
Scalable Multi-module Packet Switches
with Quality of Service

Santosh Krishnan

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2006

c© 2006

Santosh Krishnan

All Rights Reserved

ABSTRACT

Scalable Multi-module Packet Switches

with Quality of Service

Santosh Krishnan

The rapid growth in packet-based network traffic has resulted in a growing demand for

network switches that can scale in capacity with increasing interface transmission rates and higher

port counts. Furthermore, the continuing migration of legacy circuit-switched services to a shared

IP/MPLS packet-based network requires such network switches to provide an adequate Quality of

Service (QoS) in terms of traffic prioritization, as well as bandwidth and delay guarantees. While

technology advances, such as the usage of faster silicon and optical switching components, pro-

vide one dimension to address this demand, architectural improvements provide the other. This

dissertation addresses the latter topic. Specifically, we address the subject of constructing and

analyzing high-capacity QoS-capable packet switches using multiple lower-capacity modules.

Switches with the output-queueing (OQ) discipline, in theory, provide the best perfor-

mance in terms of throughput as well as QoS, but do not scale in capacity with increasing rates

and port counts. Input-queued (IQ) switches, on the other hand, scale better but require complex

arbitration procedures, sometimes impractical, to achieve the same level of performance. We

leverage the state-of-the-art in OQ and IQ switching systems and establish a new taxonomy for a

class of three-stage packet switches, which we call Buffered Clos Switches. The taxonomy is cre-

ated by augmenting existing switching elements with aggregation, pipelining and parallelization

techniques. This offers a switch designer several alternatives, each driven by specific design and

re-use constraints, to build a high-capacity switch composed of lower-capacity basic elements.

We also present a formal framework for optimal packet-switching performance, in order

to uniformly characterize the capabilities of the switches in the class. The optimality is based

on establishing functional equivalence of a given switch and its associated arbitration algorithms

with a well-understood ideal switch. For the items in the above taxonomy, we demonstrate how

some existing algorithms perform with respect to the optimality criteria, and then augment the

state-of-the-art by presenting algorithms and analytical results for stricter equivalence with an

ideal switch.

Contents

List of Figures v

List of Tables ix

Preface xi

Chapter 1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 6

1.2.1 Applicability and Scope . 7

1.3 Organization . 9

Chapter 2 Switching Model 11

2.1 Switching Basics: Overview . 11

2.1.1 Circuits: Blocking . 11

2.1.2 Packets: QoS and Throughput . 13

2.2 Notions of Optimal Performance . 14

2.3 Forwarding Models . 18

2.4 Building Blocks . 21

2.5 Common Existing Switches . 26

Chapter 3 Formal Methods in Switching 30

3.1 Clos Network . 30

i

3.2 Matching Algorithms for Input-Queued Switches 34

3.2.1 Switch Control Loop . 35

3.2.2 General Matching Techniques . 37

3.2.3 Deterministic Properties . 42

3.2.4 Stochastic Stability . 48

3.2.5 Work Conservation and Exact Emulation 55

3.2.6 Low-complexity Matchings . 58

3.3 Throughput and QoS in Packet Switching . 63

3.3.1 Integrated Matchings . 63

3.3.2 Hierarchical Switch Scheduling . 65

3.3.3 Memory Element QoS . 68

3.4 Summary . 73

Chapter 4 Buffered Clos Switches: A Framework 75

4.1 BCS Taxonomy . 75

4.1.1 Multi-module Architecture . 78

4.1.2 Feasible Implementations . 81

4.2 Functional Equivalence . 88

4.2.1 Levels of Emulation . 89

4.2.2 Meaning of Equivalence . 91

4.2.3 Existing Results . 96

4.3 Summary . 97

Chapter 5 Combined Input-Output Queueing 98

5.1 Maximal Matching: Application to QoS . 99

5.1.1 Clos Networks: Space-Time Duality . 101

5.1.2 Packet-switching Equivalent . 104

5.1.3 Bandwidth and Delay Guarantees . 105

5.2 Critical Matching Algorithms . 109

5.2.1 Deterministic Properties . 110

ii

5.2.2 Stability without Speedup . 115

5.3 Uniform Traffic: Sub-maximal Perfect Sequence 121

5.3.1 SPS Matching . 122

5.3.2 Online Variants . 124

5.4 Maximal Matching for Inadmissible Traffic . 126

5.4.1 Bounded Arrivals and Statistical Multiplexing 127

5.4.2 Matching on Pruned Requests . 130

5.4.3 Stochastic Stability . 132

5.5 Strict Relative Stability . 135

5.5.1 Shortest Output-Queue First . 139

5.5.2 Alternative Approaches . 145

5.6 Putting it Together: Switched Fair-Airport Policies 147

5.6.1 Multi-phase Combination . 148

5.6.2 Exclusive Combination . 150

5.7 Extensions to Multicast Traffic . 152

5.8 Summary . 155

Chapter 6 CIOQ: Aggregation and Pipelining 157

6.1 Aggregation . 158

6.1.1 Queueing Strategies . 159

6.1.2 Shadowing a CIOQ . 162

6.1.3 Low-complexity Matchings . 170

6.2 Spatial Pipelining . 183

6.2.1 Shadowing a CIOQ . 185

6.2.2 Concurrent Dispatch . 188

6.2.3 Balanced Matchings . 196

6.3 General MSM Switches . 206

6.3.1 Shadowing Approaches . 211

6.3.2 Matching on Virtual Element Queues 215

6.3.3 Recursive G-MSM . 218

iii

6.4 Summary and Discussion . 221

6.4.1 Related Work . 224

Chapter 7 Parallel Packet Switches 226

7.1 Switch Architecture . 227

7.1.1 Benefits . 230

7.1.2 Queueing Strategies . 232

7.2 Flow-based PPS . 238

7.3 Cell-based PPS . 246

7.3.1 Envelope Striping . 248

7.3.2 Equal Dispatch . 253

7.3.3 Fractional Dispatch . 261

7.3.4 Related Work . 263

7.4 Sequence Control . 265

7.4.1 Simulation Results . 269

7.5 Summary and Discussion . 271

7.5.1 Alternative Multi-path Architectures . 273

Chapter 8 Conclusions 276

8.1 Summary of Contributions . 277

8.2 Topics for Further Research . 280

Bibliography 284

iv

List of Figures

2.1 Forwarding models: (a) Centralized CPU, (b) Cut-through 18

2.2 Pipeline of a cut-through forwarding path . 20

2.3 Forwarding elements: (a) memory element, (b) space element 22

2.4 Memory element implementation example: Knockout configuration 25

2.5 Common existing switching models: (a) Output-queued, (b) Input-queued 27

2.6 A combined input-output queueing switch (CIOQ) 28

3.1 An N ×N Clos network . 31

3.2 Example of Slepian-Duguid-based circuit re-arrangement 34

3.3 Control loop for an input-queued switch . 36

3.4 Maximum Size Matching using an equivalent flow network 39

3.5 Maximum Size Matching versus Critical Matching 40

3.6 Bandwidth and delay guarantees: Exact 100% throughput versus templates . . . 44

3.7 Fluid limits: Steps in analyzing queue stability 50

3.8 Lowest Output Occupancy First: A maximal matching 55

3.9 EREW Maximal Matching: A distributed implementation 59

3.10 Parallel Iterative Matching: Example of an RGA algorithm 60

3.11 Assembling large envelopes for low-frequency matchings 62

3.12 A decision chart to select matchings based on requirements 64

3.13 Throughput and QoS for input-queued switches using distributed scheduling . . . 66

3.14 GPS: Delays and backlog for a single flow . 70

3.15 Scheduler arrangements: (a) Hierarchical (b) Fair Airport 71

v

4.1 A Knockout configuration as a network of logical elements 76

4.2 General model of a buffered Clos switch . 78

4.3 BCS example: (6, [MSM], 3, 2, 2) . 79

4.4 The taxonomy of buffered Clos switches . 82

4.5 Single-path buffered Clos switches . 84

4.6 A parallel packet switch (PPS) . 87

4.7 Example: Work-conservation does not lead to strict relative stability 93

4.8 Relationship between various performance measures 94

5.1 A circuit Clos network: Time version . 100

5.2 CIOQ: Virtual output queues and guaranteed queues 105

5.3 Maximum delay for leaky-bucket constrained traffic under maximal matching . . 107

5.4 Maximal matching for QoS: Emulating a GQ using counters 108

5.5 Algorithm for generating a batch-mode critical matching 111

5.6 Example of a sequence of non-maximum critical matchings 113

5.7 Critical matching for QoS: Emulating a shaper using counters 114

5.8 Algorithm for generating a continuous-mode critical matching 117

5.9 Critical matching: Buckets of line sums . 118

5.10 Uniform traffic: A repeating sequence of perfect templates 122

5.11 EREW sub-maximal matching: Online generation of a perfect sequence 125

5.12 Example: Batch-mode matching for inadmissible traffic 128

5.13 Batch-mode maximal matching with residue management for inadmissible traffic 129

5.14 Batch-mode critical matching with pruning for inadmissible traffic 131

5.15 How T̄i,j(t) varies with t based on Qi,j(rt) . 134

5.16 A CIOQ switch with virtual input queueing in the output elements 136

5.17 A CIOQ switch as a set of tandem queues . 137

5.18 Shortest output-queue first (SOQF) maximal matching 138

5.19 Example: SOQF maximal matching algorithm 140

5.20 Imaginary queue system for non-conforming flows with stable output queues . . 142

5.21 A backpressure-based approximation of SOQF 147

vi

5.22 SFA policy using a multi-phase combination of matchings 149

5.23 SFA policy using an exclusive combination of matchings 150

5.24 Forwarding-path pipeline for multicast recycling support 153

6.1 CIOQ-A: CIOQ switch with aggregation . 158

6.2 Different queueing strategies for CIOQ-A switches 160

6.3 CIOQ-A: Emulating a CIOQ using shadowing and decomposition 163

6.4 CIOQ-A: Emulating a CIOQ using shadowing and decomposition 164

6.5 CIOQ-A: Batch-mode shadowing and decomposition to emulate a CIOQ with lag 168

6.6 CIOQ-A shadowing: Relationship between speedup and batch-size 171

6.7 CIOQ-A: Direct matching on virtual element queues 173

6.8 CIOQ-A: How do we generate a P × P matching from a P ×N queue state? . . 175

6.9 CIOQ-A: Replacing a VEQ with a virtual element scheduler 177

6.10 Example of a two-dimensional O(1) matching in CIOQ-A for uniform traffic . . 179

6.11 The CIOQ-A architecture applied to a switch with heterogeneous links 182

6.12 CIOQ-P: CIOQ switch with spatial pipelining 184

6.13 Staggered timeslots in a CIOQ-P switch: s = 2, K = 3 185

6.14 CIOQ-P: Emulating a CIOQ using shadowing and sequential dispatch 187

6.15 CIOQ-P: Emulating a CIOQ using a concurrent matching 189

6.16 Best-fit assignment of BVN templates to K space elements 191

6.17 Concurrent SPS matching: EREW sub-maximal implementation 193

6.18 A three-dimensional EREW concurrent matching for CIOQ-P 194

6.19 3D maximal matching: A cube of desynchronized pointers 195

6.20 CIOQ-P: Emulating an envelope-based CIOQ matching using striping 197

6.21 CIOQ-P: Per-element virtual output queues . 200

6.22 CIOQ-P: Emulating a CIOQ using equal dispatch 202

6.23 G-MSM: CIOQ switch with aggregation and pipelining 207

6.24 G-MSM: Combination methods based on shadowing and decomposition 212

6.25 G-MSM: 3D maximal matching with critical decomposition, P = 2,K = 3 . . . 214

6.26 G-MSM: Combination methods for matching on virtual element queues 216

vii

6.27 Recursive G-MSM switch: N = 4, P = 2,K = 3 218

6.28 Functional equivalences for single-path buffered Clos switches 222

7.1 A parallel packet switch (PPS) with load balancers and re-assemblers 228

7.2 A 2× 2 PPS with CIOQ switches for central memory elements 231

7.3 Ingress demultiplexor with per-path virtual output queueing 233

7.4 PPS: FIFO in the core may be incompatible with a buffered first stage 234

7.5 A PPS with virtual input queues in the core elements and multiplexors 236

7.6 Flow-based PPS: Static dispatch method . 238

7.7 Clos fitting in PPS: Effect of unbalanced load on speedup 242

7.8 Cell-based PPS: Round-robin on arrivals leads to instability 247

7.9 Cell-based PPS: Striping envelopes across the core elements 249

7.10 Arrival and service curves for envelopes in a PPS with striping 250

7.11 Cell-based PPS: Per-flow equal dispatch across core elements 254

7.12 Example of per-flow equal dispatch in a PPS with N = 3, K = 3 256

7.13 Cell-based PPS: Per-flow fractional dispatch across core elements 261

7.14 PPS: Speedup required for fractional dispatch 264

7.15 Sequence control using SCIMA . 267

7.16 Sequence control using the rank-based protocol 268

7.17 The split flow model for sequence-control analysis 270

7.18 Performance of the rank-based protocol . 271

7.19 Performance of SCIMA . 272

7.20 A load-balanced Birkhoff-Von Neumann switch 274

8.1 Is a buffered crossbar functionally equivalent to an OQ switch? 282

viii

List of Tables

1.1 Common measures for packet switching performance 5

2.1 Forwarding elements: Properties and constraints 24

3.1 General matching techniques and their complexity 42

3.2 Deterministic properties of popular matching algorithms 47

3.3 VOQ stability for admissible arrivals using popular matching algorithms 53

3.4 Algorithms for emulation of a reference OQ switch 58

4.1 Feasibility of BCS implementations . 81

4.2 Properties of single-path BCS designs . 86

5.1 SFA: Speedup required to simultaneously provide QoS and optimal throughput . 151

6.1 Shadowing in CIOQ-A: Speedup required for throughput optimization 166

6.2 CIOQ-A: Arbitration complexity of the shadow-and-decompose method 167

6.3 CIOQ-A: Arbitration complexity for VEQ matching 176

6.4 G-MSM: Equivalence with CIOQ, and complexity for various combinations . . . 210

6.5 Combination method for a 7-stage recursive G-MSM switch 220

7.1 Sequence Control: Dependence on loss bounds and delay estimates 269

ix

x

Preface

The design and analysis of scalable packet switches is now a mature field, thanks to several pi-

oneering contributions by the switching research community in the late 1990’s. This was fueled

partly by a quest for the biggest and most powerful switching system during the telecommunica-

tions boom visited upon us in that period. The time is now ripe to further the maturation process

by lending the field a semblance of formality and rigor common in classical circuit switching.

