
1

Centralized Conferencing using SIP
Kundan Singh, Gautam Nair and Henning Schulzrinne

Columbia University
fkns10,gnair,hgsg@cs.columbia.edu

Abstract— Multiparty conferencing is an important tele-
phony service, provided in the PSTN by conference bridges.
Internet telephony can enhance this basic service by video
conferencing and collaborative work. The Session Initia-
tion Protocol (SIP) can support many different conferencing
architectures, including the centralized conferencing server
model.

We describe design issues and challenges in implementing
a SIP-based centralized conferencing server and discuss the
architecture and performance of our implementation,sip-
conf .

Keywords—Centralized conference server; dial-in confer-
ence bridge; SIP; RTP mixer; packet audio; packet video;
Internet telephony; sipconf

I. INTRODUCTION

The Session Initiation Protocol (SIP) [1] defines how to
establish, maintain and terminate Internet sessions includ-
ing multimedia conferences. SIP supports various multi-
party conferencing models [2], ranging from mixing in end
systems to multicast conferences. When multicast is not
available, centralized mixing, transcoding and filtering of
media can be used to create multiparty conferences. In
centralized mixing, a server receives media streams from
all the participants in a conference, mixes or filters these
based on pre-defined policy and distributes the streams to
the participants. Different types of media streams need to
be handled differently, for example, audio streams are typ-
ically summed, while video streams are selected, e.g., to
present only the active speaker.

The main functions of a conference server is the mixing
and redistribution of media streams. Typically, Internet
audio streams are added (“mixed”), while video streams
and other media are simply replicated. However, a video
mixer can also create a new composite video image [3].
For audio, the server needs to ensure that a participant does
not receive a copy of his own media in the mixed stream.
RTP [4] allows a sender to indicate which sources have
been combined in a single media packet. When summing,
the server should absorb the jitter in packet arrival times
while introducing minimum delay (“playout buffer”).

For replication, the server should not need to be aware
of the media formats. The RTP SSRC indication [5] en-
sures that the receiver can distinguish different sources ad-

dressed to the same network destination.
For either summing or replication, it is desirable if each

participant can use different media types and packetization
intervals, to accomodate heterogeneity of end systems and
access bandwidths. Implementations need to scale to large
numbers of conferences as well as large numbers of par-
ticipants per conference.

A media mixing module with a SIP interface can act as
a conferencing server component in the distributed appli-
cation server (AS) component architecture [6]. Advanced
system can bundle this functionality with other services,
such as interactive voice response (IVR) and a web-based
user interface.

This paper explores the centralized conference server
design issues in detail and describes challenges in imple-
menting such a system. We also explore advanced usage
scenarios of the conferencing system in a real-world In-
ternet telephony environment. We are currently collecting
performance data on our implementation of the SIP based
conference server,sipconf1, and present some initial re-
sults of our experiments.

A. Outline of the rest of the paper

Section II explains the role of SIP in centralized confer-
encing systems. Section III discusses and compares differ-
ent conferencing models. Design issues are described in
Section IV. We provide an overview of our implementa-
tion and performance figures in Section V. The usage sce-
narios in various Internet telephony and multimedia com-
munication applications are discussed in Section VI. Sec-
tion VII lists some of the related work. Finally, we sum-
marize and point to future work in Section VIII.

II. BACKGROUND

Many PSTN carriers offer conference bridges which
allow users to take part in a voice conference by dial-
ing a telephone number and possibly access code. We
can use the same concept for Internet-based conferenc-
ing: The conference can be identified by a destination ad-
dress, and participants can join the conference by mak-
ing a call to that address, thus requiring no modifica-
tions in end systems. There are currently two Internet
1More information at http://www.cs.columbia.edu/k̃ns10/software/sipconf

2

telephony signaling protocols, IETF’s SIP and ITU-T’s
H.323 [7]. SIP identifies the destination via a SIP URI
of the formsip:user@domain, while H.323 usesAliasAd-
dress data structures, which can assume many forms, in-
cluding URLs.

