
YESSIR: A Simple Reservation Mechanism for the Internet

Ping Pan

IBM T. J. Watson Research Center

30 Saw Mill River Road

Hawthorne, NY 10532

pan@watson.ibm.com

Henning Schulzrinne

Dept. of Computer Science

Columbia University

1214 Amsterdam Avenue

New York, NY 10027

schulzrinne@cs.columbia.edu

August 1, 1997

Abstract

RSVP has been designed to support resource reservation in the Internet. However, it has two major

problems: complexity and scalability. The former results in heavy message processing overhead at

end systems and routers, and inefficient firewall processing at the edge of the network. The latter implies

that in a backbone environment, the amount of bandwidth consumed by refresh messages and the storage

space that is needed to support a large number of flows at a router are too large. We have developed a new

reservation mechanism that simplifies the process of establishing reserved flows while preserving many

unique features introduced in RSVP. Simplicity is measured in terms of control message processing, data

packet processing, and user-level flexibility. Features such as robustness, advertising network service

availability and resource sharing among multiple senders are also supported in the proposal.

The proposed mechanism, YESSIR (YEt another Sender Session Internet Reservations) generates

reservation requests by senders to reduce the processing overhead, builds on top of RTCP, usessoft state

to maintain reservation states, supports shared reservation and associated flow merging and is backward

compatible with the IETF Integrated Services models.

YESSIR extends the all-or-nothing reservation model to support partial reservations that improve

over the duration of the session.

To address the scalability issue, we investigate the possibility of using YESSIR for per-stream reser-

vation and RSVP for aggregate reservation.

1

1 Introduction

1.1 Background

Continuous media applications such as Internet telephony, teleconferencing, interactive multimedia games

and media-on-demand have become increasingly popular in the Internet. There are several driving forces

behind the growth of continuous media applications: The deployment of IP multicast in the Internet via

the MBONE overlay network has provided an important platform for testing and deploying various audio

and video applications. Also, the Real-Time Transport Protocol (RTP) [1] facilitated the development of

interoperable applications, which have become available across a wide range of platforms. Finally, end

systems have become capable of generating and rendering highly-compressed multimedia content.

However, as the usage of the Internet has grown, packet loss, delay variations and lack of bandwidth [2]

have made the current Internet unsuitable for widespread delivery ofpredictablyhigh-quality continuous

media services. While only sufficient network capacity can correct these problems, it is often desirable to

give improved service to certain classes of applications1

We can distinguish per-packet and per-flow approaches to providing differentiated QOS:

Per-packet: Information necessary to obtain differentiated service is carried inside each data packet. In

IPv4, for example, the type-of-service (TOS) byte may be used or priority may be accorded to cer-

tain port numbers. Routers do not need to maintain state beyond a rough classifier list that can be

considered static; there is no control protocol overhead.

This approach cannot guarantee a certain QOS, since the amount of traffic injected with a particular

TOS value, for example, cannot be bounded. Thus, the per-packet approach is subject to intentional

and unintentional denial-of-service attacks.

Per-flow: Resources for a set of packets distinguished by source or destination addresses and port numbers

(“flows”) are reserved ahead of time, with reservations established and torn down dynamically.

Both approaches can be combined; for example, a resource reservation protocol can limit the amount of

traffic with a particular TOS value.

We will focus primarily on per-flow resource reservation. Currently, RSVP [3, 4] is the reservation

protocol of record in the Internet. Unfortunately, its generality implies a cost in complexity, as discussed in

1Particularly, if the users of these applications may be willing to pay for improved predictability in quality-of-service. Note
that even with network bandwidth that is statistically sufficient, many continuous-media applications demandconsistentservice
throughout the lifetime, for example, of a phone call or video-on-demand session, unaffected by traffic bursts of other applications.

2

Section 1.3. We set out to address some of these issues.

1.2 Overview

This paper describes and evaluates YESSIR (YEt another Sender Session Internet Reservation2), an in-band,

sender-based resource-reservation protocol based on RTP that offers significantly lower code and run-time

complexity than RSVP.

YESSIR is motivated by the observation that a large fraction of the applications that require guaranteed

quality-of-service are continuous media applications and that a substantial fraction of these either use or will

use the Real-Time Transport protocol (RTP) to deliver their data.

YESSIR reuses large parts of the code necessary to provide guaranteed quality-of-service, in particular,

the scheduler, admission control and policy protocols [5]. YESSIR and RSVP can operate side-by-side in

the same network, without affecting the certainty of guarantees offered to applications.

In this section, we will briefly explain some of the design decisions that introduce complexity into

RSVP and describe features of RTP relevant to YESSIR. The rest of paper is organized as follows: In

section 2, we will outline the design goals of YESSIR. The YESSIR reservation mechanism, an experimental

implementation and its performance will be described in detail in Sections 3 and 4, respectively. Several

open issues (including a possible solution to the scaling problem) are discussed in Section 5. We summarize

in Section 7.

1.3 RSVP Complexity Issues

Initially, RSVP was perceived as a light-weight reservation protocol, in comparison, for example, with

ATM signaling protocols such as Q.2931. However, as implementations are weighing in at between 10,000

and 30,000 lines of code, it seems appropriate to review some of the design features that contribute to the

complexity:

Receiver orientation: In RSVP, receivers make reservation, based on information provided by senders.

This allows individual receivers within a single multicast group to request different levels of service

guarantees, including none. It seems likely, however, that receivers will simply request whatever

traffic bandwidth the sender has indicated, either through RSVP PATH messages or some other session

initiation protocol [6].