Motivated by this goal, I present here a compendium of techniques and analyses that may be used

by switch designers to methodically construct and study high-capacity switches in a formal and

unambiguous framework.

My choice to pursue this subject matter was not entirely coincidental. I was very fortunate

to be part of the architecture team of three generations of the best-selling AtlantaTM switching

chip-set at Bell Labs. Most of the original work presented here was indeed inspired by the re-

search conducted and lessons learned in the 1998–2002 time-frame while working on that and

related projects. The delayed publication of the material, on my part, may largely be attributed to

some entrepreneurial adventures in the interim.

Acknowledgments

Several people deserve my sincere gratitude for supporting this non-linear effort. First of all, I

would like to thank my advisor Prof. Henning Schulzrinne for his invaluable help and encour-

agement, and my co-advisor, Dr. Fabio Chiussi, who mentored me rather admirably during my

years at Bell Labs. Thanks are also due to Prof. Ed Coffman, Prof. Vishal Misra and Prof. Dan

Rubenstein for being part of my dissertation committee. This work was partially supported by

xi

the Lucent doctoral scholarship, for which I am thankful to the erstwhile Lucent management.

Many of the ideas here were influenced by numerous engaging discussions with my ex-

colleagues and fellow researchers at Bell Labs, while working with the Atlanta/π and Packetstar

teams, in the good old days. Specifically, I would like to thank Alberto Brizio, Abhijit Choudhury,

Andrea Francini, Lampros Kalampoukas, Denis Khotimsky, Jonathan Rosenberg, Sheng Shen,

Dimitrios Stiliadis and Bernhard Suter for always sharing their expertise, whenever I needed it.

I am grateful to the Invento Networks team, who kept life interesting and came along for a ride

the last two years. Special thanks are due to Dave Bartolini, Bob MacDonald and Bob Power for

spending time with me and helping me learn newer tricks.

Finally, I am thankful to my dear wife Vaishali for her continued support, motivation

and, in general, an upbeat attitude towards everything, not to mention her invaluable help in the

grammatical editing of this dissertation.

Santosh Krishnan

May 2006

xii

To Vaishali

xiii

xiv

1

Chapter 1

Introduction

The telecommunications industry has witnessed a dramatic increase in packet-based network de-

ployments over the past decade. Such deployments have spanned fiber-based wide and metropoli-

tan area networks, as well as various flavors of wireline and wireless access networks. The en-

terprise and data-center industries have seen a similar proliferation in the form of packet-based

local area, storage and cluster computing networks. Increasing traffic carried over such networks

has propelled the demand for high-capacity packet-switching systems.

The networking protocols supported by these systems vary widely from connection-

oriented to connectionless ones depending upon deployment. Legacy Asynchronous Transfer

Mode (ATM) and the emerging Multi-Protocol Label Switching (MPLS) [94] typically provide

transport services within network domains, the former still prevalent in DSL and cellular access

networks and the latter finding favor in service-provider metropolitan and core networks. The

ubiquitous Internet Protocol (IP) and Ethernet continue to support end-user connectivity, often

overlayed on the above transport networks. Elsewhere, purpose-built technologies such as Infini-

band and Myrinet provide interconnectivity for storage networks and cluster computing.

Independent of the specific protocol supported, and the diversity of names given to the

respective systems, e.g., multi-service switch, router and packet multiplexor, the core of such

systems consists of a forwarding path that transfers traffic units from the input to the output in-

terfaces. In the interest of protocol agnosticity, we refer to all such traffic units as packets in

the generic sense, and the systems as packet switches. The capacity of a packet switch depends

2 Chapter 1

upon the number of supported interfaces, also known as port count, and the transmission rates

of those interfaces. Two commonly used metrics for switching capacity include forwarding and

processing capacity. The former is measured as the amount of cumulative traffic that may be

instantaneously dispatched by the switch, e.g., a switch with 16 full-duplex interfaces each op-

erating at 10 Gb/s has a nominal capacity of 160 Gb/s. Processing capacity is measured as the

number of packets that may be processed in unit time, e.g., if the above switch can tolerate a

minimum packet size of 125 bytes, the processing capacity on each interface would be 10 million

packets per second (pps).

The need for higher switching capacity stems from both higher port counts due to dense

deployments, and higher transmission rates enabled by improvements in the physical layer. A

typical high-end IP router in production today (e.g., Cisco 12000 series, Juniper T-series) sup-

ports 10-20 ports, each operating at 10-40 Gb/s, thus requiring a forwarding capacity of several

hundred Gb/s. Since IP packet sizes have not changed materially with the increasing rates, assum-

ing a minimum packet size of 64 bytes, the router would require a processing capacity of about

20-80 million pps per interface. These represent more than a tenfold increase in capacities since

a decade ago. This trend is expected to continue, albeit at a slower pace compared to the past

decade, driven by a greater number of high-speed fiber/DSL ports at the edges of the network, the

anticipated adoption of 10-G Ethernet in the metropolitan area, and increasing OC-192 (10 Gb/s)

and OC-768 (40 Gb/s) links in the core. A higher forwarding capacity imposes severe constraints

on the construction of the switch, e.g., on the design of packet memories, interconnection net-

work and arbitration logic, while a higher processing capacity constrains the complexity of the

algorithms such as route determination and scheduling that must operate on a per-packet basis.

As an orthogonal trend, multimedia and other traditionally circuit-switched network ser-

vices are being migrated to a converged packet-based network. Such services are characterized

by traffic flows that require Quality of Service (QoS) in the form of bandwidth and delay guaran-

tees. Examples of such flows include Voice-over-IP (VoIP) sessions, Video-on-Demand streams,

and MPLS Virtual Private Network (VPN) tunnels providing multi-site office connectivity. While

end-to-end QoS in an IP network remains a pipe-dream and is typically addressed by throwing

additional capacity into the network, QoS capability is being slowly engineered into selected por-

Introduction 3

tions of the network. For example, the TR-58 specification of the DSL forum and the PacketCable

specification of CableLabs allow for QoS provisioning of end-user flows in the access network.

Elsewhere, QoS for aggregates of end-user flows are becoming common in MPLS-based trans-

port networks. Consequently, the forwarding path of a modern packet switch needs to provide

preferential treatment to specified flows so that their negotiated QoS requirements may be met.

While the increase in packet-based network traffic has been facilitated by enhancements

in physical layer technologies and QoS capability has been addressed by advances in link schedul-

ing, the forwarding path itself remains a bottleneck primarily because memory bandwidths have

not experienced comparable improvements. Consequently, there is a continuing interest in build-

ing packet switches using multiple modules of lower capacities. This dissertation addresses the

design and analysis of such multi-module switches. We present architectures that may be used

to construct the forwarding path of a large-scale packet switch, and the associated algorithms

to optimize throughput and provide QoS to the served traffic flows. Towards this goal, we pro-

pose a new taxonomy for a class of scalable switches, together with an analytical framework to

characterize optimal performance for the algorithms employed within such switches.

1.1 Motivation

The design and analysis of classical multi-module circuit switches (see [45] for an overview)

provide a historical precedence and inspiration for this work. Scalable switches, using an inter-

connection network of smaller components, were proposed to decrease the number of expensive

electronic crosspoints within a large switch. Notable examples of such architectures include

the Banyan, Benes, Clos and Cantor networks. This work benefited immensely from a well-

established performance framework, namely, the property of blocking, which characterized the

performance of a given architecture in isolation from the properties of specific circuit arrival

processes. Levels of blocking behavior, namely, strict-sense, wide-sense and rearrangeable, al-

lowed to accurately deduce the functional equivalence of a given design with an ideal single-stage

switch, in terms of circuit admission capability. Such rigor and precision are lacking in prior

packet-switching work.

Admittedly, significant progress has already been made towards the design of multi-

4 Chapter 1

module packet switches in the form of combined input-output queueing (CIOQ) switches (e.g.,

see [24, 70]), memory-space-memory switches [19, 22], and more recently, parallel switches [50,

62] and load balanced Birkhoff-Von Neumann (BVN) [9] architectures. Such works have yielded

several arbitration and load-balancing algorithms for the respective designs, yet, in the absence

of a uniform performance framework, several diverse, often inadequate, measures and/or simu-

lation results have been used to claim optimality, making it difficult to make fair comparisons

between switches. This has likely restricted the practical implementations of sophisticated high-

performance designs in the industry. For example, a recent survey [102] as well as a look at

systems based on the standard Advanced Telecom Computing Architecture (ATCA) platform

confirm that a majority of packet switches continue to adopt simple variations of the shared-

memory output-queued (OQ) or a crossbar-based input-queued (IQ) design, often with unknown

performance characterizations.

Among patently imperfect measures is a practice still prevalent in the industry to rig to-

gether an interconnection between the input and output interfaces and claim the nominal capacity,

i.e., the sum of the interface rates, as the throughput of the system. For example, a number of

so-called terabit routers are but multiple switching blades interconnected by a separate cluster

controller switch. The mere fact that a path exists between any two interfaces of a system does

not directly imply that the nominal rates can be sustained on each interface. Consequently, the

advertised capacity of the system is rendered meaningless in engineering the network. Another

approach, common in earlier ATM literature, is to quantify switching performance by deriving

packet loss ratios in the finite buffers within the switch for specific arrival patterns. It can be ar-

gued that such ratios are primarily indicative of the arrival processes themselves, and not entirely

meaningful in choosing a switch design. Fortunately, these approaches are falling out of favor in

the modern literature, replaced by concepts such as non-blocking and 100% throughput. While

the latter constitute a step in the right direction, they are not entirely satisfactory.

The concept of non-blocking, which is in reality a circuit-switching property, has been

variously and often ambiguously applied to characterize a packet switch. One of its more rea-

sonable interpretations is a switch that is non-blocking in structure, i.e., a design in which a path

can always be found between an idle input-output interface pair. While this might be a necessary

Introduction 5

Measure Limitation

Full interconnection Interface throughput not necessarily sustainable

Loss ratios for finite switch buffers Property of arrivals, not of the switch

Non-blocking structure Does not address throughput

100% throughput Does not address arbitrary, e.g., inadmissible, arrivals

Table 1.1: Common measures for packet switching performance

condition to optimize throughput, it is not sufficient as evidenced by a simple crossbar switch,

which is trivially non-blocking yet not necessarily optimal in throughput. A better measure is that

of 100% throughput (example applications can be seen in [29, 70]), which refers to the ability of a

switch to ensure stable queues for admissible traffic in the long term. Well-behaved traffic is taken

for granted either via auxiliary admission control means or as a result of end-to-end flow control.

While this approach comes closest in the literature to providing a meaningful performance frame-

work, it does not address equivalence with an ideal switch for arbitrary, including inadmissible,

traffic, leading sometimes to necessitate additional considerations such as starvation prevention.

Table 1.1 summarizes these common measures and their limitations.

The above problems are compounded by a lack of clear demarcation between the logical

architectures of packet switches, and their chosen implementations. For example, a classical N×

N OQ switch is logically similar in operation to several space-division multiplexed designs [110]

such as the bus-matrix switch and the full-mesh switch each of which employs N2 disjoint paths,

with respective queues, between the input-output pairs. A similar case can be made for a buffered

crossbar switch, in which there has been some recent interest, which places those N2 queues at

the crosspoints of a N × N crossbar, with the main implementation concern being minimizing

the on-chip queue sizes via backpressure to larger off-chip queues at the inputs. The logical

similarity is due to the fact that in each of these designs, arriving packets can immediately be

presented to the destination queues that are organized on a per-output basis, and each of those

queues are random-accessible in the departure decisions. Our contention is that any analysis of

such designs constitutes an analysis of the implementation and its associated trade-offs and not

that of the logical switch architecture.