There are two different aspects of Internet based con-
ferencing, signaling and media. Either SIP or H.323 can
be used as a signaling protocol for taking part in a confer-
ence. Both SIP and H.323 use the Real-time Transport
Protocol (RTP [5]) for carrying real-time media traffic,
such as audio and video. H.323 defines a multi-point con-
trol unit (MCU) for handling multiparty conferences. An
MCU consists of a multi-point controller (MC), which can
also be part of a terminal, to handle signaling and control
exchanges with every participant in the conference. An
optional component, the multi-point processor (MP), han-
dles mixing and filtering of different media streams. SIP
does not define any conferencing entity as such, as these
entities are easily modeled as SIP user agents. The core
SIP specification supports a variety of conferencing mod-
els [2]. In the server-based models, RTP media streams
are mixed or filtered by the server and distributed to the
participants. There is a standard point-to-point signaling
relationship between each participant and the conferenc-
ing server.

An example of the SIP message exchange between
a participant and conferencing server is shown in Fig-
ure. 1. The conference is identified by the URIdis-
cuss@server.com . The standard user location and
routing mechanisms in SIP forward all calls to the ap-
propriate conference server atdiscuss.com without re-
quiring any extension to the protocol. The SIP message
routing entities (SIP proxies) need not be aware that the
request URI corresponds to a conference and not to an in-
dividual person.

The Session Description Protocol (SDP [8]) is used to
indicate media capabilities and media transport addresses.
The participant sends the information about his media
capabilities (PCMU) and the transport address where he
wishes to receive RTP packets. In the message body of the
200 success response, the server sends the transport ad-
dress to which the participant should send his PCMU RTP
packets. More advanced scenarios can be accomplished
using the SIPREFER method. For example, an existing
participant can invite another user to join the conference.
These conferencing models can be found in [2].

SIP-based authentication can be used to prevent unau-
thorized participants to join a conference. The server can
support both pre-arranged conferences as well as ad-hoc
conferences by assigning special meaning to the user
field in the request URI. For example, participants who

SIP Request from a participant to the conferencing server:

INVITE sip:discuss@server.com SIP/2.0
Via: SIP/2.0/UDP pc1.home.com:5060; branch=18123
From: sip:bob@pc1.home.com
To: sip:discuss@server.com
CSeq: 1 INVITE
Call-ID: 3336996090@pc1.home.com
Contact: sip:bob@pc1.home.com
Accept: application/sdp
Content-Type: application/sdp
Content-Length: 121

v=0
o=bob 17195 12777 IN IP4 128.59.19.194
s=SIP conference
c=IN IP4 128.59.19.198
t=3184085283 0
m=audio 8080 RTP/AVP 0

Successful Response returned by the server:

SIP/2.0 200 OK
Via: SIP/2.0/UDP pc1.home.com:5060; branch=18123
From: sip:bob@pc1.home.com
To: sip:discuss@server.com; tag=871821127182
CSeq: 1 INVITE
Call-ID: 3336996090@pc1.home.com
Contact: sip:discuss@mac2.server.com
Content-Type: application/sdp
Content-Length: 121

v=0
o=xyz 627271 216271 IN IP4 128.59.19.61
s=SIP conference
c=IN IP4 128.59.19.61
t=3184085284 0
m=audio 4256 RTP/AVP 0

ACK sent back to the server:

ACK sip:discuss@mac2.server.com SIP/2.0
Via: SIP/2.0/UDP pc1.home.com:5060; branch=18123
From: sip:bob@pc1.home.com
To: sip:discuss@server.com; tag=871821127182
CSeq: 1 INVITE
Call-ID: 3336996090@pc1.home.com
Content-Length: 0

Fig. 1. Example SIP message exchange for joining a conference

wish to join sip:ietf.arranged@office.com
will need to set up the conference before hand,
while those who wish to join sip:library-
discuss.adhoc@office.com do not need to

3

setup the conference in advance. The conference state is
maintained as long as at least one participant is part of
the conference. Participants find out about the conference
URL via external means, such as email or a web page.

