
A Protocol for Reliable Decentralized Conferencing

Jonathan Lennox
lennox@cs.columbia.edu

Henning Schulzrinne
hgs@cs.columbia.edu

Department of Computer Science
Columbia University
New York, NY 10027

ABSTRACT
Many approaches and topologies — including multicast and
media mixing — have been proposed for distributed Inter-
net conferencing. While existing solutions can work well for
large or pre-arranged conferences, they can be less appropri-
ate for smaller, impromptu ones. We present an alternative,
full mesh conferencing, which allows any number of parties
to communicate in a conference without a central point of
control. The protocol allows parties to join and leave the
conference at any time, and ensures that all members of the
conference are always informed of new members. The pa-
per gives an overview of the protocol, analyzes it, describes
a simulation environment for it, and discusses its applica-
bility to the Session Initiation Protocol (SIP) and to other
forms of decentralized communication.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications

General Terms
Algorithms, Design, Measurement, Security, Experimenta-
tion

Keywords
Conferencing, Internet telephony, fully-meshed peer rela-
tionship, reliability, Session Initiation Protocol (SIP)

1. INTRODUCTION
The Session Initiation Protocol [7], SIP, is the Internet

Engineering Task Force’s standard for setting up multimedia
sessions. It provides a means by which users can establish,
maintain, and terminate calls between them. To aid this, it
provides sophisticated user location and media description
facilities. It provides facilities to set up diverse types of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’03, June 1–3, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-694-3/03/0006 ...$5.00.

media, including instant messaging, distributed notification,
and presence, as well as traditional audio and video.

The basic SIP protocol is only engineered for point-to-
point communications, and does not, inherently, provide any
support for communications among more than two parties,
other than loosely-controlled multicast conferences in which
the users’ media is sent to a multicast group. More tightly-
controlled conferencing is useful and necessary in a number
of circumstances — from simple three-way calling, in which
two people on an ordinary call decide to add a third party,
to large-scale conference calls.

There are a number of ways to provide conferencing with
existing SIP mechanisms. However, all these mechanisms
have some shortcomings, as described in Section 2. They
are heavyweight or architecturally inappropriate for certain
types of conferences. This paper proposes a new approach,
describing a fully-distributed, decentralized protocol for con-
ferencing which establishes a fully-connected mesh of sig-
nalling and media connections between the conference par-
ticipants. We call this approach full-mesh conferencing.

This approach is not intended to replace the other so-
lutions, but rather to complement them. The existing so-
lutions are designed for certain problem domains, and are
useful in those domains; however, they are over-engineered
or architecturally inappropriate in some common scenarios.
The new proposal addresses these scenarios.

This conferencing approach is also applicable to additional
environments. Numerous scenarios require multiple net-
worked devices to be able to communicate with each other
without a single point of failure, and the topology of a full
mesh is often very useful for robustness. Such topologies of-
ten need to be dynamically assembled, with end systems en-
tering or leaving the group. Thus, the mechanism described
in this paper is also useful for such environments as group
text messaging, highly-reliable alerting or event systems, es-
tablishing router peering relationships, distributed simula-
tion, distributed databases, or clusters of network servers
which need to share state information.

1.1 Related Work
The ‘Sticky’ Conference Control Protocol [3] is an early

example of decentralized conferencing. It establishes an ar-
bitrary topology, so that not all users can necessarily hear all
the others. The Mesh-enhanced Service Location Protocol
[9] offers another example of a service in which fully con-
nected meshes of devices need to be maintained as systems
arrive and leave. This work establishes a protocol which

lets Service Location Protocol Directory Agents exchange
service registration information, so they can maintain con-
sistent data for shared scopes. Unlike the work presented in
this paper, however, this protocol has no real notion of peer
discovery or invitation, except via the Service Location Pro-
tocol’s normal multicast advertisement. It deals only with
state synchronization.

Explicit Multicast, or Xcast [1] offers a networking tech-
nology that can be complementary to full mesh conferenc-
ing, in networks which support it. With this technique, an
IP device can explicitly specify a list of destinations in the
IP header for a single packet; replication then occurs in the
network. In a fully meshed conference, therefore, this could
allow a conference member to save significantly on its band-
width use. The full mesh protocol could complement this
technique by providing a mechanism for conference mem-
bers to know the addresses of the other participants in the
conference.

The full mesh conferencing model has been proposed be-
fore in the evolution of the SIP protocol [8]. The work at
the time foundered on the difficulty of ensuring that all users
maintained full knowledge of the other members of the con-
ference in complex scenarios. This paper revives and com-
pletes this work.

1.2 Structure of this Paper
The rest of this paper is organized as follows. Section 2

gives an overview of existing models for SIP conferencing,
and discusses their advantages and shortcomings. Section 3
describes our novel alternative, full mesh conferencing, and
Section 4 describes how it can be secured. Section 5 de-
scribes how we have verified the protocol with a simulation
environment, and Section 6 analyzes the protocol and ex-
plains the rationale behind some of its features. A possible
realization of the protocol in SIP is given in Section 7. Fu-
ture work is discussed in Section 8, and Section 9 offers some
conclusions.

2. EXISTING CONFERENCING MODELS
There are several ways to support multi-party conferenc-

ing in basic SIP. Rosenberg and one of us (Schulzrinne) dis-
cuss this in an Internet-Draft [6]. To simplify somewhat,
there are two primary ways to support conferencing with
basic SIP: multicast and mixing.