2The name reflects the proper attitude of a resource reservation protocol in a well-designed network.

3

The separation of reservation and path-finding messages for receiver-oriented reservation mechanisms

imposes additional processing and protocol complexity.

Receiver diversity: At least for bandwidth diversity, reservations are an inappropriate means to distinguish

classes of receivers. Bandwidth diversity could only be accomplished by “thinning” flows, i.e., drop-

ping packets, as flows reach parts of the network endowed with less bandwidth. However, random

packet dropping will quickly degrade most audio and video encodings due to their use of prediction

across packet boundaries. Other mechanisms, such as layered multicast [7], were found to be superior

to support diverse receiver populations.

RSVP receivers can request different values of queueing delay as part of their resource reservation.

However, in high-speed wide-area networks, queueing delay is dominated by propagation delays; also,

in popular scheduling disciplines such as weighted fair queueing, queueing delay for an individual

flow can only be improved by allocating more than its “true” bandwidth, thus incurring allocation

inefficiency, particularly if reserved flows constitute a large fraction of the total link capacity.

Receiver diversity and receiver orientation require that nodes merge incoming reservations into a

single reservation setting aside the least upper bound of the requests of all downstream receivers.

Flow merging also introduces the need for “blockade” state to prevent so-called killer reservation (see

Section 3.5).

Flow management: Because reservation requests are generated from downstream, keeping track of next-

hops can become difficult and CPU intensive, particularly in multicast-capable non-broadcast multiple

access (NBMA) networks such as ATM subnets.

Application modification: Since RSVP is an out-of-band protocol, applications need to be modified, ei-

ther to take advantage of kernel-level support for RSVP or to convey their resource requirements to

some external agent that makes reservations on their behalf. agent needs to be added, both incurring

complexity.

Firewall complexity: Firewalls are also complicated by RSVP’s out-of-band nature. First, they need to

parse and pass RSVP requests; they also need to correlate between the flows (session-sender pairs)

described in RSVP messages and the actual data streams (Fig. 1).

The reservation mechanism introduced here avoids these problems.

4

Private Network The Internet

RSVP Messages

Data Flow 1

Data Flow 2

Firewall External router

Figure 1: RSVP overhead at a firewall

1.4 RTP Features Useful for Resource Reservation

RTP [1] has been designed to provide end-to-end delivery services for data with real-time characteristics.

Although protocol-independent, applications normally run RTP on top of UDP to make the use of its multi-

plexing and checksum services. It has been widely implemented on multimedia systems across all operating

systems and is part of the ITU H.323 recommendation for conferencing and Internet telephony. Examples

includevic [8], vat [9], rat [10] andNeVoT[11] for teleconferencing over the MBONE,NetMeetingfrom

Microsoft and conferencing tools from Netscape.

Although RTP was not intended as a resource reservation protocol, resource reservation can benefit from

the following RTP features:

In-band signaling: RTP defines two types of packets: RTP for data transport and RTCP for control. Each

RTP session consists of one RTP data stream and one corresponding RTCP stream, originated by one

or more participants. When carried over UDP, data and control packets use adjacent port numbers, so

that a router or firewall can easily map from a control stream to the corresponding data stream.

Periodic sender/receiver notification: Senders and receivers periodically send RTCP packets containing

reports to the multicast group. Data senders distribute sender reports (SRs) that indicate, inter alia, the

number of bytes and packets transmitted since the last report and information allowing the estimation

of round-trip times. Data receivers include receiver reports (RRs) that indicate packet loss and delay

statistics, among others.

5

By evaluating these reports, all participating members have knowledge of traffic characteristics, net-

work congestion and session membership. Routers can deduce the resource requirements of a session

from these reports, as will be discussed below.

The period between reports has a minimum of 5 seconds and scales with the number of participants,

keeping the RTCP session control overhead limited to no more than 5% of the data bandwidth. Senders

are allocated at least 25% of the session control bandwidth.

Embedded in applications: RTP is typically implemented as part of the application. As will be shown

in Section 3.2, even an RTP application that runs the current version of RTCP can be used to initiate

resource requests. No kernel modifications, beyond the support of IP router alert options (Section 1.5),

are needed.

1.5 IP Router Alert option

The IP router alert option [12, 13] alerts transit routers to more closely examine the contents of an IP

packet. In other words, routers can intercept packets not addressed to them directly, with little performance

impact. For example, RSVP PATH messages are carried in IP packets that include the router alert option.

Thus, even though RSVP PATH messages are addressed to end systems, PATH messages are intercepted

and processed by all transit routers. We make use of router alert options to mark RTCP sender report for

YESSIR processing.

2 Design Objectives

YESSIR offers an alternative, light-weight approach to resource reservation in the Internet, using RTCP

sender reports to reserve resources in the network. It has the following properties:

Sender-initiated reservation: As motivated earlier, we anticipate that many applications cannot make full

use of the benefits of receiver-initiated reservations. Sender-initiated reservation may also fit better

with policy and billing, as the number of entities making reservations is likely to be much smaller

than the number of receivers. In many existing systems, such as cable television, the cost of “resource

reservation” is bundled with the cost of content, simplifying billing. (Also, a provider of pay-per-

view services would likely want to avoid the case where subscribers pay, fail to reserve resources and

then ask for their money back since the quality was unacceptable.) In the absence of an Internet-

wide authentication and cross-provider billing service, it is far easier for the relatively small number

6

of large-scale content providers, residing at known network addresses, to arrange for payment with

major backbone providers than individual subscribers.