III. CONFERENCING MODELS

Conference models can be distinguished based on the
topology of signaling and media relationships. Confer-
ences with a central server are easier to handle for end sys-
tems and simplify keeping track of the conference partici-
pants. On the other hand, network-layer multicast is more
scalable for large-scale media distribution and allows a
“loose” model of conference membership [9], where each
member has only an approximate view of the group roster.

Table I summarizes the different types ofmedia distri-
bution modelsin multimedia conferencing. The table com-
pares the scaling properties, depending on the the number
of active senders,M , and the total number of participants,
N . Given thatM is almost always one for typical audio
conferences, most of these models scale similarly in terms
of processing and bandwidth requirements. Note that the
centralized model performs better with higherM if inputs
are summed.

A B

C

D

E D A+B+C+E

(a) Centralized Server

A

B C

D

B
B

B

A

D

C

(b) Full mesh

A B

C

D

B+D+C
A+D+C

A+B+C

(c) End system mixing

M

A

B

C

M D

E

3

2

2

2 4

3 2

2

(d) Unicast receive and multicast send
(Example network: link bandwidth
requirements are multiple of codec
bandwidth.)

Fig. 2. Types of media distribution model

Centralized:In the centralized model, a server receives
media streams from all participants, mixes them
if needed, and redistributes the appropriate media
stream back to the participants (See Fig. 2). Since

senders would have difficulty subtracting out their
own contribution, the server needs to create a cus-
tomized stream for each of the currently activeM
senders and a common stream for allN �M listen-
ers, assuming that they can all support the same media
format. The server needs to decode audio streams be-
fore mixing, as mixing can only be performed on un-
compressed audio. DecodingM and encodingM+1

streams limits the amount of active sources or confer-
ences, while the number of participants limits the to-
tal conference membership to the available outbound
network bandwidth.
The central server model has the advantage that
clients do not need to be modified and do not have
to perform media summing. In addition, it is rela-
tively easy to support heterogeneous media clients,
with the server performing the transcoding. For ex-
ample, this allows a conference consisting of partic-
ipants connected through high-bandwidth networks
and modems, each receiving the best possible quality.
At the cost of increased inbound bandwidth, silence
detection can be delegated from clients to the server.
This is helpful as many current IP telephones do not
support silence suppression.
Also, the server can enforce floor control policies and
can control the distribution of video based on audio
activity. Compared to a distributed model, a central
server can readily provide a consistent view of the
complete conference membership.

Full mesh: In a full mesh, each active participant sends
a copy of the its media stream to all participants via
unicast, without a central server. End systems sum the
incoming audio streams; since most of the time, only
one speaker will be active, the CPU overhead is mod-
est as long as silence suppression is implemented ev-
erywhere, but it fails if the access bandwidth of some
participants is just large enough for a single stream.
For video, full mesh does not scale unless, for exam-
ple, only currently active speakers send video. In a
full mesh, each pair of participants must share a com-
mon codec.

Multicast: Network-layer multicast is ideally suited for
large-scale conferences. A multicast address is allo-
cated for each media stream, and every participant
sends to that address. As in the full mesh, partici-
pants receive packets on the same address from all
other participants, and need to sum or select streams.
While the incoming bandwidth is the same as in a full
mesh, each system only needs to generate one copy of
the media stream.
Unfortunately, native multicast is not widely avail-

