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ABSTRACT

Securing VoIP is a crucial requirement for its successful
adoption. A key component of this is securing the signaling
path, which is performed by SIP. Securing SIP is accom-
plished by using TLS instead of UDP as the transport pro-
tocol. However, using TLS for SIP is not yet widespread,
perhaps due to concerns about the performance overhead.
This paper studies the performance impact of using TLS
as a transport protocol for SIP servers. We evaluate the
cost of TLS experimentally using a testbed with OpenSIPS,
OpenSSL, and Linux running on an Intel-based server. We
analyze TLS costs using application, library, and kernel pro-
filing, and use the profiles to illustrate when and how differ-
ent costs are incurred, such as bulk data encryption, pub-
lic key encryption, private key decryption, and MAC-based
verification. We show that using TLS can reduce perfor-
mance by up to a factor of 17 compared to the typical case
of SIP-over-UDP. The primary factor in determining perfor-
mance is whether and how TLS connection establishment is
performed, due to the heavy costs of RSA operations used
for session negotiation. This depends both on how the SIP
proxy is deployed (e.g., as an inbound or outbound proxy)
and what TLS options are used (e.g., mutual authentication,
session reuse). The cost of symmetric key operations such
as AES, in contrast, tends to be small.
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1. INTRODUCTION

Securing Voice over IP (VoIP) is a necessary requirement
for enabling its stable, long-term adoption. A key aspect of
VoIP security is securing the signalling path, typically pro-
vided by the Session Initiation Protocol (SIP) [35]. SIP is
an application layer signaling protocol for creating, modify-
ing, and terminating media sessions in the Internet. Major
standards bodies including 3GPP, ITU-T, and ETSI have all
adopted SIP as the core signaling protocol for services such
as VolIP, conferencing, Video on Demand (VoD), presence,
and Instant Messaging (IM). Like other Internet services,
SIP-based services may be susceptible to a wide variety of
security threats including social threats, traffic attacks, de-
nial of services and service abuse [3, 7, 22]. One of the main
reasons that enable these threats is the common use of inse-
cure SIP signaling such as SIP-over-UDP, which provides no
signaling confidentiality, integrity, or authenticity. Given a
trace of SIP traffic, one can see who is communicating with
whom, when, for how long, and sometimes even what is be-
ing said (e.g., in SIMPLE [8]). It has also been shown that
even commercial VoIP services may be prone to large-scale
voice pharming [41], where victims are directed to fake in-
teractive voice response systems or human representatives
for revealing sensitive information.

Transport Layer Security (TLS) [15] is a widely used In-
ternet security protocol occupying a layer between the ap-
plication and a reliable transport like TCP. There is also a
Datagram TLS (DTLS) [33] protocol that provides similar
security functionalities but runs over an unreliable transport
like UDP. The SIP specification [35] lists TLS as a standard
method to secure SIP signaling. Various other organizations
and industrial consortiums have also recommended or man-
dated the use of TLS for SIP signaling. For example, the SIP
Forum [2] mandated TLS for interconnecting enterprise and
service provider SIP networks in its specification document.

However, while interest in securing SIP is growing [31],
actual large scale deployment of SIP-over-TLS has not yet
occurred. One important reason is the common perception
that running an application over TLS is costly compared to
running it directly over TCP (or UDP in the case of SIP).
VoIP providers will be hesitant to deploy TLS until they
understand the resource provisioning and capacity planning



required. Thus we need to understand how much using TLS
with SIP actually costs.
This paper makes the following contributions:

e We present an experimental performance study of the
impact of using TLS on SIP servers. Our study is
conducted using OpenSIPS [27] with OpenSSL [28]
on Linux on an Intel-based server. We evaluate the
CPU cost of TLS under four SIP proxy usage scenar-
ios: proxy chain, outbound proxy, inbound proxy, and
local proxy. We show that using TLS can reduce per-
formance by up to a factor of 17 compared to the typ-
ical case of SIP-over-UDP.

e We use application, library, and kernel profiles to ex-
amine, analyze, and explain performance differences.
The profiles illustrate how costs are incurred under dif-
ferent scenarios (e.g., extra Rivest, Shamir and Adle-
man (RSA) overheads when mutual authentication is
used) and how the costs can be reduced (e.g., RSA
costs disappear when session reuse is performed). They
also show some results that distinguish SIP server from
other server scenarios (e.g., bulk crypto costs of Ad-
vanced Encryption Standard (AES) or Triple Data En-
cryption Standard (3DES) are small) and how some
overheads are due to mechanisms (e.g., kernel over-
head, Secure Sockets Layer (SSL) state management)
rather than simply crypto algorithms such as RSA or
AES.

e We identify and solve two performance problems in
OpenSIPS. Each is related to connection management
with large numbers of connections under high loads.
The fixes improve performance in some cases from a
few times up to an order of magnitude.

Previous studies on TLS performance have either focused
on TLS for Web servers [5, 10, 21, 44] or policy-based net-
work management [43]. SIP protocol behavior is different
from these protocols in several ways. SIP messages tend to
be small, whereas Web downloads can be quite large. SIP
proxy servers can act as clients to other servers and therefore
can incur large client-side TLS costs. Finally, SIP servers
have a much wider range of connection management behav-
ior than other servers, and this connection management is
the primary issue in determining TLS overheads, due to the
heavy costs of RSA operations used for session negotiation.
Symmetric key operations such as AES or 3DES are trivial
in comparison.

The net result is that the performance cost of deploying
SIP over TLS instead of UDP can be significant, depending
on how the SIP proxy server is deployed (e.g., as an inbound
or outbound proxy) and how TLS is configured (e.g., with
or without mutual authentication or session reuse). Network
operators can minimize this cost by attempting to maximize
the persistence of secure sessions, but still need to be aware
of the overhead of utilizing TLS.