6 Chapter 1

These considerations lead us to two important questions: what qualifies as the logical ar-

chitecture of a multi-module packet switch, and what models can be used to characterize optimal

performance of a packet switch design? Once these questions are answered, the remaining task

would be to identify the algorithms that may be implemented to achieve such optimal perfor-

mance. Prior taxonomical work [88] have covered these questions for ATM switch topologies,

though most of the focus was on the structural blocking property of the interconnection network.

Further studies (e.g., [12]) have dealt with the design and analysis of a specific class of Banyan-

based topologies. Though such works, and others previously mentioned in this section, have

enabled to implement practical multi-module switches, providing functional equivalence with an

ideal switch remains an open topic of research for many of the simple non-blocking networks

augmented with buffers at arbitrary points within them. This dissertation takes a small step in

addressing that topic.

1.2 Contributions

The primary contribution of this work is a constructive approach to building a high-capacity

packet switch, using stages of lower capacity memory and space elements. We restrict ourselves

to designs that resemble the three-stage Clos network, augmented with buffers. For switches

with this structure, which we call Buffered Clos switches, we establish a taxonomy of packet

switch designs. Each item in the taxonomy is accompanied by the design and re-use constraints

that it resolves, so that switch implementors may identify the most appropriate item to use. To

accurately characterize the capabilities of the switches in the taxonomy, we introduce a new

performance framework for packet switches based on the ability of their resident algorithms to

achieve functional equivalence with an ideal switch. While some items in the classification are

already addressed to a large extent in the literature, the taxonomy itself and the performance

framework are novel. In addition to providing a road-map to construct scalable switches, this

work allows to ascertain the properties of existing vendor equipment by inspecting the structure

and the associated algorithms for functional equivalence.

To place this work in the context of existing results in the literature, we present it in a new

perspective, namely, as an exercise in how formal methods from graph theory, combinatorics and

Introduction 7

stochastics may be beneficially used to design and analyze switching algorithms. This exposition

is concentrated on IQ and CIOQ switches, which form the starting point of our taxonomy and the

inspiration for our performance framework. For the heavily researched CIOQ switch, we augment

the state of the art by presenting algorithms that may be used to achieve stricter equivalence

with an ideal switch. We propose a new intuitive proof that shows how a CIOQ switch may be

considered as an analog of the circuit Clos switch. This result is used to exhibit how simple

matching algorithms may be used to achieve bandwidth and delay guarantees. We then present

three new fundamental results on the throughput capability of such switches. Specifically, we

prove that a class of critical matching algorithms ensures equivalence with an ideal switch without

requiring internal speedup, and that well-chosen maximal matchings are sufficient for asymptotic

emulation of an ideal switch even under inadmissible traffic.

Proceeding further in the above taxonomy, we present the design and analysis of CIOQ

switches with aggregation and pipelining, two crucial ingredients to scaling. These fall into the

category of what we call single-path buffered Clos switches. We show the application of these

two transformations to convert a CIOQ switch, without losing performance, into general memory-

space-memory switches. We present methods that shadow a CIOQ switch, combined with matrix

decomposition to account for aggregation, and with sequential, balanced or concurrent dispatch

methods to account for pipelining, in order to inherit the performance of the reference CIOQ

switch. Some existing switches appear similar to these, nevertheless, the presented algorithms

and analytical results are novel. Lastly, we propose and analyze a new parallel packet switch

architecture, which belongs to what we call multi-path buffered Clos switches. We cover the

topics of stable load balancing and sequence control for such switches. It should be noted that

while all the contributions mentioned in this section are original, some of the accompanying

results have already been published elsewhere by the author.

1.2.1 Applicability and Scope

This work is restricted in several aspects to keep it tractable. We deal mainly with unicast traf-

fic. While the ability to handle multicast traffic is certainly relevant to packet switching, it is not

addressed with the same level of detail except, in some cases, to point out easily adaptable exten-

8 Chapter 1

sions. We also do not include specialized switching algorithms that may be used to optimize the

performance for adaptive traffic such as TCP. Our assumption is that the presented performance

framework by itself will be beneficial to adaptive traffic as well, and other mechanisms, such

as active queue management, to enforce fairness among adaptive flows, can be added on to this

work without much difficulty. In addition, we do not address the end-to-end network behavior

and network engineering. Instead, we concentrate on individual node mechanisms whose suit-

ability for end-to-end optimal behavior may be studied independently. This work is also agnostic

of the protocol processing specifics and control-plane handling, e.g., signaling the flows for QoS,

and route control.

This dissertation covers only the switching node architectures and algorithms. There are

several simplifying assumptions that will restrict the direct application of this work to practical

implementations. For example, the effect of finite-sized buffers is not explored in detail. For

the most part, the buffers in the logical switching elements are considered to be infinite, with the

assumption that the tails of the queue-length distributions may be used to yield packet loss ratios

in actual designs. Similarly, the full effect of variable-sized packets, and the overhead of the

associated segmentation and reassembly component, is not adequately addressed. We also admit

that several of the presented algorithms are centralized in nature. The complexity of the logic

as well as a requirement to build multi-board systems might necessitate non-trivial extensions to

achieve a comparable distributed implementation. Consequently, this work should be treated as

a theoretical advancement, which may be used as a guide to devise suitable heuristics to enable

practical designs.

The author himself was responsible for several key components of the architecture of the

commercial Lucent/Agere Atlanta(tm) chipset [19] and the protocol-independent (π) chipsets [21,

22], all of which were based on memory-space-memory and buffered crossbar designs before

those terms became fashionable in the literature. The author was also responsible for a prototype

architecture of a parallel packet switch named π-group. While this dissertation does not cover

any of those implementations in detail, those products provided proofs of concept for the ideas

contained here.

Introduction 9

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 contains our view of the

packet switching model. We introduce the basic logical building blocks that are meaningful for

packet switching, namely, memory and space elements, and make a case for meaningful notions

of optimal performance. The latter includes three basic propositions that encompass the QoS and

throughput properties of a switch. These are presented before the chapter on literature in order to

place the latter in proper perspective.

Chapter 3 covers the related work in switch design, including a short exposition of circuit-

based Clos networks, and a main focus on the results in IQ and CIOQ packet switching. These

are presented in a new context, namely, as a usage of formal methods from diverse mathematical

areas to arrive at high-performance switching algorithms. We cover the question of how matching

algorithms are devised for input-queued switches, and how those matchings have been applied to

QoS and throughput performance in the prior art.

Chapter 4 presents our taxonomy of buffered Clos switches, and the new performance

framework of functional equivalence. This is accompanied by a presentation of how existing re-

sults fit into the new framework. The taxonomy allows switch designers to assemble basic build-

ing blocks into sophisticated multi-module switch designs, while the framework of equivalence

allows to accurately characterize and compare the performance of the algorithms implemented

within such switches.

Chapter 5 augments the state-of-the-art of CIOQ switches, the first item in our taxonomy.

We provide a proof of how a circuit Clos switch is analogous to a packet CIOQ switch, using

which we exhibit how bandwidth and delay guarantees may be provided. On the throughput of

such switches, we show that a class of critical matching algorithms ensure equivalence with an

ideal switch for admissible traffic. Furthermore, we show that an existing class of simple al-

gorithms, namely maximal matching, may be used for stricter equivalence with an ideal switch

under partially admissible traffic, and present a specific maximal matching that ensures asymp-

totic emulation of the ideal for abritrary traffic, which solidifies this equivalence. Finally, the

throughput and QoS results are combined to yield a unified matching framework.

Chapter 6 covers single-path buffered Clos switches, namely, switches with aggregation

10 Chapter 1

and pipelining. We present and analyze matching algorithms for such switches, based on shad-

owing a high-performance CIOQ switch. The transitivity property of functional equivalence is

applied to translate the optimal throughput and QoS results of CIOQ switches to such single-path

designs. For switches with aggregation, we propose a shadow-and-decompose method, as well as

a lower-complexity matching method, using a more efficient queueing strategy, in order to obtain

performance comparable to CIOQ. Towards the same goal, for switches with pipelining, we pro-

pose and analyze sequential, concurrent and equal dispatch methods. To conclude, the possibility

of recursively constructing switches with smaller components, using a larger number of stages, is

briefly presented.

Chapter 7 contains the architecture and analysis of parallel packet switches, which are

multi-path manifestations of buffered Clos switches. We propose load balancing algorithms for

such switches and analyze their switching performance. We also cover issues unique to multi-

path designs, primarily that of sequence control. For completeness, we include a short exposition

on the other common multi-path design in the literature, namely, the BVN switch.

Chapter 8 presents the conclusions of this work, including problems that remained unad-

dressed and avenues for future research.

11

Chapter 2

Switching Model

We first overview the switching framework relevant to this work, including definitions of basic

concepts such as contention, blocking and throughput, followed by a case for some meaningful

notions of optimal performance. We then present models for the forwarding path of a packet

switch, and their atomic logical building blocks. We briefly introduce the output-queued (OQ)

and input-queued (IQ) switching models, the former representing the ideal reference switch for

our performance framework.

2.1 Switching Basics: Overview

2.1.1 Circuits: Blocking

Circuit-based networks divide the physical communication media into units called channels.

Depending upon the multiplexing technique, channels may correspond to timeslots, frequency

bands, codes or wavelengths. A circuit is an end-to-end traffic pipe established by pre-determining

the path to be traversed through the network, and assigning channels, if they are available, on the

links that comprise the path. Traffic is segmented into frames, and each circuit switching node in

the path transfers the frames that arrive on a given channel of an input link to the respective pre-

established channel of an output link. Examples of such nodes include SONET switches based on

electronic crossbars and WDM waveguide routers based on optical components such as tunable

lasers and MEMS mirrors.

12 Chapter 2

A contention is a condition in which more than one frame compete for a given link at the

same instant. If this link belongs to the set of outputs of a switch, we refer to the condition as

external contention. If it belongs inside the interconnection network of the switch, we refer to

the condition as internal contention. Since channels are pre-established on every network link

traversed by a circuit, there is no external contention and no inherent necessity to provide buffers

for pending frames, other than for synchronization purposes. Consequently, the performance

measures of interest in circuit switching include only the admissibility of circuits, or call-level

behavior, and the capability to realize internal paths within the switch to accommodate admitted

circuits. The former is studied using loss models [95], which characterize circuit acceptance

probabilities based on the statistics of call arrivals and holding times, a celebrated example of

which is the Erlang loss system used to engineer telephony networks. The latter is determined by

the architecture of the switching node itself.

A circuit switch achieves maximum throughput as long as an internal path can be estab-

lished for every circuit that is admitted solely on the basis of the available resources of the external

links. Such a property, effectively, allows us to remove the specifics of the internal switch archi-

tecture from network engineering considerations, which then depend only on the available link

resources in the network. A switch that satisfies this property is referred to as non-blocking. It is

said to be non-blocking in the strict sense if an internal path can be established without disturbing

any existing ones. If a re-arrangement of the existing paths is necessary and sufficient to sup-

port a newly admitted circuit, the switch is called re-arrangeably non-blocking. All non-blocking

switches may be considered functionally equivalent in terms of the circuits they can support.

A trivial example of a strictly non-blocking N ×N circuit switch, with each external link

supporting a single circuit, is a crossbar that employs N2 electronic crosspoints to fully intercon-

nect the N inputs to the N outputs. Much of the work in circuit switching [45, 88] addresses

the construction of a multi-module bufferless fabric using an interconnection network of smaller

components. This was motivated primarily by the fact that electronic crosspoints were expen-

sive and their number in a crossbar increases quadratically with the size of the switch. Such

networks may have internal contention due to commonality in the internal paths between input-

output pairs, and hence can potentially be blocking. An internal speedup, defined as the ratio of

Switching Model 13

the total link capacity between two internal stages to the total external capacity, is usually used to

counter blocking. Examples of notable interconnection networks are the Banyan network and the

Batcher sorting network, which require O(N log N) and O(N log2 N) crosspoints, respectively.

Both these networks are self-routing with a unique path between every input-output pair, how-

ever, the resulting structure is blocking. A popular example of a non-blocking network, which

we shall revisit on several occasions, is the three-stage Clos network, which uses O(N1.5) cross-

points. A more complex example is the Cantor network, which uses O(N log2 N) crosspoints

and remains non-blocking by employing several planes of a blocking sorting network. Indeed,

the literature in the design of bufferless interconnection networks is fairly rich, yet rigorous due to

the well-defined cost parameter and performance framework, namely, the number of crosspoints

and blocking behavior, respectively.

2.1.2 Packets: QoS and Throughput

Packet-based networks do not rely on holding dedicated link resources and on switching between

pre-established physical layer channels. Instead, the physical and link layers have the flexibility

to employ either synchronous means such as SONET, or asynchronous ones such as Ethernet, on

a link-by-link basis. Forwarding decisions at each switching node are made separately for each

individual packet, based on the packet header information and the state maintained within the

switch.

