
The SIMPLE Presence and Event Architecture
Henning Schulzrinne

Dept. of Computer Science
Columbia University

hgs@cs.columbia.edu

Abstract— Current presence systems offer only basic services
that are mostly useful for dial-up environments, while event
services have not seen widespread deployment. We describe
the SIP-based event architecture that is being developed within
the SIMPLE working group, that supports richer functionality,
multiple event sources and better privacy control.

I. INTRODUCTION

Presence applications, usually bundled with instant messag-
ing (IM), have been around since the mid-1990s, popularized
by companies such as AOL, Yahoo! and MSN, with little
recent advances. Presence applications indicate the availability
of human users for communications, following a publish-
subscribe-notify paradigm. For these IM clients, presence was
necessary as users were available only intermittently, con-
strained by dial-up connections to the Internet. With the advent
of broadband and wireless always-on connectivity, the notion
of “on-line” and “off-line” has largely lost its meaning as users
will be technically on-line all the time. There is an opportunity
to re-think presence as an instance of a more general event
notification framework, adding crucial functionality to the
current model. In particular, emerging presence applications
distinguish themselves from their predecessors by a number
of features:

• They use standardized message formats such as
SIP/SIMPLE [1, 2] and XMPP/Jabber [3], facilitating
inter-domain communication rather than being restricted
to a single provider.

• They facilitate not just text messaging, but also replace
the classical ring-and-hope cycle that has defined tele-
phony applications for 125 years (and the ring-and-voice
mail cycle of the past 20 years).

• Some offer a generic event notification mechanism, where
human presence is just one of many event types. There
has been a large volume of work on generic event
notification systems, but none have seen widespread
deployment outside closed environments, as they tended
to be suited only for intra-enterprise applications.

• They provide “rich” presence, reflecting user activity by
more than one value drawn from half a dozen choices
and allowing to represent past and future user states, as
described in Section II.

• They offer far more extensive privacy controls than sim-
ple white and blacklists, with a policy language described
in Section IV.

We briefly describe some of the core aspects reflecting
our contributions in the sections below, focusing on the SIP-

derived extensions. SIMPLE and XMPP use the term “presen-
tity” to refer to the person whose presence is being reported
and “watcher” to the person or program who is observing
a presentity. Typically, each presentity is being observed by
many watchers, each of which may see different degrees of
detail for that presentity. A presentity is a logical abstraction
and is described by data provided by any number of devices
and programs that publish this information to the presence
agent managing the presentity. The core prototol messages
are shown in Fig. 1, where publishers use the SIP PUBLISH
method to upload information, while watchers subscribe us-
ing the SUBSCRIBE method and then receive information
from the presence agent (PA) asynchronously using NOTIFY
messages.

The basic presence model in the IETF evolved from an
attempt to separate the presence architecture [4] from the
protocols carrying subscriptions and notifications to the data
formats for presence objects, the so-called Presence Informa-
tion Data Format (PIDF) [5], an XML schema. Initially, four
proposals were competing within the IETF to become the
standard protocol mechanism for presence, but in the end,
only two have been fully developed, namely SIMPLE and
XMPP. The SIMPLE architecture is a special application of
the generic SIP event notification model [1], while XMPP is
the standardized version of the protocol known generally as
Jabber.

PUBLISH

NOTIFY

REGISTER
SIP Proxy/

Registrar

presence

agent

SUBSCRIBE

NOTIFY
Watcher

Presentity

Fig. 1. Basic presence components

The presence data model [6] describes formally how pres-
ence information is published via the SIP PUBLISH re-
quest, composed from multiple sources, filtered to account
for privacy considerations and the distributed to a variety
of receivers, that may in turn restrict the rate or content
of the notifications sent to watchers (subscribers). While the
components have been mainly discussed for presence, it seems
likely that most are also applicable for other types of events.
Fig. 2 pictures the data flow as a presence document moves
from published information provided



candidate
presence
document

watcher

filter

raw
presence
document

post-processing

composition

(merging)

final
presence
document

difference

to previous notification

SUBSCRIBE

NOTIFY

remove data not of 

interest

watcher

raw
presence
document

create
view

(compose)

privacy

filtering

composition

policy

privacy
policy

presence sources

XCAP XCAP

(not defined yet)

depends on watcher

select best source

resolve contradictions

PUBLISH

Fig. 2. Presence data model [6]

A working presence system requires more than just publish,
subscribe and notify operations. Rather, users need to be
able to configure the system and determine who is currently
watching them, for example. Fig. 3 shows how other event
packages and data formats are used to provide this information.
Generally, such configuration files, such as those describing
privacy policies (Section IV), are formatted as XML. XCAP,
the XML configuration access protocol [19], can modify parts
of XML files, so that users do not have to upload complete
XML files each time they make a minor change.