The remainder of this paper is structured as follows. Sec-
tion 2 provides some background on TLS and SIP. Section 3
describes the testbed used and how we determine our test
cases. Section 4 presents our experimental results. Section 5
describes related work.

2. BACKGROUND

2.1 TLSOperation Overview

We provide a brief description of the TLS protocol. For
more details, please see [15, 32, 37]. We focus on the aspects
relevant to our study, namely session establishment and its
corresponding RSA public key costs.

TLS operation consists of two phases: the handshake phase
and the bulk data encryption phase. The handshake phase
allows the parties to negotiate the algorithms to be used
during this TLS session, authenticate the other party and
prepare the shared secret for the bulk data encryption phase.

The normal message flow in the TLS handshake phase
is illustrated in Figure 1(a). The key performance as-
pects of this handshake are that the server sends its cer-
tificate to the client, which then verifies the certificate us-
ing a certificate authority’s public key. Depending on
the key exchange mode, the client may then generate a
pre_master_secret, and encrypt it using the server’s pub-
lic key obtained from the server’s certificate. The server
decrypts the pre_master_secret using its own private key.
Both the server and client then compute a master_secret
they share based on the same pre_master_secret. The mas-
ter_secret is further used to generate the shared symmetric
keys for bulk data encryption and message authentication.

In normal TLS handshake, only the client authenticates
the server. In situations where the server also wishes to au-
thenticate the client, TLS provides a mutual authentication
mode as shown in Figure 1(b). In the mutual authentication
mode, after the server sends its own certificate to the client,
the server sends an additional CertificateRequest message
to request the client’s certificate. The client responds with
two additional messages, a Certificate message containing
the client certificate with the client public key, and a Cer-
tificateVerify message containing a digest signature of
the handshake messages signed by the client’s private key.
Since only a client holding the correct private key can sign
the message, the server can authenticate the client using the
client’s public key.

In general, public key cryptographic operations such as
RSA are much more expensive than shared key cryptog-
raphy. This is why TLS uses public key cryptography to
establish the shared secret key in the handshake phase, and
then uses symmetric key cryptography with the negotiated
shared secret as the data encryption key. TLS offers a ses-
sion reuse mode where the two parties can avoid negotiat-
ing the pre_master_secret if it has been done previously
within some time threshold. It is important to distinguish
the notion of a connection versus a session in TLS. A TLS
connection corresponds to one specific communication chan-
nel which is typically a TCP connection; while a TLS session
is associated with a negotiated set of algorithms and the es-
tablished master_secret based on the pre_master_secret.
Multiple connections may be mapped to the same session, all
sharing the same set of algorithms and the master_secret,
but each with different symmetric keys for bulk data en-
cryption. The notion of session reuse indicates the reuse of
a previously negotiated set of cryptographic algorithms and
the master_secret. The handshake message flow for TLS
session reuse is shown in Figure 1(c). The first time the
client and server communicate, they establish a new con-
nection and a new session. The server stores the session
information including the algorithm choice and the mas-
ter_secret for later reference. The session is identified by a
session_id which is conveyed to the client during the initial
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Figure 1: TLS Handshake Message Flows

handshake in the ServerHello message. The next time the
client needs to establish a connection, it can include the pre-
vious session_id in the ClientHello message. The server
agrees to session reuse by specifying the same session_id
in the responding ServerHello message. The TLS hand-
shake will then proceed to ChangeCipherSpec message and
Finished message directly, avoiding the re-computation of
a pre_master_secret. The session reuse timeout is con-
figurable based on the security assumptions of how long it
takes to break the key by brute-force.

2.2 SIP Overview

SIP defines two basic types of entities: User Agents (UAs)
and servers. UAs represent SIP end points. SIP servers con-
sist of registrar servers for location management, and proxy
servers for message forwarding. SIP messages are divided
into requests (e.g., INVITE and BYE to create and terminate
a SIP session, respectively) and responses (e.g., 200 0K for
confirming a session setup). The set of messages including
a request and its associated responses is called a SIP trans-
action.

SIP message forwarding, known as proxying, is a critical
function of the SIP infrastructure. This forwarding process
is provided by proxy servers and can be either stateless or
stateful. Stateless proxy servers do not maintain state infor-
mation about the SIP session and therefore tend to be more
scalable. However, many standard application functionali-
ties, such as authentication, authorization, accounting, and
call forking require the proxy server to operate in a stateful
mode by keeping different levels of session state information.
Therefore, we focus on stateful SIP proxying in this paper.

Figure 2 shows a typical message flow of stateful SIP prox-
ying with authentication enabled. Two SIP UAs, designated
as User Agent Client (UAC) and User Agent Server (UAS)
represent the caller and callee of a multimedia session. The
hashed circle around the proxy indicates that this is the
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Figure 2: SIP Stateful Proxying with Authentica-
tion



server that we are measuring (“system under test”). In this
example, the UAC wishes to establish a session with the
UAS and sends an INVITE message to the proxy. The proxy
server enforces proxy authentication and responds with a
407 Proxy Authentication Required message, challenging
the UAC to provide credentials that verify its claimed iden-
tity (e.g., based on MD5 [34] digest algorithm). The UAC
then retransmits the INVITE message with the generated cre-
dentials in the Authorization header. After receiving and
verifying the UAC credential, the proxy sends a 100 TRY-
ING message to inform the UAC that the message has been
received and that it needs not worry about hop-by-hop re-
transmissions. The proxy then looks up the contact address
for the SIP URI of the UAS and, assuming it is available,
forwards the message. The UAS, in turn, acknowledges re-
ceipt of the INVITE message with a 180 RINGING message
and rings the callee’s phone. When the callee actually picks
up the phone, the UAS sends out a 200 OK. Both the 180
RINGING and 200 OK messages make their way back to the
UAC through the proxy. The UAC then generates an ACK
message for the 200 0K message. Having established the ses-
sion, the two endpoints communicate directly, peer-to-peer,
using a media protocol such as RTP [39]. However, this me-
dia session does not traverse the proxy, by design. When
the conversation is finished, the UAC “hangs up” and gen-
erates a BYE message that the proxy forwards to the UAS.
The UAS then responds with a 200 0K which is forwarded
back to the UAC.

