
Voice Communication Across the Internet:

A Network Voice Terminal
�

Henning Schulzrinne

Department of Electrical and Computer Engineering

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

hgschulz@cs.umass.edu

July 29, 1992

Abstract

Voice conferencing has attracted interest as a useful and viable �rst real-time application on
the Internet. This report describes Nevot a network voice terminal meant to support multiple
concurrent both two-party and multi-party conferences on top of a variety of transport protocols
and using audio encodings o�ering from vocoder to multi-channel CD quality. As it is to be
used as an experimental tool, it o�ers extensive con�guration, trace and statistics options. The
design is kept modular so that additional audio encodings, transport and real-time protocols
as well as user interfaces can be added readily. In the �rst part, the report describes the X-
based graphical user interface, the con�guration and operation. The second part describes the
individual components of Nevot and compares alternate implementations. An appendix covers
the installation of Nevot.

1 Introduction

Increased bandwidth and computational resources have made interactive voice and video commu-
nication between workstations across packet communication facilities feasible. Cooperative work,
teleconferencing [1] and simple one-to-one \videotelephones" [2, 3] are applications that have at-
tracted a large amount of implementation and research interest.

Transmitting voice and video across a packet-switched network o�ers a number of advantages
other the circuit-switched approach. First, we obtain all the well-known bene�ts of service inte-
gration, particularly important in a multi-media setting. Secondly, we may be able to achieve a
higher bandwidth utilization since voice and video do not always use their peak bandwidth (due to
silence periods and variable rate coding). Finally, because interleaving several associations tends to
be easier in a packet-switched network, control (signaling, to use the telephony term) can be more
sophisticated1.

Research in transmitting voice across a packet network dates back to the early ARPAnet days.
Cohen [4] refers to cross-continental packet voice experiments in 1974. According to [5], low-bit

�This work is supported in part by the O�ce of Naval Research under contract N00014-90-J-1293, the Defense
Advanced Research Projects Agency under contract NAG2-578 and a National Science Foundation equipment grant,
CERDCR 8500332.

1Even narrowband ISDN uses the packet-switched D channel for signaling.

1

rate voice conferences very carried out in 1976. The early '80s saw experiments of transmitting
low-bitrate voice across mobile radio [6, 7] and satellite [8] packet channels. The �rst Internet
packet voice protocol was speci�ed formally in 1977 [9], and a packet video standard followed in
1981 [10]. The CCITT standard G.PVNP [11] was published in 1989. Packet audio/video should
be set apart from the approach to voice/data integration that provides �xed-bandwidth circuits on
multiple access networks [12, 13].

Interest in packet audio has increased recently as more and more workstations now come equip-
ped with built-in toll-quality (Sun SPARCstations, DEC workstations) or CD-quality (NeXt) audio
hardware support. There exist a fair number of simple programs that utilize the SPARCstation
audio hardware to communicate between two workstation on a local net, for example vtalk (Miron
Cuperman, OKI) or PhoneTalk (Patrik Nises and Joakim Wettby, Royal Institute of Technology,
Stockholm). Programs designed for multiple-party connections across wide-area networks include
VT [1] and vat (Van Jacobsen and Steve McCanne, LBL). A number of commercial products use
medium-bitrate packet voice to more e�ectively utilize leased private lines, extending the concept
of the traditional data-only multiplexer [14]. System implementations of packet voice terminals are
described in [5, 18, 19]. Packet radio experiments are featured in [20]. Surveys on packet voice
performance are presented in [18].

Numerous other voice/data integration schemes have been studied, usually combining a circuit-
switched path for voice and a packet-switched path for data, possibly with bandwidth traded
between the two. Examples include [21]. Economic studies comparing alternative network strategies
were performed by Gitman and Frank [22].

This report describes Nevot and is divided into three major parts. The �rst part, Section 2,
describes the facilities of Nevot and how to use them, principally through the graphical user inter-
face. The second part then delves into the internals, laying out the methods used and comparing
some implementation choices. Finally, an appendix provides some hints on installing Nevot.

2 The Network Voice Terminal (Nevot) { User's Guide

Nevot (\NEtwork VOice Terminal") is a tool to support audio conferences across local and wide
area networks, including the Internet. It supports multiple simultaneous conferences and a variety
of standard and experimental network protocols, including ST-II [23], IP multicast [24, 25, 26] [27,
p. 281f] and TCP. It is meant to serve several purposes:

� as a demonstration tool for Internet audio conferences,

� as a measurement tool to investigate tra�c patterns and losses in packet voice applications
across wide-area networks,

� as a demonstration implementation of real-time services in a distinctly non-real-time operating
system (Unix)

� as a tra�c source to validate and evaluate resource allocation protocols and algorithms

� as a platform for implementing conference control mechanisms

Extensive tracing and parameterization facilities as well as a modular architecture support experi-
ments in packet voice. The major features are summarized below.

2

2.1 Features of Version 0.95

Features anticipated for versions released shortly are also listed, but so indicated. Due to operating
system or hardware support, a few features are platform-speci�c. A symbol is used to mark the
corresponding platform.

� platforms:

{ Sun SPARCstation{

{ Silicon Graphics 4D/30 and 4D/35 (Indigo)x

{ Personal DECstationy[in preparation]

� audio protocols:

{ NVP-II (network voice protocol) as used by vat (Lawrence Berkeley Laboratory) and
vt (ISI)

{ vat audio packet format

� transport protocols:

{ unicast UDP

{ multicast UDP

{ TCP

{ ST-II{

� operation as gateway or end system

� compatible with vat session protocol

� user interfaces:

{ XView (OpenLook)

{ Motif GUI

{ curses (for terminals with cursor positioning)

{ dumb terminal

� control:

{ initialization �le

{ command line arguments

{ interactive

� several independent concurrent conferences, each with di�erent encoding and compression

� DES-based voice encryption

� current audio encodings supported:

{ 16 bit linear encoding, with all hardware-supported sample ratesx

{ 64 kb/s G.711 �-law PCM

3

{ 32 kb/s G.721 ADPCM{

{ 32 kb/s Intel/DVI ADPCM

{ 24 kb/s G.723 ADPCM{

{ 4.8 kb/s LPC (linear-predictive coding) with setable vocoder interval

� dynamic change in audio encoding, with each site having di�erent encodings (but the same
sample rate)

� one or multiple audio channels (i.e., mono or stereo)

� playback and recording of audio �les (.au and AIFF/AIFC formats), with encoding translation

� extensive statistics and tracing facilities

� arbitrary voice packet length, which may di�er for each site

� lost packet substitution

� setable audio bu�er occupancy

� con�gurable adjustment mechanisms for playout delay, VU meter, silence detector and auto-
matic gain control

� rede�nable session identi�er string with variable substitution

Most commonly,Nevot interacts with the user through the Open LookTM or MotifTM graphical
user interface on X11-capable workstations. Another version with identical functionality, but a more
limited user interface, requires only cursor-addressable ASCII terminals supported by the curses

library. A fourth version is meant mostly for remote use and uses only terse sequential terminal
output to stdio. The command interface used to control the text versions is also available for the
XView and Motif versions.

Figure 1: The Nevot icon

Nevotmay utilize the network services of unicast UDP, multicast UDP, TCP and ST-II [28, 23].
The source address option allows operation behind a UDP-level packet re
ector, e.g., the simple
version written by the author. The packet re
ector is used to allow a site running kernels without
multicast support to participate in multicast audio conferences. The packet re
ector is executed
on a multicast-capable site, declares itself part of the multicast group and simply forwards every
packet arriving from the multicast group on a unicast UDP socket. The address where the voice
packet originated from (i.e., the source address) is prepended by the packet re
ector as the �rst four
user data bytes of the packet. This is necessary for proper operation of the voice terminal, since
the IP source address of the UDP packet reaching the �nal destination contains the IP address of
the packet re
ector rather than that of the speaker, while the actual source address is needed to
distinguish several audio streams coming from the same re
ector.

4

Nevot can maintain several concurrent conferences. The user can participate in all conferences
simultaneously, but the conferences remain separate for the other participants. A conference with
participation from remote sites could be set-up using the following scenario2. Conference audio
from the meeting room is distributed via multicast to all sites, who are only listening to that
conference. Each remote site also maintains a second \call-in" conference which it uses to pose
questions through a moderator at the conference location. Before a remote participant raises a
question, he or she listens to the \call-in" channel to reduce con
icts.

Nevot can act as an application-level gateway between di�erent conferences. Each conference
can employ di�erent audio encodings and transport protocols. The audio from all sites within a
stream is mixed and distributed to streams, except the originating one.3

Nevot can play and record sound �les in AIFF/AIFC and Sun/DEC .au format. Recording
may be useful to document speech quality or to take notes of important announcements. The
usefulness is somewhat limited by the disk space requirement of 480,000 bytes per minute. Optional
voice compression independent of the packet audio compression is planned. It is also planned to
extend the drag-and-drop mechanism of the windowing system to playing sound �les.