2.1 Existing Conferencing: Multicast
Large-scale multicast conferences were the original moti-

vation for the development of SIP. In a large-scale multicast
conference, one or more multicast addresses are allocated to
the conference. Each participant joins the multicast groups,
and sends their media to the groups. Signalling is not sent
to the multicast groups. The sole purpose of the signalling
messages is to inform participants of which multicast groups
to join.

Multicast conferences can work reasonably well in net-
works that support them. They have the advantage that
they do not require tight coordination between end systems;
conference members can join and leave the conference inde-
pendently, and conferences can survive network trouble and
reconnect themselves seamlessly. The primary disadvantage
of multicast conferences, however, is that multicast can be
burdensome for networks and routers. Multicast (PIM-DM,
PIM-SM) requires that each router at least stores the group

C

C

B

A
A+C

B

A+B

Figure 1: Conferencing: end system mixing

identity. In some cases, state is actually (S, G), i.e., you need
to store sender state as well. With lots of very small groups
where everyone sends, i.e., the typical 3-party phone calls,
routers effectively store session state. Also, since subscrip-
tion to multicast groups is usually not authenticated (since
routers would need to keep the keys for users), anybody
can subscribe to any group, thus directing traffic to ran-
dom destinations. A single misconfigured or compromised
system could fairly easily subscribe to all IPv4 dynamically-
allocated multicast addresses and thus flood the network.
As a result, very few Internet backbones support multicast.
While multicast conferences can be useful in LANs, enter-
prise environments, or Internet 2, in the current commercial
Internet they are largely impractical.

Multicast conferences are inherently loosely-coupled, and
so they are not a good choice when tighter control of confer-
ence membership is desired. Communication of conference
membership is carried out only using RTCP, so speakers
may be unaware of who is currently able to hear them. They
have no restriction, other than encryption, on users joining
a conference, and key distribution and management can be
cumbersome. Additionally, transition from a two-party to a
multiparty session is awkward. Thus, while multicast can be
useful for “webcasts,” in networks which support it, it tends
to be architecturally less applicable to the “conference call”
model of group communications.

2.2 Existing Conferencing: Mixing
The other existing approach to conferencing is to have a

SIP endpoint which connects the members of a conference,
which mixes and forwards their media streams. There are
two possible variants on this model: in end system mixing,
shown in Figure 1, one member of the conference takes re-
sponsibility for mixing audio traffic; in server-based mixing,
shown in Figure 2, an independent network entity performs
it.

This model is probably the most common way of doing
SIP conferencing. From the point of view of those end sys-
tems which are not performing mixing functions, the call can
be treated as a standard SIP call. However, the model has
several disadvantages. First of all, the existence of the con-
ference is dependent on the mixer; if the mixer goes away,
the call immediately ends. (This is more of a concern for end
system mixing than for server-based mixing.) Secondly, the

A+B+C+E

A+B+D+E

A+B+C+D

E

A

D

B

C

E

B+C+D+E

A+C+D+E

A

B

DC Server
Conf.

Figure 2: Conferencing: conference server mixing

computational load on the mixer can be high; it may need
to encode up to N − 1 audio streams for an N -party con-
ference. (Hierarchical mixing can lessen this computational
load, while makes mixer setup correspondingly more com-
plex.) Finally, transitioning from a simple two-party call to
a conference can be complex, particularly in the server-based
mixing case, as the parties must locate a server, and then
transition the existing call to the control of the server. Over-
all, of the two, server-based mixing is more reliable, and it
works well for moderately large or pre-arranged conferences.
However, it can be unwieldy for smaller conferences.

3. FULL MESH CONFERENCING
This paper presents a new approach to conferencing, full

mesh conferencing. It is intended for tightly-coupled, im-
promptu, small-to-medium size conferences (with up to, per-
haps, 10 members) — that is to say, “conference calls,” not
the larger “presentation” sessions for which the dedicated
resources of a conference server or the loose coupling of a
multicast conference are likely more appropriate.

Figure 3 illustrates this model. In the full mesh model,
every endpoint directly communicates with every other one.
All the parties in the conference are “equal” — no user is
topologically special, or has any additional rights or abilities
beyond those of the others. Any member of the conference
can at any time invite a new user to the conference. If
the new member accepts, it establishes connections to the
other parties in the conference. Similarly, any member of the
conference can drop out of it at any time, without affecting
the remaining conference participants.

Audio is mixed only for playout at end points; mixed audio
is never sent over the network. This has advantages and dis-
advantages. The primary advantage is that no end system
needs to encode more than one media stream, per outgoing
codec. For most voice codecs, encoding tends to be much

C

E

A

D

B

C

E
E

E

D

B
A

D

D

DE

B

B
B

A A

A

C

C

C

Figure 3: Conferencing: full mesh

more computationally complex than decoding. Each user
will be decoding up to N−1 media streams in an N -member
conference, but needs to encode only one. However, in an
N -member conference, each user must have the bandwidth
available to be able to send N − 1 simultaneous streams.
(For audio conferences, users will normally only need to be
able to receive and decode one or two simultaneous streams.
However, for video conferences, in most circumstances all
the conference members will be sending at all times; while
the user agent may, for instance, only choose to show the ac-
tive speakers, the video streams will still use up bandwidth.)
Thus, this mechanism is less practical for bandwidth-limited
end systems such as wireless devices, users with 56 kb/s
modems, or users with asymmetric DSL connections with
low upstream bandwidth, and it does not scale well to large
conferences. A hybrid model, illustrated in Figure 4, can
ameliorate this issue; this is a matter for future research.

