightweight directory access protocol (v3),” RFC 2251,

Internet Engineering Task Force, Dec. 1997.

[118] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and zipf-like dis-
tributions: Evidence and implications,” iRroceedings of the Conference on Computer

Communications (IEEE InfocomNew York), Mar. 1999.

[119] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing in
dynamic structured P2P systems,1TEEE Infocom 2004(Hong Kong), Mar. 2004.

[120] M. Roussopoulos and M. G. Baker, “Practical load balancing for content requests in peer-

to-peer networks,” technical report cs/0209023, arXiv, Sept. 2002.

[121] S.D. Gribble, E. Brewer, J. Hellerstein, and D. Culler, “Scalable, distributed data structures
for Internet service construction,” @perating Systems Design and Implementat{&an

Diego, CA, USA), Usenix, Oct. 2000.
[122] “OpenDHT: a public distributed hash table service.” http://www.opendht.org.

[123] H. Schulzrinne, “Composing Presence Information,” Internet Draft draft-schulzrinne-

simple-composition-00, Internet Engineering Task Force, Jul 2005. work in progress.

[124] R. Mahy, “Connection Reuse in the Session Initiation Protocol (SIP),” Internet Draft draft-

ietf-sip-connect-reuse-04, Internet Engineering Task Force, Jul 2005. work in progress.

348

[125] J. Rosenberg and H. Schulzrinne, “An extension to the session initiation protocol (SIP) for

symmetric response routing,” RFC 3581, Internet Engineering Task Force, Aug. 2003.
[126] “The OpenSSL project.” http://www.openssl.org.

[127] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stew-
art, “HTTP authentication: Basic and digest access authentication,” RFC 2617, Internet

Engineering Task Force, June 1999.

[128] R. Merkle, “A digital signature based on a conventional encryption functidyances in
Cryptology — CRYPTO '87, Lecture Notes in Computer Scieviae 293, pp. 369-378,
1988.

[129] E. Niemi, “Session initiation protocol (SIP) extension for event state publication,” Inter-
net Draft draft-ietf-sip-publish-02, Internet Engineering Task Force, Jan. 2004. Work in

progress.

[130] W. Zhao, H. Schulzrinne, and E. Guttman, “Mesh-enhanced service location protocol

(mslp),” RFC 3528, Internet Engineering Task Force, Apr. 2003.

[131] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service location protocol, version 2,

RFC 2608, Internet Engineering Task Force, June 1999.

[132] K. Arabshian and H. Schulzrinne, “Hybrid hierarchical and peer-to-peer ontology-based
global service discovery system,” Tech. Rep. CUCS-016-05, Columbia University, Apr.
2005.

[133] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, and
H. Weatherspoon, “Oceanstore: An extremely wide-area storage system,” technical report
UCB//CSD-00-1102, U.C. Berkeley, CA, USA, May 1999.

[134] A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. Wallach, X. Bonnaire, P. Sens,
J.-M. Busca, and L. Arantes-Benzerra, “Post: A secure, resilient, cooperative messag-
ing system,” inHotOS IX: The 9th workshop on hot topics in operating systéhisue,
Hawaii, USA), USENIX, May 2003.

349

[135] J. Lennox and H. Schulzrinne, “A protocol for reliable decentralized conferencing,” in

ACM NOSSDAV 20Q3Monterey, California, USC), June 2003.

[136] M. Castro, M. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang, and A. Wol-
man, “An evaluation of scalable application-level multicast built using peer-to-peer over-

lays,” in IEEE Infocom 2003Mar. 2003.

[137] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer multi-
cast,” inSIGCOMM Symposium on Communications Architectures and Pro{d&utts-

burgh,PA), p. 13, Aug. 2002.

[138] M. Castro, P. Druschel, Y. Hu, and A. Rowstron, “Proximity neighbor selection in tree-
based structured peer-to-peer overlays,” technical report MSR-TR-2003-52, Microsoft Re-
search, 2003.

[139] A. Roach, “Session initiation protocol (SIP)-specific event notification,” RFC 3265, Inter-

net Engineering Task Force, June 2002.

[140] J. Rosenberg, “A session initiation protocol (SIP) event package for registrations,” RFC

3680, Internet Engineering Task Force, Mar. 2004.