4

Properties centralized full mesh multicast unicast rx, multicast tx end mixing
Topology Star full mesh m-cast tree star and m-cast tree ad-hoc
Server processing O(M+N) n/a n/a O(M+N) n/a
Endpoint processing O(1) O(M) O(M) O(1) variable
Server bandwidth O(M+N) n/a n/a O(M) based on m-cast tree n/a
Endpoint bandwidth O(1) O(M) O(1) O(1) variable
Scaling medium medium large large medium
Heterogeneous endpoints yes yes no no yes (partially)
Get back your media no no no yes no

TABLE I
TYPES OF CONFERENCES; M IS THE NUMBER OF ACTIVE SENDERS ANDN THE TOTAL NUMBER OF PARTICIPANTS

able outside network testbeds such as Internet2. Also,
all receivers must share a common set of codecs.

Unicast receive and multicast send:This scheme com-
bines some of the benefits of the server and multicast
models. Participants send their media stream using
unicast to the conferencing server, which sums them
and sends them out on a pre-established multicast ad-
dress. Thus, unlike pure multicast, end systems do
not have to filter or mix media streams. Every partic-
ipant receives the mixed stream, which includes his
own stream. Unless a sender maintain a buffer of
the data sent and there is a means of aligning time
scales, it will have difficulty removing its own audio
content from the mixed stream. The gain in band-
width efficiency is largest if the number of simulta-
neous senders is small compared to the total group
size. This approach lends itself well to single-source
multicast [10], [11].

Endpoint mixing:Instead of in a server, mixing can take
place in one of the participating end systems. For ex-
ample, ifA andB are in a call,A can also inviteC.
A sends the sum ofA andB to C, and the sum of
A andC to B. B andC do not need to be aware of
the service performed byA, but can in turn mix other
participants.
This ad-hoc gives rise to additional delay on some of
the media paths. Another problem is that the confer-
ence dissolves when the participant who is acting as
a mixer leaves the conference. This model is likely to
be suitable only for small conferences of three or four
parties.

Media and signaling can use different models in the
same conference. For example, one could combine cen-
tralized signaling with multicast media distribution, where
the server maintains a one-to-one signaling relationship
with each of the participants. Unfortunately, this requires

cooperation from the end system. The server can indicate
a multicast address in its SIP success response, causing
the end system to send media streams via multicast, but
the end system will still expect to receive media via uni-
cast. More sophisticated session description formats may
address this issue.

Also, different media streams can use different models.
For example, audio could be mixed by a central server and
redistributed, while video can be sent point-to-point be-
tween every pair of participants as in full mesh.

Thus, as long as multicast is not widely available,
server-based conferences will continue to be the only vi-
able model for mid-size conferences of tens to hundreds
of participants.

IV. D ESIGN OF A CONFERENCE SERVER

A conferencing server consists of a a signaling and a
media mixing module. The signaling module receives SIP
or H.323 requests to join and leave conferences, while
the media mixing module receives and sends RTP media
streams from and to participants. Replicating video pack-
ets is straightforward; below we describe the operations
needed for mixing audio.

A. Audio mixing

Fig. 3 shows how an audio mixing module can be im-
plemented. ParticipantA support G.711,B DVI ADPCM
andC both GSM and G.711. Participants list the codecs
they support in theirINVITE requests. The server selects
an intersection of the algorithms supported by the partic-
ipant as well as by the server. This selection is returned
in the signaling success response to the participant. These
algorithms are listed in order of preference in the SDP of
theINVITE or its response.

The mixing algorithm can be defined as adecode-mix-
encodesequence. When an audio packet arrives at the