XCAP (HTTP + XPath)

XCAP Server

PUBLISH
[presence] auth policy,

resource list

SUBSCRIBE
[presence]

Watcher

NOTIFY
[presence]

SUBSCRIBE
[Watcher-Info]

REGISTER
SIP Proxy/

Registrar

SUBSCRIBE

[reg]

Presence Agent

(resource-list,

composition,

filtering, � )
NOTIFY
[W atcher-Info]

Presentity

NOTIFY
[reg]

Fig. 3. Presence configuration

II. RICH PRESENCE

Classical presence applications convey only two pieces of
information: an indication of being “available” or a short list of
indications of why the person is not reachable such as “busy”
or on the phone, augmented by an “away” message. Users
have to update the information manually, with the exception
of an idle indicator based on keyboard input.

Relying on users to update the information means that most
users are either permanently available, since they are too busy
to fiddle with the presence agent settings, or permanently away,
since they forgot to change back their status after an absence.
We advocate using automated sensors and data inputs to set
this information at a much finer level of granularity. Three
such presence extensions have been proposed: The core rich
presence XML format (RPID) [7] allows users to indicate their
activities, moods, sphere of life, properties of the place they
are currently located in (place type), media privacy, timezones,
alternate contact points for friends and colleagues and user
input. The sphere of life indicates the “hat” that somebody is
wearing, e.g., “work” vs. “family” vs. “community service”,
as users are likely to be visible to different groups of people
during each of those parts of their life. The sphere indication is
primarily used to tailor the privacy permissions, but also can
be useful to tailor one’s conversation, e.g., to avoid private
conversations if somebody is in work mode.

In some cases, it is as important to know about future



activities and status as about the most current status, moti-
vating RPID to add support for time ranges for descriptive
elements. More generally, timed presence [8] can label other
status information, such as geo location [9], with a time
range reflecting its predicted validity. This allows a user to
make parts of their calendar visible to others, facilitating joint
scheduling. Recently, a more direct way of exporting vCal
information via presence has been proposed [10].

Instead of a single presence description, the SIMPLE de-
velopers noted that a single person may be using multiple
communication services, some of which may have their own
availability status, provided by a multitude of stationary and
mobile devices [6]. For historical reasons and inherited from
PIDF, services are represented by <tuple> elements. Each
view of a person is encapsulated in a <person> XML element,
while each device is reflected in a <device> element. Devices
and services can also be annotated with capabilities [11].

Fig. 4 shows an example of a snippet from a rich presence
document.

The PIDF-LO (location object) format [9, 12] can be used
to encode geospatial or civic (street address [13]) information
in presence objects.

III. COMPOSITION

A. Introduction

Unlike existing systems, SIMPLE allows a multitude of
sources to contribute presence information for one presentity.
Such sources might include data entered through an IM client,
phone status, calendaring information and environmental sen-
sors such as a BlueTooth beacon that announces to bystanders
that they are in a movie theater.

However, this multitude of sources also creates the po-
tential for conflicting information. Some conflicts cannot be
resolved by rules and algorithms, so SIMPLE allows to deliver
conflicting <person> elements to a watcher. In other cases,
composition in the presence agent can create a likely state of
the presentity and show it to watchers. Information about the
source, timeliness and other rules can be used to give more
credence to certain pieces of information.

Composition combines multiple presence or event sources
into one view, which is then delivered, after various filtering
operations, to watchers [6,14]. Composition is required when-
ever there are several sources contributing information about
a single presentity or event. 1

We assume that the composition operation does not depend
on the watcher identity, as there seems little functional gain by
introducing per-watcher composing operations. The composed
document contains the maximum set of information, i.e., no
watcher can obtain more information than is contained in the
composed raw presence document. (In some cases, a presentity
wants to “polite block” a person by providing presence infor-
mation that offers no information to the watcher, but avoids
indicating that the watcher’s subscription request has either
not yet been processed or that it has been turned down. For

1This material is based on the Internet Draft [15].

those cases, a simple template that reflects a minimal PIDF
document is sufficient, as it does not need to reflect presence
inputs and does not change over time.)

Composition at the presence agent is just one component of
providing useful and correct information to the watcher. We
assume that composition is algorithmic, although manual com-
position by the presentity is theoretically possible. Given the
automated nature of composition, there may well be situations
where the best course of action is to expose the underlying data
to the watcher, even though it may be contradictory. Indeed,
in many cases, a mechanical composer may not even be able
to detect whether information is contradictory or not.

The goals of composition are to remove information that is
either stale, contradictory or redundant and to possibly gener-
ate inferred presence state. Stale information has been super-
seded by other, newer information. Contradictory information
makes two statements about the presentity that cannot both
be true. Redundant presence information provides information
that is no longer of interest. For example, a presentity may
decide to drop information about services whose status is
closed if there are open services and may drop a service record
referring to another person via a <relationship> element
if the presentity itself is available. Inferred presence state
uses presence elements or external information to derive new
information. Location information seems particularly suitable
for such inferences. For example, a location away from
home might generate the activity indication ’away’ or specific
geospatial locations might be mapped to particular location
types or activities.