[141] J. Rosenberg, “Interactive connectivity establishment (ICE): a methodology for nettwork
address translator (NAT) traversal for the session initiation protocol (SIP),” internet draft,

Internet Engineering Task Force, July 2003. Work in progress.

[142] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication across middleboxes,” In-
ternet Draft draft-ford-midcom-p2p-01, Internet Engineering Task Force, Oct. 2003. Work

in progress.

[143] D. Murphy, J. Kelly, K. Curley, J. Vickery, and D. O’Keeffe, “P2p security,” Online Re-
port, Networks and Telecommunications Research Group, Computer Science Department,
Trinity College, Dublin 2, Ireland, Jan. 2003. http://ntrg.cs.tcd.ie/undergrad/4ba2.02-
03/p10.html.

350

[144] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach, “Security for struc-
tured peer-to-peer overlay networks,” @perating Systems Design and Implementation

(Boston, MA), Usenix, Dec. 2002.

[145] P. Biondi and F. Desclaux, “Silver Needle in the Skype,” Mar. 2006.

http://www.blackhat.com/.

[146] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-peer networks,” in
ACM NOSSDAV 20Q3Monterey, California, USC), June 2003.

[147] S. Lee, R. Sherwood, and S. Bhattacharjee, “Cooperative peer groups in NITEZEN
Infocom 2003Mar. 2003.

[148] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for reputation
management in P2P networks,” international World Wide Web Conference (WWW)
(Budapest, Hungary), International World Wide Web Conference Committee, May 2003.

[149] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust for peer-to-peer elec-
tronic communities, IEEE Transactions on Knowledge and Data Engineerivgl. 16,

pp. 843-857, July 2004.
[150] E. Adar and B. A. Huberman, “Free riding on gnutell&jst Monday Vol. 5, Oct. 2000.

[151] E. Sit and R. Morris, “Security considerations for peer-to-peer distributed hash tables,” in
Electronic Proceedings for the 1st International Workshop on Peer-to-Peer Systems (IPTPS

'02), (Cambridge, MA, USA), IEEE, Mar 2002.

[152] A. Gupta, B. Liskov, and R. Rodrigues, “One hop lookups for peer-to-peer overlays,” in
HotOS IX: The 9th workshop on hot topics in operating systéhisue, Hawaii, USA),
USENIX, May 2003.

[153] S. Ratnasamy, S. Shenker, and I. Stoica, “Routing algorithms for DHTS: some open ques-
tions,” in International Workshop on Peer-to-Peer Systems (IPTRSmbridge, MA,
USA), IEEE, Mar. 2002.

351

[154] M. Handley, J. Crowcroft, C. Bormann, and J. Ott, “The internet multimedia conferencing

architecture,” internet draft, Internet Engineering Task Force, July 2000. Work in progress.

[155] S. Bhattacharyya and I. Ed., “An overview of source-specific multicast (SSM),” RFC 3569,
Internet Engineering Task Force, July 2003.

[156] H. W. Holbrook and D. R. Cheriton, “IP multicast channels: EXPRESS support for large-
scale single-source applications,"ShGCOMM Symposium on Communications Architec-

tures and ProtocolgCambridge, Massachusetts), August/September 1999.

[157] Z. Y. Shae and M.-S. Chen, “Mixing and playback of JPEG compressed packet videos,”
in Proceedings of the IEEE Conference on Global Communications (GLOBEQQ)
lando, Florida), pp. 245-249 (08B.03), IEEE, Dec. 1992.

[158] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” RFC

1890, Internet Engineering Task Force, Jan. 1996.

[159] J. Luciani, “Classical IP to NHRP transition,” RFC 2336, Internet Engineering Task Force,
July 1998.

[160] “Apple’s Quicktime real-time streaming media player.” http://www.quicktime.com.
[161] “Realplayer media player.” http://www.real.com.

[162] “Cisco CallManager.” http://www.cisco.com/.

[163] “Nortel multimedia communication server 5100.” http://www.nortelnetworks.com/.
[164] “Skinny call control protocol (SCCP).” http://www.cisco.com.

[165] “CUSeeMe: Cornell University’s video conferencing tool.” http://www.cuseeme.com.
[166] “Lotus Sametime 3.0.” http://www.sametime.com.

[167] “GnhomeMeeting.” http://www.gnomemeeting.org.