5

D

D

D

E

X = A+B+C

X−A

X−B

X−C
E

E

= B+C

G.711 Mu

DVI

GSM

B

C

A

Linear

Linear

Linear

Mixed Linear Stream

G.711 Mu

DVI

G.711 Mu

Send to A

Send to B

Send to C

= Audio Encoder = Audio DecoderE D

Play−out delay
Periodic timer interrupt

Fig. 3. Audio mixing

mixing module, it is decoded into 16-bit linear samples
and enqueued in the per-participant audio queue. The jit-
ter in packet arrivals is absorbed by a play-out delay algo-
rithm. Every few milliseconds, a timer triggers a routine
that mixes a range of the buffer streams into a combined
packets by simple addition of the sample values. Then,
for each of the participants, the linear sample values from
the per-participant queue (e.g.,A) is subtracted from the
mixed data (X) and the resulting data (X �A) is encoded
using the preferred audio algorithm. The encoded data is
packetized and sent to the participant. If there areM par-
ticipants, then both mixing and redistribution will takeM
additions andM subtractions. Note that the receive and
transmit audio algorithms need not be same for each par-
ticipant.

While the decode-mix-encodesequence is the most
straightforward approach to implementing an audio mixer,
there are alternative approaches. For instance, one can
build an addition or subtraction table for G.711 samples, so
that conversion to linear is not required to do mixing. This
only works for G.711, not for codecs with cross-sample
dependencies such as G.723.1 or GSM.

Also, instead of subtraction, one could createM + 1

different streams directly, one for each talker and one for
the listeners. However, that requiresM2 additions.

B. Playout delay algorithm

Playout delay algorithms help absorb the jitter in net-
work packet arrival due to network congestion. Adap-
tive playout delay further allows an application to adapt to
changes in the amount of jitter, thus giving minimum de-
lay in the audio stream. Playout delay compensation takes
place before mixing, stretching or shrinking silence peri-
ods between talkspurts to adjust the time between arrival
and mixing [12], [13]. (In the absence of silence periods,
time stretching or companding can be used, albeit at much
greater computational cost.) We have used Algorithm 1
from [12], with� = 0:95, for our implementation.

V. IMPLEMENTATION

We have implemented a simple SIP conference server
based on the above design. It can support some of the com-
mon audio algorithms, including G.711 A and�-law, DVI
ADPCM, and GSM. Below, we discuss design and imple-
mentation issues and present initial performance data.

A. Design issues

Packetization interval:Although RTP implementations
are supposed to handle a wide range of packetiza-
tion intervals, we found 20 ms to be the only one
that worked across a range of media clients such as
rat [14] or Microsoft NetMeeting. End systems per-
mitting, it may be useful to dynamically change the

6

packetization interval for outgoingpackets, as smaller
packetization intervals decrease delay, but increase
network bandwidth and computational effort.

Scaling: For large conferences, scalability is limited
primarily by outbound bandwidth, copying of data
between buffers and encoding. If many smaller con-
ferences are to be supported, scaling depends as much
on inbound bandwidth and decoding. While simple
codecs like G.711 require very little encoding and de-
coding effort, they impose a heavier burden on buffer
copying and bandwidth.
To scale to very large conferences using conferenc-
ing servers, a network of servers can be deployed
(Section VI). To scale to a large number of smaller
conferences, a SIP proxy server can act as a load-
distribution system and direct incoming requests for
new ad-hoc conferences to different servers. Alterna-
tively, the conference server itself can redirect a re-
quest to an alternate server.
Instead of using general-purpose computers, one
could also build DSP-based customized hardware at
lower per-port cost. However, in many environments,
there are enough idle cycles on workstations and
servers that can be drafted into service for occasional
large conferences.

Inactivity detection:The system should be able to de-
tect if a particular participant becomes inactive, e.g.,
due to user agent failure. Failures can be detected by
observing ICMP errors or sudden discontinuation of
RTCP reports.

B. Performance measurements

We are currently measuring performance of our soft-
ware on a range of platforms. Initial results are below. We
characterize server load by processor and memory utiliza-
tion. As discussed above, both the number of conferences
and the total number of participants affect load, assuming
that the average number of active senders per conference
is one.