SIP proxy authentication is an optional operation, typi-
cally done between a UA and its first hop SIP proxy server.
While the example above shows a single SIP proxy along the
path, in practice it is common to have multiple proxy servers
in the signaling path. The message flow with multiple proxy
servers is similar, except that the proxy authentication is
usually only applicable to the first hop.

2.3 SIP Connection Management over TLS

SIP can operate over different transport protocols, both
reliable and unreliable. Since TLS requires a reliable trans-
port, all our evaluations for TLS use TCP transport. In
general, a TCP connection is first established between end-
points, and then a TLS handshake occurs to negotiate the
TLS session. Once the TLS session is established, the SIP
signaling messages will be passed to the TLS layer and en-
crypted.

When a connection oriented transport such as TCP is
used, the connection management policy needs to be de-
fined. In a multi-hop SIP server network scenario, it is usu-
ally preferable to maintain a single long-lasting connection
between two interconnected proxy servers. All SIP messages
between the two proxy servers that go through the same ex-
isting connection can avoid the per-session connection hand-
shake overhead. In contrast, if the proxy server is connected
with a SIP UAC or UAS directly, the proxy typically has to
establish separate connections with each of them since they
are located on separate hosts.

3. TESTBED AND METHODOLOGY

3.1 OpenSIPS SIP Server

The SIP server we evaluated is Open SIP Server (Open-
SIPS) version 1.4.2 [27], a freely-available, open source SIP
proxy server. OpenSIPS is a fork of OpenSER, which in turn

was a fork of SIP Express Router (SER) [20]. All these proxy
servers are written in the C language, use standard process-
based concurrency with shared memory segments for sharing
state, and are considered to be highly efficient. These sets of
server implementations represent the de facto open source
version of SIP server, occupying a role similar to that of
Apache for web server [4, 6, 13, 14, 16, 17, 24, 30, 42].

We made several modifications to OpenSIPS in order to
support all of our test cases. In particular, we added a con-
nection mode where OpenSIPS will establish a new connec-
tion to a UAS upon a new call, even if the UAS has the same
IP address. This is needed to test the multiple connection
mode between the proxy server and UAS using a limited
number of UAS machines. We also added OpenSIPS op-
tions to to request TLS session reuse when it is acting as
the TLS client, and OpenSIPS options to request for TLS
mutual authentication when it is acting as the TLS server.

One unexpected parameter that initially prevented us from
running high load tests with SIP proxy authentication is the
“nonce index” value in OpenSIPS. It turns out that the de-
fault MAX_NONCE_INDEX value used to create nonce for proxy
authentication is too small and could exhaust easily at high
load. When the nonce could no longer be generated, au-
thentication cannot proceed and the server will simply re-
ject calls. We increased the default MAX_NONCE_INDEX value
from 100,000 to 10,000,000. This change alone increased
the throughput results dramatically, e.g., in the proxy chain
mode the peak throughput with SIP proxy authentication is
increased by close to an order of magnitude.

In configurations involving proxy authentication where a
user database is required, we use MySQL-5.0.67 [26], which
we populated with 10, 000 unique user names and passwords.
The MySQL server runs on the same machine as the Open-
SIPS server.

3.2 SIPp Client Load Generator

We use another freely available open-source tool, SIPp [19]
to generate SIP traffic. SIPp allows a wide range of SIP
scenarios to be tested, such as UAC, UAS and Third-Party
Call Control (3PCC). We use the SIPp release from August
26th, 2008. We also added additional functionality to SIPp
to accommodate all our test cases. Specifically, we added
SIPp options to request TLS session reuse when it is acting
as the TLS client and SIPp options to request TLS mutual
authentication when it is acting as the TLS server. The
TLS support library for SIPp is a statically-compiled version
based on OpenSSL [28] release 0.9.8i (which is the latest
release at the time of the compilation).

3.3 Hardware and Connectivity

The server hardware we use has 2 Intel Xeon 3.06 GHz pro-
cessors with 4 GB RAM and 34 GB disk drives. However, for
our experiments, we only use one processor because SIP per-
formance under multiple processors or a multi-core proces-
sor is itself a topic that requires separate attention [42]. We
use 10 client machines, six of which have 2 Intel Pentium 4
3.00 GHz processors with 1 GB RAM and 80 GB hard drives.
The other four have 2 Intel Xeon 3.06 GHz processors with
4GB RAM and 36 GB hard drives. The server and client
machines communicate over copper Gigabit or 100Mbit Eth-
ernet. The round trip time measured by the ping command
from the client to the server is around 0.15 ms.



3.4 Software Platform

The server uses Ubuntu 8.04 with Linux kernel 2.6.24-19,
OpenSSL 0.9.8.g, and oprofile 0.9.3. The clients use Ubuntu
with either a 2.6.22 kernel or a 2.6.24 kernel. We encoun-
tered an SSL library failure at the SIPp load generator side
when generating high loads. After examining the OpenSSL
error queue in more detail, the ERR_error_string is found

to be error:1409F07F:SSL routines:SSL3_WRITE_PENDING:

bad write retry. A bug fix is found at [18]. This fix was
submitted in 2003 but had not yet been incorporated into
the OpenSSL release. We therefore recompile SIPp using
OpenSSL version 0.9.81 source with this fix included. The
OpenSIPS server machine uses the existing OpenSSL version
0.9.8g. The bug does not manifest itself there and keeping
the original OpenSSL on the server makes profiling more
convenient.