A traffic flow, in the most generic sense, refers to a stream of related packets. A flow

may be fine-grained, corresponding to an end-to-end application session, or coarse-grained such

as a permanent MPLS path providing connectivity between two IP subnets. In fact, each switch

may view the aggregate traffic between each of its input-output pairs as a flow of the coarsest

granularity. Flows are identified by a switch either using a label in the header, as in ATM and

MPLS, or through a header-filter based on ranges of source and destination addresses, protocol

types and/or transport-layer port numbers. Resources may be negotiated and configured for a

subset of flows traversing a switch through a signaling phase prior to packet transmission or

via long-term service level agreements (SLA). The traffic presented to a typical packet switch

consists of a combination of such guaranteed QoS flows, for which the traffic profiles (e.g., a

14 Chapter 2

token bucket specification [28]) and service requirements, including the desired average rate and

tolerable maximum delay, are known in advance, and best-effort flows without any pre-specified

profiles or requirements. Even the former are allowed to violate their negotiated profiles, in which

case the excess component of their offered traffic is treated on a best-effort basis.

The foremost distinguishing feature of a packet switch is the inherent presence of ex-

ternal contention, i.e., several packets destined to the same output may compete for that link

simultaneously. This phenomenon can be sustained over an arbitrary period of time, resulting in

a backlog of unserved packets, which need to be buffered. An arriving packet may be dropped

in response to congestion in the finite amount of available buffers, resulting in a packet loss ratio

for the corresponding flow. The admitted backlog is then scheduled in a chosen fashion, which

determines the packet delays, the observed flow service rates and the total throughput of the

switch. Consequently, the performance measures of interest in packet switching include not only

the admissibility of flows but also the abilities to meet the negotiated QoS requirements and to

maximize throughput, both in the presence of external contention. Multi-rate loss models [95],

similar to the ones in circuit switching, may be used to address the former for guaranteed QoS

flows, while empirical ones (e.g., [5, 89]) are used to characterize the expected traffic for best-

effort flows. These models, based only on the external link resources, may be meaningfully used

to engineer the network, provided a packet switch possesses the above abilities, thereby removing

specifics of the internal switch architecture from such engineering considerations.

In summary, the primary goals in designing a packet switching node include provisions

to ensure that the observed packet throughput on the external links approaches the advertised link

capacities, and provisions to provide preferential treatment, in the form of scheduling and buffer

management, to specified flows so that their negotiated QoS requirements are met. When design

constraints necessitate building a multi-module switch, the challenge is to meet these goals in the

presence of both external and internal contention.

2.2 Notions of Optimal Performance

We now crystallize some of the concepts seen in the overview, and arrive at a few propositions that

serve as guiding principles for switching analysis. A circuit request between an input-output link

Switching Model 15

pair of a circuit switch is considered admissible if there are available channels on the specified

external links. Let V denote a set of simultaneously admissible circuits. A non-blocking switch

ensures that a path within the switch is realizable for every v ∈ V . Since this holds for any given

V , including any given definition of an optimal set, and since circuit switches drop inadmissible

requests, we assert the following:

Proposition 1. The non-blocking property ensures optimal throughput of a circuit switch.

Packet switching calls for similar properties that ensure optimal QoS and throughput,

limited solely by external link resources, for the most general models of offered traffic. Let the

traffic arriving at input i and destined to output j of a packet switch be referred to as the input-

output flow (i, j). Let the amount of arriving traffic, e.g., in bits, for each flow be maintained by

the arrival matrix A, where Ai,j [t1, t2) refers to the arrivals in the interval [t1, t2) for flow (i, j).

The short-form A(n) may be used for A[0, n). In general, this is governed by a stochastic arrival

process. The long-term average rates of arrival yield the offered rate matrix λ, i.e.,

λi,j = lim
n→∞

Ai,j(n)
n

. (2.1)

The arrivals are considered admissible if the following conditions are satisfied:

∀i
∑
j

λi,j ≤ C and ∀j
∑

i

λi,j ≤ C, (2.2)

where C refers to the link capacity of the inputs and outputs. The above is typically used to restrict

the modeled arrivals due to the following reasons. The first inequality is a physical constraint

imposed by the input link. A violation of the second would imply that at least some of the output

links cannot sustain the offered rates. As a special case, the arrivals are considered bounded

admissible with timescale T , if the average rates λ hold for every interval of length T , and λ is

admissible, i.e.,

∀i, j, t Ai,j [t, t + T)
T

≤ λi,j (2.3)

and (2.2) is satisfied. In other words, (2.3) imposes a timescale on the averaging of arrival rates.

The arrivals are considered partially admissible if the second inequality in (2.2) holds for a proper

subset of the outputs. Unlike circuit switching, neither admissibility nor a knowledge of λ may

be presumed due to the presence of best-effort traffic.

16 Chapter 2

The required rate matrix R contains the effective-rate requirements of the guaranteed

QoS component. In general, this can be independent of λ. If rates are specified for finer-grain

flows, these may be aggregated per input-output pair to yield R. As opposed to λ, the required

rate matrix may be presumed to be known and admissible, i.e.,

∀i
∑
j

Ri,j ≤ C and ∀j
∑

i

Ri,j ≤ C. (2.4)

The above is ensured by the admission control procedure that negotiates QoS on the basis of the

external link resources. Consequently, a switch that is able to allocate any given combination

of admissible rates throughout the internal paths between respective input-output pairs may be

considered optimal in QoS capability. We refer to the act of allocating rates as flow fitting or

providing virtual bandwidth trunks through the switch. Notice that these trunks may be viewed

as multi-rate circuits, e.g., a request for 5 Mb/s on a link of 20 Mb/s capacity may be viewed as a

simultaneous request for 5 circuits on a link with a capacity to admit 20 circuits. Therefore, it is

straight-forward to see that a multi-stage packet switch that has the same logical structure, i.e., an

identical interconnection network with identical capacities on each internal link but augmented

with contention buffers in certain stages, as a non-blocking circuit switch is guaranteed to find

the requisite internal paths to fit any set of admissible flows.

Proposition 2. A packet switch with a non-blocking structure is optimal in QoS capability.

Due to the variability in the packet arrivals, mere path realization is not sufficient. Addi-

tional mechanisms, specifically, scheduling policies in each stage of the switch, are required to

ensure QoS satisfaction. Nevertheless, in terms of switch architecture, a non-blocking design is

a good first step. Since much of the early packet switching work was based on ATM switches,

wherein the entire traffic undergoes admission control, the ability to fit flows was considered

the primary objective, also leading to several claims of optimal throughput based solely on the

non-blocking property.

Notice that if all λi,j are known beforehand, and λ is admissible, we may use it instead

of R in order to create virtual bandwidth trunks within the switch. In this special case, the ability

to provide optimal QoS is sufficient to realize maximum long-term throughput as well. However,

Switching Model 17

the knowledge of offered rates is an invalid assumption in packet switching, necessitating addi-

tional measures for optimality in throughput. Since the amount of traffic that may be successfully

dispatched on an output link is limited by the capacity of that link, maximum throughput is en-

sured as long as an output link of the switch never idles when a packet destined to it is backlogged

anywhere within the switch. Switches with this property are referred to as system-wide work con-

serving. Therefore, a packet switch may be considered ideal if it is work conserving under any

offered traffic, and is able to allocate any given combination of required rates at the same time.

If λ is admissible, every queue in an ideal switch remains stable. If λ is partially admis-

sible, only those queues that contain traffic destined to oversubscribed outputs, i.e., outputs j for

which
∑

i λi,j ≥ C, become unstable. Within an oversubscribed output j, an ideal switch has

the ability to serve each individual flow (i, j) with a specified proportion of the output capacity.

This results in a subset of the queues that contain traffic to output j to remain stable, specifically,

the queues corresponding to (i, j) for which λi,j is less than the respective proportion. Notice

that any switch that can maintain the stability of the same set of queues as an ideal switch ends

up providing the same asymptotic throughput to each corresponding flow, and hence the same

throughput for the switch as a whole. We refer to such a switch as functionally equivalent to an

ideal switch. In other words, we may use the stability of a given set of queues for equivalence

purposes in packet switching, much like admissibility of a given set of circuits in circuit switch-

ing. If it is difficult or impossible to prove that a switch design under consideration is ideal, one

may then claim optimal throughput by establishing functional equivalence with an ideal switch,

for the most general model of offered traffic.

Proposition 3. A packet switch that is functionally equivalent, in terms of queue stability, with a

well-known ideal switch is optimal in throughput.

We can now relate the techniques used in the existing literature to the above notion of

optimal throughput. One approach is to rely on directly establishing a switch to be work con-

serving (e.g., [65]), while another is to ensure that the packets depart from the outputs of a given

switch in an exact emulation of the departure from a well-known ideal switch, for identical ar-

rival patterns (e.g., [24]). One widely used approach that relies on establishing queue stability, and

hence implicitly on functional equivalence with an ideal switch, is the notion of 100% throughput

18 Chapter 2

FABRIC

Line 1

Line 2

I/O Bus

Line 1

Line 2

PP

PP

Line N
PP

Line Cards

LC

LC

Line N
LC

CPU CPU

Port ProcessorsI/O
 B

us

(b) Cut−through(a) Centralized CPU

da
ta

 fl
ow

SWITCH

Figure 2.1: Forwarding models: (a) Centralized CPU, (b) Cut-through

(e.g., [29, 70]). The technique is to prove the stability of all the queues for admissible offered

rates. This is a reasonable approach except, maybe, for the presumption of admissibility.

To summarize, we may use the following steps to design a multi-module packet switch

that remains optimal in QoS and throughput performance. We start with a non-blocking structure,

possibly borrowed from circuit switching, augment it with internal buffers wherever necessary to

account for contention, and provide for scheduling policies that can guarantee virtual bandwidth

trunks to satisfy any admissible required-rate matrix. We then ensure that the devised scheduling

policies, which govern the dispatch decisions from module to module and finally to the external

links, are able to maintain stability in the same set of queues as an ideal switch for the same

offered traffic, not necessarily admissible. The performance capability becomes weaker whenever

restrictions are placed on the offered traffic.

2.3 Forwarding Models

With a framework in place for optimal packet switching performance, independent of the internal

switch architecture, as desired, we are now ready to address the latter, namely, the topic of switch

Switching Model 19

design itself. We identify two basic forwarding models for a packet switch, the centralized CPU-

based model and the cut-through fabric model.

The first generation of routers, and many of the current lower capacity ones, perform

software-based forwarding using a centralized processor. A general purpose CPU is connected

to multiple line cards through an I/O bus, as shown in Fig. 2.1(a). The lines shown are full-

duplex, i.e., they contain both input and output interface components. In practice, the line cards

may be located off of the same board as the CPU, with an on-board bus such as PCI providing

connectivity to the CPU, or on separate boards on a chassis, with a star or bus connectivity

between them. The cards perform the physical and link layer protocol processing and forward

the incoming packets to the CPU. Access to the I/O bus may be controlled by the CPU, e.g., by

polling the line cards, or arbitrated via a separate medium-access technique. The headers of the

incoming packets are analyzed by the CPU to determine the outgoing interface and any special

handling, if applicable, following which they are dispatched to the respect output in a chosen

order.

In general, a packet may experience contention at several points within the system, namely,

at the I/O bus waiting to gain access and get transferred to the CPU, at the CPU waiting to be

processed, and finally, as is the case with any packet switch, at the output interface. Accordingly,

queueing buffers are provided in the line cards next to the input and the output interfaces, and

in the CPU memory. An evident disadvantage of this model is that the limited communication

bandwidth of the I/O bus and the processing power of the CPU present significant bottlenecks

to packet throughput, and thereby limit the port counts and the interface rates that can be sup-

ported. Providing QoS is practically ruled out if packets need to be queued before they can even

be identified by the CPU.

Consider an example of a 16×16 switch with 1 Gb/s ports. In order to make such a switch

wire-speed, i.e., to ensure that any queueing happens only after a packet has been identified,

and to remove the I/O bus and the CPU as internal contention points, the components need to

be dimensioned as follows. Assuming a minimum packet size of 64 bytes, the CPU needs a

processing capacity of 32 million pps (16 Gb/s of total offered traffic divided by 512 bits), which

translates to an upper bound of about 32 cycles on a 1 GHz CPU to account for memory access and

20 Chapter 2

Segment

Control

Data

CPU

Output

Input

FABRIC

Header
Processing

Header
Update

Interconnection

Queues
PHY/

MAC

Reassemble

Figure 2.2: Pipeline of a cut-through forwarding path

instructions. To sustain the full-duplex traffic, the I/O bandwidth required is 32 Gb/s, compared,

e.g., to the 8 Gb/s available using a 64-bit 133 MHz PCI bus. The bandwidth required of the CPU

memory is also 32 Gb/s, allowing merely 16 ns for a memory transfer assuming a wide 64-byte

memory bus. Clearly, these are tall orders even for the modestly sized switch in the example.

Consequently, the path traversed by the packet through a central CPU is often referred to as the

slow path.