Table II summarizes the server load depending on how
many simultaneous participants are present in a single con-
ference. There was no optimization done at compilation
time. There were only one or two active speakers and all
others were listeners. The server was running on a Sun
SPARC Ultra 10 with 256 MB RAM and a 360 MHz CPU.
All participants were in the same 100 Mb/s LAN as the
server and used G.711 with a 40 ms packetization interval
from server to participant and 20 ms from participant to
server. The bandwidth includes IP, UDP and RTP headers,
and for a typical 100 Mb/s LAN, is not a limiting factor.

Load figures are obtained using the Unix commandt op.

Participants CPU memory bandwidth (Mb/s)
(%) (MB) inbound outbound

2 < 0.1 2.7 0.08 0.07
20 < 1 6.0 0.08 1.37
40 2-3 9.6 0.08 2.81
60 5 13 0.08 4.25
80 10-15 17 0.08 5.69
100 35-50 22 0.08 7.13
120 50-70 26 0.08 8.59

TABLE II
SERVER LOAD AS FUNCTION OF NUMBER OF PARTICIPANTS

IN SINGLE CONFERENCE

Memory is the amount of resident memory (RES). The au-
dio quality was good up to 80 participants in the single
conference, tolerable with 100 participants and very poor
for 120 participants.

Table III summarizes the server behavior depending on
the number of simultaneous three-party conferences where
every participant is an active speaker. All other parameters
are the same as before. Audio quality was good up to 15
three-party conferences, but deteriorated to poor with 18
conferences.

Confer- partici- CPU memory bandwidth (Mb/s)
ences pants (%) (MB) inbound outbound
3 9 < 0.4 4.1 0.72 0.65
6 18 < 2.0 5.7 1.44 1.30
9 27 7-13 7.3 2.16 1.94
12 36 15-20 9 2.88 2.60
15 45 25 10 3.60 3.24
18 54 30 12 4.32 3.89

TABLE III
SERVER LOAD AS FUNCTION OF NUMBER OF THREE-PARTY

CONFERENCES

The memory requirement depends on the number of
participants and seems to increase linearly. For instance,
memory requirements for 15 three-party conferences (45
participants) is almost the same as that for 40 participants
in a single conference. Secondly, the CPU utilization starts
increasing drastically at about 30-40 participants.

It may be possible to optimize the mixing logic. One
such scheme is shown in Fig. 4, combining the encoding
step for the output streams that have same mixed audio
data and use the same encoding algorithm. For all the par-
ticipants who did not speak in the last timer interval and
who have a common subset of supported receive audio

7

algorithm, we can call the encoder only once. However,
if a stream stops being active, it will receive the general
listener packet stream rather than its own version, so that
the predictor will be wrong. It is not clear how much this
would matter in practice.

A

B

E

F

D

C

X=B+D
D

D

E (G.711)

E (G.711)

E (G.711)

E (GSM)

X

X−B

X−D

X

X

X−B

X

X−D

X

X

A−D support G.711; E and F support GSM.

Fig. 4. Possible optimization in decode-mix-encode sequence

Scaling may also be limited by the available number of
threads. Our implementation allocates a thread for every
conference as well as for every participant. With 1000
threads allowed per process, the server can support 250
three party conferences (with 750 participants), for exam-
ple.

VI. CONFERENCING AS PART OF AN OVERALLVOIP
ARCHITECTURE

This section describes enhancements to the simple cen-
tralized conference system and how it can fit into a more
complex Internet telephony and multimedia communica-
tion environment.

A. Multi-protocol conference server

A simple enhancement (Fig. 5) is to use a SIP-H.323
gateway and SIP-PSTN gateway to provide a unified con-
ferencing server which can be contacted from any of the
SIP, H.323 or PSTN networks. To integrate PSTN users,
some form of IVR is required, e.g., to prompt for pass
codes.