3.5 Workload and Performance Metrics

The workload is a standard SIP call flow provided by SIPp
illustrated in Figure 2. There is no call hold time. Our
main metrics are server throughput as reported by SIPp and
server profile CPU events as reported by oprofile [29]. We
also measure server CPU utilization. All our test runs last
for 120 seconds after a 30-second warm-up time. All metrics
are the average of three consecutive test runs.

3.6 Test Matrix and Evaluated Test Cases

We first group possible SIP server connection manage-
ment configurations into four different deployment modes
as shown in Figure 3.6.

1. Figure 3(a) shows the prozy chain mode, where the
proxy server interconnects two other proxy servers in
a chain fashion. This is intended to model, e.g., how
two core SIP proxy servers of different service providers
communicate. Only one connection is needed for each
neighboring proxy server in this case.

2. Figure 3(b) shows the outbound prory mode, where
the proxy accepts multiple connections from UACs but
only establishes a single outgoing connection with an-
other proxy server. This configuration models how
phones in an enterprise VoIP deployment would make
calls external to the organization.

3. Figure 3(c) is the inbound prozy mode, where the proxy
server under test accepts a single connection from an
upstream proxy server and establishes multiple connec-
tions to individual UASes. This is the mirror of the
outbound proxy configuration above, where incoming
SIP traffic is routed to phones.

4. Figure 3(d), is the local prory mode, where the proxy
server under test connects UACs and UASes directly,
and therefore accepts both incoming connections and
creates outgoing connections simultaneously. This con-
figuration is intended to model how phones in an enter-
prise deployment would communicate with each other.

SIP proxy servers usually support all these four modes
of operation, thus this characterization is somewhat logical
rather than physical. While in practice real proxy behavior
will lie somewhere in the middle of these four extremes, the
characterization lets us explore the design space fully.

For example, a SIP proxy operating in the proxy chain
mode could well connect a number of different proxy pairs.
It does not necessarily interconnect only a single pair of
proxy servers. Similarly, an outbound proxy might connect
to more than one upstream proxy. The four modes thus
describe the full range of connection management behavior
for SIP proxy servers, from completely persistent connec-
tions to a small set of nodes (the proxy chain mode) to non-
persistent connections where each call requires a connection
setup and teardown (the local proxy mode). In addition, the
inbound and outbound cases distinguish where connections
are passively accepted (the inbound proxy mode) vs. those
that are created (the outbound proxy mode). To explore the
applicable test matrix, we characterize five main configura-
tion variables in our SIP-over-TLS tests: TLS connection
management, TLS session reuse, TLS mutual authentica-
tion, TLS cipher suite and SIP proxy authentication. Note
that the connection management configuration options also
applies to TCP.
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Figure 3: SIP Proxy Operation Modes

To relate connection management with other configura-
tion parameters, we draw a unified logical component graph
of the testbed as in Figure 4. The proxy server in the mid-
dle represents the server under test. The whole testbed is
split into the left path and the right path, which consists of
the left pair and the right pair of the logical UAC and UAS
components, respectively. The applicable configuration op-
tions in each of the four connection management modes can
then all be mapped into Table 1, where N/A indicates “Not



TCP/TLS TLS TLS TLS SIP
Multiple Session Mutual Cipher | Proxy
Configuration Connections Reuse Authentication Suite Auth.
Left Path | Right Path | Left Path | Right Path | Left Path | Right Path
Proxy Chain N/A N/A N/A N/A N/A N/A any | Yes/No
Outbound Proxy Yes N/A Yes/No N/A Yes/No N/A any | Yes/No
Inbound Proxy N/A Yes N/A Yes/No N/A Yes/No any | Yes/No
Local Proxy Yes Yes Yes/No Yes/No Yes/No Yes/No any | Yes/No
Table 1: Overall Test Matrix
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Figure 4: Logical Component Graph of SIP Testbed

Applicable”.

Directly expanding the whole test space in Table 1 re-
sults in numerous configuration scenarios which are both in-
tractable and unnecessary. We make the following decisions
to narrow down the cases towards a workable test set. First,
for TLS cipher suite, since the SIP standard [35] already
specifies the mandatory TLS_RSA_WITH_AES_128_CBC_SHA ci-
pher suite (abbreviated as TLS-AES) and a recommended
TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite (abbreviated
as TLS-3DES), we focus on these two cipher suites only. In
particular, since the impact differences between these two ci-
pher suites are mainly on the bulk data encryption phase, we
test both cipher suites only in the proxy chain mode which is
specifically meant to examine the impact of TLS bulk data
encryption. For all other three proxy modes, we test TLS-
AES only. Second, we enable SIP proxy authentication only
in the outbound proxy and local proxy modes, which is a
common setting. Third, we test the TLS session reuse and
TLS mutual authentication separately to understand each
of their impacts. We configure appropriate certificates on
both servers and clients in experiments which require them.
Fourth, when both the left path and the right path can ap-
ply TLS session reuse or TLS mutual authentication, both
paths have the same setting. These decisions reduce our test
space for TCP and TLS to 16 configurations. Adding the
two UDP Auth and UDP NoAuth settings, we have a total
of 18 test configurations.

4. RESULTSAND ANALYSIS

Different proxy modes and configuration scenarios can in-
cur significantly different overheads and result in very differ-
ent limits on throughput. We start with the relatively sim-
ple proxy chain mode and then examine the more complex
modes of outbound proxy, inbound proxy, and local proxy.
For each of the 18 scenarios, we measure peak throughput
and then use CPU profiles to understand and explain the
performance costs.