[168]

[169]

[170]

[171]

[172]

[173]
[174]
[175]

[176]

[177]

[178]

352

M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, and L. Suchman, “Beyond
the chalkboard: computer support for collaboration and problem solving in meetings,”

Communications ACMVol. 30, pp. 32—47, Jan. 1987.

J. Conklin, “Hypertext: An introduction and survey,” @roupware — software for
computer-supported cooperative wdik. Marca and G. Bock, eds.), IEEE Computer So-

ciety Press, 1992. IEEE Computer, September 1987.

A. Dix, “Computer-supported cooperative work - a framework,” Design Is-
sues in CSCW, Eds. D. Rosenburg and C. Hutchis@pringer Verlag, 1994.

http://www.comp.lancs.ac.uk/computing/users/dixa/papers/cscwframework94/.

A. Dix, “Challenges and perspectives for cooperative work on the webfnihnterna-
tional workshop on CSCW and the W¢Bankt Augustin, Germany), ERCIM/WA4G, Feb.
1996. http://orgwis.gmd.de/projects/W4G/proceedings/challenges.html.

W. Appelt, “WWW based collaboration with the BSCW system,SOFSEM (SOFtware
SEMinar) (Milovy, Czech Republic), pp. 66—78, Springer-Verlag in the Lecture Notes in
Computer Science 1725, Nov. 1999. http://bscw.gmd.de/Papers/SOFSEM99/sofsem.pdf.

“Lotus domino.” http://www.lotus.com.
“Hyperwave.” http://www.hyperwave.com.
“Opentext corporation.” http://www.opentext.com/livelink.

G. Kaiser and S. M. Kaplan, “CSCW and software process. session summary in ninth
international software process workshop: The role of humans in the procedsifitim

International Software Process Workshap. 9-11, Oct. 1994.

M. Muhlhauser, “Interdisciplinary development of an electronic class and conference

room,” Journal of Universal Computer Sciendéol. 2, pp. 694—710, Oct. 1996.

P. Saint-Andre, “Extensible messaging and presence protocol (XMPP): core,” RFC 3920,
IETF, Oct. 2004.

353

[179] E. Schooler, S. Casner, and J. B. Postel, “Multimedia conferencing: Has it come of age?,”
in 24th Hawaii International Conference on System ScigWok 3, (Hawaii), pp. 707-716,
IEEE, Jan. 1991.

[180] S. Yang, S. Yu, J. Zhou, and Q. Han, “Multipoint communications with speech mixing

over IP network,"Computer Communicationsol. 25, pp. 46-55, Jan. 2001.

[181] M. Handel and J. Herbsleb, “What is chat doing in the workplaceRProteedings of ACM
Conference on computer supported cooperative work(CSQVév Orleans, Louisiana,

USA), Nov. 2002.

[182] “VidMid: The video working group of the internet2 middleware initiative.”

http://middleware.internet2.edu/video.

[183] H. Schulzrinne, “Conferencing and collaborative computing, Digstuhl Seminar on
Fundamentals and Perspectives of Multimedia Systéagstuhl Castle, Germany), July
1994.

[184] E. A. Isaacs and J. C. Tang, “What video can and can’t do for collaboration: a case study,”

in ACM Multimedia (Anaheim, California), pp. 199-206, Aug. 1993.

[185] S. McCanne and V. Jacobson, “vic: A flexible framework for packet videcGM Mul-
timedia Nov. 1995.

[186] V. Kumar,MBone: Interactive Multimedia On The Intern&acmillan Publishing (Simon

& Schuster), 1995.
[187] “MeetingPlace.” http://www.meetingplace.net/.

[188] J. Ott, “Teleconferencing in the ITU-T,” IETF, (San Jose, California), Dec. 1994. Mul-
tiparty Multimedia Session Control WG (MMusic), Talk (c).

[189] P. Balaouras, I. Stavrakakis, and L. Merakos, “Potential and limitations of a teleteaching
environment based on H.323 audio-visual communication systéosiputer Networks

Vol. 34, pp. 945-958, Dec. 2000.

354

[190] S. Greenberg and M. Roseman, “Groupweb: A web browser as real-time groupware,” in
Conference on human factors in computing systems, companion, proce€dargouver,

Canada), pp. 271-272, ACM SIGCHI'96, Apr. 1996.