B. Network of conference servers

For larger conferences, it is possible to create a tree of
conference servers, where each server appears as a partic-
ipant in the server at the aggregation level above it (Fig 6).
In the figure, S2, S3, and S4 act as participants for the
conference server S1. Such a tree adds packetization and
playout delay, but can approximate the bandwidth scal-
ing benefits of network-layer multicast if participants se-

sipconf

SIP/PSTN

SIP323

SIP

SIP

SIP

H.323 H.323

PSTN

Multi protocol Conference

Fig. 5. Multi-protocol conference server

sipconf

sipconf

sipconf sipconf

A

B
C

D

A+B+C+D

All others

Participants

Participants

S1

S2

S3

S4

Fig. 6. Multi-stage conference servers

lect the closest server. Since it is common that corpo-
rate conferences consist of a large number of participants
spread across a relatively small number of facilities, hav-
ing a server in each LAN is likely to be a common mode
of operation.

C. Integration with other services

A conferencing server can be integrated with a text-to-
speech and speech recognition system to allow text-only
participants in an audio session. A conference server could

8

also include an RTSP client that can stream media to a
recording server.

VII. RELATED WORK

Most of the conference servers in the market today
are based on H.323. These include MeetingPoint from
CUseeMe Networks, Sametime from Lotus and Microsoft
Exchange 2000 Conferencing Server. These support T.120
for application sharing and whiteboards. MeetingPoint has
mechanisms to link servers together so that conferences
can be shared and load-balancing can be done.

VideoTalks [15] by AT&T Labs is a comprehensive
multimedia conferencing system intended to provide a va-
riety of Internet services such as video conferencing and
low cost video-on-demand. It is not based on SIP.

A number of tools (e.g., RAT and NeVoT) support mul-
ticast “light-weight” conferencing, without explicit signal-
ing support [9]. Etherphone [16] is probably one of the
earliest systems supporting multimedia conferencing.

Most of these work talk about conferencing in general
or a specific implementation of a conferencing system.
Here, we compare different models and present perfor-
mance numbers for a real implementation.

VIII. C ONCLUSION AND FUTURE WORK

Based on our implementation, SIP provides a suitable
multimedia conferencing platform that allows advanced
scenarios and services without requiring that end systems
are conferencing-aware. It is possible to build medium
scale conferencing servers in software. Our implemen-
tation supports up to 100 participants in a single confer-
ence using G.711 audio and only one active speaker on a
Sun Sparc Ultra-10 platform. It can also support up to 15
three party conferences where all participants are speaking
simultaneously. Scalability can be improved by ensuring
that the clients support silence suppression at their end.

In addition to audio and video conferences, various
other services can be provided at the conference server
such as whiteboard applications and multi-user games.
This may lead to a distributed conferencing server ar-
chitecture with different components handling different
services. Participants can also join coferences from the
PSTN if they use SIP to PSTN gateways. SIP-H.323 gate-
ways [17] exist that can permit the participation of H.323
clients in the conference.

We plan to enhance our prototype in a number of ways:

� We need to gather performance data for different
codecs in a heterogeneous conferencing environment,
on different computing platforms, including those

with multiple processors. We also plan to measure
the delay and jitter at the client side as the server load
increases.

� Video support will be added to the server. This in-
volves defining policies on which video stream to
distribute and possibly merging streams into screen
quadrants. (With windows-based end systems, this is
not required as the end system can arrange multiple
video windows.)

� We plan to add additional codecs, beyond the G.711
�-law, G.711 A-law, GSM and DVI ADPCM cur-
rently supported.

� Additional SIP features such as dial-out and authen-
tication can be added to the server. This allows
the server to invite participants to the conference
and keep unauthorized participants out. Conferences
could also be bounded in duration; however, since
the resource consumption of inactive conferences is
very small as long as media streams are muted, it
is quite feasible to set up permanent conferences in
work groups, for hoot-and-holler applications. The
transition from centralized conferences to full-mesh
and multicast conferences, as well as hybrid solu-
tions, need to be supported.

IX. A CKNOWLEDGEMENTS

We would like to thank Jonathan Rosenberg and Weibin
Zhao for their valuable and insightful comments.