Modern designs use the cut-through model illustrated in Fig. 2.1(b). Special-purpose

port processors, attached to each full-duplex line, operate on packets at the ingress and egress of

the switch. In addition to physical and link-layer processing, packet header processing is also

performed within these units using local state information. Such processing includes network

address lookup for output determination, flow identification via filters, flow policing if applicable,

statistics collection, and other protocol-specific tasks. The results of these operations that are

relevant to packet dispatch are encoded and inserted into a special local header. The packets are

then routed directly to the respective output interfaces through a dedicated switch fabric, also

known as the fast path. If the fabric expects fixed-size data units, the port processor is also

responsible for the associated segmentation and reassembly (SAR) of variable-sized packets. A

central CPU is connected to the port processors either via a special port of the switch fabric, as

Switching Model 21

shown in the figure, or through a dedicated I/O bus. In this model, only the network and system

control traffic is routed to the CPU, which implements the relevant routing and management

protocols, maintains the overall state of the system and programs the local states into the port

processors and switch fabric. In other words, the slow path continues to handle the control plane,

while the dedicated fast path handles the data plane. Fig. 2.2 shows an example pipeline of a

cut-through forwarding path.

In practice, there are several variations of this logical model. Each port processor unit may

be implemented on a separate board, attached to a chassis, with a star topology on the backplane

interconnecting them to a switch fabric board. Alternatively, the interconnection may be on the

backplane itself as a full-mesh between port processor cards, which may also house the queues

of the switch. In any case, all internal contention in this model is concentrated within the fabric,

provided the port processors operate at wire speed. For the same 16×16 switch example as above,

this requires a processing capability of 2 million pps in each unit. Communication IC vendors

already offer so-called network processors that implement the necessary components in silicon

at interface rates of 10 Gb/s and processing capacities of 20-30 million pps. More importantly,

as opposed to the previous model, these capacities do not need to increase linearly with the port

count. The switch fabric needs to sustain a forwarding capacity of 16 Gb/s, with a memory

bandwidth that depends on the architecture, though it clearly does not exceed 32 Gb/s. Vendors

today use several different types of designs to offer fabrics that operate at a nominal capacity of

several hundred Gb/s.

While there are quite a few interesting problems in scaling the port processors, such as

the best sorting structures to use for address lookup, for example, we concentrate on the design

of the fabric itself.

2.4 Building Blocks

We introduce two types of basic forwarding elements to construct a fabric, namely memory ele-

ments and space elements. These are logical entities that address the two primary functionalities

of a packet switch, namely, queueing to absorb contention, and providing interconnection. From

the perspective of multi-module switch design, we consider these entities to be the atomic build-

22 Chapter 2

(b) Space Element
Symbol:

(a) Memory Element

2

M
N

2

11

321

N

1

4

3

2

In
pu

ts

In
pu

ts

M

Symbol:

S

S

S

Scheduler

Output

Queues

Groups of

Outputs

O
ut

pu
ts

ARBITER

Figure 2.3: Forwarding elements: (a) memory element, (b) space element

ing blocks.

An N × M memory element, shown in Fig. 2.3(a), accepts packets from the N input

interfaces and enqueues them into queues that are arranged into groups, one group for each of

the M outputs. A multicast packet is enqueued into several queues simultaneously. Note that

the output groups need not be in physically separate memories, and may indeed share resources

from a common pool. At the other extreme, each group may be implemented using a bank of

several physical memories. The structure of an output group may vary depending on the kind of

preferential treatment to be given to the queued packets. For example, in the simplest case, we

may have one queue per output for a total of M queues in the element. We may have one queue

per input in each group, allowing to keep traffic belonging to each input-output pair separate, for

a total of NM queues in the system. Alternatively, we may have multiple queues organized on

the basis of a combination of criteria such as flow identity, eventual destination, and/or packet

Switching Model 23

priority. A scheduler logic at each output dictates the outgoing packet rate and the relative order

of the packets. The policy employed may vary from simple first-in first-out (FIFO) acting on a

single output queue to a sophisticated weighted fair queueing (WFQ) [30] mechanism acting on

per-flow queues. In practice, a buffer management logic is responsible for selectively admitting

packets into the finite memory resource. Since our primary focus is on contention and queue

stability, unless otherwise mentioned, we assume the memory size to be infinity.

The two main characteristics of an atomic memory element are that incoming packets are

immediately enqueued into their respective output queues, making them available for immediate

dispatch, and that the output scheduler has the flexibility to organize the queues in any fashion

to facilitate arbitrary scheduling policies. The only points of contention in the element are at the

output links. Given an interface rate of C and a minimum packet size of L, the element needs a

memory bandwidth of (N +1)C at each of the outputs in order to accommodate N simultaneous

enqueue operations (from the N inputs) and a single dequeue operation. At the same time, the

scheduler logic needs to dequeue at a frequency of C/L to sustain the output interface rate.

Therefore, the following are the main constraints that limit the capacity of a single element. The

available memory bandwidth limits the supported port counts and interface rates. The required

frequency of scheduling, determined by the smallest packet size, limits the complexity of the

scheduler. Finally, the implementation is also constrained by the amount of circuitry required to

realize the full mesh of paths, which grow quadratically with the switch size.

An N ×M space element, shown in Fig. 2.3(b), is composed of a memoryless cross-

connect and an arbiter1 (possibly distributed) that is responsible for configuring the element to

interconnect specific inputs to outputs. Due to the lack of queues, an interconnection needs to be

free of conflicts, i.e., at any instant t, an input may be connected to no more than one output, and

vice-versa. Such a configuration, usually represented by an N ×M matrix of binary entries π(t),

is known as a matching. The rows of the matrix correspond to the input links and the columns to

output links. The conflict-free property may be represented as:

∀t {∀i
∑
j

πi,j(t) ≤ 1 and ∀j
∑

i

πi,j(t) ≤ 1} (2.5)

1Some parts of the literature refer to an arbiter as a switch scheduler. In order to avoid confusion with the link
scheduler, found in the memory element, we will continue to call it an arbiter.

24 Chapter 2

Element Properties Constraints
Memory Immediate output enqueue Memory bandwidth: O(N) per output

Flexible queue organization Scheduler frequency: O(1/L)
Full-mesh connectivity: O(N2)

Space No queues Arbiter frequency: O(1/L)
Conflict-free interconnection Cost vs. pin-count
Non-blocking

Table 2.1: Forwarding elements: Properties and constraints

Packets at the inputs are presented as equal-sized units called cells2. The time taken to transfer a

single cell from an input to its respective output is referred to as a timeslot. The entire element

is synchronized on timeslots, and the arbiter computes a sequence of matchings π(n), so that

if πi,j(n) = 1 in timeslot n, a cell is allowed to be transfered from input i to output j in that

timeslot. The properties of the sequence determine the throughput of the element.

In addition to being memoryless and limited to conflict-free configurations, an atomic

space element is assumed to be non-blocking, i.e., the internal implementation is ensured to

realize a path for any conflict-free configuration. Note that the points of internal contention in the

element are shifted to the input links due to the property (2.5) of matchings. Since a matching is

re-computed in every timeslot, the arbitration logic needs to operate at a frequency of C/L, which

will limit the complexity of the policy. As the latter often depends on the size of the element, this

ends up restricting the port counts as well. For example, a centralized arbiter that implements a

policy based on the full knowledge of cells available for dispatch, for all the input-output pairs,

will have a complexity of Ω(NM). In practice, the pin count and the internal crosspoints that can

be cost-effectively realized also limit the size and interface rates supported by the element. For

example, if an electronic crossbar is used to implement a space element, its cost increases at least

quadratically with the port count. Table 2.1 summarizes the properties and design constraints of

each element.

Since we treat these elements as logical entities, their implementations subsume different

variations of logic that may be used to exhibit the above properties. For example, a single log-
2Note that this term merely refers to the internal unit of transfer and is not to be confused with ATM cells. Some

systems also refer to such units as pages.

Switching Model 25

Outputs

Timer
Demux

Timer
Demux

Timer
Demux

Memory
Bank 1

Memory
Bank 2

Memory
Bank 3

M
em

or
y

E
le

m
en

t

In
pu

ts

Figure 2.4: Memory element implementation example: Knockout configuration

ical memory element may be implemented in a distributed fashion, with an on-board full-mesh

circuitry interconnecting the inputs to several memory banks, one for each output. This circuitry

may indeed use NM distinct traces as shown in Fig. 2.3(a), a shared timeslotted bus running at a

capacity of NMC as in the Prelude switch [31], or M parallel buses running at NC as shown in

Fig. 2.4. An example of the latter is the Knockout switch [116] in which each bus may run at a

lesser speed than the required maximum.

To alleviate the memory bandwidth required in each bank, we may use N physical mem-

ories, each operating at a capacity of 2C (for a simultaneous enqueue and dequeue), one corre-

sponding to each input. A single output scheduler controls the entire bank for each output. A

switch that uses such a logic, i.e., NM disjoint paths to NM distinct memories is referred to as

a bus-matrix switch [110]. A buffered crossbar is a variation that uses (N + M) traces and NM

distinct memories by placing the latter at crosspoints of an electronic crossbar. However, since

26 Chapter 2

these are on-chip memories, their realizable sizes tend to be quite small, opening up a different

set of problems. Irrespective of the implementation and the bandwidth of each physical memory,

the requirement for each bank continues to grow linearly with the switch size.

A space element may be readily implemented by a single electronic crossbar. Such com-

ponents today are capable of interface rates in the order of 1-10 Gb/s, with port counts in the order

of 20-32. These can be re-configured in less than 100 ns thereby providing a very small timeslot.

Optical components such as waveguide routers (e.g., [115]) can support a significantly higher

interface rate, however the port counts supported by currently available ones are lower, and more

importantly, the re-configuration times may be as high as a few microseconds, thus providing a

very coarse timeslot and limiting the smallest tolerable cell sizes to be very high. Again, since

we view these elements as logical entities, all the techniques from the circuit switching literature

may be used to construct a large non-blocking interconnection network that emulates a single

space element. For example, a single logical element may be implemented by a multi-module

bufferless Clos network.

2.5 Common Existing Switches

A packet switch that employs the cut-through forwarding model, with a single memory element

for the switch fabric is referred to as an output queued (OQ) switch. An OQ switch, in terms

of logical elements, is shown in Fig. 2.5(a). The only contention points in an OQ switch are

at the output links. Since packets are immediately presented to the output link schedulers, an

OQ switch is capable of being work conserving. Furthermore, since the departure time for each

packet is controlled by a single scheduler, the switch is able to allocate any combination of re-

quired rates to individual flows, of any granularity. Consequently, given the required interface

counts and rates, a hypothetical OQ switch of those dimensions may be considered as an ideal

switch for performance comparisons. In practice, while earlier generation switches [31, 110, 116]

commonly used this design, pure OQ switches are rarely used in current systems, beyond a ca-

pacity of a few Gb/s, primarily due to the required memory bandwidth. It is due to this that there

is even an interest in other, more scalable, designs.

An input queued (IQ) switch, shown in terms of logical elements in Fig. 2.5(b), concen-

Switching Model 27

(b) IQ Switch

Arbiter

Memory
Elements

Space Element

Input

C = 1C = 1

1

2

3

C = 1C = 1 C = 1Memory Element

(a) OQ Switch

Figure 2.5: Common existing switching models: (a) Output-queued, (b) Input-queued

trates all the memory at the input interfaces of the system. An N ×N fabric consists of a single

space element, e.g., a crossbar, with N instances of 1 × 1 memory elements connecting each

of the system inputs to the input ports of the space element. The N elements are necessary to

absorb the input contention that is inherent to the space element. We assume that packets are

segmented into cells either in the memory elements or in the port processors prior to entering the

switch fabric. Notice that the memory elements are not allowed to function in a work conserv-

ing fashion, due to the contention, and it is the sequence of matchings in the space element that

drives the former, and thereby determines the throughput and QoS capability of the system. In

other words, when πi,j = 1 in the space element, memory element i is instructed to schedule

and dequeue a packet destined to output j. Indeed, most of the literature in IQ switching cov-

ers matching policies aimed to achieve high performance in the presence of internal contention.

Since the maximum memory bandwidth required in the system is 2C (in each memory element),

and more importantly, since it is independent of the size of the switch, this design is extremely

scalable and quite popular, limited in dimensions only by the realizable size of the space element

and the complexity of its resident arbitration policies.

Early IQ switches used a single FIFO queue in each of the input memories. The adverse

28 Chapter 2

Figure 2.6: A combined input-output queueing switch (CIOQ)

effect of such an arrangement is that the only cell that is eligible for transfer to its destination

is the one at the head of the queue. Consequently, a cell destined to an idle output cannot be

dispatched if it is enqueued behind a cell destined to a currently busy output, even if there is no

contention for the input link to the space element. This phenomenon is called head-of-line (HOL)

blocking. Karol et al. [55] showed that even under relatively benign arrival traffic assumptions,

specifically, independent Bernoulli sources on each input link uniformly distributed to all the

outputs, the throughput of this system is limited to 2−
√

2 (59%) times the available bandwidth.