3.1 Example
The presentation of the protocol will begin with some

examples. This presentation of the protocol uses an ab-
stract representation of point-to-point communication be-
tween peers. These messages are inspired by SIP, but should
not be interpreted as being actual SIP messages. A proposed
mapping of these messages to SIP is presented later in Sec-
tion 7. For the purposes of the examples, it is sufficient to
understand that the abstract message JOIN invites a new
member to join a conference; the message CONNECT es-
tablishes communication between two endpoints which are
already members of the conference. Each of these messages
can be answered with an Ok response, indicating that the
request was accepted, or a Reject response, indicating that
it was refused; the Ok responses are in turn acknowledged
with Ack messages. This three-phase call setup procedure is
needed to ensure conference security, for reasons explained
in Section 6.2. These abstract messages are described in

mesh

...

full...

...

...

...

S

S

S

Figure 4: Conferencing: combination of conference
servers (S) and full mesh

more detail in Section 3.2 below. Every end system main-
tains a list of the other end systems in the conference. When-
ever a new member is invited, the inviter passes it a list of
all the other members of the group. The new member then
establishes communication with all the listed members.

Figure 5 shows the simplest case: a third endpoint being
invited to a join two-party call. Initially, A and B are in a
call. A then decides to ask C to join the call. To do this,
A sends a JOIN message to C. C responds with a JOIN

Ok message, indicating that it wishes to join the group. A

then sends C a JOIN Ack message. This message lists A’s
view of the current membership of the group: A, B, and
C. Upon receiving this message, C determines that it does
not have a connection to B, and thus sends B a CONNECT

message. When B receives the CONNECT message, it replies
with CONNECT Ok; C responds to this with CONNECT Ack.

CONNECT Ok

C

B

A

1

2

3

6

4

5

JOIN

JOIN Ok

JOIN Ack

CONNECT Ack

CONNECT

Figure 5: Example full mesh message flow: a new
member is invited

At this point, every member has a communications channel
established with every other.

Figure 6 illustrates what happens when both A and B

invite new members, C and D, simultaneously. This illus-
trates that the protocol’s message flow can quickly become
quite complex. In the example, first A invites C, and B in-
vites D, using the same procedure as for the simple message
flow above. In the CONNECT Ok responses in messages 6
and 8, C and D are informed of each other. Since neither
has yet established communications with the other, they
both send each other CONNECT messages. In the specific
instance illustrated in the figure, these CONNECT messages
pass each other; at this point, one of the two must arbitrar-
ily be chosen, and the other rejected, so that the only one
communications dialog is set up. The mechanism of this is
explored in more depth in Section 3.4.

Note that the order of these messages is not fixed. The
transaction between A and C (messages 1, 2, and 3) triggers
the transaction between C and B (messages 7, 8, and 9); but
these are entirely independent of the transaction between B

and D (messages 4, 5, and 6). The resulting behavior of
each of the end points, and which systems contact which
other ones, depends on the exact order in which messages
are sent and received. The full mesh protocol is designed to
work correctly in all these cases, and the group will always
converge to a proper full mesh.

3.2 Protocol Messages
The protocol uses ten abstract messages: four initial mes-

sages, JOIN, CONNECT, LEAVE, and UPDATE, and the re-
sponses JOIN Ok, JOIN Ack, JOIN Reject, CONNECT Ok,
CONNECT Ack, and CONNECT Reject. Messages are sent
within the context of, and control, dialogs. A dialog is a
communications session between two end systems. It cor-
responds to the existence of bidirectional media exchange
between the end systems. Every dialog is identified by a
globally unique dialog identifier. Additionally, every confer-
ence has a globally unique conference identifier. A confer-
ence dialog falls within exactly one conference.

The JOIN and CONNECT messages are largely similar, as
are their responses. Each message requests the initiation of
a dialog between two end systems. The Ok responses accept
the dialog initiation, whereas the Reject responses refuse it.
The Ack messages confirm the receipt of the Ok messages;
these are necessary for reasons explained in Section 6.2. The
difference between JOIN and CONNECT is in their seman-
tics: the JOIN message is sent to a user not in a group, to
ask it to join the group; its handling typically requires a user
decision, to accept or reject the request. The CONNECT

message, by contrast, is sent from an end system that has
joined the group to the other pre-existing group members, to
establish point-to-point dialogs. In this case, the message (if
validated) will not normally require human interaction. The
distinction between JOIN and CONNECT is necessary; with-
out it, it would not be possible to distinguish the cases of an
end system being re-invited to a conference, after having left
it, from that of a newly-arrived end system attempting to
connect with a recently-departed one, not having yet been
informed of the latter system’s departure.

The LEAVE message terminates a dialog, regardless of how
the dialog was established. The UPDATE message does not
affect the state of the dialog. It informs a party of new
information about the conference membership list. This is

A C2

3

1

4

DB 5

6

JOIN Ok

JOIN Ack

JOIN

JOIN

JOIN Ok

JOIN Ack

D

9

7

8

11

12

10

Ok

CONN.