[191] H.-P. Dommel and J. J. Garcia-Luna-Aceves, “Floor control for multimedia conferencing

and collaboration,Multimedia System&/l. 5, no. 1, pp. 23-38, 1997.

[192] P. Koskelainen, H. Schulzrinne, and X. Wu, “A SIP-based conference control framework,”
in Proc. International Workshop on Network and Operating System Support for Digital

Audio and Video (NOSSDAMiami Beach, Florida), pp. 53—61, May 2002.

[193] D. Trossenscalable Group Communications in Tightly Coupled Environmerid the-
sis, University of Technology, Aachen, Germany, Sept. 2000.

[194] F. DePaoliand F. Tisato, “Coordinator: a basic building block for multimedia conferencing
systems,” inProceedings of the IEEE Conference on Global Communications (GLOBE-

COM), (Phoenix, Arizona), pp. 2049-2053 (58.1), IEEE, Dec. 1991.
[195] “pcAnywhere by Symantec, Inc..” http://www.symantec.com/pcanywhere.
[196] “GoToMyPC by Expert City, Inc..” http://www.gotomypc.com/.

[197] International Telecommunication Union, “Multipoint application sharing,” Recommenda-
tion T.128, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Feb.
1998.

[198] T. Ohmori, K. Maeno, S. Sakata, H. Fukuoka, and K. Watabe, “Distributed cooperative
control for application sharing based on multiparty and multimedia desktop conferencing
system: MERMAID,”ACM Computer Communication Revievol. 22, pp. 39-40, Mar.
1992.

[199] “VirtualPlaces.” http://www.vplaces.com/vpnet/index.html.

[200] C. Agboh, “A study of two main IP telephony signaling protocols: H.323 signaling and

SIP; a comparison and a signaling gateway specification,” Master’s thesis, Unversite Libre

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

355

de Bruxelles (ULB), Faciés des Science, @partment Informatique, Brussels, Belgium,

1999. supervised by Eric Manie.

N. Kausar and J. Crowcroft, “An architecture of conference control function®haton-

ics East (Boston, Massachusetts), SPIE, Sept. 1999.

H. Schulzrinne and C. Agboh, “Session Initiation Protocol (SIP)-H.323 Interworking Re-
quirements,” RFC 4123, Internet Engineering Task Force, July 2005.

D. B. Terry and D. C. Swinehart, “Managing stored voice in the etherphone sy#te&i”
Transactions on Computer Systemndsl. 6, pp. 3—-27, Feb. 1988.

P. T. Zellweger, D. B. Terry, and D. C. Swinehart, “An overview of the etherphone system
and its applications,” irend IEEE Conference on Computer Workstatiof®anta Clara,

California), pp. 160-168, Mar. 1988.

P. V. Rangan and D. C. Swinehart, “Software architecture for integration of video ser-
vices in the etherphone environmentZEE Journal on Selected Areas in Communica-

tions Vol. 9, pp. 1395-1404, Dec. 1991.

G. Vaudreuil and G. Parsons, “Voice profile for internet mail - version 2 (vpimv2),” RFC

3801, Internet Engineering Task Force, June 2004.

B. Campbell and R. Sparks, “Control of service context using SIP request-uri,” RFC 3087,
Internet Engineering Task Force, Apr. 2001.

M. R. Civanlar, G. L. Cash, R. V. Kollarits, B.-B. Paul, C. T. Swain, B. G. Haskell, and
D. A. Kapilow, “Videotalks: A comprehensive multimedia conferencing systenBPaicket

Videqg (Sardinia, Italy), May 2000.

H. Vin, P. T. Zellweger, D. C. Swinehart, and P. V. Rangan, “Multimedia conferencing in

the etherphone environmentZEE Computer\Vol. 24, pp. 69-79, Aug. 1991.

P. Koskelainen, J. Ott, H. Schulzrinne, and X. Wu, “Requirements for Floor Control Pro-

tocols,” RFC 4376, Internet Engineering Task Force, jan 2006.

356

[211] O. Novo, G. Camarillo, D. Morgan, and R. Even, “A common conference information data
model for centralized conferencing (XCON),” Internet Draft draft-ietf-xcon-common-data-

model-00, Internet Engineering Task Force, Apr 2006. work in progress.
[212] “Plum voice portals: automated telephony solutions.” http://www.plumvoiceportals.com.
[213] “Open Source VoiceXML Interpreter.” http://www.openvxi.com.
[214] “Talking EMail: voice-enabled email.” http://www.voice3g.com/appblocks.htm.