Composition is not designed to reduce the size of notifica-
tion messages or to protect information for privacy. Various
compression schemes and partial notification [10] are better
suited to reduce message sizes. Privacy filtering [8] has the
role of tailoring information to individual recipients, based on
the presentity’s privacy policy.

In our model, the composer is reactive. In other words, it
only creates a new presence document if one of the publishers
updates parts of the presence document. An active composer
could, for example, generate a new presence document after
a certain time interval has elapsed or when timed presence
information [8] is transitioning from the future to the presence.

Rather than hard-coding composition policies or forcing
users to write a composition program in a general-purpose pro-
gramming language, we propose to abstract composition rules
into an XML-based policy language. Such a language makes
it easier to predict the outcome of composition operations and
makes it possible to switch servers or service providers and
still maintain the same presence semantics.

B. Scoping Composition

In our model, presence takes a presence document, made
up of a set of <tuple>, <person> and <device> tuples, each
tuple consisting of one or more elements, and creates another
valid presence document based on this information. First, we
describe possible operation on these tuples, proceeding from
the highest granularity to sub-element operations. In all cases,



<dm:person id="p1">
<rpid:activities from="2005-05-30T12:00:00+05:00"

until="2005-05-30T17:00:00+05:00">
<rpid:note>Far away</rpid:note>
<rpid:away/>

</rpid:activities>
<rpid:class>calendar</rpid:class>
<rpid:mood>

<rpid:angry/>
<rpid:other>brooding</rpid:other>

</rpid:mood>
<rpid:place-is>

<rpid:audio>
<rpid:noisy/>

</rpid:audio>
</rpid:place-is>
<rpid:place-type><rpid:residence/></rpid:place-type>
<rpid:privacy><rpid:unknown/></rpid:privacy>
<rpid:sphere>bowling league</rpid:sphere>
<rpid:status-icon>http://example.com/play.gif</rpid:status-icon>
<rpid:time-offset>-240</rpid:time-offset>
<dm:note>Scoring 120</dm:note>
<dm:timestamp>2005-05-30T16:09:44+05:00</dm:timestamp>

</dm:person>

Fig. 4. Rich presence document format

operations can be concatenation (union), merging (combining
elements from several tuples into one) or selection (one-of-N).

In the tuple-level approach to composition, the integrity of
individual tuples is maintained. The two possible operations
are union and selection. For a union operation, tuples from
different presence sources, of the same kind and with differ-
ent tuple identifiers are simply all copied to the composed
presence document. This is the default composition policy
described in the data model documents. Also, it appears likely
that <device> tuples for different devices are simple collected,
possibly removing unreferenced devices, i.e., devices that are
not referred to by any service (<tuple>).

For selection, only a subset of tuples for each type are
copied to the composed document, with all others being
discarded.

It is also conceivable that tuples are concatenated, but that
elements from some of the tuples are removed, e.g., because
they are considered less reliable.

For element-level operations, one can either include multiple
instances of the same element type, where allowed, or create
a new element that combines values from multiple elements.

Some elements can contain timing information indicating
the range of time that the information is believed to be valid.
It is probably not a good idea to combine elements that cover
different, although maybe overlapping, time intervals.

C. Types of Information Sources

Presence information can be contributed by many different
sources, either directly, by publishers using SIP PUBLISH

requests or by a presence agent acting as a watcher receiving
NOTIFY requests. We focus here on the semantic source of
the data, i.e., how it was derived, not how it was injected into
the presence system.

For simplicity, we do not try to assess the veracity of the
presence document. In order to evaluate the usefulness of a
presence document, we only care whether the presentity would
want the information to appear that way, not whether this
corresponds to observable facts. Thus, a presence document
is correct in that sense if it indicates that the presentity is in a
meeting even though the presentity has actually gone fishing
if the presentity would like the rest of the world to believe
that he is at work. It may, however, well be the case that
composition policies find it easier to maintain the truth than
keep lies consistent across sources of presence information.

We can distinguish the following sources of presence data:
reported current, reported scheduled, measured, and derived
information.

Reported current information has been provided by the
presentity within processing time delays of the current time. A
presentity can update status information manually, by setting
any of the element in a presence document. We assume that
this information is correct when entered, but the trustworthi-
ness of the information is likely to decay as time goes on, given
that most human users will find it difficult to continuously keep
presence information up-to-date.

For reported scheduled information, a presentity indicates
its plans for the future rather than the present, e.g., in a



calendar. The reliability of this information depends largely
on the diligence of the user in updating calendars and similar
sources.