CONN.

CONN.
Ack

CONN.
Ok

CONN.
Ack

CONN.

A C

B

A C

B D

16

12
14

13
15

CONN.
CONN. Ok

CONN.
CONN. Reject

CONN. Ack

Figure 6: Example full mesh message flow: two new members are invited simultaneously

discussed further in Section 3.3. All messages are assumed
to be transmitted reliably. (The Ack messages are not for
reliability, but rather carry the third message of the three-
phase session establishment.)

From each end system’s point of view, a dialog can be in
two possible states: pending or established. For the party
that initiates the dialog, the dialog is pending until it re-
ceives the Ok message; for the party that answers it, it is
pending until it receives the Ack message.

3.3 Membership Maintenance and State Com-
munication

Several messages of the full mesh protocol — JOIN Ok,
CONNECT Ok, JOIN Ack, CONNECT Ack, and UPDATE —
carry information about the sender’s current view of the
conference membership. In these messages, the sender lists
all the conference members with which it has a dialog and
whose conference tags it knows. (Conference tags are de-
scribed in Section 3.5. A sender will always know the tags
of members with which it has an established dialog, but may
not yet know them for pending dialogs; pending dialogs for
which tags are not known are not listed.) Each member in
the list is marked with the state, pending or established,
of the sender’s dialog with that member. Additionally, the
JOIN message may carry an advisory list of conference mem-
bers, so the recipient knows who is in the conference, and
can use this information to decide whether to join it. How-
ever, in this case the list does not result in any protocol
actions.

When the recipient B receives a message (other than
JOIN) carrying a membership list from a sender A, and
chooses to act on it (i.e., it does not respond to it nega-
tively), it does two things. First of all, B consults its own
membership list, and checks to see if any of the members

with established dialogs listed are members it was not pre-
viously aware of. If there are, it sends new CONNECT mes-
sages to all these members.

Secondly, B prepares its own list of members in response.
If the A’s message was a JOIN Ok or CONNECT Ok, B al-
ways includes the list of members in its Ack response. If,
however, A’s message was an Ack or an UPDATE, normally
B would have no response to send. However, if B has es-

tablished connections to conference members which A did
not know of (either as established or pending), B initiates
a new UPDATE message within the same dialog, to inform
A of all the members it knows of. Note that this response
includes all established members A mentioned in its initial
message, since B will now be setting up dialogs with all these
members and will list them as pending. This ensures that
this message will not itself trigger another UPDATE message
unless A learns of further additional conference members.

The separation between established and pending mem-
bers in the membership list ensures that every member’s
first introduction to a conference is the initial JOIN mes-
sage it receives. If B were to send CONNECT messages to
A’s pending members, it is conceivable that the CONNECT

message from B to A’s pending member C could outrace a
JOIN message from A to C, if, for example, A invited B and
C simultaneously. This violates the definitions of JOIN and
CONNECT.

3.4 The Double-Dialog Glare Problem
Because of the way the full mesh protocol floods mem-

bership information, it quite often happens that two end
systems may attempt to establish dialogs with each other
simultaneously for the same conference. In these cases, it
is necessary to ensure that only one dialog is actually es-
tablished, and the other is rejected. This is analogous to

the problem of “glare” in the PSTN, in which two telephone
switches simultaneously attempt to seize the same voice cir-
cuit. If both dialogs were to be set up, there would be two
simultaneous connections between the end points; this is
undesirable, as it is wasteful of bandwidth and causes un-
necessary state complexity.

There are two possible scenarios for this. The simpler case
is when a dialog establishment request (JOIN or CONNECT)
arrives from A to B, when B already has an established di-
alog with A. In this case, B can simply always send A a
Reject response to this request. The more complex case is
when a dialog establishment request from A to B arrives
when B has a pending dialog with A. The new dialog estab-
lishment request indicates that A also has a pending dialog
with B; the situation is thus symmetric.

To solve this, a symmetry-breaking mechanism must be
defined, so that both end systems can agree as to which
dialog will be established, and which will be rejected. The
simplest solution is to establish some global ordering for
end systems, such that the connection from the “earlier”
system to the “later” one is chosen. The exact nature and
mechanism for this ordering is arbitrary, as long as it is
deterministic and universally agreed-to. (A lexicographic
ordering of end systems’ globally-unique identifiers is one
possibility, so long as these identifiers are communicated in
JOIN Ok and CONNECT Ok messages.) Which dialog “wins”
in this situation has little import in practice, as the direction
in which a dialog was established does not matter for future
communications. (The direction may matter for minor low-
level details of the communications protocol, but these do
not affect session and media semantics.)

3.5 Immediate Departure and Reconnection
It is possible for a user to be re-invited to a conference

while in the process of leaving it. For example, a user hangs
up accidentally, and is immediately invited back by the other
conference members. In this situation, the system’s CON-

NECT message for its new dialog could out-race the LEAVE

message terminating the old dialog. Absent any mechanism
to prevent this, the destination system for these two mes-
sages would perceive the CONNECT as setting up a double
dialog, as described in Section 3.4, and would reject it.