This situation is easily remedied by queueing cells in an input memory into N separate queues,

one for each output, referred to as virtual output queues (VOQ) [109]. This allows the cells

belonging to each input-output pair to be considered independently by the arbitration policy.

Essentially, when πi,j = 1, the output scheduler in element i chooses a cell from the virtual

output queue corresponding to input-output flow (i, j). Henceforth, we will assume such virtual

output queueing in all designs based on space elements. Note that such an organization merely

implies a different data structure for ordering cells, and does not necessitate separate physical

memories. The required memory bandwidth in each memory element continues to be 2C in the

Switching Model 29

presence of virtual output queueing.

To alleviate input contention and facilitate less complex arbitration policies, a speedup

may be employed between the input memories and the space element. The speedup s > 1 is

the ratio of the bandwidth of the internal links to that of the external interfaces. Essentially,

this enables to transfer cells at a faster rate through the space element. In this case, queues are

also required at the outputs of the system to account for the rate mismatch between the internal

and external links. Such a switch, shown in Fig. 2.6 is referred to as a combined input-output

queueing (CIOQ) switch. When s = 1, this reduces to a simple IQ switch, and when s = N ,

it starts behaving like an OQ switch. This design experiences both input and output contention,

though the former is less than in the case of a pure IQ switch. The maximum memory bandwidth

continues to be independent of the switch size, and is equal to (1+ s)C in each memory element.

A cell timeslot measured on the system inputs and outputs is referred to as the external timeslot,

while the timeslot of the space element is referred to as the internal timeslot. Clearly, the latter is

shorter in order to account for the faster cell transfer, and is equal to (1/s) times the former. This

implies a higher frequency of re-configuration.

Due to their relatively low memory bandwidth requirements, IQ and CIOQ switches

present a good starting point to explore scalable multi-module designs. On the other hand, due to

its optimal performance, OQ switches provide us with an ideal reference for comparison. Most

of the modern literature in packet switching concentrates on arbitration policies for the former so

that they may approach the performance of OQ switches.

30

Chapter 3

Formal Methods in Switching

In theory, there is no difference between theory and practice. In practice, there is.

– Yogi Berra, circa 1980

We now present the related work in switch design as it pertains to the forwarding models

and performance measures introduced in the previous chapter. We include a short overview of the

circuit-switched Clos network, and its properties, which will be applied later to our own packet-

switched designs. Next, we focus on the throughput and QoS properties of the popular IQ and

CIOQ switches in the literature, which will provide a launching pad for the remainder of this

work. Specifically, we focus on how results from graph theory, combinatorics and stochastic

stability have been applied to devise and analyze matching algorithms for those switches. Some

of the related work in more sophisticated designs, such as the parallel packet switch, have been

deferred to the discussion sections of later chapters, after such designs have been introduced and

our own contributions exposed.

3.1 Clos Network

The Clos network is a three-stage interconnection composed of space elements, typically imple-

mented by crossbars, in each stage. While it was first introduced and analyzed in the 1950s, it

remains relevant to this date, and we will borrow this overview from Pattavina’s more recent syn-

opsis [88]. As shown in Fig. 3.1, an N ×N switch is composed of three fully connected stages,

Formal Methods in Switching 31

1

N/M

N

1

2

M

1

M

1

N/M

N

1

2

K

2

N/M x K

N/M x K

N/M x K

K x N/M

K x N/M

K x N/M

M x M

M x M

M x M

#

#

#

#

#

#

#

Figure 3.1: An N ×N Clos network

where each internal and external link has a capacity of one circuit. The first stage is composed of

M instances of N/M × K non-blocking space elements. These are interconnected to the third

stage composed of M instances of K ×N/M elements, using K elements of size M ×M in the

central stage. The offered traffic load consists of the arrival processes of circuit requests. Recall

that a circuit request between input-output pair (i, j) is admissible if both external links, input i

and output j, are idle. The Clos theorem [25], which is paraphrased below, provides the suffi-

ciency condition for the network to be strict-sense non-blocking, i.e., for the network to be able

to assign an internal path to an admissible circuit without disturbing the existing configurations.

Theorem (Clos). A request for an admissible circuit is guaranteed to be satisfied, without re-

configuring the paths of existing circuits, as long as K ≥ (2N/M − 1).

The above theorem is easily proven by contradiction. The minimum number of cross-

points in such a network is O(N1.5), which results when M =
√

2N . The required internal

speedup of the network is immediately calculated as (2−M/N), or close to 2 for large N . Given

a request between (i, j), a greedy algorithm which visits the K central elements, in any arbitrary

32 Chapter 3

order, will find an element k whose input d i
N/M e and output d j

N/M e are both unconnected, es-

sentially providing a path for the request through k. Note that d i
N/M e is the first-stage element to

which the input i belongs, and d j
N/M e is the third-stage element to which the output j belongs.

The central-stage element k, in effect, provides a free path between those two elements. We refer

to such a greedy algorithm as Clos fitting. For each circuit, it has a run-time complexity of O(K),

as in the worst case, it may have to visit every space element.

We observe here that the network continues to be non-blocking if any aggregate of admis-

sible circuit requests are simultaneously presented to an idle switch. The Clos fitting algorithm

simply partitions the aggregate into K configurations, one for each space element. This varia-

tion, shown below, can be applied to three-stage packet switches and is a subject of the analysis

in Chapter 5.

Corollary (Clos). An admissible aggregate request is guaranteed to be fully partitioned into K

conflict-free configurations by any Clos fitting algorithm as long as K ≥ (2N/M − 1).

Another combinatorial aspect of the above properties is that similar results can be ob-

tained when the quantities being fitted on the links are any additive scalars. Let the capacity of

each link in Fig. 3.1 be normalized to 1 unit, and let the quantities to be fitted on an input-output

pair vary within [bmin, bmax]. A quantity b is admissible for the pair (i, j) if both input i and out-

put j have existing allocations that do not exceed (1−b). A path can be realized for an admissible

quantity as long as the following condition holds [81]:

K ≥ 2
⌊

(N/M)− bmax

1− bmax + bmin

⌋
+ 1 (3.1)

This reduces to the Clos theorem when all quantities are unity, the extra terms in the above ex-

pression accounting for the fragmentation of link resources due to the variability in the quantities.

Note that the scalars may represent the peak or the effective bandwidths of packet flows. Hence,

we may construct a three-stage network that is structurally equivalent to the Clos network, and

enable fitting of admissible flows, irrespective of whether the individual components are memory

or space elements, as long as each element can internally (through arbitration or scheduling) re-

alize the bandwidths of the individual flows. This outcome may be viewed as a manifestation of

Proposition 2 for Clos topologies.

Formal Methods in Switching 33

The network in Fig. 3.1 can realize an internal path for an admissible circuit without

speedup if existing configurations are allowed to be re-arranged. The Slepian-Duguid theo-

rem [45], paraphrased below to suit our terminology, provides the sufficiency condition for the

network to be re-arrangeably non-blocking.

Theorem (Slepian-Duguid). A request for an admissible circuit is guaranteed to be satisfied as

long as K ≥ N/M and re-configuration of existing circuits is allowed.

The procedure for satisfying an admissible circuit, which we refer to as Slepian-Duguid

fitting, works as follows. Let the circuit originate from input element i and terminate at output

element j. Due to the admissibility of the circuit, either there exists a central-stage element k

with both input i and output j unconnected, or there exist two elements k1 and k2, the former

with unconnected input i and the latter with unconnected output j. The procedure terminates

immediately if the earlier condition is met, in which case the path is realized though k. Otherwise,

the circuits in k1 and k2 are re-arranged to accommodate the new circuit. In the worst case, M

re-arrangements are necessary, with each step needing to inspect O(M) entries. Combined with

the step required to find k1 and k2, the algorithm has a run-time complexity of O(M2 + K).

We illustrate the intuition behind the re-arrangements through an example, shown in

Fig. 3.2. Consider a 12 × 12 switch, with 3 (4 × 4) elements in the first and third stages. In

accordance with the above theorem, there are 4 (3× 3) central elements. Let the current config-

urations of the central elements be as shown in the top row. Note that if entry (i, j) is set to 1

in element k, it implies that first-stage element i is connected to third-stage element j, by central

element k. Let a request arrive for a new circuit between an input of first-stage element 2 and

an output of third-stage element 2. This circuit is admissible because the respective elements

currently support only 3 circuits each. We first observe that row 2 of element 1, and column 2 of

element 3 (both dotted), are empty and hence unconnected. Therefore, we choose 1 and 3 as k1

and k2 and re-arrange their circuits in the following manner. Arbitrarily, we start with element

1 and set (2, 2) to 1 in order to satisfy the new circuit. This causes a conflict with the entry in

(1, 2), which is moved to element 3. A chain of alternate exchanges, shown by the numbered

block arrows, are performed till we obtain conflict-free configurations in both elements. This

procedure never visits the same row (column) twice and is guaranteed [45] to converge.

34 Chapter 3

A
F

T
E

R
:

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 1

0 00 10 1

0 10

2

3

1

1

Central Element 1 Central Element 2 Central Element 3 Central Element 4

Circuit request
for (2, 2)

B
E

F
O

R
E

:
R

E
−

A
R

R
A

N
G

E
:

Figure 3.2: Example of Slepian-Duguid-based circuit re-arrangement

Note that, much like Clos fitting, this algorithm can also be used to partition an aggregate

request for simultaneously admissible circuits into K configurations. However, since the require-

ment on K is lower, the number of partitions, in the worst case, is about half as that with Clos

fitting. Note also that the ability to fit aggregate requests that are admissible, i.e., there are no

more than N/M circuits originating (terminating) from (to) each first (third) stage element, as

long as K ≥ N/M is a direct consequence of the combinatorial result [43] that an integer matrix

with maximum line sum of n can be expressed as a sum of n permutations.

3.2 Matching Algorithms for Input-Queued Switches

Since IQ and CIOQ packet switches require a memory bandwidth that is independent of the

switch size, a significant amount of research has been conducted to devise and analyze match-

Formal Methods in Switching 35

ing algorithms for them. Recall that the properties of the matching, used to configure the space

element of such a switch, dominate the overall performance in terms of both switch through-

put and its ability to provide bandwidth and delay (QoS) guarantees. Accordingly, the pri-

mary goals in the literature have been to devise matchings that can ensure asymptotic 100%

throughput [29, 70, 79, 80] for all admissible arrivals (2.2), exact 100% throughput [72, 114]

for all bounded admissible arrivals (2.3), virtual bandwidth trunks [7, 46, 58, 100] for admissi-

ble requested rates (2.4) independent of arrivals, or an exact emulation [24, 65, 107] of a high-

performance switch. Further restrictions are sometimes placed on arrivals, e.g., stationarity of the

processes, at the expense of weakening the final results. Note that asymptotic 100% throughput

above refers to the ability to maintain queue stability, and exact 100% throughput to the ability to

bound the queue lengths and cell delay.

We cover two questions in this section: how are matchings computed, and how does a

sequence of matchings translate into throughput and QoS properties of the switch. The answers

to the first are rooted in classical graph theory, while the latter is aided by more recent advances

in combinatorics and stochastic stability. We shed light not only on the final results but also on

the methods used to arrive at them, as similar methods will be used in our own analyses in later

sections.

3.2.1 Switch Control Loop

For the sake of brevity, we collectively refer to IQ and CIOQ switches as input-queued switches,

and consider the former as a special case with speedup s = 1. Let the model shown in Fig. 2.6

be the common reference for such switches, with all the rates normalized so that C = 1. As a

starting point, we assume virtual output queueing (VOQ) in all input-queued designs. Since the

only internal contention lie at the inputs of the space element, the analysis typically focuses on

the VOQ system, and not on the output memory elements. For example, for admissible arrivals,

it is clear that the queues, if any, at a work-conserving output will remain stable irrespective of

the matching algorithm.

Let A(n) denote a discrete-time arrival matrix, where n refers to the external timeslot

of the switch. Let λ denote the offered rate matrix and R the required rates, the latter being

36 Chapter 3

Shape/Filter/

sC
/L

F
re

qu
en

cy
: C

/L

Arrivals [n−1, n)

+

Backlog

Eligible

Request

Configuration

Departure [n, n+1)

_

Generate

Matching
Algorithm/

Batch

Graph

Template

Figure 3.3: Control loop for an input-queued switch

necessarily admissible. The cumulative amount of traffic departing from the VOQs in the input

elements, for input-output flows (i, j), are maintained by matrix D(n). Assuming an initially

empty switch, the backlog in the VOQ system may be calculated as

Q(n) = A(n)−D(n). (3.2)

The analytical task then is to characterize D(n) in terms of the chosen matching algo-

rithm, and given properties of A(n), establish properties of Q(n). The departure matrix is gov-

erned by the switch control loop illustrated in Fig. 3.3. The evolution of the backlog matrix is

controlled by (3.2). The matrix Q(n) may be filtered (shaped or batched) into an eligible matrix

Formal Methods in Switching 37

Π(n), where

∀n Π(n) ≤ Q(n)

refers to the subset of cells in the backlog that are to be considered by the arbitration policy. The

filtering stage may be skipped in which case the above becomes an equality. The eligible matrix

may be viewed as an aggregate request matrix, i.e., if Πi,j(n) = m, it denotes a simultaneous

request for m connections between (i, j).