Note that RSVP could also be modified to have PATH messages initiate reservations, so that the

benefits of sender orientation for some applications do not depend on the use of YESSIR.

Robustness and soft-state:Similar to RSVP and PIM [14], routers maintain reservation states assoft state,

i.e., reservations disappear by themselves if not refreshed periodically. In YESSIR, this offers several

advantages: It avoids orphan reservations and adapts quickly to routing changes. As in RSVP, an

explicit teardown mechanism avoids holding reservations for a number of soft-state intervals after the

requesting application has terminated.

Allow partial reservations: The function of reservations is to protect existing streams against disruption

by other streams that arrive later.

In “classical” reservation systems, reservations are either made or denied end-to-end. Depending on

the system, the requestor can always either ask again, at some cost to the network if done too often

(“redialing”). Some systems, including RSVP, also allow to specify a range of resource requests to

increase the likelihood of success, however, this can cause low-bandwidth regions to experience high

packet losses despite reservations.

We propose an additional reservation model, that of a partial reservation, where some fraction of the

links have resource protection for a particular flow, others may not. On links without reservation, traf-

fic is carried on a best-effort basis and the resource reservation request continues downstream towards

the receivers. Since YESSIR is a soft-state protocol that resends reservation requests periodically,

links without reservation can acquire a reservation as others drop out, without having to retry at the

application layer. The user can decide whether to put up with a partially successful reservation and

hope that more links will be added as the session continues or drop out. For a live presentation, where

dropping out means missing the event, a user may well decide that the prospect of improving reserva-

tion fortunes may be better than not listening at all or foregoing all resource reservations.3 YESSIR

supports both end-to-end and partial reservations.

Provide different reservation styles: YESSIR supportsindividual andsharedreservation styles. Individ-

ual reservations are made separately for each sender, whereas shared reservations allocate resources

3Partial reservations can lead to fragmentation, where a large number of flows all have partial reservations, with unacceptable
quality. This aspect is the subject of current work. The soft-state mechanisms also gives a slight advantage to high-bandwidth flows
or flows with few senders, as they may get to send RTCP requests more frequently.

7

that can be used by all senders in an RTP session.

Individual reservations are called for when all senders are active simultaneously, e.g., for distribu-

tion of participant video in a conference, while shared reservations are appropriate where several

senders alternate, e.g., for audio in a conference. (Shared reservations also avoid the problem that a

new speaker may not be able to acquire a reservation; they can re-use the existing reservation of the

previous speaker.)

These styles are simplified versions of the fixed filter and wildcard filter reservations in RSVP. Note

that the shared reservation styles, one of the distinguishing features of RSVP, does not depend on

receiver orientation. YESSIR handles the shared reservation style from the sender’s direction, while

RSVP supports shared reservation (shared-explicit and wildcard-filter styles) from the receiver’s di-

rection.

Low protocol and processing overhead:Rather than defining another signaling protocol, YESSIR mes-

sages are transported by RTCP. Given that RTP is in-band signaling and its data and control packets

are tightly coupled, updating packet classifiers and firewalls can be simplified. YESSIR uses one

message to set up a reservation. Its processing algorithm is very simple, as we will illustrate in Sec-

tion 3.2.

Interoperable with RTP and the IntServ models: YESSIR messages are piggybacked in RTCP. The op-

eration of existing RTP functions at end systems is not affected at all. YESSIR can describe the traffic

flows in terms of the service models [15, 16] that have been specified in IETF IntServ working group.

Provide link resource advertising function: The purpose of making link-level resource reservation is to

meet end-to-end application requirements. To that end, YESSIR is able to query and carry collected

network resource information to the end systems.

3 YESSIR Operation

3.1 Protocol Overview

YESSIR reservation messages consist of RTCP sender-report messages, possibly enhanced by additional

YESSIR-specific data, carried in IP packets with router-alert options. The placement and relationships to

other protocols are shown in Figure 2.

8

 IP Module
(with router-alert option support)

UDP

RTCP

YESSIR
 RSVP
(raw mode)

RSVP

Network Interface

Integrated Service Models

Figure 2: Protocol relationships

YESSIR message:
 - reservation command: active/passive
 - reservation style, refresh interval
 - reservation flow specification
 - link resource collection
 - reservation failure report

IP Header with Router-Alert Option

UDP Header

RTCP message:

Sender Report:
 - sender information
 - detailed report for each source

Profile-specific extensions

Figure 3: YESSIR message format

9

Reservation requests generated by senders are intercepted and processed by those routers that support

the router-alert IP option. Routers that do not support the option or YESSIR forward the RTCP message

unaltered to the next hop. End systems ignore the router alert option. Thus, YESSIR can be deployed

incrementally and without affecting the behavior of end systems.

An optional reservation extension for RTCP is defined. It is piggybacked at the end of a RTCP report (SR

or RR), as shown in Figure 3. The YESSIR extension consists of a generic fragment, a flowspec fragment,

an optional network monitoring fragment and an optional reservation error fragment. The generic fragment

instructs the router as to the desired reservation style (individual or shared), the soft-state refresh interval

and whether to make partial reservations. The flowspec fragment provides the router with the necessary

information as to whether to admit the flow and what resources to set aside. The flow specification can

be in several formats. The optional network monitoring fragment stores link resource information. If it is

present in a request, every router along the path updates the link information in the fragment. Currently,

we use the ADSPEC format [17] defined by the IETF IntServ working group. The optional reservation

error fragment is used to collect error information that will allow end systems and network administrators to

diagnose reservation failure inside the network. Routers where reservation requests fail indicate the reason

for failure.