The distribution and reception of audio can be controlled at di�erent levels. Check boxes at
the top of the base window mute the microphone or speaker, e�ective for all conferences. Similarly,
check boxes within each conference control area control talking or listening to the participants of
that conference only. Finally, the site control area has a button that toggles listening to that site.
If a site is talking, a one eighth note symbol appears in the listen button, highlighting the current
speaker. A muted site is indicated by a crossed-out listen button, as shown in the �gure. Note
that the muting can also be controlled by keyboard control (see section 2.5); in particular, the
microphone mute is toggled by the space bar.

The long propagation and queueing delays in packet networks combined with the use of loud-
speakers and omnidirectional microphones may create severe acoustical echo problems. The echo
suppressor check box enables a simple echo suppression mechanism that mutes the speaker when
sound is received through the local microphone. While reducing echo e�ects, echo suppression may
also cause speech break-ups during local noise peaks.

2.2 Setting up a Conference

To set up a new conference (stream), press the join button. The panel shown in Fig. 3 requests the
necessary information for the conference: The host �eld contains a list of hosts and their source
routing, if necessary, as described in the next paragraph. Instead of specifying hosts directly,
@file retrieves the information from a text �le. Nesting is currently not supported. Hosts can be
speci�ed in either dotted decimal notation or as a name. Any name that can be resolved through
the network information services (NIS, aka YP), the resolver (bind), the /etc/hosts �le or other
locally available means is permissible. Multicast addresses can be added to /etc/hosts �le or
its YP distributed version. Multicast addresses are automatically recognized and thus require no
further identi�cation. Multicast addresses are currently only supported using UDP transport. To
wait for connections initiated by other sites, leave the �eld blank.

The host �eld contains a white-space separated list structured by the (case-sensitive) keywords
TARGET, STRICT ST (strict ST source route), LOOSE ST (loose ST source route), STRICT IP (strict
source route with IP encapsulation), LOOSE IP (loose source route with IP encapsulation) and PORT.

2This is actually being planned for the Internet engineering task force (IETF) working group sessions.
3It is planned to allow gateway operation even on machines without audio support so that a superminicomputer

could serve as a transcoder for high-quality low-bitrate audio conferences, once a mechanism for predictable task
scheduling on 20 ms intervals can be determined.

5

Figure 2: Nevot display when connected other sites

TARGET is followed by a single host name, while the routing options are followed by lists of zero
or more hosts. The current port number, valid until the next occurrence of the PORT speci�er, is
given by a positive integer following PORT. Currently, only the ST-II API understands about source
routes; other transport protocols simple ignore these speci�cations. As an example, consider:

TARGET desperado.ecs.umass.edu

LOOSE_ST sparc1.ecs.umass.edu

PORT 3458

TARGET despot.ecs.umass.edu

The encryption key is used when encryption mode setting is chosen4.
The conference identi�er distinguishes several conferences using the same protocol and port.

The �elds labeled audio send port and audio receive port are �lled in with the ports for
sending and receiving audio data. In normal operation, both ports will have the same value, agreed
upon by all conference participants. However, transmission quality over a link can be tested by
specifying a send port number of 7, the echo port. The remote host will simply reverse sender and
receiver address and return the audio packet. Currently, echo facilities are not available for ST-II.
The session port is used to send and receive session control messages. The ttl �eld speci�es
the time-to-live of multicast packets. The value currently is interpreted only by multicast UDP
conferences. The choice menu beneath the time-to-live �eld determines the protocol to be used,
namely UDP (or multicast UDP), TCP or ST-II.

The audio encoding is set by the next choice menu. The supported encodings and their rates are
listed in Table 1. Note that incoming audio data from di�erent sites within the same conference can
use di�erent encodings, all outgoing voice data for a conference, however, uses the same encoding.

4The key is limited to 8 characters, where only the least signi�cant 7 bits of each character are used. Control
characters can be speci�ed using the customary C language notation, i.e., nn for newline, nt for horizontal tab, etc.,
or nooo as a three-digit octal number.

6

Figure 3: The conference set-up panel

7

The third column in the table indicates the increment in the packetization interval so that all
packets have the same integer number of bytes. The LPC codec can be con�gured to compute the
�lter coe�cients over di�erent intervals, given by the vocoder parameter. Also, if the vocoder
period is a submultiple of the packetization interval, several predictor sets are packed into a single
network packet, amortizing the header overhead over a larger number of audio bytes. The vat

LPC1 codec is equivalent to setting the vocoder period and packetization interval to 22.5 ms, while
the LPC4 codec uses a packetization interval of 90 ms and a vocoder interval of 22.5 ms. If the
vocoder intervals di�er between sender and receiver, speech will appear to be pitch-shifted and
slowed down or speeded up. Vocoder intervals above 25 ms degrade voice performance below the
already barely acceptable communication quality achieved by LPC. The LPC codec allows to run
packet voice over a 9.6 kbps SLIP (modem) connection.

name kb/s voice coding method packetization increment (ms)

G.711 64 8-bit �-law PCM 0.125
G.721 32 4-bit CCITT G.721 ADPCM 0.25
DVI 32 4-bit Intel/DVI ADPCM 0.25
G.723 24 3-bit CCITT G.723 ADPCM 0.33333
LPC 4.8 LPC codec vocoder

Table 1: Voice encoding

The check boxes determine the characteristics of the conference. Checking o� the encrypt box
enables DES voice data encryption, with the key entered above. The listen only box disables the
automatic creation of reciprocal ST-II connections. If the identify when listening box is checked,
Nevot sends out periodic messages containing the user and host name in a format compatible
with vat even if we have muted our site. The feature may be useful to turn o� that feature for
large conferences with mostly passive audiences where it is undesirable to
ood the network and
the displays of participants with the names of all listeners. Conversely, the show listeners option
indicates that sites that have not sent audio data are to be displayed. If not checked, only those sites
that have talked recently are shown. The source address �eld was discussed earlier and is only used
in conjunction with the packet re
ector. Reverse name lookup, i.e., the mapping from Internet
addresses to host names, can be enabled by checking reverse name lookup. Since name lookup
may take an indeterminate amount of time, during which Nevot is otherwise blocked and since
most sites transmit site identi�cation strings, the use of this option is generally not recommended.
Checking the exclusive option ensures that if talking for this conference is enabled, talking to all
other conferences is automatically disabled. This is useful for side chats, making it a bit less likely
that what was considered a con�dential remark gets distributed to the conference at large. | The
join button establishes the conference.

To leave a conference, press the leave button in the conference control panel. To add a new site
to the conference, pressing the add button adds popup panel, where the site name can be �lled in.
Sites that send audio or control information are automatically added. Adding sites is unnecessary
for multicast UDP conferences and thus the button is inactive and shown dimmed. The properties
of an existing conference can be modi�ed by modifying the conference set-up pop up, which is
invoked by pressing the mouse menu button5 while the pointer is within the conference control
panel.

5typically, the right-most button

8

Each conference site has its own control panel. On the right, it displays the site identi�er, which
may be an Internet number (if the Internet number could not be translated into a host name), a
host name or, if the other site is sending its identi�er, the remote user name and host name. Note
that it is very easy to spoof this identi�er, so it should not be relied upon for authentication.

If there are a large number of sites in a conference, the site panels will overlap. The number
of rows displayed per conference is given by the max height con�guration parameter. During a
conference, you can resize the Nevot window to allow more or less space for each site entry.

Clicking with the right (menu) mouse button on a site panel brings up the status display for
that site (Fig. 4). It shows site statistics and features a button to drop the site and a check mark
that enables talking to this site. Talking is by default enabled for multicast UDP, but must be
enabled explicitly for ST-II and unicast UDP, establishing a connection in the outgoing direction.
The status pop-up panel is dismissed by selecting the \dismiss" button or unpegging the pushpin.

Figure 4: The site status pop-up

A single site can be dropped from the conference by selecting the Drop button in the site
status panel. Sites that have been inactive for long periods of time are dropped automatically (see
description of time outs in the properties menu).

9

Clicking on a site with the middle mouse button provides a simpli�ed way to start a second
conference. A join panel as in Fig. 3 is displayed, with the current conference characteristics
such as encoding, port numbers, etc. The conference identi�er is incremented by one and the
exclusive option is checked. Naturally, any of the parameters can be changed just as when creating
a conference using the Join button. However, either the port number, protocol or conference
identi�er must di�er from all other conferences.