4.1 Proxy Chain
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Figure 5 shows the peak throughput in calls per second
(cps) for the proxy chain mode using several configurations.
Each bar shows the performance for a different configura-
tion. The first four bars have SIP proxy authentication
disabled and the next four have SIP proxy authentication
enabled. The tests include UDP, TCP only, TLS with the
TLS-AES cipher suite, and TLS with the TLS-3DES cipher
suite. Recall that in this mode, no connection setup over-
heads are incurred. The average CPU utilization ranges
from 95% to 100% in all the peak test cases except for the
UDP and TCP without authentication cases, which is about
70% and 85%, respectively. Note that not all the tests could
reach full CPU utilization because there is not always quite
enough client machines to fully load the testbed.

We see from Figure 5 that the peak throughput using TCP
achieves about 47% of the throughput using UDP, when SIP
proxy authentication is not used. When authentication is
enabled, TCP provides 78% of the corresponding UDP per-
formance. Adding TLS to the scenario results in even more
substantial performance reductions. When SIP proxy au-



thentication is not enabled, TLS-AES achieves 60% of the
corresponding TCP throughput, and TLS-3DES achieves
47% of the TCP throughput. When proxy authentication
is enabled, TLS-AES achieves 76% of the corresponding
TCP throughput and TLS-3DES achieves 68% of the TCP
throughput.

While it would be convenient to simply attribute the ex-
tra overheads to the corresponding encryption algorithms,
it turns out the reality is more complex. To better under-
stand the overheads, we turn to the CPU profiles generated
by oprofile. Our approach is to obtain a CPU profile of each
configuration run at the same load level of 50 calls per sec-
ond so that results across configurations can be compared
meaningfully. As components are added (e.g., TLS vs. no
TLS) or changed (AES vs. 3DES), the attendant CPU costs
will manifest themselves in the profiles. This assumes costs
scale relatively linearly with load and exhibit the same pro-
portions at the peak as they do at 50 cps, which is not
always the case. To test the accuracy of this assumption,
we compare the observed peak throughputs with the ones
extrapolated based on the CPU cycle costs observed. On
average, the estimates match the observed peaks within 15
percent.
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Figure 6 shows the number of non-idle CPU cycles con-
sumed by the server in the proxy chain mode for each con-
figuration during the test. = We see that the total cost of
the baseline UDP case without SIP authentication is about
144K CPU cycles. The most significant cost components
are kernel (68K) which accounts for 47%, and the sum of
OpenSIPS-Core and OpenSIPS-Model (54K), which con-
tributes another 38% of the total cost. When TCP is used
instead of UDP, the total costs increase 152K cycles or over
100%. Again most of the increase belongs to Kernel (60K)
and the sum of OpenSIPS-Core and OpenSIPS-Module (71K).

We see that adding TLS-AES introduces another 50% of
additional overhead, roughly 450K cycles vs. 300K cycles for
the TCP case. TLS-3DES is similar, with roughly 525K cy-
cles, and as would be expected, the differences in total cost
between TLS-AES and TLS-3DES are almost solely con-
tributed by the cost difference in cryptographic operations.

Half of the 150K increase from TCP to TLS-AES is di-
rectly contributed by TLS operations, and most of the re-
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mainder is relatively evenly shared by increases in Kernel
and OpenSIPS-Core. Since 128 bits AES is less expensive
than SHA-1, AES itself only adds about 19K cycles in cost;
Message Authentication Code (MAC) overheads are higher
at 25K cycles. MAC overheads are incurred by the bulk
encryption algorithm, since each message is verified for au-
thenticity using the MAC algorithms. MAC overheads are
roughly equivalent regardless of the choice of AES or 3DES
since we use SHA-1 in both cases. While 3DES is over 4X as
expensive as AES (93K vs. 19K cycles), the relative differ-
ence between the two complete software stacks is only about
17% (525K vs. 450K). We expect AES to be faster since it is
a more recent cipher than 3DES and was designed for perfor-
mance. Other TLS overheads come from other components
in the OpenSSL library. For example, in the TLS-AES case,
there are other libcrypto functions (10K) and libssl (11K).
Thus a non-trivial component of SSL overheads is from using
the SSL mechanisms, such as allocating, freeing, maintain-
ing, and looking up SSL session state.

Comparing the TCP case and the two TLS cases, the CPU
profiles do not show the increases in kernel and OpenSIPS-
Core centering on any specific functions. Between the two
TLS cases themselves, the cost of Kernel and OpenSIPS-
Core are quite similar.

The major difference when SIP proxy authentication is
enabled is the additional database cost, which ranges from
16 — 29% of the total cost in each case. When the database
overhead is included, TCP will introduce 32% overhead over
UDP. TLS-AES and TLS-3DES will incur an additional 30%
and 44% over TCP, respectively. The rest of the cost con-
tributions are similar to when SIP authentication is not en-
abled, because the authentication database functions are or-
thogonal to the TLS functions.

4.2 Outbound Proxy
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Figure 7: Peak Throughput: Outbound Proxy

Figure 7 shows the peak throughputs of the outbound
proxy mode for several configurations. Recall that in the
TCP or TLS cases of this mode, each call results in a new
connection being established with the server, as opposed to
the proxy chain mode above. Each bar again indicates a
different configuration, namely UDP, TCP, TLS, TLS with
mutual authentication, and TLS where session reuse occurs
on each TLS connection. Each configuration has SIP au-
thentication enabled. Since the choice of AES or 3DES only
affects the bulk data encryption overheads, which we exam-
ined in Section 4.1, for simplicity we restrict our experiments



with TLS to use only AES for the remainder of this paper.
The average CPU utilization in each case is around 90%. We
see that the peak throughput in the TCP case is around 58%
of the baseline UDP case. The TLS case is approximately
56% of the TCP case. Within the TLS cases, adding TLS
mutual authentication reduces throughput about 20%, while
enabling session reuse increases throughput about 20%.