3.2 Outline of Operation

Senders periodically multicast RTCP sender reports (SRs) multicast to all members of the multicast group

(or the other party, if unicast). Sender reports contain transmission and reception statistics. Routers may

either use the transmission statistics or additional YESSIR flowspecs and other elements.

As shown in Figure 3, YESSIR may insert reservation information into SR, however, YESSIR can also

operate without any additional information beyond what is already contained in RTCP sender reports. When

an RTCP SR is received by a router, the router will attempt to make a resource reservation according to the

information specified in the message.

If a reservation request cannot be granted at a router, the SR packet will continue to be forwarded to

the next hop(s). The router has the option of inserting reservation failure information into the SR. As a part

of RTCP receiver reports (RR), the receivers will provide failure information to the senders. Based on RRs

received, senders can either drop the session, or lower the reservation request and transmitted bandwidth.

If a reservation request is accepted by a router, the corresponding RTP data stream information will be

added into the packet classifier, and the router’s scheduler will be updated to support the new stream.

Instead of basing reservations on flowspecs, YESSIR can also operate in a measurement mode. Mea-

10

surement mode makes use of the fact that RTCP SRs contain a byte count and a timestamp. If the first

RTCP packet for a session does not contain a flow spec, the router simply records the timestamp and byte

count, but does not make a reservation. If a second packet for the same session comes along, the router

computes the difference in time stamps and byte counts and thus computes an estimated rate. It then estab-

lishes reservations for this measured bandwidth, updated as new RTCP packets arrive. Compared to other

measurement-based admission controls [18], this frees the router from the burden to count packets and esti-

mate rates. Another measurement method, which we have not explored in detail, simply has the end system

mark an RTP data packet every so often with an IP router alert option. Each RTP packet contains a payload

type indication, which indicates the media encoding (e.g., G.711-encoded voice). For many low bit rate

codecs, the payload type is associated with a fixed rate (e.g., 64 kb/s for G.711), so that the router can make

reservations based on that information alone. This mode, while less general and flexible than the current

YESSIR mode, has the advantage of trivial header parsing and fixed refresh intervals. (It also incurs the

danger of increased packet delay variation and packet reordering since some RTP packets would traverse a

routers “slow path”, while most would not.)

Reservation states in each router are maintained as soft-state. The reservation is automatically removed

if no RTCP SR is received from the “owner”. The soft-state time-out interval is fixed at several RTCP

intervals to account for packet loss. If the sender includes explicit YESSIR information, routers base their

timeout interval on the sender interval included. If not, they either count the number of senders in a group or,

if that becomes a burden, simply use the interval of 5 seconds, which will be inappropriate only for groups

with a large number of alternating senders and a very low session bandwidth.

Since RTCP requests are sent more frequently than RSVP PATH messages, we can get by without having

the router signal routing changes and triggering new resource reservation requests.

In addition, an RTCP BYE message, sent when a group member leaves, releases the YESSIR state

record and any resource reservations.

3.3 Reservation Styles

YESSIR defines two reservation styles, individual and shared. In individual reservations, every sender

in a RTP session has a resource reservation of its own. As shown in Figure 4 (a), Rt1 receives reservation

requests from both S1 and S2. After making a reservation, there are two separate reservations on links

between Rt1 to Rt2 and Rt3. Depending on the amount of requested resource, RTP data streams from S1

and S2 may have different levels of reservation.

In a shared reservation, all senders of an RTP session share a single resource reservation in the network.

11

S1

S2

R1

R2

R3

Rt1 Rt2

Rt3

S1

S2

R1

R2

R3

Rt1 Rt2

Rt3

(a) Distinct Reservation style:
Reservations for S1are shown as
in solid line; S2, in dotted line.

(b) Shared Reservation style:
At Rt1, after flow merging
between reservation for S1
(solid line) and S2 (dotted line),
a single reservation (thicker line)
is made to Rt2 and Rt3.

Figure 4: Different reservation styles (S1 and S2 are senders, R1, R2 and R3 are receivers in a single
multicast RTP session; Rt1, Rt2 and Rt3 are routers)

As illustrated in Figure 4 (b), the links Rt1-Rt2 and Rt1-Rt3 have a single shared reservation. The amount

of resources reserved on the link is the least upper bound (LUB) of the individual flow requests from S1 and

S2. For example, if S1 and S2 request 10 kb/s and 15 kb/s of bandwidth, respectively, the shared bandwidth

for link Rt1-Rt2 will be 15 kb/s. If there is a reservation failure, the reservation rejection information and

the merged flow specification will be piggybacked in the RTCP sender report. Receivers will feed back the

failure information and rejected reservation request to all participating members, including the senders. The

senders can use these reports from receivers to adjust their requests. Flow merging issues will be addressed

further in section 3.5.

3.4 Flow Specification

A sender can specify the resource it is requesting (the flowspec) in different formats. We have considered

three types for YESSIR: IntServ, RTP PT (payload-type), and TOS (type-of-service).

For applications that support the IntServ traffic models, namely the controlled-load [15] and guaranteed-

service [16], the flowspec format will be the one that has already been designed by the IETF IntServ working

group [17]. In the flowspec, the requested bandwidth, the burst size and a service class need to be specified

explicitly.