2.3 Recording, Playback and Volume Adjustment

Nevot can play back audio �les. The play button invokes a �le pop-up menu (see Fig. 56). Pressing
play within the pop-up starts the playback. For standard Sun audio �les (extension .au or .snd),
the description is shown in the base window footer. The normal conference and site talk controls
also apply while playing audio �les. Naturally, the microphone is disabled during playback, but
reception is una�ected. Putting a check mark in the looping check box plays the same sound �le
again and again. While playing, the play button becomes a stop play button. Selecting the stop

or pause cancels or pauses playback. Playing resumes when selecting the resume button. While
playing sound, the descriptive header information and length is displayed in the footer of the base
window.

Figure 5: The play �le pop-up menu

Recording audio works in a similar fashion. In addition to directory and �le name, the descrip-

6The second item in the list shows another possibility for this feature.

10

tion text �eld may be used to add a brief descriptive title to the sound recording. The recording
can also be appended to an existing �le if the appropriate check box is marked. Both outgoing and
incoming audio is recorded, even if the global listen box is not checked.

The volume adjustment was intentionally left out of Nevot. The Sun gaintool provides this
functionality, in addition to side tone adjustment and switching between speaker and headphone
jack output.

2.4 Con�guration

Nevot is heavily parameterized. Parameters can be set on start-up through an initialization �le,
by keyboard commands or through a pop-up menu. We will describe both methods in turn. The �le
.nevotinit in the path speci�ed through the environment variable NEVOT PATH is read on startup
to initialize parameters. A path is a list of directories, with elements separated by a colon. The
tilde notation is expanded to the respective home directory. If the environment variable NEVOT PATH

is unde�ned, the compiled default value is used (typically \.: "). The keyboard command s sets
parameters while Nevot is running. The parameters setable through the initialization �le or
keyboard commands are shown in tables 2, 3 and 4, below. In the tables, AGC refers to the
automatic gain control, VU to the voice volume gauge, SD to the silence detector and DEL to the
delay adjustment. The abbreviations VE denotes voice energy, ranging from zero to 127. String
values can be enclosed in quotation marks; strings containing white space must be enclosed in
quotation marks. Bits within
ags are speci�ed by concatenating the listed symbols, separated by
vertical bars, |. White space is not allowed. A
ag is negated by pre�xing it with an exclamation
mark or tilde. Example:

s mode del|!sd

sets the \del" bit and resets the \sd" bit in the \mode"
ag. An example of an initialization �le is
shown below:

s trace_length 5000

s trace_events !audio_in|!audio_out|!transmit|!receive|!packet_loss|!silence|!AGC|!delay_adj

s agc_tc 1024

s agc_hyst 20

s agc_nom 4294967295

s agc_interval 0.5

s vu_tc 100

s vu_hyst 2

s vu_nom 0

s vu_interval 0.1

s sd_tc 0

s sd_hyst 8

s sd_nom 50

s sd_interval 0

s davg_tc 1000

s davg_hyst 2

s davg_nom 4

s davg_interval 2.5

s dvar_tc 1000

s dvar_hyst 2

s dvar_nom 4

s dvar_interval 2.5

s host "224.2.0.1"

s st_recv_port 3456

s st_send_port 3456

s st_session_port 3457

11

s st_ttl 127

s st_proto UDP

s st_conference_id 0

s st_mode !encrypt|!source_addr|!listen_only|id_listen_only|show_listeners|!resolve|!exclusive

s voice_coding G.711

s play_dir "/usr/demo/SOUND/sounds"

s play_file (null)

s play_loop 0

s play_gain -1

s rec_gain -1

s mon_gain 0

s play_port jack

s rec_port default

s play_channels 1

s rec_channels 1

s play_sample_rate 8000

s rec_sample_rate 8000

s rec_lowater 22.5

s play_lowater 22.5

s play_hiwater 90

s rec_hiwater 90

s packetization 22.5

s vocoder 22.5

s soft_to 1

s hard_to 10

s check_interval 6

s key ""

s repeat_th 40

s echo_th 30

s before_spurt 40

s after_spurt 100

s silence_sub 0

s echo_supp 0

s verbosity 2

s mode !mike_loop|!af_loop|!af_only|sd|!agc|vu|del

s user "%n@%h"

s protocol vat

s role end_node

s max_height 2

The properties pop-up menu is invoked by pressing the mouse menu button while in the global
control panel (i.e., the panel at the top, not associated with a conference or site).

The parameters have the following meaning:

Silence, lost packet: Determines what happens if a packet is lost or there is silence (i.e., no packet
to be played out). Nevot either repeats the last packet or inserts actual silence. Repeating
the last packet reducing the push-to-talk e�ect where the speaker background noise of the
speaker is cut o� abruptly during silence periods.

Audio before/after talkspurt: Determines the time (in milliseconds) of \silence" sent before
and after a talk spurt, reducing front and end clipping.

Audio low/high water mark: To compensate for non-periodic scheduling, the operating system
bu�ers a number of bytes before playout. This number determines the range of acceptable
bu�ering. Too low a value will lead to clicks, particularly if the system is busy. A high value
incurs additional play out delay.

12

agc tc AGC: time constant (ms)
agc hyst AGC: hysteresis (VE)
agc nom AGC: set point; desired energy level
agc interval AGC: adjustment interval
davg tc delay average: time constant (ms)
davg hyst delay average: hysteresis (VE)
davg nom delay average: variance multiplier
davg interval delay average: adjustment interval
dvar tc delay variation: time constant (ms)
dvar hyst delay variation: hysteresis (VE)
dvar nom delay variation: variance multiplier
dvar interval delay variation: adjustment interval
vu tc VU meter: time constant (ms)
vu hyst VU meter: hysteresis (VE)
vu nom VU meter: currently not used
vu interval VU meter: update interval (sec)
sd tc silence detection: time constant (ms)
sd hyst silence detection: hysteresis (VE)
sd nom silence detection: max. threshold
sd interval silence detection: update interval for minimum (sec)

Table 2: Filter parameters

play file default playback �le name
play dir default directory for sound �les
play loop play same audio �le again and again
rec gain audio recording gain; �1: leave as is
play gain audio playback gain; �1: leave as is
mon gain audio monitor gain; �1: leave as is
rec port audio input port: default, line, mic or digital
play port audio output port: default, speaker or jack
rec channels audio record channels
play channels audio output channels
rec sample rate audio input sample rate
play sample rate audio output sample rate
before spurt packets before talk spurt
after spurt packets after talk spurt
play lowater the minimum occupancy of the audio output bu�er bu�er (ms)
play hiwater the maximum occupancy of the audio output bu�er bu�er (ms)
rec lowater the minimum occupancy of the audio input bu�er bu�er (ms)
rec hiwater the maximum occupancy of the audio input bu�er bu�er (ms)
packetization packetization interval (ms)
vocoder vocoder interval (ms)
silence sub silence substitution algorithm
echo supp echo suppressor
ag
repeat th don't repeat if packet energy is above this threshold
echo th threshold below which microphone audio is treated as echo
voice coding audio encodinga

aG.711, G.721, G.723, CELP, LPC, DVI, linear 8, linear 16

Table 3: Audio and audio �le parameters

13

Figure 6: The properties pop-up

14

trace length number of trace events
trace events events to be traceda

st send port default audio send port
st recv port default audio receive port
st session port default session control port
st ttl time-to-live for multicast packets
st proto default protocol: UDP, TCP, ST-II
st conference id default conference identi�er
st mode stream modeb

soft to soft time-out (min)
hard to hard time-out (min)
check interval interval to send identi�er and check time-out (sec)
verbosity 0: no output; 1: minimal messages on stdout
mode
ags: mike loop, af loop, sd, agc, vu, del
user user name format, as described on p. 15
protocol audio packet format: vat or nvp
role role: end node or gateway
max height maximum number of rows per conference

aaudio in, audio out, transmit, receive, packet loss, silence, AGC, delay adj
bvalues: encrypt, source addr, listen only, id listen only, show listeners

Table 4: Network parameters

Soft/hard time out: The waiting time, in minutes, after the last audio/control packet is received
before a site is timed out.

Voice packet size: The voice packetization interval, in milliseconds. Sites within a conference
may use di�erent packetization intervals. The voice packetization interval must yield a integer
packet size after encoding. See the voice encoding table above for acceptable increments. The
standard packetization interval that ensures interoperability with vat is 22.5 ms.

NVP/vat: The audio packet format, either NVP or the vat private header format. All conferences
must use the same format; thus, you can switch between the two only prior to opening the
�rst conference.

Check interval: The check interval is the time after which the program sends out an identifying
message to all other conference participants. This is also the granularity with which time-outs
are checked.

Echo threshold: If voice packets with average energy below this threshold are encountered while
other users are talking, it is assumed that the microphone is picking up the audio of these
other users. This mechanism is enabled only when the echo suppressor box is checked.

Repeat threshold: Packets with energy above this threshold are not repeated during silence
periods.