Therefore, the protocol introduces conference tags. When-
ever an end system joins a conference, it generates a unique
identifier which will serve to identify this “instance” of its
conference membership. It communicates this identifier in
every message it sends. Additionally, end systems include
conference tags for each member in the membership lists
they send in Ok and Ack messages. Finally, whenever an
end system knows the conference tag of the party to which
it is sending a message, it includes the remote party’s tag
in the message. The only messages for which end systems
do not know their counterparties’ tags are the initial JOIN

message, and a LEAVE message which was sent immediately
following a JOIN, before JOIN Ok has arrived. (This can oc-
cur if an end system invites another party to the conference,
and then immediately leaves.)

These conference tags are used in two ways to eliminate
the problem of departure and reconnection. First of all, if an
end system B receives a CONNECT message from another
system A with which it already has a connection, but A’s
conference tag is different, it knows that this is not a double
dialog. For example, consider the new CONNECT message

to be from A2, and the old one to be from A1. In this case,
B establishes a connection with A2, and can conclude that
a LEAVE message from A1 will be forthcoming shortly.

Additionally, if an end system receives a message ad-
dressed to it with an unknown or outdated conference tag,
it rejects the message, just as it would if it received such
a message for an unknown conference. In the example, if
A receives a CONNECT message from C addressed to A1,
it knows that C has outdated information about A’s state,
and rejects it; it can conclude that once updated informa-
tion has propagated to C, C will send a correct CONNECT

message to A2.

4. SECURITY AND AUTHENTICATION
Security is a significant consideration for full mesh confer-

ences. In addition to all the security requirements of point-
to-point calls — authentication of the identities of callers
and called parties, privacy and authentication of media traf-
fic, and privacy of callers’ and called parties’ identities from
third parties, for example — conferences have the additional
requirement that only end systems authorized by an existing
conference member are allowed to join the conference.

Under the model described in Section 3, an end system
which receives a CONNECT message for an existing confer-
ence will automatically establish a dialog with the sender of
the message, and then send the sender a media stream con-
taining all the media generated by that end system. Clearly,
it is very important that the end system have some way to
know that this CONNECT message is coming from a legiti-
mate conference member, i.e., one who has been invited to
the conference by an actual user. Otherwise, if an adversary
were able to observe or guess conference IDs, he or she would
be able to barge into a conference without the consent of its
members.

To resolve this, we require some way to verify that the
CONNECT message was indeed triggered by a legitimate
JOIN from a legitimate user. To accomplish this, we use
a cryptographic public key solution. Whenever an end sys-
tem joins a conference, it generates a purpose-built [2] public
key which it will use for the duration of the conference.1 All
JOIN, CONNECT, JOIN Ok, and CONNECT Ok messages
communicate the sender’s public key to the other members
of the conference. Then, whenever an end system A sends a
membership list (in Ok or Ack messages) to another end sys-
tem C, it includes in this invitation a “letter of invitation”,
signed with its private key, indicating that A has invited C

to be a member of the conference. If this message’s member-
ship list informed C of the existence of B, C, as described
above, sends a CONNECT message to B. In this message,
it includes a copy of the letter of introduction, signed by A.
B has already received a copy of A’s public key, so it can
verify the signature on the introduction, and so know that
C is legitimately allowed to join the conference.

Because of race conditions between a session member
sending a JOIN message, and its own departure from the
conference — if, for instance, A invites C to a conference,
and then immediately leaves, before C has contacted B — it
is necessary for end systems to remember the public keys of

1In practice, as key generation is an expensive operation,
end systems will probably use longer-lived public keys, and
the signing mechanism will include a means to bind signed
messages to conference IDs and tags.

members who have departed the conference. The length of
time for which keys need to be remembered depends on the
maximum length of time that letters of invitation could per-
sist in ongoing transactions between conference members;
roughly speaking, this will be twice the maximum duration
of a transaction.

This security mechanism can be attacked by an attacker
who can intercept and modify messages, by altering the pub-
lic keys that members advertise to each other. Such an at-
tacker could create its own letters of introduction at will.
However, this same vulnerability exists for point-to-point
communications. Communications systems need to be able
to secure their point-to-point communications in order to
provide user security. SIP, for example, uses mechanisms
such as TLS and S/MIME for this purpose. These security
mechanisms, combined with the approach described above,
should be sufficient to protect against conference barge-in.
This solution also does not prevent a member who has left
the group from re-entering it, by replaying an existing cer-
tificate. It is possible that certificates could be set up to
have limited lifetimes. This works if clocks are synchro-
nized, but will require further investigation if there is no
globally synchronized clock shared among all the conference
participants.

5. VERIFICATION OF FULL MESH PRO-
TOCOL

As mentioned earlier, there have been previous attempts
[8] to describe full mesh conferencing for SIP. (The authors
of this paper were involved in these previous attempts.)
These attempts established the basic concept of the full
mesh conference, but foundered on the difficulty of verifying
manually that the protocol always converged.

The primary difficulty in verifying of the full mesh pro-
tocol is that its behavior depends strongly on the order in
which events occur. For example, consider the example from
Figure 6 in Section 3.1. In the example, messages 2 and 5 —
the “horizontal” JOIN Ok messages from C to A and from
D to B — are received before the “diagonal” CONNECT

messages 7 and 10 from C to B and from D to A. Thus, at
the time of the processing of the JOIN Ok messages, A and
B are unaware of the existence of D and C respectively.