For some well-known and well-understood traffic types such as voice, the flowspec contained in the

12

RTCP SR can simply list the current RTP payload type [19]. Separate ranges of the payload type values

have been set aside for audio and video, so that a router can assign RTP flows at different granularity: by

session, by payload type value or by media class. To reduce the number of queues, a router may simply

assign all voice traffic to a single high-priority queue, for example and just track the multicast destination

and accumulated bandwidth for each session.

Similar to the RTP PT format, the TOS format allows routers to use the IP type of service information

in RTP data packets to map them the appropriate scheduler queue. The YESSIR flowspec contains the TOS

value and the allocated bandwidth. This allows the router to keep track of the bandwidth allocated for each

TOS value, preventing over-commitment, yet avoids having to look up per-flow state for each packet. To

prevent abuse by end applications, gateways rather than end systems would be expected to set the TOS

value.

3.5 Killer Reservations

S1

S2

Rt1

R1

Rt2

Q2

Q2

Q1
Q1

Off-line
queries

R2Q2

Q1

RR to S1

RR to S2

Figure 5: Problems due to resource contention

In a heterogeneous network, a reservation request may fail for any number of reasons at a router. Un-

fortunately, such failures may also affect requests from other senders. Figure 5 demonstrates thekiller

reservationeffect. Two requestsQ1 andQ2 (whereQ1 < Q2) arrive at router Rt1. IfQ2 arrives first and

is accepted at Rt1, but rejected at Rt2, it could cause a smaller reservationQ1 to be rejected at Rt1 since the

resource has been taken byQ2. As a result, neither request will enjoy and end-to-end QoS guarantee.

RSVP and ATM each solve this problem differently. RSVP generates RESVERR messages and creates

13

a blockade state. Unfortunately, blockade states are difficult to manage and incur high implementation

complexity. If an ATM reservation cannot be accepted by switch, that switch sends back a resource release

message towards the sender. This message then tears down resource at upstream nodes will be torn down as

a result.

In YESSIR, partial reservations for bothQ1 andQ2 will be made. However, senders receive an indica-

tion that the reservation was only partially successful and can then change or drop the reservation, clearing

the way for other reservations to succeed.

S1

S2

Rt1 Rt3Rt2 R

S3
RR to S3

Q1

Q2

Q’ Q’ Q’

Q3

Q’ = LUB(Q1, Q2)

Q’’ = LUB(Q’, Q3)

Q’’ Q’’

Figure 6: Flow merging for shared reservation

3.6 Flow Merging

In YESSIR, flow merging only takes place for shared reservations. As discussed earlier, the merged flowspec

is the least upper bound (LUB) value of the flowspecs from all participating senders. Here, we propose a

best-effort approach to flow merging: when there is already a reservation in place, this reservation remains

if a larger reservation request from another sender cannot be granted. As a result, all senders will have some

fraction of their bandwidth reserved, though they may have different reservation requirements.

Figure 6 shows an example. S1 and S2 are the initial senders of a shared-reservation RTP session. The

merged flowspecQ0 is reserved inside the network, whereQ0 = LUB(Q1; Q2). Later, a new sender S3

joins the RTP session and requestsQ3 worth of resources. Router Rt2 tries to reserve the merged flowspec

Q00 = LUB(Q0; Q3). Assume the reservation is successful and the new requestQ00 is relayed to router Rt3.

If Rt3 cannot reserveQ00, it should continue to use the previous reservationQ0. Sender S3 will be informed

14

about the last workable reservationQ0 from receiver R via RTCP and will ultimately decide if it wishes to

continue to participate in the session or whether it can lower its sending rate.

3.7 Error Handling at Routers

In YESSIR, a router doesnot generate error messages to the senders, nor does it try to automatically correct

problems such askiller reservationthat are introduced due to reservation failures at neighboring routers.

Instead, it inserts error information into the SR message. It is up to the receivers to inform the senders about

reservation failures via RTCP receiver reports. Also, RTCP sender reports containing YESSIR reservation

requests are always forwarded, even if unsuccessful.

We chose this approach for several reasons:

1. This behavior is simple to implement. As shown in several RSVP implementations [20, 21], the

support for error message handling and associated blockade states are costly in terms of protocol

processing, timer management and extra state storage.

2. For links where resources are relatively plenty, such as a gigabit Ethernet, there is no reason to reserve

resources for small data streams. In this case, a router should ignore YESSIR messages, and forward

the requests downstream.

3. Managing resource over shared-media network such as Ethernet and token-ring networks is difficult.

In this case, a router can insert a “reservation-undoable” flag in the error fragment of the RTCP SR

message and forward it downstream.

4. More importantly, as described earlier, reservations are soft state. If a resource is not available at the

first reservation time, there is always a possibility that reservation can be made during refresh times.

3.8 Dynamic Reservation Feature

An RTP session may not require a reservation for its whole duration. If reservations cost money, an ap-

plication may well decide to only reserve network resources if best effort service proves unsatisfactory4.

RTP-based applications supporting YESSIR can easily operate in this “reserve-when-needed” mode, as

YESSIR reservation requests are coupled with RTCP messages. RTCP receiver reports have been designed

to monitor traffic statistics. Senders can monitor receiver reports and only include a reservation request if a

sufficiently large fraction of receivers indicate reception problems.

4It obviously runs the risk that reservations will fail when the network is sufficiently busy to drop best-effort traffic.