Sound directory: The default directory for sound �les.

User name: The message to be send with the session protocol. The string may contain format
characters which are replaced by the current value :

15

%e telephone extension (e.g., x3179)
%h host name (e.g., gaia.cs.umass.edu)
%i host Internet number (e.g., 128.119.40.186)
%n real user name (e.g., Henning Schulzrinne)
%o o�ce room number (e.g., A203)
%p home phone number (e.g., 555-1212)
%t terminal device name (e.g., /dev/tty01)
%u the user login name (e.g., hgschulz)
%% the percent sign itself

typically, user name and host, but can be anything. This can be used for a crude messaging
protocol.

Silence: This column determines the parameters for the silence detector. Currently, the time
constant is not used. The hysteresis determines the amount by which the energy of a packet
must exceed the current minimum average. The maximum silence threshold is given by the
sum of the nominal value and the hysteresis. The interval determines how long the silence
detector waits during a talk spurt before raising the minimum average.

AGC: This column contains the parameters for the automatic gain control, namely time constant,
hysteresis (i.e., the band around the nominal energy value where no gain adjustment is made),
the desired average energy value and the adjustment interval.

VU: This column contains the parameters for the VU meter, both for incoming and outgoing
audio. The VU display is updated with a period given by the interval entry. The nominal
value is ignored.

Delay avg.: This column contains the parameters for the delay adjustment. The nominal value
is used as the initial delay (in bytes).

Delay var.: The �elds in this column describe the adjustment �lter for the delay variation. The
nominal value denotes the factor that is used to multiply the delay variance estimate to arrive
at a new play out delay.

Enable: Filters are enabled if the box underneath the parameter column is checked.

Verbosity: The amount of information printed to stderr. Values above 2 are useful only for
debugging.

Number of trace events: This limits the number of events that are written to the trace�le.

Trace events: The buttons determine the events that will be recorded in the trace �le (see Sec-
tion 2.6).

Microphone/Audio �le loopback: If checked, audio from the microphone or the currently play-
ing audio �le is mixed in with the remote audio. Microphone loopback is primarily useful
for testing, while audio �le loopback allows monitoring of the playback progress. It is also
useful when using the echo port, as it provides immediate acoustic feedback of the length of
the playback delay.

Audio �le only: Only send audio data from play �les, not from the A/D converter. This option
is particularly useful to create reproducible runs for debugging or performance measurements.

16

Pressing Apply accepts the current parameters and dismisses the pop-up window. The parame-
ters are automatically saved when leaving the program.

2.5 Keyboard Control

Most functions described above can also be invoked through the keyboard. For the curses and
stdio version, this is the only form of interaction with Nevot. For the XView version, the typed
commands are displayed in the status line. To apply a command to a speci�c conference, type its
position, where the �rst conference (displayed top most) is numbered one. The conference number
only applies to the next command. The commands and their arguments are:

j host1 host2 : : :

If no current conference, create new conference with hosts listed otherwise, add host to existing
conference. Host entries follow the format described in Section 2.2.

l

Leave speci�ed conference.

(space bar)

Toggle microphone muting, globally or for numbered conference.

s parameter value
Set parameter parameter to value value.

s parameter
Show value of parameter parameter.

p �le
Play audio �le �le; if already playing an audio �le; this command toggles between pausing
and resuming playback.

r �le
Start recording into �le �le; if already recording, this command toggles between pausing and
resuming recording.

?

Show current short statistics. The statistics are shown per site in the form \total/since last
statistics". Shown are: the total number of packets received, percentage of packets that were
late, lost, duplicated and out-of-order as well as the current smoothed average playout delay
estimate in ms, measured from the time of arrival to the time of submission to the audio
stream device (i.e., not counting operating system audio bu�ering).

q, x, Q

Quit Nevot.

2.6 Traces

As an aid in troubleshooting and performance analysis, a number of events can be traced. The
events are dumped to disk in binary format.7 Each event record has the following format:

7A special version of the trace routines accumulates events in a main memory area and dumps them to disk as
the program terminates.

17

typedef struct trace_t {

union {

u_long l;

u_char b[4]; /* byte components */

} addr; /* applicable address */

struct timeval tv;

long v[4]; /* values */

char event; /* event code */

} trace_t;

The event codes and the interpretation of the event values are summarized in the tables below.

trace category events

AGC V
audio in A, a
audio out P, p
delay adj d
packet loss =, *, #
receive R, !
silence S, s
transmit T

Table 5: The trace categories

In addition, a �le named as s.sta, where s denotes the program starting time, contains summary
statistics, including resource utilization. An example is shown below:

Program started: Wed Jul 22 16:49:54 1992

Elapsed time: 57.487 sec

User time used: 4.950 sec

System time used: 5.389 sec

Messages sent: 68

Messages received: 164

Signals received: 1

Voluntary context switches: 1655

Involuntary context switches: 1646

Process swapped out: 0

Block input operations: 6

Block output operations: 5

Maximum resident set size: 456 pages

Integral resident set size: 442935 pages * clock ticks

Current time: Wed Jul 22 16:50:51 1992

Audio samples from A/D: 263880

Audio underflows: 1

Silent packets: 0

STREAM: UDP to (224.2.0.1,3456).

Packets sent: 0

Jeff Bailey (Kent State Univ) [131.123.2.60/0.0.0.0, S=3456 R=3456]:

18

variable meaning

t packet time stamp
t1 packet time stamp of �rst packet in talkspurt
t1 packet time stamp of latest packet
s packet sequence number
s1 packet sequence number of �rst packet in talkspurt
a packet insertion location in ring bu�er
ap next play out location
D delay for beginning of talkspurt (bytes)
d actual delay (bytes)

d̂ smoothed average delay estimate (bytes)d
jd� d̂j smoothed delay variance estimate (bytes)
ê smoothed energy estimate
V length of silence period, in packetization intervals
e power estimate for packet
m maximum absolute value
�x average sample value
sr audio samples read from audio bu�er
sR total audio samples read from audio bu�er
sq samples in queue
sW audio samples written to audio device
pR audio packets read from audio bu�er
S stream sequence number

Table 6: Meaning of the trace values

code function value 1 value 2 value 3 value 4

a audio in pR sR sq sr
A audio in error pR sR sq sr
T transmit audio p. pR sR S 0
P play sq ap m e
p play error sq ap m e

d delay update d̂
d

jd� d̂j D 0
R received t s a d

H corrupted header header 0 0 0
* late packet t s a d

= duplicate packet t t1 ap 0
packet reordering t t1 ap 0
! talk spurt t1 s1 a D
S silence period pR V 0 0
s silence pR m e �x
V agc ê gain 0 0

Table 7: Trace events and their associated values

19

davidc@sirius.net.Hawaii.Edu [132.160.3.9/0.0.0.0, S=3456 R=3456]:

3 Nevot Implementation

Nevot comes in four
avors. The �rst is built using the Open Look GUI and was implemented in
XView, the Sun X toolkit. The basic window structure was generated by DevGuide. The second
uses the Motif widget set. The third and fourth versions are command-driven and display state
through the curses terminal-independent screen library or simple sequential terminal output. The
four versions share most of the network and signal processing code. Some of the ideas and code are
drawn from VT, the USC/ISI voice terminal, and vat, Van Jacobson's conferencing tool. Nevot
is compatible with both of these tools.

Nevot allows the participation in several concurrent conferences by maintaining a separate
stream descriptor structure for each. Each stream description in turn contains a list of site de-
scriptors. Individual streams may use di�erent network protocols, but all streams have to use the
same audio packetization duration for outgoing audio data. Each stream can use its own audio
encoding method for all outgoing audio packets. (This limitation is unavoidable for ST-II and
UDP multicast transport since the voice terminal submits only one audio packet to the network
for all conference participants at each packetization interval.) Nevot allows each site to use its
own audio encoding method for incoming audio data. The audio encoding method used is carried
in the second octet of the vat session protocol, and thus can be easily changed dynamically.

The general program structure is shown in Fig. 7. Dashed lines indicate that modules of that
type are accessed through tables of function pointers, easing the integration of additional protocol
or data types.

3.1 Network I/O

The structure of Nevot is complicated by the desire to support three di�erent transport protocols,
namely UDP (and multicast UDP), TCP and ST-II. The transport-dependent parts have been
largely isolated in the modules udp.c, tcp.c and st2.c, with function pointer references in the
general-purpose code. Each streammaintains a separate timestamp re
ecting the number of packe-
tization intervals while this stream was active. Regardless of the audio transport protocol used,
session data is always transmitted and received by a separate unicast or multicast socket. Dynamic
bu�ers are allocated from an mbuf-like pool of �xed-size bu�ers occupying a contiguous memory
area.