Measured device information uses observed user behavior
on communication devices, such as the act of placing or
receiving calls or typing. The main source of error is that
a device may not be able to tell whether the presentity itself
is using the device or some other person.

Presence information measured by sensors reflects the status
of the presentity, e.g., its location, type of location, activity or
other environmental factors. In quantum mechanical fashion, it
is sometimes difficult to ascertain both the measured variable
and the identity of the presentity. For example, a passive
infrared sensor (PIR) can detect that somebody is in the
office of the presentity, but cannot detect whether this is the
presentity himself, cleaning staff or a dog. A GPS sensor
cannot detect whether the cell phone is being used by the
presentity or has been borrowed by the presentity’s spouse.

Presence information might be derived indirectly from other
sources of data. For example, the basic open/closed status
might be algorithmically derived from a variety of other,
watcher-visible or not, elements.

D. Information Conflict

The fundamental problem addressed by composition is
information conflict, i.e., multiple sources (publishers) have
different views of the presentity, some of which may be out-
dated or incorrect. Information can be incorrect for any number
of reasons, but some examples include location divergence,
lack of update diligence and sensor failure.

Location divergence occurs if the publisher collecting the
information is not be co-located with the presentity at this
particular time. For example, Alice’s home PC may report
that the user is idle (not typing), but Alice is using the office
PC.

Update diligence may be lacking. Some sources, particularly
those updated manually, are prone to only approximate reality.
For example, few users record all appointments or meetings
in their calendar or, conversely, remove all canceled meetings.
This is particularly true for regularly scheduled activities such
as meals or commute times.

Sensors can fail for a variety of reasons. Sources that
report their information differentially are subject to silence
ambiguity. If such a source does not report new data, the
receiver cannot tell whether the sensor is malfunctioning or
whether the information last received is still current. This can
be partially mitigated by requiring sources to report when they
are no longer confident of the data. However, this does not
deal with sudden source failures. Thus, some form of keep-
alive mechanism may well be needed that overrides differential
notification mechanisms. Even with keep-alive, there is likely
to be a substantial period of time between source failure and
failure detection, causing stale information.

1) Detecting Information Conflict: For mechanical compo-
sition, we would like to be able to detect information conflicts
so that appropriate processing logic can remove inaccurate

information. Information conflicts can be classified as to
whether they are detectable in a single element or only across
elements and how easy it is to detect them.

We distinguish single-element from multi-element con-
flicts. Single- element conflicts occur if two elements, say
<activities> in RPID, in two sources cannot both be true
or are highly unlikely to be true, without having to inspect
any other element. A multi-element conflict occurs if only the
combination of multiple elements indicates a conflict.

Multi-element conflicts often have location, and properties
known for this location, as the common element. For example,
certain geospatial locations are known not to contain certain
types of places. Thus, both the location and the <place-type>
information are, by themselves, each credible and possible, but
are detectably wrong once considered together. These conflicts
can be detected if location or time can be mapped to reliable
information from external sources.

We distinguish three types of information conflict: obvious,
probable and undetectable, described in turn below.

For some pieces of presence information, information con-
flicts are obvious and readily detectable. For example, under
the one-person- per-presentity assumption and common as-
sumptions of physics, a single presentity can only be in one
place at a time. Thus, if two sources report location informa-
tion that differs by more than the margin of error, one must be
wrong. In RPID, the <place-is>, <place-type>, <privacy>,
<relationship>, <time-offset>, and <user-input> elements
have exclusive values, although in some cases, below the ele-
ment level. For example, the <privacy> field has information
for both audio and video, and thus two sources may report
different information for <privacy> and still both be correct
as long as they refer to different media types.

For other types of information, an automaton can guess with
some probability that two sources of information contradict
each other, but this may well depend on the values themselves.
For example, the <activities> combination of

away, appointment, in-transit,
meeting, on-the-phone, steering

incrementally reported by different sources may well reflect
the activity of the typical Wall Street commuter in the Lincoln
Tunnel, speaking on his cell phone. One would hope, however,
that combinations such as “steering, sleeping” are rarely true,
although “sleeping, meeting” indicates that there are few
activities that completely rule out others.

Thirdly, undetectable information conflicts are those where
a machine lacking human intelligence cannot reliable detect
that the two pieces of information cannot both be true. For
example, an automaton is unlikely to be able to decide which
of several notes or free-text fields is valid, without basing this
on other information in the tuple, person or device element.

E. Composition Operations

Based on the exploration of common presence document
operations earlier, we now discuss a variety of practical
semantic composition operations and policies that may be



useful. They are worded as possible choices or operations that
can be applied, in a roughly sensible order of execution.

1) Default Policy: Union: The default composition policy
is designed to lose no information, at the expense of presenting
possibly contradictory information to watchers.

This composition policy performs a union with replacement.
Newly published elements replace earlier elements with the
same ’id’ attribute. We assume that each source chooses their
own ’id’ values.