15

3.9 Network Resource Advertising

In order to satisfy end-to-end service requirements, we adapted the OPWA (One-Pass With Advertising)

scheme proposed by Shenker and Breslau [22] and described by Wroclawski [17] for YESSIR. Here is how

it works in the context of YESSIR: each reservation request message carries a network monitoring fragment

that consists of fields for hop counts, propagation delay, aggregated bandwidth and delay bounds. As SR

messages traverse routers, this fragment will be updated at every hop. The receivers, upon reception of the

SRs, will send the collected path resource information back to the senders in RTCP receiver reports. The

senders can refer the path resource information to adjust their reservation levels by sending new requests.

3.10 Updating the Packet Classifier

Classifier Scheduler

Flow Table

Reservation
Setup Agent

Traffic
Control
Database

IP Forwarder Transmitter at Egress

RTP Data

Reservation
Control Engine

Figure 7: A router model for reservation support

As shown in Figure 7, when a YESSIR message is received, the reservation setup agent will query the

local traffic control database for resource availability. If the resource is sufficient at the egress interface(s),

the agent updates the database and the scheduler.

According to the RTP profile, RTP data uses an even port number and the corresponding RTCP stream

uses the next higher (odd) port number. Thus, during the parsing of RTCP messages, RTP data packet

information including the IP source and destination addresses, port numbers and protocol type can be learned

automatically.

After the router successfully sets up the scheduler, it inserts RTCP’s IP source and destination address,

protocol type (presumably, UDP), and the corresponding RTP data port numbers into the flow table. When

16

RTP data packets are received, the packet classifier filters on the IP and UDP headers and forward the packets

to the scheduler.

3.11 Security Considerations

RTCP and RTP data are tightly coupled. Thus, at a firewall, when a rule for a particular RTP data stream is

defined, it will be automatically applied to the corresponding RTCP messages. Similarly, if a rule has been

define to accept certain RTCP messages, the associated RTP data will be accepted as well. The management

of firewall is therefore greatly simplified.

Currently, YESSIR relies on security mechanisms at the IP layer to provide authentication. If necessary,

it would be easy to add an authentication facility to either RTCP or the YESSIR elements.

4 Implementation and Measurements

Controller
S1

R2

R1

S2
Router

RSVP Path / RTP Yessir Packets

RSVP Resv Packets

Figure 8: Set-up for studying RSVP and YESSIR processing costs

To evaluate YESSIR, we have implemented it on the IBMAIXSIM router simulation platform, where

RSVP had also been developed [20]. The simulator has relatively accurate functional and timing behaviors

compared with the actual routers. We have simulated a network shown in Figure 8 to study the process-

ing cost imposed by RSVP and YESSIR. In the Figure, S1 and S2 are senders, R1 and R2 are receivers.

When packets are generated from senders or receivers simultaneously, the router’s CPU will be kept busy

processing incoming messages.

17

OSPF and MOSPF has been configured as the network routing protocols. All RSVP flows are set up

as controlled-load, OPWA-enabled, fixed-filter style, and encapsulated in IP with the router-alert option.

YESSIR messages use the RTP PT (Payload-Type) format, the individual reservation style, and are en-

capsulated in RTCP, UDP and IP with the router-alert option. Since the packet classifier and scheduler

are implemented differently depending on the physical network interface, but are the same for RSVP and

YESSIR, we chose to bypass them in our tests. Data collected here only reflects the RSVP and YESSIR

control path behavior.

The processing of YESSIR messages in a router is very similar to that of RSVP PATH messages, except

that the router needs to call the local resource managers to make appropriate reservation in the case of

YESSIR. Briefly, the following algorithm can be used to make reservation on a YESSIR message’s arrival.

The router will only “see” RTCP messages where the IP packet header has the router alert option set.

1. perform a quick sanity checks on the UDP and RTCP headers;

2. based on the IP source and destination addresses and UDP port numbers, locate the flow’s reservation

state in the router;5

3. create a new reservation state, if we cannot locate one;

4. query the routing tables to find out egress interface(s);

5. make reservation based the flowspec fragment in YESSIR message or the bandwidth measurement in

the router state record;

6. store reserved resource information in the reservation state;

7. relay the message to each egress interface.

YESSIR messages are easily detected and processed, resulting in minimal additional router code and

fast processing. In our experimental implementation, the total YESSIR-specific implementation was written

in approximately 1,200 lines of C code. With adequate support for network management and security, the

product-level code for YESSIR should be in the range of 2,000 lines. As a comparison, current RSVP

implementations [20, 21] require more than 10,000 lines of code. The additional code to insert the YESSIR

elements into sender reports is minimal.

5Alternatively, we could also hash on the 4-byte RTP synchronization source identifier (SSRC) instead of 12 bytes of
source/destination information. Even though it is only unique within each RTP session, the probability of collision is low.

18

4.1 Processing Simplification

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

50 300 550 800 1050 1300 1550

Number of Flows

T
im

e
T

ic
ks

RSVP: Resv

RSVP: Path + Resv

RTCP: Yessir

Figure 9: Protocol efficiency comparison between RSVP and YESSIR

The measurement results are shown in Figure 9. The time ticks are the timing units provided by the

simulator, and can be converted to actual time depending on the router’s hardware. Compared with RSVP,

YESSIR message processing overhead is only about a third of that of RSVP. One obvious reason is that

YESSIR only needs one message to set up a flow, instead of two (PATH and RESV) in RSVP.

As indicated in Figure 9, the processing of YESSIR messages takes less time than what is for RSVP

RESV message. The reason is as follows: For a multicast session in an NBMA networking environment, a

RSVP flow could have a large number of next-hop receivers. When a RESV message is received, the router

has to determine whether the request is from a group member that just joined, whether the reservation state

has been changed or this is an unchanged refresh message. In YESSIR, since reservation requests come

from sender’s direction, only the resource at the egress interface needs to be managed instead of all possible

next-hop flows.