Unicast and multicast UDP require one socket per stream, used for both outgoing and incoming
audio data. The mapping from incoming packet to site has to be done by searching the site list
for a matching address, port and conference identi�er. The search is speeded up by maintaining
a one-deep address translation cache. Outgoing unicast UDP data has to be sent to each site
separately, while a single send operation su�ces for multicast streams.

TCP uses a bidirectional socket for each site, plus one socket to listen for new connection
requests. The socket uniquely identi�es the site, so that address matching is not required. The
TCP stream knows no record boundaries; the packet length is determined from a two-byte packet
length pre�xed to the actual data packet. Unlike the datagram protocols, several read operations
may be required to acquire a single packet from the network.

ST-II sends all outgoing audio data through a single socket; through the same socket, control
messages such as noti�cation of connection acceptance or closings are received. Each incoming
stream uses its own socket, making address lookup for incoming packets unnecessary. As for TCP,
a listen socket accepts new connections.

20

NVP vat ???

UDP

TCP

ST−II

???

setup
network I/O

XView

Motif

curses

stdio

user
interface

services

G.711 G.721 G.723 DVI LPC

agc
VU
meter

silence
detection

command
line
inter.

playout synchronization

vat

session

???

audio codecs

NEVOT
kernel

.snd

AIFC

???

audio
files

???

Figure 7: Nevot Structure Overview

21

Application-level multiplexing requires additional machinery. Streams with the same network-
level port and protocol are considered part of the same family, tied together as a linked list. The
network sockets are not closed until the last member of the family has ceased to exist. This allows
a large number of concurrent side chats, even without the ability at the socket API to distinguish
whether a packet originated from a multicast or unicast address.

3.2 Audio Synchronization

3.2.1 Audio Timing

Audio must be played out, that is, submitted to the digital-to-analog converter, synchronously
(at �xed intervals), despite network impairments and operating system restrictions. The network
over which we wish to communicate may loose, corrupt, reorder and duplicate packets. Also, the
digitization clocks at di�erent stations will not be exactly the same. The operating system cannot
guarantee that the process running the network voice terminal is scheduled at predictable time
instances. The operating system issue is discussed in section 3.6.

The playout process is clocked by the analog-to-digital converter: a packet is played out for
every complete sample bu�er received from the A/D converter. This clocking is also used while
playing audio �les, even though the audio data from the A/D converter itself is not used. This
scheme has the disadvantage that a single audio bu�er may be read in several increments, depending
on the granularity of the underlying stream bu�ering8. As an alternative, the system interval timer
could be used or we could simply block on audio input as soon as the select() return indicates
that at least some data is waiting to be read.

3.2.2 Playout Bu�er

The initial design had each site maintain a separate circular list of bu�er pointers. The circular list
makes insertion very e�cient, consisting of a single modulo operation and pointer copy, without
actually touching the data returned from reading the socket. Also, detection of missing packets
or silence at playout time is easy: the bu�er pointer in the circular bu�er is nil if no packet has
arrived for that slot. In that design, strict synchronization was maintained through talkspurts and
silence periods, i.e., the silence period duration at the transmitter was replicated at the receiver, as
long as the playout delay estimate did not change. The delay variability between packet arrival and
playout time was measured and used to compute a desirable playout delay. If this delay di�ered
from the one currently in use more than a setable hysteresis value, silence periods were used to
bring the two in alignment, by either skipping a silent bu�er to decrease playout delay or replicating
a silent bu�er to increase playout delay. This scheme was seen to occasionally lose synchronization,
especially after long silences where the time stamp value had wrapped around several times.

If a received packet time stamp fell outside the range covered by the circular bu�er or if too
many packets were lost in a row, it was taken as an indication that transmitter and receiver have
completely lost synchronization and the circular bu�er was reset. This loss of synchronization may
occur, for example, if a transmitting site is restarted or after a failed network link recovers.

For a number of reasons, the individual circular bu�ers were abandoned in favor of a single
contiguous playout bu�er9 shared by all sites and streams. With the single bu�er, packet sizes for
di�erent sites can di�er and are not forced to be the same as the packetization interval. Secondly,

8It would be helpful if the select() call allowed speci�cation of a minimum amount of data required before
considering a �le descriptor as ready. The SGI audio library allows this speci�cation indirectly, while a kernel
variable has to be patched for SunOS.

9Currently, generously sized at 90000 bytes.

22

it becomes possible to vary the playout delay in byte rather than packetization interval increments.
Also, each site does not have to maintain a separate bu�er point array of approximately 1000
bytes each (for 5.7 second maximum reconstitution delay). The single bu�er has the disadvantage
that every insertion implies mixing since we cannot easily determine whether a region within the
circular bu�er is empty, partially empty or already �lled (recall that packet sizes are allowed to
di�er between sites). Also, for this reason, we have to clear the ring bu�er after it has been copied
to the audio stream10.

Ring bu�er wrap-around needs to be handled since the site packet sizes are not constrained
to �t integrally into the ring bu�er size. The mixing routines check whether the request reaches
beyond the physical bu�er end and split the request in two, the �rst reaching to the end of the
physical bu�er, the second covering the �rst few bytes. The logical bu�er size is chosen as an
integral multiple of the audio bu�er size so that the playback routine does not have to worry about
bu�er wrap-around.

The details of the playout synchronization depend on the network audio protocol used. NVP
uses a combination of a timestamp and sequence number, while the vat protocol features a longer
timestamp and a talkspurt bit. The details are described below.

3.2.3 Synchronization for NVP Audio Protocol

NVP packets carry timestamps that are incremented every packetization interval, modulo TS MOD

(1024), regardless of whether voice is transmitted or not. The sequence number is incremented
(modulo SEQ MOD = 64) for every packet transmitted and should thus be received without gap. We
de�ne a to be less than or equal than b modulo m if a � b or a > b \ a � b > m=2.

To compensate for reordering, each site maintains the time stamp and sequence number for the
latest packet. A packet is declared to be the latest if its sequence number is greater than any other
previously received, modulo SEQ MOD. This will fail if more than SEQ MOD/2 packets are lost in a
row.

Counting missing packets is also made more complicated by the single bu�er, variable packet
sizes, reordering and losses. We determine the number of packets sent by the counting the number
of sequence number wrap-arounds. A wrap-around is detected if the new packet is determined to
be the latest packet, as de�ned above, and its sequence number is smaller in value than the previous
latest packet. The total number of packets that should have been received is then given by the
number of wrap-arounds r and the earliest and latest sequence number seen, s0 and s, as

(r � 1)SEQ MOD+ SEQ MOD� s0 + (s+ 1) for r > 0
s � s0 for r = 0

Duplicate packets cannot simply be mixed in as the audio volume of that particular segment
would increase, possibly resulting in clipping. Currently, a packet is declared a duplicate and
ignored if its sequence number and time stamp matches that of the latest packet. This fails in
the unlikely event that exactly SEQ MOD packets were lost and the next arriving packet has the
timestamp of the latest packet seen previously. A packet duplicating other than that with the
currently highest sequence number is not detected. (Indeed, this would be di�cult to accomplish,
short of keeping a list of received packets.)

Packet reordering is detected if the time stamp of the arriving packet is smaller than that of
the latest packet. If sequence numbers have not wrapped around yet, we need to adjust our initial
sequence number s0.

10The clearing of 180 bytes takes approximately 420 �s or 2% of available time on a SPARCstation II.

23

The sender begins a new talkspurt when the time stamp di�erence between two packets with
consecutive sequence numbers is greater than one. Due to packet losses and reorderings, the receiver
de�nition has to be slightly more general. The receiver declares the beginning of a new talkspurt if
a packet is the latest packet and the di�erence in timestamp, �t, exceeds the di�erence in sequence
number, �s. Each site remembers sequence number, s1, time stamp, t1, and ring bu�er position,
a1, of the packet initiating the current talkspurt.

Since the beginning of each talkspurt is placed D bytes ahead of the current playout pointer ap,
a drastic change in D may cause the new talkspurt to overlap the end of the previous talkspurt.
If the new a1 is less than or equal to (modulo ring size) the insertion point of the latest packet,
a1 is set to that point plus one site packetization interval. Due to ring bu�er wrap-around, this
algorithm fails and thus needs to be disabled after very long silence periods. We simply skip the
check for this case when the playout pointer has passed by the last packet of the previous talkspurt.
This has occurred if the delay measured for that last packet is less than the number of packetization
intervals that have occurred since that time. (Every site tracks the packetization sequence number
seen by the latest arrival.)