If, instead, for example, the CONNECT messages were to
outrace the JOIN Ok messages, A and B would know already
know about a new fourth member of the group when they
received the JOIN Ok message. Thus, by the procedure of
Section 3.3, A and B would include D and C in their JOIN

Ack messages to C and D, respectively, informing them of
the new member.

The number of possible orders in which events can oc-
cur is, in fact, exponential in the number of members in
the group and the number of actions (JOIN messages and
group departures) which will occur. Thus, two facts quickly
became clear: protocol verification would need to be auto-
mated, and this automation would have to be heavily op-
timized in order to keep verification tractable on standard
hardware.

5.1 The Verification Framework
A custom program was written in C++ to verify the pro-

tocol. The simulator maintains two items: firstly, the state

of the system, describing which end points are in the system

and each end point’s knowledge of its dialogs; and secondly,
a list of pending events which are to be executed, consisting
of event actions (members inviting other end systems to the
group, and members leaving the group) and sent messages.
To simulate a particular scenario, the state is set up with
some number of users in a fully-connected conference, and
the event list contains the actions to be taken.

Recursively, the verifier picks an events from the pending
event list, and applies the actions it specifies to the state.
These actions may involve the addition of additional events
to the event list, as when an event causes messages to be
sent. The verifier is then executed on the new state and
event list. Once the sub-list has completed, the verifier
chooses the next event from the list, and continues until
all events have been exhausted. In this way, the verifier
exhaustively searches every possible event ordering.

When the verifier is executed with no pending events, it
instead validates the resulting final state. A final state is
valid if every user which believes itself to be a member of
the group has exactly one, alive, dialog with every other
such user. If the group is disconnected, not fully linked, or
any dialogs are in the wrong state or doubled, the verifier
prints an error message and the exact sequence of events
and states that led to this outcome.

Because many events execute independently of one an-
other, this simulation environment can end up repeating
many scenarios. For example, in the message flow of Fig-
ure 6, if the first two events executed are the transmission
of message 1 and the transmission of message 4, it is irrele-
vant which of these two occurs first; the state, and pending
events, afterwards will be the same. Thus, the verifier main-
tains a state cache. After state has finished being executed,
it is recorded in the state cache. If a future execution of the
verifier for this verification run results in the same state and
list events being visited, the execution is pruned as redun-
dant. This greatly reduces the number of test cases explored
by the validator, but it means that simulations can fail if the
cache fills all available memory.

5.2 Test Runs Performed
Table 1 lists all the simulated mesh actions executed by

the verifier. Conference members are named A, B, C, . . .,
in order.

In almost all cases, the verifier confirmed that every possi-
ble ordering of the events and messages of the full mesh pro-
tocol resulted in a fully-connected and self-consistent con-
ference. There are, however, two exceptions to this. First
of all, in two cases (marked with a †) the state cache grew
so large as to exhaust all RAM and swap on the computer
on which the simulation was executing. This exhaustion oc-
curred after several tens of millions of orderings had been
considered and pruned. As mentioned above, the number
of event orderings is exponential in the size of the groups
and the number of initial actions. This is why none of the
simulated groups involve more than four members.

In one case (marked with a ∗ in the table), the simula-
tion did not result in a single fully-connected conference,
but instead resulted in several smaller disconnected ones,
as the “bridging” members of a conference left the confer-
ence before the new members found out about each other.
Specifically, in simulation 40, B and C both join what they
view as three-party conferences, and then have both their
peers leave. Because A and B are gone, C and D never

Run Initial Actions Run Initial Actions Run Initial Actions
1 A −A 20 A A→B, B→C, A→C, −A 39 A, B A→C, B→D, −C
2 A, B −B 21 A A→B, B→C, A→C, −B 40 ∗ † A, B A→C, B→D, −A, −B
3 A, B, C −C 22 A A→B, B→C, A→C, −C 41 A, B A→C, B→D, −A, −C
4 A A→B 23 A A→B, −B, A→B 42 A, B A→C, C→D
5 A A→B, A→C 24 A A→B, B→C, −B, A→B 43 A, B A→C, C→D, −A
6 A A→B, −B 25 A A→B, −A, B→A 44 A, B A→C, C→D, −B
7 A A→B, −A 26 A, B A→C 45 A, B A→C, C→D, −C
8 A A→B, −B, A→B 27 A, B A→C, A→D 46 A, B A→C, C→D, −D
9 A A→B, −A, B→A 28 A, B A→C, B→C 47 A, B A→C, B→C
10 A A→B, A→C, −A 29 A, B A→C, −A 48 A, B A→C, B→C, −A
11 A A→B, A→C, −B 30 A, B A→C, −B 49 A, B A→C, B→C, −C
12 A A→B, A→C, B→C 31 A, B A→C, −C 50† A, B A→C, B→C, C→D, −C
13 A A→B, A→C, B→C, C→B 32 A, B A→C, A→D, −A 51 A, B A→C, −B, A→B
14 A A→B, A→C, −A, B→C 33 A, B A→C, A→D, −B 52 A, B A→C, −B, C→B
15 A A→B, A→C, −A, B→C, C→B 34 A, B A→C, A→D, −C 53 A, B B→C, −B, A→B
16 A A→B, B→C 35 A, B A→C, −C, A→C 54 A, B B→C, −B, C→B
17 A A→B, B→C, −A 36 A, B A→C, −C, C→A 55 A, B −A, −B
18 A A→B, B→C, −B 37 A, B A→C, B→D 56 A, B, C −B, −C
19 A A→B, B→C, −C 38 A, B A→C, B→D, −A 57 A, B, C −A, −B, −C

Key:

Initial The initial conference members, before any actions are executed.