4.2 Protocol Overhead Reduction

YESSIR reduces the protocol message overhead in the network. Figure 10 shows the protocol overhead

19

0

100000

200000

300000

400000

500000

600000

700000

800000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Flows

P
ro

to
co

l O
ve

rh
ea

d
(B

yt
es

)

RSVP: Path + Resv

RSVP: Path + Compressed Resv

YESSIR: PT flowspec format

YESSIR: IntServ flowspec format

Figure 10: Protocol overhead comparison between RSVP and YESSIR

for RSVP and YESSIR for various numbers of receivers over a link. The protocol overhead for one RSVP

flow is the summation of a PATH and a RESV message. We illustrate the overhead of YESSIR messages

with IntServ flowspec format, and RTP payload-type (PT) flowspec.

RSVP has the ability to pack multiple flows inside a single RESV message. The figure shows that, for

a MTU of 1500 bytes, the total protocol overhead with the “compressed” RESV format is still higher than

what is for YESSIR.

5 Open Issues and Future Work

5.1 A Possible Solution for Scalability

RSVP has scaling problem due to its inability to aggregate small flows. If every voice flow over an IP

backbone has an RSVP connection, a router may have to manage thousands of flows at each link. For

example, an OC-3 (155 Mb/s) link can support 2400 64 kb/s voice flows, taking approximately 1.2 MB of

storage6. At a refresh interval of 30 seconds, this requires about 230 kb/s of bandwidth, based on a size of

6ISI and IBM have reported that a RSVP flow requires up to 500 bytes for storage in their implementations.

20

a PATH message including ADSPEC of 208 bytes and a RESV message for guaranteed service and fixed

filter of 148 bytes. The router has to process about 80 messages a second.

In comparison, in a typical router deployed in the backbone, it takes about 0.4 MB to store 50,000

routes7. The bandwidth for route updates in a stable network is negligible.

B1

B5B4

B3

L6

L4

L5

S1

S2

R

L1

L2

L3

B2

Internet BackboneRegional
Network

Regional
Network

RSVP connection

Active YESSIR request

Passive YESSIR request

Figure 11: An example of solving the scaling problem with two levels of reservation

One solution to support a large number of real-time flows is to make reservations in a hierarchical

fashion, by using RSVP inside the backbone and establishing a small number of large-bandwidth “virtual

paths”, while reserving individual flows using YESSIR in local and regional networks.

As illustrated in Figure 11, inside the backbone, routers B1 and B3 operate as RSVP proxy servers,

and have established a reserved flow, B1–B2–B3. Senders S1 and S2 use YESSIR to set up reservations to

receiver R over the Internet backbone. In a YESSIR message, there is a bit to indicate whether the request is

active (that is, every router needs to try to make the reservation) or passive (routers must ignore the request).

When reservation requests from S1 and S2 are received, B1 will first turn the reservation bit to passive

mode in the requesting messages, preventing reservations from taking place inside the backbone. At B1,

the packet classifier is updated to re-direct RTP data traffic from S1 and S2 to the pre-established RSVP

connection. At B3, when requests from S1 and S2 are received, the router will turn the reservation mode

back to active. Requests will be routed toward the receiver R and make appropriated reservation along the

7In IBM’s NSFnet routers, it takes a total of 8 bytes to store a route, including the support for CIDR.

21

way. An end-to-end reserved connection is therefore established.

Some of the unsolved issues are:

Selecting RSVP proxy servers:In the example, the RSVP flow is originated from B1 and terminated at

B3. The mechanism and criteria to select a proxy server can be tricky: a BGP external speaker [23],

a PIM rendezvous point [14], and a router managed by some policy agents are some of the candidates

for RSVP proxy servers.

RSVP tunnel identification: The combination of source and destination address and port number should

not be used to classify packets inside the backbone due to large storage overhead. How to classify

packets in backbone RSVP routers needs to be studied. Possible solutions could be encapsulating

data packets at the edge of the backbone, or making the use of CIDR[24], or managing IPv6 flow-ids

properly.

Join YESSIR/RSVP gateway: In the example above, senders S1 and S2 have to somehow join themselves

to the nearest YESSIR/RSVP gateway, B1, prior to the reservation requesting time. The joining

mechanism needs to be designed.

Reduce soft state overhead:Frequent refresh among routers can be costly if the number of flows to be

managed is fairly large. On the other hand, infrequent refresh may reduce the system’s ability to

correct failure in timely fashion. A more efficient soft state management mechanism needs to be in

place for YESSIR and RSVP. We will base our design on [25] and [26].

5.2 RSVP Extensions

If RSVP allows making reservation from sender’s direction, many of the features that we introduced in this

paper would also be applied in the new RSVP extension. The effort of modifying RSVP could fold into the

on-going RSVPv2 works that has been taking place in the IETF community.

6 Related Work

A number of protocols have explored sender-based reservations, including ST-II+ [27] and its predecessors,

RTIP and RCAP [28] and CBSRP [29]. ST-II+ replaced IP with a new, connection-oriented Internet pro-

tocol and integrated resource reservation with establishing connectivity, thus making the smooth transition

between reserved and best effort flows more difficult. RTIP and RCAP took a similar approach. All these

22

protocols were out-of-band to the data protocol and used a “hard state” approach to state management, i.e.,

requiring explicit set-up and tear down of connections.