Packet reordering within the network may cause the second packet of a talkspurt to arrive
before the �rst. (Unfortunately, the close succession of packets at the beginning of a talkspurt
makes reordering there particularly likely.) We simply insert this reordered packet before the
packet triggering the new talkspurt. During talkspurts exceeding ts mod/2 packets (roughly 11.5
seconds for the canonic packetization interval of 22.5 ms), the di�erence in timestamp between the
arriving packet and the beginning of the talkspurt would lead us to the erroneous conclusion that
the packet predates the talkspurt beginning. The problem is avoided by adding ts mod/2 to t1 and
the corresponding byte o�set to a1 if (t� t1) exceeds ts mod/2.

The insertion point a of a packet is given by

a = (a1 + p(t� t1)) mod R

where R is the ring size, p the packet size, a1 is the insertion point of the �rst packet in a talkspurt.
At the beginning of a talkspurt, a1 is set to ap, the ring location of the next bu�er to be played
out, plus the current playout delay D, as estimated below, modulo R.

A packet is late if its playout time has passed. Instead of discarding it, we declare it the
beginning of a new talkspurt. It remains to be seen whether this approach is more robust.

3.2.4 Synchronization for vat Audio Protocol

The vat \native" audio header contains 32-bit timestamp, incremented for every audio sample
rather than for every frame, and a one-bit
ag indicating the beginning of a talkspurt. This scheme
has the advantage that packet reordering does not a�ect the playout delay, but the absence of
sequence numbers makes it di�cult for the receiver to determine the amount of packet loss. If the
�rst packet in a talkspurt is lost, two talkspurts are merged and one opportunity to adjust delays
is missed, but unless talkspurts are extremely long, this should have no dire consequences.

Other aspects, such as late packets and the insertion point computation, are handled as for
NVP.

3.2.5 Playout Delay Estimation

The playout delay D is set to some constant, say, three or four, times a delay variance estimate
described below. The factor can be intuitively justi�ed by treating the delay distribution as normal
and postulating that less than 0.1% of the packets should be late. This estimate would appear to

24

be more robust then counting the rare events of late packets, as done in VT. The delay variance
is estimated as the absolute di�erence between the current estimated mean delay and the delay
sample. The �rst absolute moment is considered a more robust estimator and not as sensitive to
outliers as the standard deviation. For normal random variables, it is known [29, p. 111] that

E[jxj] = �
q
2=� = 0:798�:

Note that this di�ers from the conclusion drawn in [30, p. 325]. The reconstruction delay sample
d is de�ned as a� ap, where a is the value before the late correction and thus d may be negative.

At the beginning of a talkspurt, several packets are sent in close succession, namely the packet
whose energy level triggered the silence detector plus a �xed number of packets stored to limit front
clipping. Because of this mechanism, the actual average playout delay will typically be larger than
D, as illustrated in Fig. 8. Also, the delay variance is increased.

send

receive

audio out

audio in

D

talkspurt

2.3D

Figure 8: E�ect of packet caching on playout delay

3.3 Audio Encoding

The �-law transfer characteristic is given by [31, p.]

c(x) = xm
log(1 + �x=xm)

1 + �

where c(x) is the coded value corresponding to input x, with the maximumabsolute value of x given
by xm. � has a value of 255. The companding gain is given by �= log(1+ �). This characteristic is
approximated by a piecewise-linear function to ease translation between linear and �-law encodings.
In the G.711 encoding, bit 1 (the most signi�cant bit) is used for the sign, bit 2 to 4 for the segment
and 5 through 8 for the level within the segment.

� � law encoding yields a maximum signal-to-noise ratio of 38 dB, with a dynamic range of
�4096 or 13 bits linear. Other ADPCM-type encoders (CCITT G.721 and G.723) provide almost
the same quality at 32 and 24 kbps, but their processing requirements make them unsuitable for
less powerful workstations.

3.4 Low-Pass Filters

VU meter, AGC and delay adjustment employ a �rst-order recursive low pass (i.e., in�nite impulse
response) �lter with unity zero frequency gain:

yi+1 = �yi + (1� �)xi = yi � (1� �)(yi � xi)

25

The time constant of this �lter is � = e�T=� � T=(1� �), where T is the sampling interval. The
approximation holds if the time constant is at least, say, ten sampling intervals long. The �lter can
be implemented in �xed-point arithmetic using only two shifts and two additions per sample if we
are willing to limit the set of achievable time constants. With y in �xed-point binary, we can write:

yi+1 = yi + 2axi � 2�byi

The multiplications by 2a and 2�b are implemented as shifts. The values of a and b depend on the
sampling interval T and the time constant � :

a = �� b (1)

b = �
j
log2(1� e�T=�) + 0:5

k
(2)

The o�set � determines the number of fractional binary digits. This �xed-point arithmetic limits
the e�ect of round-o� errors. The same basic �lter is used by TCP in the round trip time estimator
[27, p. 188,192], [32, p. 278] and was �rst suggested by Van Jacobson [30].

For VU and AGC, a hysteresis value prevents control reactions to minor excursions around the
set point. Also, the adjustment interval limits updates to a submultiple of the sampling period;
this is helpful as the adjustment may be expensive in terms of CPU time, for example, updating
the VU meter.

3.5 Talker Indication

Since the delays between packet arrival and playout can be substantial, it is unsatisfying to indicate
the talker at the time of packet arrival. On the other hand, mixing at the time of arrival makes
it di�cult to determine the speaker at playout time without maintaining additional state. First,
a ring of bit masks was used, with the ring location a submultiple of the audio insertion location.
(There is no real advantage in indicating talkers to 20 ms resolution.) However, this limited the
total number of sites to some �xed number. Instead, a four-entry array of site pointers is used,
under the assumption that the occurence more than four simultaneous talkers is unlikely. A counter
determines the insertion location. At playout, it is checked whether the pointer within the talker
ring bu�er has left the current location. (As pointed out, one talker ring bu�er usually covers
several packetization intervals.) If so, all sites active in the last period but not listed in the array
for the current period are marked as no longer talking. A timestamp as the site talk status �eld
speeds the comparison between current and previous array, as we cannot rely on the fact that the
site entries are ordered in the same manner. The talking status set routine also has to deal with the
case that the interval \covered" by a single voice packet may be larger than the time represented
by a single slot, as tends to occur with low-rate codecs.

3.6 Audio Bu�er Occupancy Control

The variability introduced by the non-deterministic scheduling of the voice terminal process is
compensated for by the stream bu�er. The program checks the bu�er occupancy on playback and,
during silent periods, inserts additional silence bu�ers or skips a silent bu�er if the bu�er content
falls below a low water mark or rises above the high water mark, respectively. The two adjustment
mechanisms also counteract clock skew between transmitter and receiver.

26

3.7 The Session Protocol

A separate datagram socket is used to transmit and receive session messages. Until some agreement
on a full session protocol can be reached, Nevot uses the set of multicast datagrams employed
by vat. These o�er only minimal conference control, indicating participants and encodings, but
without parameter negotiation, connection setup, discovery,
oor control, etc.

All messages consist of a
ag byte, a type byte and a conference identi�er. The most commonly
used message (type 1, S id) simply contains the alias (identi�er) of the remote site. S byemessages
contain no further data and signal that the source has disconnected. Message of type S idlist are
used by gateways and contain a list of (address, alias) pairs, plus the audio format used11

A time-out mechanism removes the site display and marks the site as closed if no audio data
or identifying packet has been received from the remote site for a speci�ed amount of time. This
prevents sites from being displayed as active even though they have just left their voice application
running. The site entry itself, however, is not removed, thus maintaining the site statistics. It
is anticipated that the set of conference participants is su�ciently static that memory usage for
maintaining the site entries is not a problem. The audio �le descriptor is closed if there are no
sites, eliminating the audio processing overhead and allowing use of the audio device by other
applications.

Session messages are generated based on a packetization interval count as long as the audio
device is open and through the system interval timer when the audio device is closed. The interval
is randomized between 0.5 and 1.5 the nominal value to avoid synchronization between sites.

3.8 Automatic Gain Control and VU Meter

The microphone gain is controlled either manually or by an automatic gain control (AGC), which
derives its control signal from low-pass �ltered per-packet samples re
ecting the signal energy within
the packet. AGC adjustment takes place only during silent periods.

VU meters measure the short-term energy with a well-described frequency response [33]: the
display should reach 99% of full scale 300 ms after applying the corresponding full-scale level, with
an overshoot of between 1 and 1.5 %. This response can be achieved by a damped two-pole low-pass
�lter with a Q of 0.62 and a cuto� frequency of 2.1 Hz.12.

However, traditional VU meters do not work particularly well for digital audio systems. While
analog audio components typically have transfer characteristics that diverge more and more from
the desired linear shape as the level exceeds the 0 dB point, a digital system clips hard, i.e., all
input levels that exceed the level represented by the largest digital code word are clipped to that
value. Thus, a digital audio system is much more sensitive to level overload than an analog one. For
this reason, a peak indicator was chosen as a loudness indicator instead of the traditional damped
VU meter. The case for the use of a peak indicator is strengthened by their use in DAT (digital
audio tape) recorders13.