Actions The actions to be executed, in some arbitrary order, during the scenario.

X→Y X will attempt to invite Y to the conference, if X is currently a member and does not know about Y .

−X X will leave the conference, if it is currently a member.

∗ Some event orderings can lead to disconnected conferences. See the text for an explanation.

† The simulation’s state cache exhausted all available memory before completing, on a Sun Fire 280R with 2.0 GB of RAM and 5.0 GB
of swap, running Solaris 8.

Table 1: Full mesh conference scenarios explored with verifier

discover each other. This is not a ‘bug’ in the protocol; in
the absence of a central repository of information about con-
ferences, there is no way in this scenario that information
about C could reach D, or vice-versa.

6. ANALYSIS AND RATIONALE
The examples of Table 1 cover a large number of the possi-

ble scenarios of full mesh operations, and each one exhaus-
tively searches the possibilities for a particular set of op-
erations. These simulations do not, however, fully explore
the possibilities of the full mesh signalling, as the potential
size of conferences is, of course, unlimited. In this section
we will attempt to justify the belief that the cases consid-
ered adequately cover all the possible ways that a conference
membership changes can interact. We will also give ratio-
nales for some of the more unusual features of the protocol,
to illustrate how a more näıve protocol can fail.

6.1 Protocol Correctness
The first point to consider is to ensure that knowledge of a

member joining the conference is always flooded to all other
members of the conference. In the absence of simultaneous
conference departures, this is clear. Once A invites B to the
conference, B will send CONNECT messages to every mem-
ber C, D, etc., that A knows about. In the responses to
these CONNECT messages, B will transitively be informed
of every member these members know about, and so, recur-
sively, will eventually learn of, and be connected to, every
member of the conference.

Similarly, departure from the conference is straightfor-
ward. LEAVE messages are sent to every member of the
conference; even if other members of the conference sub-
sequently attempt to connect to the new member, due to
out-of-date lists of conference membership, the departing

member will reject these connection attempts. Because con-
ference tags distinguish instances of an end system’s con-
ference memberships, there is no ambiguity between near-
simultaneous departures and re-connections, and so the
analyses of these two scenarios can be considered indepen-
dently.

The remaining case, therefore, is to consider simultaneous
connections to, and departures from, the conference. It is
possible in this instance for the conference to degenerate into
several sub-conferences. This can happen if a “bridging”
member of the conference — a conference member which
alone knows about both portions of the conference — de-
parts from the conference before propagating information
between the two sides. In this case, however, both sides
will still become fully-connected within themselves, by the
argument above.

6.2 Rationale for Three-Phase Session Estab-
lishment

The most unusual feature of the protocol as it is described
in Section 3 is likely the three-phase nature of the JOIN

and CONNECT messages. This feature is necessary in order
to ensure the correct behavior of the security mechanism
described in Section 4. As described in that section, if B

sends a membership list to C, it includes a signed “letter
of introduction” certifying that C is allowed to connect to
other members of the conference, say A. C can then include
this in a CONNECT message to A, so A knows that C has
been authorized. In order for this to work, however, A must
already have received B’s public key, so it can validate the
signature on the letter of introduction.

In a two-phase connection model, there are some scenarios
in which this would not be true. Consider, for example, a
two-phase connection model in which A invites B to the con-

ference, and then B immediately invites C. In a two-phase
model, B could consider itself fully connected to A once it
had sent a JOIN Ok response to a JOIN message from A.
It could therefore immediately send a JOIN message to C,
advertising A in its membership list, which could trigger a
CONNECT message to A. However, in this scenario, the
CONNECT message from C to A, with a letter of introduc-
tion signed by B, could out-race the JOIN Ok message from
B to A, including B’s public key. A would therefore not
be able to verify the validity of the letter of introduction,
and would reject the CONNECT message; a full mesh would
therefore not be established.

In the actual three-phase model used by the protocol,
however, B may not advertise A until B has an established
connection to A. As described in Section 3.2, B does not
have an established connection to A until it has received a
JOIN Ack message from A. At this point, B knows that A

has received a copy of its public key, so it can safely advertise
A in future conference membership lists.

7. REALIZATION OF THE FULL MESH
PROTOCOL IN SIP

The abstract protocol described in Section 3 was designed
to be a simplified representation of SIP messaging. It was
designed to be expressive enough to capture all the behavior
necessary to represent point-to-point communications, yet
simple enough to make the implementation and complexity
of the automatic verifier, described in Section 5, tractable.
In this section we will describe how this abstract protocol
can be expressed in actual SIP messages.

SIP communication sessions are organized into dialogs.
When SIP is being used to control multimedia communica-
tions, dialogs are initiated with the INVITE method. If
the other side agrees to initiate the dialog, it responds with
a 200 OK response, which is acknowledged with an ACK
request; otherwise, it sends one of a large number of poten-
tial failure responses. Once established, dialogs, and their
associated multimedia communication, continue until they
are terminated by either party, using the BYE method and
its 200 OK response. If the session initiator wants to ter-
minate the dialog before it has received a final response to
its initial INVITE, it can do so by sending the CANCEL
request.