In each internal timeslot, matchings are generated using templates computed off-line (e.g.,

based on R), using the state of aggregate requests, or a combination thereof. To compute the

matching, Π(n) may be converted into a bipartite graph G : (P,Q,E), where P contains nodes

corresponding to the input links, Q the output links, and E is the edge-set represented by the

following adjacency matrix:

Gi,j(n) =

 1 if Πi,j(n) > 0

0 otherwise.

Note that this is a truncated adjacency matrix in which the rows correspond to P and columns to

Q. This suffices as there are no edges between the vertices in P , and between those in Q. Some

matchings use a weighted graph, where the weights may correspond to R or Π(n). The matching

π(n) is a sub-graph of G(n), such that no more than one edge is incident on each vertex. The

cardinality of a matching is given by |π| =
∑

i,j πi,j . Specific algorithms yield specific properties

for π(n), which configures the space element and determines D(n), and thereby, the long-term

state of the system. Since the lower part of the control loop operates at a speedup of s, the

departures may be computed as

D(n) =
ns∑

k=1

π(k). (3.3)

3.2.2 General Matching Techniques

Maximal Matching

A matching π(n) is referred to as maximal, or non-idling, if no edge from G(n) can be added to

it. In other words, if Gi,j = 1, then πi,j = 1, πi,k = 1 for some k, or πk,j = 1 for some k. This

is one of the most popular policies in switching due to its simplicity. In fact, a greedy algorithm

38 Chapter 3

that visits the entries in G one by one, in any order, is sufficient to realize such a matching. The

entire row i and column j are marked as ineligible for further consideration when πi,j is set to

1. As it visits each entry, skipping ineligible rows and columns, the algorithm simply sets πi,j

to 1 whenever Gi,j = 1. Clearly, this sequential greedy algorithm has a run-time complexity of

O(N2), where N is the size of the switch. If the adjacencies are maintained by an edge list, this

easily reduces to O(N + |E|).

A simple parallel algorithm, based on the exclusive-read exclusive-write (EREW) PRAM1

model, may be used to compute the matching in O(N) time, using N processors. Each row i of

G is inspected in parallel until a non-zero value is found in an eligible column. The eligibility

state is shared by all processors, and to ensure EREW operation on the column state, the parallel

inspections are conducted in a staggered manner, specifically, the processor at row i starts at en-

try Gi,i and each processor works in lock step. Manifestations of such a technique may be found

in distributed implementations such as iSLIP [78]. More complex schemes have been devised

to obtain a maximal matching in sub-linear time, e.g., the deterministic Israeli-Shiloach algo-

rithm [48], based on Euler tour computations, has a complexity of O(log3 N) using (N + |E|)

processors.

Maximum-Size Matching

A maximum-size matching (MSM), as the name suggests, has the maximum cardinality. A space

element configured by an MSM has the maximum instantaneous throughput. An MSM may be

obtained by incrementally finding an augmenting path to the current matching [86, Chap. 10],

essentially by searching for paths that terminate in unconnected vertices and consist of edges that

are alternately free and matched. Since max(|π|) = N and each augmentation may be completed

in O(N + |E|) time, for dense bipartite graphs, this algorithm has a run-time complexity of

O(N3).

Alternative approaches to MSM rely on computing the maximum flow in an equivalent

network (see, again, [86] for details), an example of which is illustrated in 3.4. The classic
1The EREW PRAM is a model for a parallel computer in which multiple processors cooperate in the same task, and

share a common state in random-accessible memory. Access to the memory is restricted so that multiple processors
may not read or write to the same location at the same instant.

Formal Methods in Switching 39

Figure 3.4: Maximum Size Matching using an equivalent flow network

Ford-Fulkerson method [27, Chap. 27] is based on O(|π|) steps of finding augmenting paths

in the residual flow network, and runs in O(|π||E|) time, which in our case is again O(N3).

The Edmonds-Karp implementation [27] uses a breadth-first search to obtain those paths. An

improvement, due to Karzanov [86, Chap. 9], uses the concept of pushing so-called preflows

through vertices, in order to find several augmenting paths in the auxiliary residual network, in

the same step. The Hopcroft-Karp [44] algorithm is a variation of this method, applied to bipartite

graphs with unit capacities, and runs in O(N2.5) time. Notice that both the above approaches,

namely, finding an alternating path and finding a maximum flow through augmentations, are quite

similar in philosophy to the Slepian-Duguid re-arrangement method.

There are several randomized parallel algorithms (e.g., [84]) for the EREW PRAM model

that compute a maximum matching in poly-logarithmic time using a polynomial number of pro-

cessors, however, no similar deterministic solution is yet known for general bipartite graphs.

Critical and Perfect Matchings

While an MSM provides maximum instantaneous throughput to the space element, it has been

known for some time, and formalized recently in [60], that a maximum matching may be insuf-

ficient to sustain maximum throughput. The intuition behind this observation is that if there are

40 Chapter 3

Critical Matching

1

11

1

Aggregate Request

Request

Critical

Matched

Maximum−Size Matching

Timeslot 1 Timeslot 2 Timeslot 3

Figure 3.5: Maximum Size Matching versus Critical Matching

several maximum matchings to choose from, an injudicious choice hampers future matchings.

This is illustrated in a rather simple example, in Fig. 3.5. The top row is a maximum matching

in each step, but an incorrect choice in the first step leads to a requirement for a total of three

matchings to cover Π, whereas a better choice in the second row can accomplish the same in

two. Note that the extra timeslots required can be made arbitrarily large for admissible arrivals

by increasing the timescale (2.3) of admissibility.

The above insufficiency necessitates additional properties on the matching. A node in

G is referred to as critical if the corresponding line sum in Π is maximum. Let Ri =
∑

j Πi,j

denote the row sum corresponding to input node i, and Cj =
∑

i Πi,j denote the column sum

corresponding to output node j. Then, the maximum line sum is given by M = maxi,j{Ri, Cj}.

Every input (output) node of G for which the corresponding row (column) sum is equal to M is

critical. A matching that covers all the critical nodes is referred to as a critical matching. The

second row of Fig. 3.5 satisfies this requirement. A critical matching can be obtained by using

the Von Neumann augmentation procedure (e.g., see [7]) to generate a new graph G′, computing

Formal Methods in Switching 41

a maximum matching π′ on the latter, and retaining only those edges that belong to G. The

procedure adds dummy entries to Π so that each row and column sums up exactly to M . Any

resultant maximum matching is guaranteed to be a perfect matching, i.e., every node of G is

covered. As no dummy entries were added to the lines corresponding to the critical nodes, the

final matching is guaranteed to cover them. Since the Von Neumann procedure can be completed

in O(N2) time, the run-time complexity of the above algorithm remains O(N2.5).

An MSM that covers all the critical nodes is referred to as a critical maximum-size match-

ing (C-MSM) [114, 52]. It is unclear whether it is possible to find a matching that is simulta-

neously maximum and critical in polynomial time. For example, a fully-connected graph has

N ! different maximum matchings to inspect. An alternative approach, called longest port first

(LPF) [79] matching, is similar in concept to the above. In LPF, each edge of G is assigned a

weight which equals the sum of the line sums of the connected vertices, and the algorithm system-

atically searches for a maximum-size matching with the highest total weight. The Edmonds-Karp

algorithm was modified, without adding complexity, to conduct the search.

Maximum-Weight Matching

Given a matrix w that assigns weights to each edge of G, a maximum-weight matching (MWM)

π maximizes
∑

i,j wi,jπi,j , the sum of the weights of connected edges. Note that this is not the

same as an MSM with the maximum weight. In fact, the cardinality of an MWM need not be

maximum. Such matchings have been put to use in switching theory (e.g., [29, 80], where w is

set to Q) in order to overcome the limitations of MSM. Solving for an MWM may be viewed

as a linear programming problem, with constraints expressed by (2.5) and πi,j ≥ 0. The goal

would be to minimize
∑

i,j ci,jπi,j , where ci,j = maxi,j{wi,j} − wi,j . The Hungarian simplex

method [86] provides a feasible solution in O(N3) time, while ensuring integral values for πi,j ,

however, it has been found to be too complex to implement in the fast path of a switch and

infeasible to parallelize.

The best parallel algorithm to date [32] is based on finding augmenting paths to an exist-

ing weighted matching, and runs in O(
√

n log2 n) time using O(N3) concurrent-read concurrent-

write (CRCW) processors. Table 3.1 summarizes the existing techniques to compute various

42 Chapter 3

Matching Sequential Deterministic Parallel

Maximal Greedy assignment: O(N2) Israeli-Shiloach: O(log3 N) CRCW

MSM Hopcroft-Karp: O(N2.5)

Critical Von-Neumann plus MSM: O(N2.5) Fayyazi: O(
√

n log2 n) CRCW

MWM Hungarian method: O(N3) None for EREW

Table 3.1: General matching techniques and their complexity

matchings and their complexity. It is worth noting here that neither MWM nor any flavor of

MSM is commonly found in commercial switches today, the preference being given to maximal

and various sub-maximal heuristic matchings.

3.2.3 Deterministic Properties

The combinatorial properties of a sequence of matchings may be applied to yield deterministic

results on the departure process. Such results in the literature are primarily of two types. The goal

of the first is to achieve exact 100% throughput for bounded admissible arrivals using an on-line

matching, while the second aims to ensure virtual bandwidth trunks that satisfy an admissible

rate matrix by generating off-line templates, which are then used in a pre-determined sequence.

Exact 100% Throughput

We say that a switch provides exact 100% throughput if every cell is guaranteed to depart with a

bounded maximum delay. Weller and Hajek [114] showed that such a property can be achieved

for bounded admissible2 traffic, without explicit knowledge of the traffic rates, by computing

suitable matchings in batch-mode. Specifically, let T be the timescale of admissibility. The time

axis is marked by epochs {T, 2T, . . . , kT, . . .}. The arriving cells are batched at every epoch, i.e.,

the aggregate request matrix Π is set to Q at the beginning of an epoch and never incremented

within an interval. Clearly, if all the requests in Π(kT) can be covered by the matching sequence

in (kT, (k + 1)T), the maximum delay for each cell is upper bounded by 2T . Furthermore, the

2The (α, S) traffic model in [114] generates bounded traffic whose constraint is identical to (2.3). For uniformity,
we will continue to use our own definitions.

Formal Methods in Switching 43

following inequality is ensured for Π:

Π(kT) = A[(k − 1)T, kT) ≤ λT (3.4)

The task then is to partition Π into a sequence of conflict-free configurations for the space

element, to be completed before the next epoch. The choice of a suitable matching is governed by

basic results in combinatorics [43] (similar to the basis for the Slepian-Duguid theorem). Recall

that an integer matrix with maximum line sum M can be decomposed as a sum of M permuta-

tions, which is a direct consequence of Hall’s theorem of the system of distinct representatives.

Moreover, each of the M permutations has to necessarily include the critical rows and columns.

Since the maximum line sum of Π never exceeds T , due to (3.4) and the admissibility of λ, a

sequence of C-MSM is guaranteed to drain Π in T steps. We highlight this result as follows,

paraphrased to suit our terminology.

Theorem (Weller-Hajek, C-MSM). A critical maximum-size matching is sufficient to ensure ex-

act 100% throughput for an IQ switch without speedup, for bounded admissible arrivals.

The same work [114] also explored the applicability of maximal matchings for exact

100% throughput. Let the maximum row sum of a matrix be denoted by R, and the maximum

column sum by C. It can be easily shown (e.g., by contradiction) that a sequence of (R + C − 1)

maximal matchings can cover all the elements of the matrix. Therefore, Π can be drained in

(2T − 1) steps by a maximal matching. Recognizing that those steps need to be completed in T

timeslots leads us to the following result.

Theorem (Weller-Hajek, Maximal Matching). A maximal matching is sufficient to ensure exact

100% throughput for an input-queued switch, for bounded admissible arrivals, as long as the

internal speedup is 2.

It is not clear why the Weller-Hajek C-MSM result insists on a maximum matching. In

fact, we re-state this result in Chapter 5 by showing that any critical matching suffices, including a

sequence that possibly contains sub-maximum cardinality matches. Note that Clos fitting, with a

speedup of 2, and Slepian-Duguid fitting, without speedup, can also partition Π into (2T −1) and

T configurations, respectively, by viewing the entries in Π as simultaneously admissible circuits

44 Chapter 3

High storage

A
rb

ita
ry

 A
rr

iv
al

s

Shape/Batch

Templates

Online
Matching

Weight
Scheduler

Rate Matrix
Offline

O
nl

in
e

Bandwidth Trunk

Bandwidth Trunk
Better Delay
More complex

Figure 3.6: Bandwidth and delay guarantees: Exact 100% throughput versus templates

and the internal timeslots as separate space elements. Nevertheless, both these procedures do not

operate in sequence, and hence cannot be used in lieu of on-line matchings. Li and Ansari [72]

propose the store-sort-forward (SSF) method, which may be considered as a perfect matching

algorithm on an augmented Π. However, instead of directly computing a perfect matching, the

method uses a re-arrangement technique in each timeslot, reminiscent of the Slepian-Duguid re-

arrangement, in order to arrive at a permutation.