2000000

MAES
NMAC

1800000

1600000

EIRSA
1400000

1200000

M Libssl
1000000

[ Libe

CPU Events

800000

E Database

600000 B Other

400000 -

200000 |
B Kernel

0 -

ubpp TCP TLS TLS TLS
MutualAuth SessionReuse

Figure 8: CPU Profile Cycle Costs: Outbound
Proxy (50 cps)

Figure 8 shows the CPU profiles for the different out-
bound proxy configurations, again at the 50 calls per sec-
ond load level. Using TCP introduces about 47% more or
271K of overheads compared to using UDP. Within this in-
crease, Kernel costs contribute 144K, while OpenSIPS-Core
and OpenSIP-Module contribute 102K. The remaining 25K
is contributed by libc and other functions.

The use of TLS introduces 75% of additional overhead
compared to the TCP case. TCP consumes about 840K cy-
cles whereas TLS costs about 1,470K cycles. Much of this
increase comes from RSA (233K cycles) because in this con-
figuration the proxy needs to perform one of the most costly
operations in the TLS handshake: RSA decryption of the
pre_master_secret using its private key. Another major
component of the increase is from MAC processing (65K
cycles), which is not only used to verify the encrypted mes-
sages but also to verify the server certificate and construct
the master_secret. Other OpenSSL overheads such as libssl
(34K) and other libcrypto functions (36K) also contribute.

Enabling TLS mutual authentication incurs about 1,790K
cycles or an additional 330K over the baseline TLS, most
of which comes from increased RSA costs (160K). Recall in
this case the server requests the client’s certificate which the
server verifies using RSA public key decryption. In addition,
the server performs another RSA public key decryption for
the client’s certificate verification message and also verifies
the certificate using the MAC algorithm. Indeed, we see
MAC costs increase by 10K cycles when mutual authenti-
cation is used. Kernel costs also increase by 45K cycles,
presumably due to additional network packets transmitted
and context switches between user and kernel space.

However, enabling TLS session reuse reduces the overhead
by 15% compared to the baseline TLS case, or by about
200K cycles. Most of this overhead is explained by the re-
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duction in RSA costs, which shrink from 233K cycles to only
10K cycles. This is because in the session reuse case, no key
exchange and certificate verification is required. MAC costs
remain, however, since new cryptographic keys are still com-
puted for data encryption.

It is worth noting that the TLS mutual authentication
test above also includes SIP proxy authentication. While
TLS mutual authentication is used to authenticate and au-
thorize “client systems”, SIP proxy authentication is used to
authenticate and authorize “users”.

4.3 Inbound Proxy
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Figure 9: Peak Throughput: Inbound Proxy

Figure 9 shows the peak throughput of the inbound proxy
mode, where SIP proxy authentication is not enabled. The
figure shows two versions of OpenSIPS: the original version
and one with a modification we developed, denoted “with
timeout fix” in the graph. We start by explaining the per-
formance problem we discovered and how we solved it.

We examined the original OpenSIPS CPU profile under
the peak throughput for TCP and TLS. Surprisingly, we
found that 50% of the CPU cycles in the TCP case and 20%
percent of the CPU cycles in the TLS case are spent in two
functions, tcp_main_loop and tcp_receive_loop. More de-
tailed profiling reveals that the overhead in the two functions
are primarily the cost of two timeout mechanisms used to
close the TCP connections which are no longer in use. In
the inbound proxy case, the timeout mechanism becomes
prominent because the UAS in our tests does not close the
TCP/TLS connection when the call is over. There can be
thousands of simultaneous TCP connections existing in the
TCP connection table. The current server code calls a time-
out function every time the epoll mechanism returns when
events are detected. Since the connection expiration time is
not linked to the corresponding hash key, during each call
to the timeout function, the entire TCP connection hash
table is traversed . Therefore, at high loads when the hash
table has thousands of entries, the time spent in the timeout
function becomes much larger than that of the case under
lower load.

We applied a fix to the existing OpenSIPS TCP connec-
tion timeout mechanism. Observing that the timeout is
based on a time tick with one second resolution, it makes
no sense to enter the timeout function more than once per
second. We therefore added a time tick check before calling



the timeout function. If the program has called the timeout
function during the current time tick value already, then it
will not enter the timeout function until the time tick value
is advanced. This simple fix turned out to have a drastic
effect on performance involving TCP and TLS, as shown in
Figure 9.

As can be seen, the TCP case and the TLS with session
reuse scenario enjoy the most obvious boosts in throughput,
by about 200% and 150% respectively. For example, in the
TCP inbound proxy test case, the contribution of the two
timeout functions to the total overhead reduces from 50%
to a negligible 0.6%, and the total cost drops by 73%. In
addition, kernel costs shrink by 43%. CPU utilization at the
200 calls per second load level reduces from 95% to 20%.
The CPU utilizations at the peak throughput values with
the timer fix are in the range of 80% to 90%.

The other two scenarios, TLS and TLS with mutual au-
thentication, also see performance increases but the differ-
ences are less dramatic. The reason is that in the latter two
scenarios, the proportion of cryptographic overheads take a
greater part of the total cost, so reducing the OpenSIPS and
kernel overheads has a smaller impact.