To implement the full mesh protocol in SIP, we provide a
possible mapping of the full mesh protocol’s abstract meth-
ods to concrete SIP methods. As both JOIN and CONNECT

establish dialogs in the abstract protocol, they are both
mapped to the SIP INVITE method. For similar reasons,
LEAVE is mapped to either BYE or CANCEL, depending
on the state of the dialog when it is invoked, and the UP-

DATE method can be mapped either to a re-INVITE or to a
newly-defined SIP method (potentially, indeed, UPDATE
[5]). The two subsequent phases of the connection process
maps naturally: Ok becomes a 200-class success response,
Reject becomes a 400-, 500-, or 600-class failure response,
and Ack is ACK.

All of these requests must include several additional
header fields, beyond those defined for a standard point-
to-point call, in order to support full mesh conferences.
First of all, to identify conferences, we define a header field
Conference-ID, which uniquely identifies a full mesh con-
ference. The value of this header field is established by the

end system which initially creates the conference, and is
globally unique. It is created using the same procedure as
that used to create globally unique values for the existing
required header field Call-ID. Secondly, to distinguish be-
tween JOIN and CONNECT messages, we define another new
header field, Invited-By, which is included only for CON-

NECT messages. This header field carries the identity of the
system which initially invited the sender of the message to
the conference. This field can also have some cryptographic
authentication; this was discussed further in Section 4. Fi-
nally, to provide the list of conference members, another
header field, Conference-Member, is provided for those
messages which include the member list. This lists the Con-
tact addresses of all the conference members the request’s
sender knows about. A header field parameter, status, in-
dicates whether the members are established or pending;
another one, tag, gives the member’s conference tag. Cryp-
tographic formats for the public keys and letters of intro-
duction remain to be determined; work for this should be
developed based on ongoing work with purpose built keys
[2]. Since these keys can be several kilobytes, they will most
likely be carried as multi-part session bodies.

8. FUTURE WORK
As designed, the full mesh conference protocol is perfectly

decentralized — no member of a conference has special priv-
ileges. While this is the proper model for many conferences,
it is not universally applicable. Development is ongoing [4]
on how to offer sophisticated admission and floor control
for conferences. This development generally assumes cen-
tralized conferencing models, usually those involving a con-
ference server. It would be useful to be able to use these
capabilities in the decentralized environment, but this will
require significant further investigation to see how well the
assumptions of the centralized model can carry over to the
decentralized case. In particular, there would need to be
some mechanism by which the members of the mesh confer-
ence can agree about who has control over the conference
and is authorized to make these decisions.

As discussed in Section 3, there are also circumstances in
which combination topologies, falling somewhere between
the full mesh and the centralized server, are useful. This is
difficult to arrange in a decentralized manner, without prior
configuration, as these topologies do not have the inherent
symmetries of a star or a mesh. However, there are such
environments: for example, as illustrated in Figure 4, a set
of conference servers could form a mesh topology among
them, and then provide a star topology to clients.

9. CONCLUSION
After reviewing a number of solutions for Internet con-

ferencing, we concluded that they all have some limitations.
We therefore presented an additional mechanism which com-
plements these approaches, allowing conferences to be estab-
lished in a reliable, decentralized manner. This mechanism
is also applicable to other environments which require the
decentralized establishment of a full mesh communications
topology. We verified the protocol’s correctness for a large
number of scenarios, provided an analysis of the protocol’s
correctness, established a mapping to SIP, and discussed and
provided solutions for some potential security issues with the
protocol.

10. ACKNOWLEDGMENTS
This work was supported by a grant from Lucent Tech-

nologies.
We would like to thank Weibin Zhao for initial discussions

on full mesh networking, the members of the Columbia Uni-
versity Internet Real-Time Laboratory for comments and
suggestions, and Merav Hoffman for editing assistance.

11. REFERENCES
[1] R. Boivie et al. Explicit multicast (xcast) basic

specification. Internet draft, Internet Engineering Task
Force, Jan. 2003. Work in progress.

[2] S. Bradner, A. Mankin, and J. I. Schiller. A framework
for purpose built keys (PBK). Internet draft, Internet
Engineering Task Force, Jan. 2003. Work in progress.

[3] C. Elliott. A ’sticky’ conference control protocol.
Internetworking: Research and Experience, 5:97–119,
1994.

[4] O. Levin and R. K. Even. High level requirements for
tightly coupled SIP conferencing. Internet draft,
Internet Engineering Task Force, Mar. 2003. Work in
progress.

[5] J. Rosenberg. The session initiation protocol (SIP)
UPDATE method. RFC 3311, Internet Engineering
Task Force, Oct. 2002.

[6] J. Rosenberg and H. Schulzrinne. Models for multi
party conferencing in SIP. Internet draft, Internet
Engineering Task Force, July 2002. Work in progress.

[7] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R.
Johnston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: session initiation protocol. RFC 3261,
Internet Engineering Task Force, June 2002.

[8] H. Schulzrinne and J. Rosenberg. SIP call control
services. Internet draft, Internet Engineering Task
Force, June 1999. Work in progress.

[9] W. Zhao and H. Schulzrinne. mSLP - mesh-enhanced
service location protocol. Technical Report
CUCS-013-00, Columbia University, New York, May
2000.