[215] E. Burger, J. Dyke, and A. Spitzer, “Basic network media services with SIP,” RFC 4240,

Internet Engineering Task Force, Dec 2005.
[216] “TellMe studio.” http://www.tellme.com.

[217] W. Jiang, J. Lennox, H. Schulzrinne, and K. Singh, “Towards junking the PBX: deploying
IP telephony,” inProc. International Workshop on Network and Operating System Support

for Digital Audio and Video (NOSSDAMJPort Jefferson, New York), June 2001.

[218] X. Wu and H. Schulzrinne, “Programmable end system services using Slipfeima-

tional Conference on Communicatigriénchorage, Alaska), pp. 789-793, May 2003.

[219] D. Robinson and K. Coar, “The common gateway interface (CGI) version 1.1,” Internet
Draft draft-coar-cgi-v11-04.txt,.ps,, Internet Engineering Task Force, Oct. 2003. Work in

progress.

[220] K. Singh, X. Wu, J. Lennox, and H. Schulzrinne, “Comprehensive multi-platform collabo-
ration,” Tech. Rep. CUCS-027-03, Dept. of Computer Science, Columbia University, New
York, New York, Dec. 2003.

[221] R. Ramijee, J. F. Kurose, D. F. Towsley, and H. Schulzrinne, “Adaptive playout mechanisms
for packetized audio applications in wide-area networks?rimceedings of the Conference
on Computer Communications (IEEE Infocerfiloronto, Canada), pp. 680-688, IEEE

Computer Society Press, Los Alamitos, California, June 1994.

357

[222] J. Rosenberg, L. Qiu, and H. Schulzrinne, “Integrating packet FEC into adaptive voice
playout buffer algorithms on the Internet,” Rroceedings of the Conference on Computer

Communications (IEEE Infocop()Tel Aviv, Israel), Mar. 2000.

[223] H. Schulzrinne, “Indication of message composition for instant messaging,” RFC 3994,

Internet Engineering Task Force, Jan. 2005.

[224] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual network comput-
ing,” IEEE Internet Computingvol. 2, pp. 33—38, January/February 1998.

[225] X. Wu, P. Koskelainen, and H. Schulzrinne, “Conference floor control protocol,” internet

drafts, Internet Engineering Task Force, 2003.

[226] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte,
and D. Winer, “Simple object access protocol (SOAP) 1.1,” tech. rep., World Wide Web
Consortium, W3C, May 2000.

[227] H. Schulzrinne and S. Petrack, “RTP payload for DTMF digits, telephony tones and tele-
phony signals,” RFC 2833, Internet Engineering Task Force, May 2000.

[228] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen, “HTTP extensions for dis-
tributed authoring — WEBDAV,” RFC 2518, Internet Engineering Task Force, Feb. 1999.

[229] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two:

Media types,” RFC 2046, Internet Engineering Task Force, Nov. 1996.

[230] J. Myers and M. Rose, “Post office protocol - version 3,” RFC 1939, Internet Engineering
Task Force, May 1996.

[231] M. Crispin, “Internet message access protocol - version 4,” RFC 1730, Internet Engineer-

ing Task Force, Dec. 1994.

[232] M. Crispin, “Internet message access protocol - version 4revl,” RFC 2060, Internet Engi-

neering Task Force, Dec. 1996.

358

[233] J. Rosenberg, H. Schulzrinne, and P. Kyzivat, “Caller preferences for the session initiation

protocol (SIP),” RFC 3841, Internet Engineering Task Force, Aug. 2004.

[234] J. Rosenberg, “A presence event package for the session initiation protocol (SIP),” RFC

3856, Internet Engineering Task Force, Aug. 2004.
[235] Dallas Semiconductor Corp., “ibutton,” 2002. http://www.ibutton.com.

[236] R. Mahy, “A message summary and message waiting indication event package for the

session initiation protocol (SIP),” RFC 3842, Internet Engineering Task Force, Aug. 2004.
[237] “Xerces C++ Parser.” http://xml.apache.org/xerces-c/.
[238] L. Hanson, “Simple HTTP fetcher in C.” GNU LGPL software.

