Audio and Video Over Packet Networks — Issues, Architecture and Protocols

Henning Schulzrinne GMD Fokus, Berlin hgs@fokus.gmd.de

Interop'94 Paris

October 27, 1994

interop94.tex

GMD Fokus

March 28, 1995

2

1

Overview

- audio and video characteristics
- problems of integrating audio & video with data
- network support for integration
- RTP: real-time transport protocol

Why bother integrating?

- use existing workstations as audio/video terminals
- use existing LAN/WAN infrastructure
- efficiency:
 - true (LAN/WAN) multicast instead of MCUs and bridges same application scales from two to hundreds of receivers
 - variable-bit rate (VBR) video, but interoperation with H.261 standards
 - audio silence suppression important for large-scale conferences

interop94.tex

March 28, 1995

4

GMD Fokus

Why bother integrating (cont'd)?

- added control functionality:
 - directory services
 - visual speaker indication
 - source selection at receiver
- integration of application-sharing and data applications, WWW

Disadvantages of packet audio/video

- no resource reservation \rightarrow quality may suffer (but: RSVP)
- may push overloaded networks over the edge
- low frame rates for workstation video codecs
- hands-free speaking in infancy (echo)
- packetization overhead, delay
- operating systems ill-suited for real-time applications → single-user, no background load
- office environment: acoustics, lighting, ...

interop94.tex

March 28, 1995

GMD Fokus

6

	audio	video
rate (kb/s)	13641500	20015006000
loss tolerance	$\leq 5\%$	$10^{-5}1\%$
packet size	small	large
traffic	interrupted CBR	VBR

Characteristics of digital audio and video

One-way delay tolerance:

conference audio without echo cancellation: 40 ms

conference audio with echo cancellation: 150 ms

playback audio/video: \geq 500 ms ("VCR response")

Integration of Real-Time and Data Traffic

- TCP (and TP4, ...) not suited to carry real-time traffic:
 - flow control \rightarrow window backoff and slow start
 - retransmission delay
- TCP backoff nice for making room for real-time traffic
- options:
 - low load, rely on data traffic backoff (but NFS doesn't)
 - priorities at MAC/link level (starvation!)
 - bandwidth-allocating scheduling at link level
- transport protocols can't help (except with set-up)!

interop94.tex

March 28, 1995

8

7

GMD Fokus

Integration of Real-Time and Data Traffic

- single-priority token rings cannot guarantee bounds (token loss), but may be sufficient
- MAC priorities (token ring, FDDI) won't help (much)
- priorities often not even implemented
- ATM: promises, but (most) switches don't implement traffic control

Ethernet Audio/Video Capacity

802.3 10Base-T Ethernet by Tobagi et al. (Infocom'94):

without data

delay	loss	64 kb/s	384 kb/s	1536 kb/s
20 ms	0.001	55 (35%)	14	4
20 ms	0.01	64 (41%)	17	5
100 ms	0.001	89 (57%)	18	5
100 ms	0.01	104 (67%)	20	5
bandw. 1	imit	156	26	6

- effect of TCP backoff not considered
- 100Base-T: about 10 times capacity, as expected
- multicast "defeats" Ethernet switches

interop94.tex

GMD Fokus

March 28, 1995

10

Isochronous Ethernet (Iso-Ether) as alternative?

Offers fixed-rate (ISDN basic-rate [BRI]) channels:

- + predictable quality
- ? aggregation of 64 kb/s BRI channels?
- not optimal for VBR video, silence-suppressed audio
- ? multicast other than through MCU (multipoint control unit)?

interop94.tex

March 28, 1995

12

GMD Fokus

RTP: Real-Time Transport Protocol

- only part of puzzle
- product of Internet Engineering Task Force, AVT WG
- final draft stages
- under consideration by Interactive Multimedia Association (IMA)
- support for functions, but does not restrict implementation

RTP: Goals

lightweight: specification and implementation

flexible: provide mechanism, don't dictate algorithms

protocol-neutral: UDP/IP, ST-II, IPX, ATM-AALx, ...

scalable: unicast, multicast from 2 to O(1000)

separate control/data: some functions may be taken over by conference control protocol

secure: support for encryption, possibly authentication

interop94.tex

GMD Fokus

RTP: Functions

- segmentation/reassembly done by UDP (or similar)
- resequencing (if needed)
- loss detection for quality estimation, recovery
- intra-media synchronization: remove delay jitter through playout buffer
- intra-media synchronization: drifting sampling clocks
- inter-media synchronization (lip sync)
- quality-of-service feedback and rate adaptation
- source identification

14

March 28, 1995

RTP: Bridges, Translators, ...

bridge:

- several media stream \rightarrow one new stream (new encoding)
- mixer: reduced bandwidth networks (dial-up)
- appears as new source

translator:

- single media stream
- *may* convert encoding
- protocol translation, firewall

interop94.tex

GMD Fokus

March 28, 1995

P: padding (for encryption)

M: marker bit; indicates frame, talkspurt

CC: content source count

Payload type: audio, video encoding method

interop94.tex

GMD Fokus

RTP: Control Protocol – Algorithm

Goals:

- estimate current number of participants dynamic
- participant information \rightarrow talker indication
- quality-of-service feedback \rightarrow adjust sender rate
- scale to O(1000) participants, small fraction of data bandwidth
- \rightarrow randomized response with rate \downarrow as members \uparrow
 - limited by tolerable age of status
 - give active senders more bandwidth?

alternative: probabilistic probes (see Turletti's paper in this session)

March 28, 1995

RTP: Control Protocol – Types

stackable packets, similar to data packets

- **sender report:** bytes send \rightarrow estimate rate; timestamp \rightarrow synchronization
- **reception reports:** number of packets sent and expected \rightarrow loss, interarrival jitter, round-trip delay

source description: name, email, location, ...

explicit leave: in addition to time-out

format mapping: dynamic definition of media formats

extensions: application-specific

interop94.tex

GMD Fokus

March 28, 1995

Audio/Video in the Internet: The MBONE

- MBONE \equiv multicast backbone
- overlay network over Internet
- needed until deployment of multicast-capable backbone routers
- IP-in-IP encapsulation, "tunnels"
- used mainly for conferences and seminars, weather maps, ...
- limited capacity, resilience

Г

RTP Implementations

"Adaptive applications" \rightarrow adjust to current network delay

tool	where	application
nv	Xerox PARC	Unix video (proprietary video encoding)
NeVoT	GMD Fokus	Unix audio
ivs	INRIA	Unix audio/video (H.261)

more in progress (PC, Mac, ...)

http://www.fokus.gmd.de/minos/employees/hgs/rtp/faq.html

interop94.tex

GMD Fokus

March 28, 1995

24

Conclusion

- current LANs/WANs can support small number of audio/video connections
- need range of approaches:
 - adaptive applications
 - signaling
 - resource reservation
 - transport protocols
 - switch and router support for QoS