Other than this, all elements are simply enumerated as is,
sorted by type (person, tuple, device). Elements within the
<person>, <tuple> and <device> elements are not modified
at all, except possibly annotated with a source description and
time stamp. This policy can also be seen as providing input
to the following steps.

2) Tuple Discarding: The next steps discards whole tuples,
for example closed contacts, i.e., all <tuple>s (service) with
a basic status of ’closed’, or old tuples, i.e., with a time stamp
or time range older than a given threshold are discarded.

3) Combine Services Tuples with Identical Contacts: Next,
a composer may combine all <tuple>s with identical contacts,
where identical is defined for each URI schema.

4) Ambiguity Resolution: For elements in <person> or
<tuple> where only one value makes sense, but there are
a number of source tuples, there are a number of possible
approaches, including to choose recent or trustworthy tuples,
to omit contradictions, to choose by sphere, to give certain
values precedence or base the decision on user location.

For the “choose recent tuple” approach, the composer
chooses elements from the most recent tuple only or from
tuples no more than a certain age. Simply choosing the
most recently published value is likely to cause flip-flopping
between dueling publishers.

Alternatively, the composer can pick values from the most
trustworthy tuple, typically based on the source or type of
reporting. For example, it might rank sources in the order
“reported current”, “measured device information”, “measured
by sensors”, “reported scheduled”, and finally “derived”.

A conservative approach omits any information where two
source tuples contradict each other. Only the intersection of
enumerated sets, with their associated notes, is used.

Tuple values may be used to guide the composition. For
example, tuples belong to a certain sphere may be given
precedence. In general, tuples containing certain values may
be selected over others. For examples, activity indication of
“meeting” might win over “sleeping” or a tuple for the person
itself over one for a relationship. More specific values may
displace less specific ones, e.g., for activities or location
information.

Finally, if the location information is trustworthy, it may
be possible to rule out certain values, e.g., for <place-type>.
However, this appears to be generally unlikely.

As long as different sources report non-contradictory in-
formation, these tuples can be merged into one tuple. Such
merging hides their origin from multiple sources, which can
be considered both a feature and a drawback. A composer

may discard <device> tuples that are not referenced by any
service <tuple>.

F. Inference

Inference adds information, rather than removing redundant
or incorrect information. In some cases, it may be possible
to infer information, either based on general properties of
the location, likely behavior at certain times of the day or
statistically-inferred behavior of the presentity. For example,
the composer could deduce that the activity is “sleeping” if
the time at the presentity’s current location is 2 am.

IV. PRIVACY

A. Protecting Privacy

Presence information, and in particular rich presence, is
highly privacy-sensitive. Existing systems generally only allow
access control by requesting permission from watchers before
they are allowed to subscribe. However, with richer presence,
information needs to be more finely tailored to the recipient.
Current proposals [16,17] allow users to specify a set of rules
that grant access to individuals based on their identity, the
location and current sphere of the presentity, and the time of
day. These rules are designed to be simple and privacy-safe,
i.e., taking away a rule can only reduce the level of access,
not increase it.

The privacy rules are designed to allow other applications
to build on a common foundation, the common policy rules.
Currently, there are two such extensions, namely for geospatial
[18] and for presence information [16]. A rulemaker, typically
the presentity, uploads the rules to the presence server, e.g.,
using XCAP [19]. The rules affect who can subscribe to the
presentity or target, the term used in geospatial applications.
The subscriber is also known as the watcher or location
recipient.

The common privacy rules can be thought of as a set of
database rows, each row representing one rule. Each rule
consist of a set of conditions that determine when a rule “fires”
and enables a set of actions, such as allowing a subscription,
and permissions, namely the data that the watcher can receive.

B. Design Choices Made

Unlike for other policy systems, rules are “permit only”.
Rules only provide permissions rather than denying them.
Allowing both ’permit’ and ’deny’ actions would require
maintaining a fixed ordering of rules, which may be difficult
to maintain or visualize when rules are updated remotely and
incrementally. Because of this property, rule ordering is not
important, but making a policy decision requires selecting
from of all rules for a particular presentity. (Given the database
implementation and indexing, implementations typically will
not have to inspect each row sequentially.)

Permissions are additive. When a watcher requests permis-
sion to subscribe, for example, the presence agent selects
the rules that match the watcher and other conditions and
combines those rules by logically adding up the permissions.
Each data type has its own rules of addition, but they generally



involve some form of set union or maximum. Typically, a
small set of rules will give limited permissions to a broad set
of users, while more specific rules then grant additional rights,
e.g., to a particular person or during a particular time of day.

The rule sets upgradeable with later enhancements while
maintaining the safety of earlier rules. Naturally, a rules engine
that only understands parts of the permission may reveal
less information than desired. Rules with unknown conditions
never match.