[239] A. Black and K. Lenzo, “Flite: a small, fast run time synthesis engine.”

http://fife.speech.cs.cmu.edu/flite/.

[240] D. Liu and N. Ogasawar&mail by phone using VoiceXMLColumbia University, New
York, May 2001.

[241] “Procmail home-page.” http://www.procmail.org/.

[242] CMU Sphinx group, “CMU sphinx open source speech recognition engines,” 2000.

http://www.speech.cs.cmu.edu/sphinx/index.html.

[243] A. Black and K. LenzoFlite: a small, fast run time synthesis engin8peech Group at

Carnegie Mellon University, 1.0 ed., Aug. 2001. http://fife.speech.cs.cmu.edufflite/.

[244] N. Charlton, M. Gasson, G. Gybels, M. Spanner, and A. Wijk, “User requirements for the
session initiation protocol (SIP) in support of deaf, hard of hearing and speech-impaired

individuals,” RFC 3351, Internet Engineering Task Force, Aug. 2002.

[245] D. Wheeler, *“SLOCCount: A tool to measure source lines of code’”

http://www.dwheeler.com/sloccount.

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

359

C. Partridge, T. Mendez, and W. Milliken, “Host anycasting service,” RFC 1546, Internet
Engineering Task Force, Nov. 1993.

O. Levin, “H.323 uniform resource locator (URL) scheme registration,” RFC 3508, Inter-

net Engineering Task Force, Apr. 2003.

International Telecommunication Union, “Media stream packetization and synchroniza-
tion on non-guaranteed quality of service LANs,” Recommendation H.225.0, Telecommu-

nication Standardization Sector of ITU, Geneva, Switzerland, Nov. 1996.

International Telecommunication Union, “Control protocol for multimedia communi-
cation,” Recommendation H.245, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Feb. 1998.

International Telecommunication Union, “H.323 extended for loosely coupled confer-
ences,” Recommendation H.332, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Sept. 1998.

International Telecommunication Union, “Security and encryption for H-series (H.323 and
other H.245-based) multimedia terminals,” Recommendation H.235, Telecommunication

Standardization Sector of ITU, Geneva, Switzerland, Feb. 1998.

International Telecommunication Union, “Interworking of H-series multimedia terminals
with H-series multimedia terminals and voice/voiceband terminals on GSTN and ISDN,”
Recommendation H.246, Telecommunication Standardization Sector of ITU, Geneva,
Switzerland, Feb. 1998.

International Telecommunication Union, “Generic functional protocol for the support of
supplementary services in H.323,” Recommendation H.450.1, Telecommunication Stan-

dardization Sector of ITU, Geneva, Switzerland, Feb. 1998.

International Telecommunication Union, “Call diversion supplementary service for
H.323,” Recommendation H.450.3, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Sept. 1997.

360

[255] International Telecommunication Union, “Digital subscriber signalling system no. 1 (DSS
1) - ISDN user-network interface layer 3 specification for basic call control,” Recommen-

dation Q.931, International Telecommunication Union, Geneva, Switzerland, Mar. 1993.

[256] A.Johnston, R. Sparks, C. Cunningham, S. Donovan, and K. Summers, “Session initiation
protocol service examples,” Internet Draft draft-ietf-sipping-service-examples-10, Internet

Engineering Task Force, Mar 2006. work in progress.

[257] O. Hersent, D. Gurle, and J.-P. PetR, telephony Reading, Massachusetts: Addison
Wesley, 2000.

[258] H. Schulzrinne, “The tel URI for telephone numbers,” RFC 3966, Internet Engineering
Task Force, Dec. 2004.

[259] “The OpenH323 project.” http://www.openh323.0rg.

[260] W. Jiang and H. Schulzrinne, “Assessment of voip service availability in the current inter-

net,” in Passive & Active Measurement Worksh{an Diego, CA), Apr. 2003.

[261] A. Kristensen, “SIP Servlet API Specification,” Java Specification Request (JSR) JSR-

000116, Java Community Process, mar 2002. Review Dratft.

[262] D. Eastlake, J. Reagle, and D. Solo, “XML-Signature Syntax and Processing,” W3C Rec-
ommendation TR/2002/REC-xmldsig-core-20020212/, World Wide Web (W3C) Consor-
tium, Feb 2002. http://www.w3.org/TR/xmldsig-core/.