Since the peak indicator is supposed to indicate clipping, the DC o�set is not removed, even
though this does distort the relationship between loudness and meter display. (DC o�set is found
mostly with 16-bit A/D converters; telephone-quality A/D converters cut o� frequencies below 20
Hz or so.)

In Nevot, the interval over which the input peak is measured can be set, with a resolution of
one packetization interval. (In the SGI audio control panel, a rate of 18 to 20 interval per second

11The purpose of the latter is not quite clear.
12Malcolm Slaney, private communication
13Gints Klimanis, private communication

27

was found to be satisfactory.) To prevent display
icker and save CPU cycles, the VU meter is
updated only when the new value di�ers by more than the speci�ed hysteresis from the currently
displayed value.

3.9 Silence Detector

The adaptive silence detector is borrowed from VTand described in [34, p. 6,7]. It computes a
measure re
ecting the average sample energy of the packet and declares it silent if this energy
measure is below the current threshold. For �-law audio, the energy measure is the average of the
sign-stripped sample values and is really a geometric mean since the sum of logarithms is equivalent
to the product of the sample values). The geometric average is known to be no greater than the
mean [35, p. 293]. For linearly encoded audio, we apply a �-law transformation to the sample
average so that we again arrive at scaled energy values of between 0 and 127.

The threshold is the minimum running average, a quantity described below, plus a hysteresis.
During talkspurts, the minimum running average is increased by one every sd.interval packets,
as long as it remains below sd.nom plus the hysteresis value14. During silent periods, the minimum
average is updated after every packet if the measured energy falls below the current minimum
average. An adjustable amount of hangover packets are transmitted after a silent period has been
declared. Also, a setable number of packets are stored in a cyclic bu�er during the silent period
and transmitted in rapid succession at the beginning of a talk spurt, reducing front clipping at the
expense of increased and more irregular tra�c.

3.10 Lost-Packet Reconstruction

Reconstruction of lost packets and silence �ll-in is handled by the same mechanism, namely simple
repetition of the last received frame. Lost packets and silence are handled in the same manner
since there is no reliable way of distinguishing silence from lost packets until the end of the silence
period. (Naturally, in many cases we do know that a packet has been lost, so that more sophisticated
reconstitution algorithms are possible.)

3.11 Planned Enhancements

It would be desirable to decouple the audio recording and playback functions, including AGC and
volume (VU) display, and create a separate \tape recorder" tool. However, it is not clear whether
the additional overhead incurred by interprocess communication (probably through a stream socket)
is tolerable. Clearly, operating system support for connecting stream sources through various
processes with low overhead is called for. Adding the audio processing as stream heads and creating
an \audio bus" similar to that found in professional mixers is probably the best long-term design
alternative, albeit limited to System V based operating systems.

� echo suppression and/or cancellation.

� encoding of recorded audio �les.

� distributed (prioritized FCFS) or centralized (token)
oor control using session control packets
(probably should be separate from voice module, controlling conference talk switch on NE-
VOT).

� porting to Personal DECstation or DECstation with multimedia board.

14This change from the original design avoids drop outs during sustained audio material, e.g., orchestral music.

28

� LPC-10 encoding.

� drag-and-drop for audio output �les.

� integration with enhanced \talk"-like program for call setup

� \personal phone book" and user locator

4 Acknowledgements and Copyrights

The DES encryption module was developed by Steve Kent and John Linn of BBN Communications
Corporation, Cambridge, MA and provided by Karen Seo of BBN. The audio library incorpora-
ting G.721 and G.723 audio compression was provided by Daniel Steinberg of Sun Microsystems.
It may at some point be integrated into the regular Sun OS. The Intel/DVI ADPCM codec was
slightly modi�ed from sources by Jack Kansen (CWI) and is copyrighted 1992 by Stichting Ma-
thematisch Centrum, Amsterdam, The Netherlands (used by permission). Ron Frederick (frede-
ric@parc.xerox.com) or Xerox PARC, Palo Alto, CA, contributed the LPC codec which is based
on an implementation done by Ron Zuckerman (ronzu@isu.comm.mot.com) of Motorola which was
posted to the Usenet group comp.dsp on June 26, 1992.

The ST-II API and kernel support was developed by Charlie Lynn at BBN. The ST-II API
(st2 api.h) is copyrighted (c) 1991 by BBN Systems and Technologies, a division of Bolt Beranek
and Newman, Inc. and used by permission. The UDP multicast kernel support was written by
Steve Deering, Xerox Parc. Charlie Lynn (BBN) was helpful with some of the �ne points of the
ST-II API.

Advice on porting Nevot to the Silicon Graphics platform was provided by Andrew Cherenson
(SGI). Michael Halle (MIT) �gured out how to get XView applications to display fonts at the design
sizes. The VU meter is based on discussions with Gints Klimanis (SGI).

The audio mixing (mix.c) and checksum code (checksum.c) was taken from the ISI voice terminal
(VT), copyright June 1991 by the University of Southern California, by permission. The silence
detector and the ST-II code are modi�ed versions of the respective parts of VT.

The vat session and audio protocol were implemented based on descriptions provided by Van
Jacobsen.

The I/O
ags interpreter (
ags.c) is a modi�ed version of software contributed to Berkeley by
Chris Torek. Copyright (c) 1990 by the Regents of the University of California; used by permission.

A Nevot Installation

A.1 General Installation

Nevot is available for anonymous ftp from gaia.cs.umass.edu, �le pub/nevot/nevot-0.95.tar.Z.
Executables are found in the same directory.

In the Makefile, the following symbols can be set to 1 to enable non-standard features:

symbol enables

MULTICAST IP multicasting
STII ST-II transport support
DES DES (data encryption standard) encryption

29

For export control reasons, DES encryption is not available outside the United States. The
master Makefiles are located in the nevot/xview, nevot/stdio and nevot/curses subdirectories.
To allow installation for those without superuser privileges, the Sun libaudio.a library enhanced
with ADPCM encoding functions is located in the lib.sun directory. For SGI, the XView libraries
are included in lib.sgi. Execute one of the shell scripts sun, sgi, or dec in the appropriate
directory to create the desired version for your platform.

Sun only: It is strongly recommended to reduce the audio bu�er size to the packetization
interval. A high number of audio output errors ('p' events in traces) indicate that the bu�er size is
probably too large. To set the bu�er size, you have to become super-user and execute the following
Bourne shell script:

adb -k -w /vmunix /dev/mem <<EOD

audio_79C30_bsize/X

./W 0xb4

EOD

A.2 XView

To enable on-line help for the OpenWindows version, the environment variable HELPPATH should
be set to include the source directory where the .info �les are located (here, assumed to be
/usr/local/nevot/xview):

setenv HELPPATH ${HELPPATH}:/usr/local/nevot/xview

If the XView fonts appear too large, the reason is most likely a mismatch between the screen re-
solution expected by XView and the actual one. Problems occur when running XView applications
on DEC and SGI systems. The simple remedy is to make the X server see the 75 dpi Lucida fonts
before seeing the 100 dpi fonts. For example, hiding the 100 dpi Lucida fonts and then recreating
the font list with mkfontdir should �x the size problem.

If you want to use the current XView version rather than the one included with the distribu-
tion, the XView libraries and fonts have to be installed before compiling and using Nevot. The
directories used below are typical, but not mandatory. Di�erent directory assignments may have
to be re
ected in the Nevot Makefile.

1. Obtain and unpack the binary XView distribution for Ultrix from media-lab.media.mit.edu,
�le xview3-ultrix.4.2-mips.tar.Z.

2. Obtain the standard XView distribution from wherever the X11 distribution is archived, for
example, prep.ai.mit.edu. You only need the fonts.

3. Create two font directories, say for a 100 dpi monitor:

mkdir /usr/lib/X11/fonts/xview

mkdir /usr/lib/X11/fonts/xview/100dpi

mkdir /usr/lib/X11/fonts/xview/misc

4. Install the fonts from the XView distribution, directories

xview3/fonts/bdf/100dpi/*.bdf

xview3/fonts/bdf/misc/*.bdf

30

in the appropriate destination directories, as created in the previous step.

5. Convert the fonts in both directories from .bdf to Ultrix .pcf format:

foreach f (*.bdf)

dxfc -o $f

end

6. In both directories, create the necessary fonts.dir �le by running dxmkfontdir in each of
the two directories.

7. Notify the X server of the additional font directories:

xset fp+ /usr/lib/X11/fonts/xview/100dpi,/usr/lib/X11/fonts/xview/misc

You can check which font directories are used by xset q. This setting has to be redone each
time you start the server.