7 Summary

Resource reservation is useful for supporting continuous-media services over the Internet. The question at

this stage is: at what price? YESSIR provides a way to simplify the reservation processing and therefore

reduce associated overhead at routers.

The YESSIR approach (1) is sender-initiated to support of “push” applications and simplify process-

ing; (2) allows partial reservations; (3) supports multiple reservation styles; (4) uses soft state mechanisms

to reliably and responsively maintain reservation states; and (5) takes advantage of the close relationship

between RTP and RTCP packets for easy packet classification and firewall support.

We are in the process of implementing YESSIR on hosts and routers. The host implementation is based

on NeVoT, vic andvat. The router implementation will be further developed and evaluated on experimental

router prototypes from IBM Research.

We plan to interface YESSIR and RSVP to develop a hierarchical reservation system to solve the scaling

problem.

References

[1] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time
applications,” RFC 1889, Internet Engineering Task Force, Jan. 1996.

[2] V. Paxson,Measurements and Analysis of End-to-End Internet Dynamics. PhD thesis, University of
California at Berkeley, Berkeley, California, May 1997.

[3] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: a new resource ReSerVation
protocol,” IEEE Network, vol. 7, pp. 8–18, Sept. 1993.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource reservation protocol (RSVP) –
version 1 functional specification,” Internet Draft, Internet Engineering Task Force, June 1997. Work
in progress.

[5] S. Herzog, “RSVP extensions for policy control,” Internet Draft, Internet Engineering Task Force, Apr.
1997. Work in progress.

[6] M. Handley, H. Schulzrinne, and E. Schooler, “SIP: Session initiation protocol,” Internet Draft, Internet
Engineering Task Force, Aug. 1998. Work in progress.

[7] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered multicast,” inSIGCOMM Sympo-
sium on Communications Architectures and Protocols, (Palo Alto, California), Aug. 1996.

23

[8] S. McCanne and V. Jacobson, “vic: A flexible framework for packet video,” inProc. of ACM Multime-
dia ’95, Nov. 1995.

[9] V. Jacobson, “Multimedia conferencing on the Internet,” inSIGCOMM Symposium on Communica-
tions Architectures and Protocols, (London, England), Aug. 1994. Tutorial slides.

[10] I. Kouvelas, V. Hardman, and A. Watson, “Lip synchronisation for use over the internet: Analysis and
implementation,” inProceedings of the IEEE Conference on Global Communications (GLOBECOM),
(London, England), Nov. 1996.

[11] H. Schulzrinne, “Voice communication across the Internet: A network voice terminal,” Technical Re-
port TR 92-50, Dept. of Computer Science, University of Massachusetts, Amherst, Massachusetts,
July 1992.

[12] D. Katz, “IP router alert option,” RFC 2113, Internet Engineering Task Force, Feb. 1997.

[13] D. Katz, R. Atkinson, C. Partridge, and A. Jackson, “IPv6 router alert option,” Internet Draft, Internet
Engineering Task Force, June 1997. Work in progress.

[14] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei, “An architecture for wide-
area multicast routing,” inSIGCOMM Symposium on Communications Architectures and Protocols,
(London, UK), pp. 126–135, Sept. 1994.

[15] J. Wroclawski, “Specification of the controlled-load network element service,” Internet Draft, Internet
Engineering Task Force, May 1997. Work in progress.

[16] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed quality of service,” Internet Draft,
Internet Engineering Task Force, Feb. 1997. Work in progress.

[17] J. Wroclawski, “The use of RSVP with ietf integrated services,” Internet Draft, Internet Engineering
Task Force, July 1997. Work in progress.

[18] S. Jamin,A measurement-based admission control algorithm for integrated services packet networks.
PhD thesis, Dept. of Computer Science, University of Southern California, Los Angeles, California,
Aug. 1996.

[19] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” RFC 1890,
Internet Engineering Task Force, Jan. 1996.

[20] P. Pan and R. Guerin, “Ibm research RSVP router implementation,” software documentation, IBM T.
J. Watson Laboratory, June 1997.

[21] B. Braden, “Isi RSVP host implementation,” software release, ISI, Marina del Rey, California, June
1997.

[22] S. Shenker and L. Breslau, “Two issues in reservation establishment,” inSIGCOMM Symposium on
Communications Architectures and Protocols, (Cambridge, Massachusetts), Sept. 1995.

[23] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC 1771, Internet Engineering Task
Force, Mar. 1995.

[24] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing (CIDR): an address assignment
and aggregation strategy,” RFC 1519, Internet Engineering Task Force, Sept. 1993.

24

[25] P. Sharma, D. Estrin, S. Floyd, and V. Jacobson, “Scalable timers for soft state protocols,” inProceed-
ings of the Conference on Computer Communications (IEEE Infocom), (Kobe, Japan), Apr. 1997.

[26] P. Pan and H. Schulzrinne, “Staged refresh timers for RSVP,” inGlobal Internet’97, (Tucson, Arizona),
Nov. 1997.

[27] L. Delgrossi and L. Berger, “Internet stream protocol version 2 (ST2) protocol specification - version
ST2+,” RFC 1819, Internet Engineering Task Force, Aug. 1995.

[28] A. Banerjea and B. A. Mah, “The real-time channel administration protocol.,” technical report, UC
Berkeley, 1991.

[29] S. T.-C. Chou and H. Tokuda, “System support for dynamic QOS control of continuous media commu-
nication,” inThird International Workshop on network and operating system support for digital audio
and video, (San Diego, California), pp. 322–327, IEEE Computer and Communications Societies, Nov.
1992.

25