[263] D. Eastlate and J. Reagle, “XML Encryption Syntax and Processing,” W3C Recommen-
dation TR/2002/REC-xmlenc-core-20021210/, World Wide Web (W3C) Consortium, Dec
2002. http://lwww.w3.0rg/TR/xmlenc-core/.

[264] S. Bradner, “Key words for use in rfcs to indicate requirement levels,” RFC 2119, Internet

Engineering Task Force, Mar. 1997.

	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Chapter 1 Introduction
	1.1 Scalability and Reliability
	1.2 Peer-to-Peer IP Telephony
	1.3 Internet Telephony Interoperability
	1.4 Original Contributions
	1.4.1 Failover and Load Sharing in SIP Telephony
	1.4.2 Peer-to-peer Internet Telephony using SIP (P2P-SIP)
	1.4.3 Enterprise Internet Telephony and Multi-platform Collaboration

	1.5 Overview of the Thesis

	Chapter 2 Background: Session Initiation Protocol (SIP)
	I Server Redundancy
	Chapter 3 Failover and Load Sharing in SIP-based IP Telephony
	3.1 Introduction
	3.2 Related Work
	3.3 Availability: Failover
	3.3.1 Client-based Failover
	3.3.2 DNS-based Failover
	3.3.3 Failover based on Database Replication
	3.3.4 Failover using IP Address Takeover
	3.3.5 Reliable Server Pooling
	3.3.6 Implementation
	3.3.7 Analysis

	3.4 Scalability: Load Sharing
	3.4.1 Network Address Translation
	3.4.2 Multiple Servers with the Same IP Address
	3.4.3 DNS-based Load Sharing
	3.4.4 Identifier-based Load Sharing
	3.4.5 Two-stage Reliable and Scalable Architecture

	3.5 Performance Evaluation
	3.5.1 Test Setup
	3.5.2 Analysis
	3.5.3 Non-uniform Call Distribution
	3.5.4 Performance of Stateful Proxy
	3.5.5 Effect of DNS Lookups
	3.5.6 Other SIPstone Tests

	3.6 Server Architecture
	3.6.1 Processing Steps
	3.6.2 Stateless Proxy
	3.6.3 Stateful Proxy
	3.6.4 The Best Architecture
	3.6.5 Effect on Load Sharing Performance

	3.7 Conclusions

	II Peer-to-peer IP Telephony
	Chapter 4 Overview of Peer-to-Peer Internet Telephony using SIP
	4.1 Introduction
	4.2 Related Work
	4.2.1 Skype and Related Systems
	4.2.2 P2P-SIP Telephony
	4.2.3 IP Telephony vs. File Sharing
	4.2.4 Robustness and Scalability

	4.3 Design Requirements
	4.4 SIP-using-P2P and P2P-over-SIP

	Chapter 5 SIP-using-P2P: Using an External DHT as a SIP Location Service
	5.1 Introduction
	5.2 Background: DHT API
	5.3 Data and Service Models
	5.4 Logical Operations
	5.5 Deployment Scenarios
	5.5.1 P2P Client
	5.5.2 P2P Proxy
	5.5.3 P2P Client Adaptor

	5.6 Security and Trust
	5.7 Implementation Issues
	5.8 Advanced Services
	5.8.1 Offline Messages
	5.8.2 Presence

	5.9 Evaluation

	Chapter 6 P2P-over-SIP: DHT Maintenance using SIP
	6.1 Introduction
	6.2 Background and Design Alternatives
	6.3 Architecture Overview
	6.3.1 SIP Layer
	6.3.2 Node Startup and Peer Discovery
	6.3.3 User Registration
	6.3.4 Node Shutdown or Failure
	6.3.5 User Location and Call Setup

	6.4 Details of the DHT Module
	6.4.1 Initialization
	6.4.2 Peer Discovery
	6.4.3 Joining the DHT
	6.4.4 Stabilization
	6.4.5 Node Shutdown (Graceful Termination)
	6.4.6 Node Failure and Failover

	6.5 User Registration
	6.5.1 Registration Handling
	6.5.2 Node Shutdown (Graceful Termination)
	6.5.3 Node Failure and Failover