The rule sets try to avoid giving users false assurance.
It appears more dangerous to give the user the impression
that the system will prevent disclosure automatically, but fail
to do so with a significant probability of operator error or
misunderstanding, than to force the user to explicitly invoke
simpler rules. For example, rules based on weekday and time-
of- day ranges seem particularly subject to misinterpretation
and false assumptions on part of the rule maker. (For example,
a non- technical rule maker would probably assume that the
rules are based on the timezone of his current location, which
may not be known to other components of the system.)

C. Conditions

The common policy rules allow restricting matching based
on identity, sphere and validity. The identity rules support
simple matching for a single authenticated individual (<one>
element) or a set of individuals (<many> element), where
all but a designated set of individuals are allowed. This type
of blacklisting is not without problems, as it can be easily
circumvented if an annoying individual can easily create new
identities. For example, for email, some systems deliver email
of the form ’user+’something to the user. An example is shown
in Fig. 5.

<rule id="f3g44r1">
<conditions>

<sphere value="work"/>
<identity>

<many>
<except domain="example.com"/>
<except domain="example.org"/>
<except id="sip:alice@bad.example.net"/>
<except id="sip:bob@good.example.net"/>
<except id="tel:+1-212-555-1234"/>
<except id="sip:alice@example.com"/>

</many>
</identity>
<validity>
<from>2003-12-24T17:00:00+01:00</from>
<until>2003-12-24T19:00:00+01:00</until>

</validity>
</conditions>
<actions/>
<transformations/>

</rule>

Fig. 5. Example privacy rules

D. Actions

In presence and other event systems, the system needs to
decide whether to accept the subscription or not. SIMPLE can
block a subscription, but also request presentity confirmation
from the user. The user would be notified of a new subscriber,
via the event list package [20]. The user could then add a
new rule to the privacy policy that either admits or blocks the
subscription.

In addition to accepting or blocking the subscription, a
presentity can also politely block the new subscriber. The new
subscriber gets a presence notification that contains no useful
information and indicates that the presentity is unavailable.
Polite blocking reduces information leakage, as the act of
refusing a subscription after some time period indicates to
the watcher that the human being is indeed around, as he was
able to change the privacy rules.

E. Transformations

The presence privacy rules [16] specify which elements
in the presence data format will be shown to a particular
watcher, allowing to select devices, services and persons or
subsets of that information. Fig. 6 shows a simple example
that exposes “sip” and “mailto” services, all person identities,
as well activities. A new attribute with the name “foo” is
also delivered, so that presence data can be locally extended
without having to change the presence rule definition.

<cr:transformations>
<provide-services>
<service-uri-scheme>sip</service-uri-scheme>
<service-uri-scheme>mailto</service-uri-scheme>
</provide-services>
<provide-persons>
<all-persons/>

</provide-persons>
<provide-activities>true</provide-activities>
<provide-user-input>bare</provide-user-input>
<provide-unknown-attribute
name="new:foo">true</provide-unknown-attribute>

</cr:transformations>

Fig. 6. Example transformation rules

V. PRESENCE AS SYSTEM GLUE

Due to its interdomain nature, presence turns out to be an
ideal system “glue” that allows loosely coupled systems to
exchange information. For example, while networked calen-
daring systems exist, they have not been very successful at
coordinating individuals in different organizations. One can
think of presence information as an automatically updated
diary and allow others to subscribe to subsets of that informa-
tion, facilitating the creation of group calendars or automated
meeting schedulers.

Rather than presenting presence information to human users,
it may be at least as interesting to use it as input for service
creation. In particular, call routing applications using feature
scripting languages such as CPL and LESS [21,22] can benefit
from tailoring their action to the current environment of the
user. As a example of the most common routing problem
today, knowledge, via rich presence, that the presentity is in a
theater could cause the call routing algorithm to send all but
the most urgent calls to voice mail or an assistant.

VI. THE FUTURE OF PRESENCE

While presence, either in combination with IM or voice
communications, is likely to reduce the annoyance of being



inappropriately interrupted by phone calls, it has scaling
problems, privacy issues and does not address calls made
by strangers. Presence does not scale well as the number
of watchers increases or the granularity of the presence
information decreases. For example, if scheduled activities
such as meetings and phone calls as well location changes
trigger notifications, each presentity may well send about
50 notifications each day, as each activity may generate a
start and end notification.2 Most active users of IM/presence
clients have dozens of contacts, so that a system can generate
hundreds of messages each day. Almost all of these are ignored
by the recipients and simply lead to a Christmas-tree-like
display of red and green status lights. The wasted bandwidth
is a particular concern for wireless devices.

While the privacy rules discussed earlier allow fine-grained
control over who can see one’s status, it does not address
the more subtle privacy issues caused by the ability to ob-
serve somebody continuously and possibly mine the data for
patterns. For many watchers, individuals may be comfortable
with them checking in occasionally before making a call, but
not to be observed in one’s coming and goings throughout the
day.

