Feature Interaction in Internet Telephony

Henning Schulzrinne
Dept. of Computer Science
Columbia University
schulzrinne@cs.columbia.edu

Feature Interaction Workshop
Montreal, Quebec

June 18, 1997

Internet Telephony Architectural Model

end systems: Internet hosts, dedicated devices

gateways: POTS, pagers, . . . ↔ Internet (SIP, H.323)
Internet ↔ Internet im similar to mail gateways (firewalls)

Addressing:

- phone://212.939.7042, sip://user@host
- terminal: hgs@erlang.cs.columbia.edu
- logical address: h.g.schulzrinne@ieee.org
- ≥ 0 translations possible
- separation: identifying and charging (800, 900), features (700) vs. addressing
- re-use of email infrastructure: location, voice mail

Differences: IT – POTS

- datagram means less bootstrapping
- in-band signaling is higher speed
- separation of control (SIP, H.323) and transport (UDP) in no triangle routing
- separation of connectivity from resource availability
- many features in end system: distinctive ringing, caller id, speed dialing

Difference: IT – POTS

- no signaling ambiguity (# problem)
- richer signaling on actions taken actions taken call forwarding, forwarding on busy
- features: calls between intra-PBX = inter-LATA and general
- multiple call presences is call waiting easier
- SIP: fewer call states, timers

New Feature Interactions

Ordering of events:

- communications mode (phone, fax, mobile, pager, ...)
- negotiation of media within mode
- resource reservation
- human accessibility

practical: more implementors, two per call

• call forwarding on busy or call waiting

Internet Telephony Feature problems

- adding a third party
 unicast addressing → multicast addressing,
 address allocation
- user-implemented logic = feature *interaction*?
- externally triggered hard to debug state-based language? graphical languages?
- email "vacation" programs