From Figure 9, we see that the peak throughput with
TCP is about 24% of the UDP case. The peak through-
put of TLS is approximately 28% of the TCP case. Within
the TLS cases, adding TLS mutual authentication reduces
throughput by 29%, while enabling session reuse increases
throughput by 100%.
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Figure 10: CPU Profile Cycle Costs: Inbound Proxy
(with Timeout Fix)

Figure 10 shows the CPU profiles for the several inbound
proxy configurations where the timeout fix has been applied.
In general, using TCP incurs 174% (250K) of additional
overhead compared to using UDP, 118K of which comes from
increase in Kernel and 94K from increases in OpenSIPS-
Model and OpenSIPS-Core. The remainder comes from libc
(8K) and other functions (30K). The use of TLS introduces
over 233% of additional overhead compared to the TCP case
(1,315K cycles vs. 394K). 212K cycles are contributed by
RSA, 173K by other liberypto processing, 93K by MAC pro-
cessing, 44K by libssl, and 23K by AES. Kernel overheads
increase by 150K and OpenSIPS-Core by 110K.

Enabling mutual authentication incurs an additional 42%
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overhead (550K cycles) over the baseline TLS. The majority
of that increase comes from RSA (260K). MAC processing
is also increased by 310K.

Enabling TLS session reuse reduces costs by 46% com-
pared to the base TLS case, with total costs falling from
1,315K to 710K or about 600K cycles. Reduced RSA pro-
cessing contributes 200K of those reductions; other libcrypto
costs drop by 135K; MAC overheads are reduced by 40K;
libssl costs shrink by 20K.

In this configuration, the main RSA costs in the normal
TLS case come from the proxy verifying the UAS’s certifi-
cate and the proxy encrypting the pre_master_secret to
be sent to the UAS. The additional increase in RSA over-
heads in the mutual TLS configuration is mainly because
the proxy needs to sign the client authentication message
using its private key.

An interesting observation from this figure is the cost of
MAC functions, which are substantially higher than in the
previous proxy scenarios. This is because the proxy in the
inbound mode acts as TLS client and needs to verify the
certificates presented by the UAS, which was not present in
the outbound mode. In addition, in the mutual TLS case,
the inbound proxy needs to perform RSA encryption using
its own private key and to sign the certificates using the
MAC algorithm. These overheads are exhibited in the pro-
files. Furthermore, in the TLS with session reuse case, the
MAC costs are significantly reduced, indicating that a large
amount of the MAC cost is associated with the RSA key ex-
change phase, rather than during the bulk data encryption.

4.4 Local Proxy
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Figure 11: Peak Throughput: Local Proxy

Figure 11 shows the peak throughputs of various configu-
rations in the local proxy mode, both with and without the
timeout fix described in Section 4.3, and with SIP authen-
tication enabled. We see the timeout fix has a substantial
impact on performance for both the baseline TCP case and
for TLS when session reuse is enabled, where TCP overheads
are significant. The timeout fix makes less of an impact on
the other TLS cases because in those cases the TLS over-
heads account for a larger proportion of the total cost. For
the remainder of this Section, we focus our analysis on the
configurations where the timeout fix is applied.

The average CPU utilizations in the four configurations



with the timeout fix are between 80% to 90%. We see that
the peak throughput with TCP is around 53% of the UDP
case, while the peak throughput with TLS is approximately
37% of the TCP case. Within the TLS cases, adding TLS
mutual authentication reduces throughput by 33%, while
enabling session reuse increases throughput by 66%.
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Figure 12: CPU Profile Cycle Costs: Local Proxy
(with Timeout Fix)

Figure 12 shows the CPU profile results for the local proxy
mode with the timeout fix. In general, the use of TCP in-
curs 58% of additional overhead compared to the baseline
UDP case. 186K of this is contributed by Kernel, 108K
by OpenSIPS-Core and OpenSIPS-Module, 10K by libc and
30K by other functions. Using TLS introduces over 166%
of additional overhead compared to the TCP case. To-
tal cycles increase by 1,500K from 900K to 2,400K. RSA
contributes 434K to that increase, followed by kernel over-
heads 240K, MAC processing 219K, other libcrypto func-
tions 174K, OpenSIPS-Core 140K, libssl 67K, and AES 36K.

Enabling TLS mutual authentication incurs an additional
32% overhead over the baseline TLS, increasing total costs
about 800K from 2,400K to 3,170K. Additional RSA over-
heads contribute 375K of the increase, 125K from kernel,
100K from MAC, 70K from libcrypto, 45K from OpenSIPS-
Core, and 5K from libssl.

Enabling TLS session reuse reduces the cost relative to
the baseline TLS case by 38%. Cycles shrink by 900K from
2,400K to 1,500K. RSA savings contribute 415K to the dif-
ference, followed by MAC 130K, other libcrypto functions
110K, kernel 80K, OpenSIPS 50k, libssl 25k.

The MAC cost is significantly reduced in the TLS with
session reuse case, indicating that a large amount of the
MAC cost is associated with the RSA public key exchange
phase, as discussed in the inbound proxy case in Section 4.3.

5. RELATED WORK

SSL/TLS performance has been studied by a number of
researchers. However, almost all these studies are based
on SSL/TLS Web servers. Apostolopoulos et al. [5] found
that the overhead due to TLS can reduce the number of
HTTP transactions handled by up to two orders of magni-
tude. Kant et al. [21] investigated the architectural impact
of SSL, and concluded that the use of SSL increases the com-
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positional cost of transactions by a factor of 5 — 7. Zhao et
al. [44] provided an oprofile-based anatomy of SSL process-
ing for an SSL Web server. They found that about 70% of
the total processing time of an HTTP over SSL transaction
is spent in SSL processing. Coarfa et al. [10] measured the
difference of TLS server throughput by selectively replacing
TLS operations with no-ops, instead of using a CPU pro-
filer. Their results show that RSA computations are the
single most expensive operation in TLS, which accounts for
13 — 58% of the total time spent under different available
server CPU cycles and workload conditions.