REFERENCES

[1] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP:
session initiation protocol,” Request for Comments2543, Internet
Engineering Task Force, Mar. 1999.

[2] J. Rosenberg and H. Schulzrinne, “Models for multi party confer-
encing in SIP,” Internet Draft, Internet Engineering Task Force,
Nov. 2000. Work in progress.

[3] Z.-Y. Shae and M.-S. Chen, “Mixing and playback of JPEG com-
pressed packet videos,” inProceedings of the IEEE Conference
on Global Communications (GLOBECOM), (Orlando, Florida),
pp. 245–249 (08B.03), IEEE, Dec. 1992.

[4] H. Schulzrinne, “RTP profile for audio and video conferences
with minimal control,” Request for Comments 1890, Internet En-
gineering Task Force, Jan. 1996.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP:
a transport protocol for real-time applications,” Request for Com-
ments 1889, Internet Engineering Task Force, Jan. 1996.

[6] M. P. Rosenberg, J. and H. Schulzrinne, “An application server
component architecture for SIP,” Internet Draft, Internet Engi-
neering Task Force, Nov. 2000. Work in progress.

[7] International Telecommunication Union, “Packet based multime-
dia communication systems,” Recommendation H.323, Telecom-
munication Standardization Sector of ITU, Geneva, Switzerland,
Feb. 1998.

[8] M. Handley and V. Jacobson, “SDP: session description pro-
tocol,” Request for Comments 2327, Internet Engineering Task
Force, Apr. 1998.

9

[9] M. Handley, J. Crowcroft, C. Bormann, and J. Ott, “The inter-
net multimedia conferencing architecture,” Internet Draft, Inter-
net Engineering Task Force, July 2000. Work in progress.

[10] S. Bhattacharyyaet al., “A framework for source-specific IP
multicast deployment,” Internet Draft, Internet Engineering Task
Force, July 2000. Work in progress.

[11] H. W. Holbrook and D. R. Cheriton, “Ip multicast channels:
EXPRESS support for large-scale single-source applications,” in
SIGCOMM Symposium on Communications Architectures and
Protocols, (Cambridge, Massachusetts), August/September 1999.

[12] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive
playout mechanisms for packetized audio applications in wide-
area networks,” inProceedings of the Conference on Computer
Communications (IEEE Infocom), (Toronto, Canada), pp. 680–
688, IEEE Computer Society Press, Los Alamitos, California,
June 1994.

[13] J. Rosenberg, L. Qiu, and H. Schulzrinne, “Integrating packet
FEC into adaptive voice playout buffer algorithms on the inter-
net,” in Proceedings of the Conference on Computer Communi-
cations (IEEE Infocom), (Tel Aviv, Israel), Mar. 2000.

[14] A. Sasse, V. Hardman, I. Kouvelas, C. Perkins, O. Hodson,
A. Watson, M. Handley, J. Crowcroft, D. Harris, A. Bouch,
M. Iken, K. Hasler, S. Varakliotis, and D. Miras, “Rat (robust-
audio tool),” 1995.

[15] M. R. Civanlar, G. L. Cash, R. V. Kollarits, B.-B. Paul, C. T.
Swain, B. G. Haskell, and D. A. Kapilow, “VideoTalks: A com-
prehensive multimedia conferencing system,” inProc. of Packet
Video, (Sardinia, Italy), May 2000.

[16] H. M. Vin, P. T. Zellweger, D. C. Swinehart, and P. V. Rangan,
“Multimedia conferencing in the Etherphone environment,”IEEE
Computer, vol. 24, pp. 69–79, Aug. 1991.

[17] K. Singh and H. Schulzrinne, “Interworking between SIP/SDP
and H.323,” inProceedings of the 1st IP-Telephony Workshop
(IPtel 2000), (Berlin, Germany), Apr. 2000.