Finally, many calls are placed by relative strangers who
are unlikely to be on the watcher list or be admitted to that
list. For example, the author has a personal address book of
more than 2,600 entries, mostly individuals that have received
email messages. It is clearly unrealistic to distribute presence
information to all of these, on the off chance that one of them
may decide to call or visit.

Thus, blindly distributing presence information to a long
watcher list is unlikely to be a good system design both from
a network efficiency and human factors perspective. If the role
of presence is to prevent disruptive communications, a polling
model may be more appropriate. For example, a system could
be set up so that anybody who has received email from the
presentity is allowed to do take a limited number of samples
per day of the user’s availability without manual subscription
approval. In addition, a user may permit a subscription that
sends one notification message if the presentity was busy
during the initial subscription or includes the predicted next
availability based on calendaring information, to facilitate
“make urgent call when user gets off the phone”. This model
can be implemented by having short-duration subscriptions,
as each new subscription triggers an initial notification, and
by limiting the number of such subscription renewals over
time. One can imagine a phone that automatically triggers a
subscription after dialing and provides the caller feedback such
as “The person you are trying to reach is in a meeting until
3.30 pm. Do you want to proceed?”

VII. GENERAL EVENT HANDLING

While almost all the attention in this paper has focused on
event notification applied to presence, event notification clearly

2Surprisingly, there does not appear to be a systematic, recent treatment of
presence and instant messaging traffic characteristics, although the Hubbub
work is instructive [23].

has much broader applicability and can be considered one of
the fundamental building blocks for distributed applications.
For example, many other telephony services, such as call
transfer [24] and message waiting [25], can be modeled or
enhanced with event notification. It is likely that the SIP
model could have been simplified if event notification had
been applied even for its basic INVITE session initiation
transaction, instead of using provisional (1xx) responses.

SIP-based event notification can also be used in health care
[26] and for emergency alerts during natural and man-made
disasters [27, 28].

More generally, Internet-scale event notification can be
used for a variety of coordination tasks, including network
management, workflow management and as a complement to
web services. For network management, email, SNMP traps
and syslog are commonly used, but have uncertain delivery
delays, difficulty with structured data and limited filtering
capabilities. The current approach to event notification in web
services is largely based on polling, which does not work
well for tasks that complete after an unpredictable delay.
Compared to other publish/subscribe (event) systems such as
Siena [29], SIP events do not offer the same sophisticated
in-network replication services and are thus best suited for
systems where most notifications are sent to a modest number
of users and where notifications are not heavily tailored for
different receiver subsets. On the other hand, the privacy,
partial notification and authentication mechanisms for SIP
events make deployment across administrative domains much
more feasible.

VIII. CONCLUSION

Presence, viewed as a special case of event notification,
can offer far more useful services than the simple IM applica-
tions do today, helping with group awareness, communication
scheduling, attention management and group coordination.
These additional features require, however, support for pri-
vacy policies, rich presence and automated composition. The
effort in the SIMPLE working group is close to offering a
comprehensive architecture for advanced presence services.
We have implemented [30, 31] parts of this architecture in
a communication client.

IX. ACKNOWLEDGEMENTS

As indicated by the references, the work described here
is the collaboration of a large set of individuals working
within the IETF SIMPLE and GEOPRIV working groups. In
particular, Jonathan Rosenberg and Paul Kyzivat contributed
many of the ideas.

REFERENCES

[1] A. Roach, “Session initiation protocol (SIP)-specific event notification,”
RFC 3265, Internet Engineering Task Force, June 2002.

[2] J. Rosenberg, “A presence event package for the session initiation
protocol (SIP),” RFC 3856, Internet Engineering Task Force, Aug. 2004.

[3] P. Saint-Andre, “Extensible messaging and presence protocol (XMPP):
core,” RFC 3920, IETF, Oct. 2004.

[4] M. Day, J. Rosenberg, and H. Sugano, “A model for presence and instant
messaging,” RFC 2778, Internet Engineering Task Force, Feb. 2000.



[5] H. Sugano, S. Fujimoto, G. Klyne, A. Bateman, W. Carr, and J. Pe-
terson, “Presence information data format (PIDF),” RFC 3863, Internet
Engineering Task Force, Aug. 2004.

[6] J. Rosenberg, “A data for presence,” Internet Draft draft-ietf-simple-
presence-data-model, IETF, Feb. 2005.

[7] H. Schulzrinne, “RPID – rich presence information data format,” Internet
Draft draft-ietf-simple-rpid-05, Internet Engineering Task Force, Feb.
2005. Work in progress.

[8] H. Schulzrinne, “Future presence: Extensions to the presence infor-
mation data format (PIDF),” Internet Draft draft-ietf-simple-future-00,
Internet Engineering Task Force, Feb. 2004. Work in progress.