Zeng and Cherkaoui [43] studied the performance of TLS
on a Common Open Policy Service (COPS) over TLS envi-
ronment. The results of their study showed that establishing
a COPS over TLS session took about a thousand times as
much as needed for a pure COPS connection without TLS.

Many researchers have studied SIP server performance, al-
beit without TLS. Schulzrinne et al. presented SIPstone [40],
a suite of SIP benchmarks for measuring SIP server perfor-
mance on common tasks. Cortes [12] measured the per-
formance of four different stateful SIP proxy server imple-
mentations over UDP and reported throughput results from
90— 700 cps. Nahum et al. [16, 24] showed experimental per-
formance results of the OpenSER SIP server under different
scenarios including stateful and stateless proxying, TCP and
UDP transport, with and without SIP proxy authentication.
Their results indicate that any of these configurations can
affect performance by a factor of 2 — 4. Their evaluated
SIP-over-TCP scenario corresponds to the TCP single con-
nection or the proxy chain mode in this paper. Oho and
Schulzrinne [25] studied the performance of the SIPd [38]
SIP server over the UDP and TCP transports. Their TCP
tests include the multiple connection mode between the SIP
proxy and the UA similar to the local proxy mode of this
paper. Ram et al. [30] provided more understanding of the
impact of TCP on SIP server performance using OpenSER.
They show that a substantial component of the performance
loss from using TCP is due to the process architecture in
OpenSER and provide improvements. Wright et al. [42]
studied the performance of SIP servers on multi-core sys-
tems. They proposed and evaluated several optimizations
to improve scalability up to eight cores.

Cha et al. [9] described a study of SIP with TLS, DTLS
and IPSec over TCP, UDP and SCTP. However, the work is
based on ns-2 [1] simulation and the scope of the evaluation
is on call setup delay in a two-hop SIP proxy scenario with
background traffic. Thus the focus is on delay as a func-
tion of packet exchanges rather than server CPU overheads.
Kim et al. [23] also measured the call setup delay (along
with voice quality metrics such as mean option score) of a
SIP-based VolP system implementation which contains both
TLS and S-MIME. But it is not clear what the software and
hardware used are, or what the call request rate during the
measurement is.

The most relevant work we found is from Salsano et al. [36]
who measured the throughput performance and processing
cost of SIP proxy server over UDP, TCP and also TLS. Their
test cases for stateful SIP proxy servers represent four of the
18 scenarios that we look at, essentially the UDP NoAuth,
UDP Auth, TCP Auth, and TLS Auth configurations, all
in the proxy chain mode. The total cost ratios of these
four scenarios in their work are 1:1.44:1.52:1.54, while the
corresponding ratios from our results are 1:4:5.2:6.7. These



numbers are not directly comparable because of the different
software and hardware platforms used in the two sets of
experiments. Salsano et al. used their own open source
SIP server implemented in Java using a 300 MHz Pentium
machines running either Linux or Windows 98/2000. We use
contemporary hardware and standard open-source software
implemented in C. As a result, the peak performance of the
two testbeds are also dramatically different. For example,
in the basic UDP NoAuth scenario, the peak throughput on
their testbed is 21 cps, compared to 2,400 cps on ours, a
factor of 100 difference in performance.

One approach to reducing security overheads is to use a
hardware crypto accelerator, e.g., Sun’s Crypto 6000 card
[11]. While this can improve performance (e.g., the card
claims 13,000 1024-bit RSA operations per second), the cards
tend to be expensive (e.g., the list price for the board was
$9,950 at the time of this writing). More importantly, in
many cases, much of the overhead we observed was in the
OpenSSL software libaries themselves (e.g., libssl, libssl-
other), rather than the crypto algorithms (libcrypto). Crypto
acceleration hardware will not help with these overheads.

6. CONCLUSIONS

Insecure UDP-based signaling is one major reason that ex-
poses SIP-based services to many common security threats.
We have evaluated and analyzed the impact of using TLS as
a transport on SIP server performance versus the standard
approach of SIP-over-UDP. Using an experimental testbed
with the OpenSIPS server, OpenSSL, Linux, and an Intel-
based server, we show that the performance with TLS can be
reduced significantly. We use application, library, and kernel
profiling to illustrate where different costs are incurred (e.g.,
extra RSA overheads when mutual authentication is used)
and how they can be avoided (i.e., RSA costs are nearly
eliminated when session reuse is effective).

In the best case, the baseline UDP performance is about
three times that with TLS (the proxy chain mode); in the
worst case, UDP is 17 times the performance than with TLS
(the local proxy with TLS and mutual authentication). The
performance results depend primarily on whether and how
frequent TLS connection establishment is performed, since
TLS session negotiation incurs expensive RSA public key
operations. In turn, session negotiation depends on how the
SIP proxy is deployed (as an inbound, outbound, or local
proxy) and how TLS is configured (with mutual authentica-
tion or session reuse). Bulk encryption costs such as 3DES
or AES, in contrast, are minimal, typically no more than
seven percent.

Implementation plays a role as well. We found several
performance bugs in OpenSIPS and OpenSSL, despite the
fact that they have mature code bases and large numbers
of users. When fixed, performance improved in some cases
from a few times up to an order of magnitude.

Network operators considering deploying SIP over TLS
will need to consider the extra resources required to provide
the same service quality as would be the case with UDP.
Costs can be reduced by maximizing the potential for persis-
tent TLS sessions, which avoid heavy connection setup costs.
These lessons may be appropriate for other protocols that
use TLS, especially if they tend to have short messages.
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