8. At this point, you should be able to run an XView application on a system running Open-
Windows (e.g., a SPARCstation) and redirect the display to the DECstation. You should
also be able to run a pre-compiled Ultrix application. Thus, this step concludes the necessary
work if you are not building Nevot from sources.

9. Install the include �les from the XView Ultrix (!) distribution in the appropriate places:

mkdir /usr/include/xview

cp xview3/include/xview/*.h /usr/include/xview

mkdir /usr/include/pixrect

cp xview3/include/pixrect/*.h /usr/include/pixrect

10. Install the XView libraries and some support �les from the XView Ultrix distribution:

cp xview3/lib/* /usr/lib

mkdir /usr/lib/help

cp xview3/lib/help/* /usr/lib/help

cp xview3/lib/.[a-z]* /usr/lib

The two important libraries are libxview.a and libolgx.a.

A.3 Common Problems

Frequent break-ups even on local connections: In the .sta �le, check the audio under
ow
count. It should be close to zero; if not and you are using SunOS, make sure that the kernel

bu�er size has been set properly{, as described earlier.

G.721/G.723 distorted: Slower machines such as the Sun IPC or ILC may not be able to keep up
with G.721 and G.723 encoding or decoding. Monitoring CPU utilization with the perfmeter
program should give you a good indication of the resource utilization. Another indication of
insu�cient CPU cycles is a high audio under
ow count despite having set the audio bu�er

size correctly{.

31

References

[1] E. M. Schooler and S. L. Casner, \A packet-switched multimedia conferencing system," SIGOIS
(ACM Special Interest Group on O�ce Information Systems) Bulletin, vol. 10, pp. 12{22, Jan.
1989.

[2] H. M. Vin, P. T. Zellweger, D. C. Swinehart, and P. V. Rangan, \Multimedia conferencing in
the Etherphone environment," IEEE Computer, vol. 24, pp. 69{79, Aug. 1991.

[3] J. DeTreville and D. W. Sincoskie, \A distributed experimental communications system,"
IEEE Journal on Selected Areas in Communications, vol. SAC-1, pp. 1070{1075, Dec. 1983.

[4] D. Cohen, \On packet speech communication," in Proceedings of the Fifth International Con-
ference on Computer Communications, (Atlanta, Georgia), pp. 271{274, IEEE, Oct. 1980.

[5] J. W. Forgie, \Voice conferencing in packet networks," in Conference Record of the Interna-
tional Conference on Communications (ICC), (Seatle, WA), pp. 21.3.1{21.3.4, IEEE, June
1980.

[6] S. A. Mahmoud, W.-Y. Chan, J. S. Riordon, and S. E. Aidarous, \An integrated voice/data
system for VHF/UHF mobile radio," IEEE Journal on Selected Areas in Communications,
vol. SAC-1, pp. 1098{1111, Dec. 1983.

[7] N. Shacham, E. J. Craighill, and A. A. Poggio, \Speech transport in packet-radio networks with
mobile nodes," IEEE Journal on Selected Areas in Communications, vol. SAC-1, pp. 1084{
1097, Dec. 1983.

[8] G. Falk, S. J. Gro�, W. C. Milliken, M. Nodine, S. Blumenthal, and W. Edmond, \Integration
of voice and data in the wideband packet satellite network," IEEE Journal on Selected Areas
in Communications, vol. SAC-1, pp. 1076{1083, Dec. 1983.

[9] D. Cohen, \Speci�cation for the network voice protocol (nvp)," Network Working Group
Request for Comment RFC 741, ISI, Jan. 1976.

[10] R. Cole, \Pvp - a packet video protocol,"W-Note 28, Information Sciences Institute, University
of Southern California, Los Angeles, CA, Aug. 1981.

[11] CCITT, \Draft recommendation G.PVNP: Packetized voice networking protocol," 1989. Ap-
pendix 2 to Annex 1 of Question 24/XV (COM XV-1-E).

[12] J. R. Brandsma, A. A. M. L. Bruekers, and J. L. W. Kessels, \Philan: a �ber-optic ring for
voice and data," IEEE Communications Magazine, vol. 24, pp. 16{22, Dec. 1986.

[13] L. M. Casey, R. C. Dittburner, and N. D. Gamage, \Fxnet: a backbone ring for voice and
data," IEEE Communications Magazine, vol. 24, pp. 23{28, Dec. 1986.

[14] L. T. Corley, \Bellsouth trial of wideband packet technology," in Conference Record of the
International Conference on Communications (ICC), vol. 3, (Atlanta, GA), pp. 1000{1002
(324.2), IEEE, Apr. 1990.

[15] E. M. Schooler, S. L. Casner, and J. Postel, \Multimedia conferencing: Has it come of age?," in
Proceedings of the 24th Hawaii International Conference on System Science, vol. 3, (Hawaii),
pp. 707{716, IEEE, Jan. 1991.

32

[16] E. M. Schooler, \The connection control protocol: Speci�cation (version 1.1)," technical report,
USC/Information Sciences Institute, Marina del Ray, CA, Jan. 1992.

[17] E. M. Schooler, \The connection control protocol: Architecture overview (version 1.0)," tech-
nical report, USC/Information Sciences Institute, Marina del Ray, CA, Jan. 1992.

[18] G. Barberis, M. Calabrese, L. Lambarelli, and D. Ro�nella, \Coded speech in packet-switched
networks: Models and experiments," IEEE Journal on Selected Areas in Communications,
vol. SAC-1, pp. 1028{1038, Dec. 1983.

[19] A. A. Kapaun, W.-H. F. Leung, G. W. R. Luderer, M. J. Morgan, and A. K. Vaidya, \Wide-
band packet access for workstations: integrated voice/data/image services on the Unix PC,"
in Proceedings of the Conference on Global Communications (GLOBECOM), vol. 3, (Houston,
TX), pp. 1439{1441 (40.6), IEEE, Dec. 1986.

[20] P. Spilling and E. Craighill, \Digital voice communications in the packet radio network," in
Conference Record of the International Conference on Communications (ICC), (Seattle, WA),
pp. 21.4.1{21.4.7, IEEE, June 1980.

[21] H. Miyahara and T. Hasegawa, \Integrated switching with variable frame and packet," in
Conference Record of the International Conference on Communications (ICC), vol. 2, (Toronto,
Canada), pp. 20.3.1{20.3.5, IEEE, June 1978.

[22] I. Gitman and H. Frank, \Economic analysis of integrated voice and data networks: A case
study," Proceedings of the IEEE, vol. 66, pp. 1549{1570, Nov. 1978.

[23] C. Topolcic, \ST II," in First International Workshop on Network and Operating System
Support for Digital Audio and Video, no. TR-90-062 in ICSI Technical Reports, (Berkeley,
CA), 1990.

[24] S. E. Deering and D. R. Cheriton, \Multicast routing in datagram internetworks and extended
LANs," ACM Trans. Computer Systems, vol. 8, pp. 85{110, May 1990.

[25] S. Deering, \Host extensions for IP multicasting," Network Working Group Request for Com-
ments RFC 1054, Stanford University, May 1988.

[26] S. Deering, \Host extensions for IP multicasting," Network Working Group Request for Com-
ments RFC 1112, Stanford University, Aug. 1989.

[27] D. E. Comer, Internetworking with TCP/IP, vol. 1. Englewood Cli�s, NJ: Prentice Hall, 1991.

[28] S. Casner, J. Lynn, Charles, P. Park, K. Schroder, and C. Topolcic, \Experimental internet
stream protocol, version 2 (ST-II)," Tech. Rep. RFC 1190, Network Working Group, Oct.
1990.

[29] A. Papoulis, Probability, Random Variables, and Stochastic Processes. New York, NY:
McGraw-Hill Book Company, 2nd ed., 1984.

[30] V. Jacobson, \Congestion avoidance and control," ACM Computer Communication Review,
vol. 18, pp. 314{329, Aug. 1988. Proceedings of the Sigcomm '88 Symposium in Stanford, CA,
August, 1988.

[31] N. S. Nayant and P. Noll, Digital Coding of Waveforms. Englewood Cli�s, NJ: Prentice Hall,
1984.

33

[32] D. E. Comer and D. L. Stevens, Internetworking with TCP/IP, vol. 2. Englewood Cli�s, NJ:
Prentice Hall, 1991.

[33] H. A. Chinn, D. K. Gannett, and R. M. Morris, \A new standard volume indicator and
reference level," Bell System Technical Journal, vol. 19, pp. 94{137, Jan. 1940.

[34] I. H. Merritt, \Providing telephone line access to a packet voice network," Research Report
ISI/RR-83-107, Information Sciences Institute (ISI), Marina del Ray, CA, Feb. 1983.

[35] I. N. Bronstein and K. A. Semendjajew, Taschenbuch der Mathematik. Thun und Frank-
furt/Main: Verlag Harri Deutsch, 19th ed., 1981.

34