	6.6 Call Setup and Message Proxy
	6.6.1 Multimedia Call Setup and Instant Messages

	6.7 Advanced Services
	6.7.1 Offline Messages
	6.7.2 Multi-party Conferencing
	6.7.3 Device Independence
	6.7.4 Presence and Event Notification
	6.7.5 Adaptor for Existing SIP Phones
	6.7.6 NAT and Firewall Traversal

	6.8 Inter-domain Operation: Multiple DHTs
	6.9 Security
	6.10 Performance Evaluation
	6.11 Conclusions

	III Enterprise IP Telephony
	Chapter 7 Background: Conferencing, Streaming and Voice Dialogs
	7.1 Multi-party Conferencing
	7.1.1 Conferencing Models
	7.1.2 Requirements for Centralized Conferencing

	7.2 VoiceXML: Interactive Voice Response
	7.3 RTSP: Media Streaming

	Chapter 8 Related Work: Internet Telephony and Multimedia Collaboration
	8.1 Interworking Between SIP and H.323
	8.2 Unified Messaging using SIP and RTSP
	8.3 Centralized Conferencing using SIP
	8.4 Integrating VoiceXML with SIP Services

	Chapter 9 Multi-platform Collaboration in CINEMA
	9.1 Introduction
	9.2 Requirements
	9.3 Architecture Overview
	9.3.1 Web Interface
	9.3.2 Personal Calendar and Address Book
	9.3.3 Events and Event-groups

	9.4 Synchronous Collaboration
	9.4.1 Audio Mixing
	9.4.2 Video Forwarding
	9.4.3 Instant Messaging
	9.4.4 Shared Web Browsing
	9.4.5 Screen Sharing
	9.4.6 Conference Control
	9.4.7 Dial-in vs Dial-out Conferences

	9.5 Asynchronous Collaboration
	9.5.1 File Sharing
	9.5.2 Discussion Forum
	9.5.3 Conference Event Recording
	9.5.4 Unified Messaging and Multimedia Mail
	9.5.5 Notifications and Announcements

	9.6 Additional Services
	9.6.1 Presence
	9.6.2 Interactive Voice Response (IVR)
	9.6.3 Interaction among Email, Telephone and IM

	9.7 Conclusions

	Chapter 10 Scalable Centralized Conferencing
	10.1 Introduction
	10.2 Scalability
	10.2.1 Requirements
	10.2.2 Performance Evaluation
	10.2.3 Cascaded Conference Servers
	10.2.4 Distributing Conferences
	10.2.5 Handling Overload: Graceful Denial and Admission Control

	10.3 Reliability
	10.3.1 Reactive Failover
	10.3.2 Proactive Redundancy

	10.4 Conclusions

	Chapter 11 Interworking Between SIP/SDP and H.323
	11.1 Background and Requirements
	11.1.1 Protocol Overview
	11.1.2 Translation Requirements

	11.2 Architecture for User Registration
	11.2.1 IWF Contains SIP Proxy and Registrar
	11.2.2 IWF Contains an H.323 Gatekeeper
	11.2.3 IWF is Independent of Proxy or Gatekeeper

	11.3 Signaling Address Translation
	11.4 Connection Establishment
	11.4.1 Using H.323v2 Fast Connect
	11.4.2 Call Translation Without using Fast Connect

	11.5 Calculating a Common Subset of Media Capabilities
	11.6 Translating Advanced Services
	11.6.1 Multi-party Conferencing
	11.6.2 Call Transfer

	11.7 Conclusion

	Chapter 12 Conclusions and Future Directions
	12.1 Summary of the Problems and Contributions
	12.2 Connecting Themes
	12.3 Server-based vs. Peer-to-peer Internet Telephony
	12.4 Implications of this Research
	12.5 Future Directions

	Appendix A Design and Implementation of the Columbia SIP Library
	A.1 Background
	A.2 User Agent Library

	Appendix B Two-way Replication in MySQL
	Appendix C Data Format for SIP-using-P2P
	Appendix D Implementation Details of SIP-H.323 Interworking Function
	D.1 Implementation Requirements
	D.2 Signaling Address Translation
	D.2.1 Converting SIP Addresses to H.323 Addresses
	D.2.2 Converting H.323 Addresses to SIP Addresses

	D.3 Detailed Description of IWF Behavior
	D.3.1 SIP-originated Requests
	D.3.2 H.323-Originated Requests

	Appendix E Glossary
	Bibliography
	Appendix F Bibliography