[9] J. Peterson, “A presence-based GEOPRIV location object format,”
Internet Draft draft-ietf-geopriv-pidf-lo-01, Internet Engineering Task
Force, Feb. 2004. Work in progress.

[10] A. Niemi, “Session initiation protocol event packages for calendaring,”
Internet Draft draft-niemi-sipping-cal-events-00, Internet Engineering
Task Force, July 2006. Work in progress.

[11] M. Lonnfors and K. Kiss, “User agent capability presence status
extension,” Internet Draft draft-ietf-simple-prescaps-ext-00, Internet En-
gineering Task Force, Feb. 2004. Work in progress.

[12] J. Winterbottom, M. Thomson, and H. Tschofenig, “GEOPRIV PIDF-
LO usage clarification, considerations and recommendations,” Inter-
net Draft draft-ietf-geopriv-pdif-lo-profile-01, Internet Engineering Task
Force, July 2005. Work in progress.

[13] H. Schulzrinne, “DHCP option for civil location,” internet draft, Internet
Engineering Task Force, July 2003. Work in progress.

[14] J. Rosenberg, “A processing for presence,” Internet Draft draft-
rosenberg-simple-presence-processing-model, Internet Engineering Task
Force, July 2005. Work in progress.

[15] H. Schulzrinne, “Composing presence information,” Internet Draft draft-
schulzrinne-simple-composition-00, Internet Engineering Task Force,
July 2005. Work in progress.

[16] J. Rosenberg, “Presence authorization rules,” Internet Draft draft-ietf-
simple-presence-rules, IETF, Feb. 2005.

[17] H. Schulzrinne, “Common policy,” Internet Draft draft-ietf-geopriv-
common-policy-04, Internet Engineering Task Force, Feb. 2005. Work
in progress.

[18] H. Schulzrinne, H. Tschofenig, J. Morris, J. R. Cuellar, and J. Polk,
“Policy rules for disclosure and modification of geographic information,”
Internet Draft draft-ietf-geopriv-policy-07, Internet Engineering Task
Force, Oct. 2005. Work in progress.

[19] J. Rosenberg, “The extensible markup language (XML) configuration
access protocol (XCAP),” Internet Draft draft-ietf-simple-xcap-08, In-
ternet Engineering Task Force, Oct. 2005.

[20] A. B. Roach, J. Rosenberg, and B. Campbell, “A session initiation
protocol (SIP) event notification extension for resource lists,” internet
draft, Internet Engineering Task Force, June 2003. Work in progress.

[21] J. Lennox, X. Wu, and H. Schulzrinne, “Call processing language (CPL):
a language for user control of Internet telephony services,” RFC 3880,
Internet Engineering Task Force, Oct. 2004.

[22] X. Wu and H. Schulzrinne, “LESS: language for end system services in
Internet telephony,” Internet Draft draft-wu-iptel-less, IETF, Feb. 2005.
Work in progress.

[23] E. A. Isaacs, A. Walendowski, and D. Ranganthan, “Hubbub: a sound-
enhanced mobile instant messenger that supports awareness and oppor-
tunistic interactions,” in Conference on Human Factors in Computing
Systems, (Minneapolis, Minnesota), ACM, Apr. 2002.

[24] R. Sparks, “The session initiation protocol (SIP) refer method,” RFC
3515, Internet Engineering Task Force, Apr. 2003.

[25] R. Mahy, “A message summary and message waiting indication event
package for the session initiation protocol (SIP),” RFC 3842, Internet
Engineering Task Force, Aug. 2004.

[26] K. Arabshian and H. Schulzrinne, “A sip-based medical event monitoring
system,” in 5th International Workshop on Enterprise Networking and
Computing in Healthcare Industry (HealthCom), (Santa Monica, CA),
June 2003.

[27] K. Arabshian and H. Schulzrinne, “A generic event notification system
using XML and SIP,” in New York Metro Area Networking Workshop
2003, Sept. 2003.

[28] H. Schulzrinne and K. Arabshian, “Providing emergency services in
Internet telephony,” IEEE Internet Computing, Vol. 6, pp. 39–47, May
2002.

[29] A. Carzaniga, D. Rosenblum, and A. L. Wolf, “Design and evaluation of
a wide-area event notification service,” ACM Transactions on Computer
Systems, Vol. 19, pp. 332–383, Aug. 2001.

[30] X. Wu and H. Schulzrinne, “sipc, a multi-function SIP user agent,”
in 7th IFIP/IEEE International Conference, Management of Multimedia
Networks and Services (MMNS), pp. 269–281, IFIP/IEEE, Springer, Oct.
2004.

[31] X. Wu and H. Schulzrinne, “Service learning and service risk manage-
ment in Internet telephony,” in Conference Record of the International
Conference on Communications (ICC), IEEE, IEEE, May 2005.