None of the above works explore the possibility of translating the exact 100% throughput

property into providing bandwidth and delay guarantees, based on an independent request matrix

R, for arbitrary arrivals. We make this leap, also in Chapter 5, by recognizing that R can be used

to impose a timescale, and boundedness can be replaced by explicit shaping. Smiljanic [100]

addresses this subject and provides a credit-based scheme for the allocation of bandwidth using

on-line matching, which mirrors the Weller-Hajek maximal result. Fig 3.6 shows how the exact

100% throughput approach compares with rate-based templates in providing bandwidth and delay

guarantees.

Rate-based Templates

Given an admissible required-rate matrix R, e.g., by the admission control procedure that negoti-

ates QoS, similar matrix decomposition techniques can be used to generate a repeating sequence

Formal Methods in Switching 45

of matchings that ensure a virtual bandwidth trunk of Ri,j to each input-output flow (i, j). Note

that such a trunk is ensured, providing isolated bandwidth guarantees to each flow, as long as

there exists a finite interval T such that in each interval, the sequence allocates Ri,jT turns to

the respective flows. If T ′ is the number of matchings in the sequence, then the internal speedup

required is equal to T ′/T . The maximum waiting time for a flow, or the latency of scheduling,

is guaranteed never to exceed T . Therefore, the arbiter essentially works as a two-dimensional

latency-rate 3 (LR) [104] scheduler. The sequence of matchings, and hence the bandwidth trunk,

is independent of the actual arrivals. In fact, they are generated off-line whenever R changes,

and stored as a set of templates. The switch may store one template for each matching in the

sequence, for a total of T ′, or preferably, a smaller set with associated weights that indicate the

number of times each matching is to be used in a repeated sequence.

Such templates may be readily generated using Clos or Slepian-Duguid fitting on a re-

quest matrix based on R. This was applied to ATM switches in [46]. Let r be a bandwidth value

such that Ri,j/r is an integer for all (i, j). The general approach is to generate an aggregate

request matrix given by

Π(r) =
1
r
R.

Such a matrix can be decomposed into (2/r − 1) conflict-free configurations by Clos fitting, and

into 1/r by Slepian-Duguid fitting. If these configurations are used as a sequence completed in

1/r time, each flow is guaranteed Ri,j/r turns in that interval. Consequently, the former requires

a speedup of (2 − r) and the latter does not require any speedup. Note that both the approaches

require a storage of O(1/r) templates. Furthermore, since there are at most N/r entries in Π(r),

template generation using Clos fitting runs in O(N/r2) time, while Slepian-Duguid fitting runs

in O(N3/r + N/r2) time.

The biggest drawback of the above is that both the storage and time complexity depend

on r. To overcome this, Chang et al. proposed [7] the Birkhoff-Von Neumann (BVN) decom-

position method to efficiently generate templates. It is based on the combinatorial result, due to

G. Birkhoff, that a doubly stochastic matrix4 R′ can be expressed as a weighted sum (convex
3A latency-rate server, with latency L and service rate R, ensures service to a backlogged flow, lower bounded

by a service curve of slope R and x-intercept L, where the origin denotes the most recent time instant when the flow
became newly backlogged.

4Note that a doubly stochastic matrix is defined as one in which the entries in each row and column add up to

46 Chapter 3

combination) of k permutations, i.e.,

∀R′ ∃k, φk s.t. R′ =
∑
k

φkPk, (3.5)

where Pk is a permutation, and
∑

k φk ≤ 1. The request matrix R may be converted into a

stochastic matrix R′ by augmenting each row and column, using the Von Neumann procedure.

The task then is to decide the permutations and associated weights to use, in order to cover R′.

This can be achieved systematically by repeated maximum matchings, which are also perfect, on

the residue of R′ in order to generate a set {Pk}. The weight φk is set to the minimum value

among the entries covered by Pk, and R′ is decremented in each step as follows:

R′
k+1 = R′

k − φkPk

This procedure is guaranteed to terminate in (N2−2N+1) steps. Since each step is dominated by

an MSM, the decomposition runs in O(N4.5) time. The advantage of this approach, as opposed

to performing Slepian-Duguid fitting or critical matching on Π(r), is that the number of templates

generated is O(N2) and independent of r. The generated weights φk can be used in an on-line

scheduler that chooses the respective Pk in accordance with those weights. Note that the latency

would depend on the order in which those permutations are picked, and in the worst case, remains

1/r, comparable to Clos or Slepian-Duguid fitting.

Theorem (Chang et al., BVN Decomposition). The BVN decomposition procedure on an ad-

missible required rate matrix R is sufficient to ensure bandwidth guarantees, specified by R, to

input-output flows in an input-queued switch.

Towles and Dally propose [111] a few approaches to further reduce the number of tem-

plates, at the expense of some speedup. Referring to (3.5), observe that each flow (i, j) will

continue to receive its required allocation if R′ is no greater than
∑

k φkPk, the penalty being a

wastage in some of the configurations and a speedup of
∑

k φk. This fact may be used to generate

fewer permutations, with a higher total weight. Since, in general, there are N2 distinct entries

in the request matrix, and each permutation covers exactly N of them, the minimum number of

exactly 1. On the other hand, if the entries are less than 1, the matrix is referred to as doubly sub-stochastic. The
Birkhoff result also applies for sub-stochastic matrices where each row and column sums up to the same value.

Formal Methods in Switching 47

Matching Complexity Speedup Property

Maximal (Weller-Hajek) O(N2) per slot 2 Exact 100% throughput

C-MSM (Weller-Hajek) O(N2.5) per slot 1 Admissible traffic only

SSF (Li-Ansari) O(N3) per slot 1

Clos fitting O(N/r2) 2 Templates: O(1/r)

Slepian-Duguid O(N3/r + N/r2) 1 No on-line scheduling

BVN (Chang et al.) O(N4.5) 1 Templates: O(N2)

MIN (Towles-Dally) O(N3.5) 4(4 + lnN) Minimum templates: N

GLJD (Keslassy et al.) O(N3) 2 ln N + 1 Heuristic/Templates: 2N

Table 3.2: Deterministic properties of popular matching algorithms

permutations required is N . The linear programming problem of minimizing the total weight

(and hence the speedup) while generating exactly N templates to cover or exceed R′ is known to

be NP-hard. In [111], the authors recognize that the speedup required is Ω(log N), and propose

an algorithm called MIN that generates N templates, with a speedup that is not minimum, yet is

O(log N). In step k, MIN covers entries in the residual request matrix that exceed 1/2k using

edge coloring on the corresponding bipartite graph. Clearly, there are log N number of steps and

each step is guaranteed to return exactly k permutations. Since each of the latter runs in O(N2.5)

time, MIN runs in O(N3.5) time. The same work also proposes an algorithm called DOUBLE,

which generates 2N templates and requires a speedup of 2. These are all variants of the classical

open-shop problem in operations research.

Keslassy et al. [58] make the observation that a decomposition that returns exactly N per-

mutations can be applied to yield a latency much less than 1/r that is characteristic of template-

based schemes. Notice that, in this case, an entry of the original request matrix is covered by

exactly one permutation. As a result, an on-line scheduler that picks those templates in accor-

dance with their weights can tightly control the delay of each flow (i, j) by favoring the unique

template that covers that flow. A heuristic, called greedy low-jitter decomposition (GLJD), is

proposed in [58] for this minimum permutation problem, which runs in O(N3) time.

We conclude by summarizing some of the notable methods overviewed in this section

in Table 3.2. In practice, the problem of providing virtual bandwidth trunks in an input-queued

48 Chapter 3

switch is usually solved by some variation of the BVN approach. Accordingly, we will consider

it as the current basis for providing QoS in such switches.

3.2.4 Stochastic Stability

While the deterministic results presented above provide the means to ensure bandwidth trunks

specified by an admissible R independent of the offered λ, or equivalently, exact 100% throughput

if the latter is admissible and bounded within a finite timescale, neither address maximization of

throughput for unknown arbitrary λ. Indeed, if the entire traffic consists of flows for which the

requested rates are specified, and furthermore the offered rates conform to those requests, then

using such means immediately translate to maximizing throughput. However, since the best-effort

component forms a significant majority of the offered traffic in most switches, stronger results are

required that address arbitrary arrival processes with unknown rates.

There are several significant results in the literature that address this problem for stochas-

tic arrival processes that yield an admissible (though unknown) λ. Since all the queues in a work-

conserving OQ switch, our ideal reference, would remain stable under such arrivals, irrespective

of their distributions, an asymptotic 100% throughput may be claimed if the VOQ system of an

input-queued switch remains stable, for a given matching algorithm. An explicit determination of

the invariant distributions of the queues is usually infeasible for all but the simplest of matchings,

not to mention that such analysis would depend on the specific arrival distribution. Accordingly,

two techniques in stochastic stability have been used to analyze matching properties, namely, ex-

ploring the fluid limit of the system of queues [29], and establishing a positive recurrence of the

queue states (e.g., [70, 79, 80]) using control theoretic concepts.

Since no meaningful parameters are usually available for batching the offered traffic, the

stability results are typically for matchings conducted in a continuous mode. In order words, Π is

the same as Q in every timeslot, and the eligibility block in the control loop of Fig. 3.3 is skipped.

Maximal Matching and Stability Theory

Dai and Prabhakar [29] established a significant result that any maximal matching is sufficient

for asymptotic 100% throughput, for admissible arrivals, as long as the speedup is at least 2. The

Formal Methods in Switching 49

result was proven using fluid limits. As we will use a similar technique to prove some of our

original results in subsequent chapters, it is worth a digression here to see how such limits work.

Given a random variable f(t), a fluid limit of f may be obtained as follows:

f̄(t) = lim
r→∞

1
r
f(rt) (3.6)

Strictly speaking, the variable may have an explicit dependence on randomness ω, and the lim-

iting parameter r may be drawn from a monotonically increasing sequence {rnk
} with the limit

converted to k →∞ (see Sec. A.1 in [29] for such specifics), but the above definition suffices for

our purpose. If f(t) is defined in discrete time, it may be converted to a continuous-time func-

tion before applying the limit, through appropriate linear interpolations. Then, f(rt) is merely a

scaled-time fluid model of f(t). The idea is to analyze the scaled stochastic process, provided the

results can be meaningfully applied back to the initially given process.

The above work characterizes the evolution of the switch state using the fluid limits

(Ā, D̄, Q̄), the only assumptions being that A(n) obeys the strong law of large numbers (SLLN),

i.e., λ exists, and that λ is admissible. The switch dynamics, in the limit, are governed by the

following equations, where (i, j) stands for the input-output pairs, and t ≥ 0.

Q̄i,j(t) = λi,jt− D̄i,j(t) (3.7)

D̄′
i,j(t) =

∑
all π

πi,jT̄ ′
π(t), if Q̄(t) > 0 (3.8)∑

all π

T̄π(t) = st (3.9)

The first equation follows from the definition of the limits and (3.2), and the second from a

re-formulation of (3.3) in terms of Tπ(n), which stands for the number of times a specific con-

figuration π has been used before and including slot n. The last equation just states that some

configuration is in use at all times. The evolution of Tπ depends on the specific matching al-

gorithm used, which may yield additional equations expressing its specific properties. The fluid

model solution, once obtained, is meaningfully applied back to the initial process using the fol-

lowing result:

Theorem (Dai-Prabhakar, Fluid limit). A switch operating under a matching algorithm is rate-

stable if in the corresponding limiting fluid model, every solution with Q̄(0) = 0 gives Q̄(t) = 0

50 Chapter 3

Fluid model

Q(n)
Discrete−time Interpolate Continuous−time

Q(t)

Q is stable

Scaled−time
Q(rt)

Limit

YES

Fluid limit
Q(t)

Q(t) = 0?

Real Time

Figure 3.7: Fluid limits: Steps in analyzing queue stability

for all t ≥ 0.

Note that rate-stability, being used here to specify asymptotic 100% throughput for all

(i, j) and admissible λ, is achieved when the departure processes satisfy

lim
n→∞

Di,j

n
= λi,j .

The above theorem is evident by setting t = 1 in (3.7) and expanding D̄(1) by using the fluid

limit definition (3.6). Accordingly, the task in proving stability boils down to showing that every

fluid limit solution yields Q̄(t) = 0, as shown by the decision chart in Fig. 3.7. Conversely, if λ is

inadmissible, the average departure rate for a subset of queues will become strictly less than λi,j ,

resulting in a non-zero Q̄ for that subset. While stability may be ascertained using this approach,

it is worth noting that most of the other statistics disappear in the fluid model. For example, this

technique cannot be used to determine average queue lengths and waiting times.

Remarkably, a number of combinatorial results on invariant matrices become directly

applicable to the slow-changing world of fluid limits. For instance, let Ci,j be defined as the sum

of the row i of Q plus the sum of column j, i.e.,

Ci,j(n) =
∑
k

Qi,k(n) +
∑
k

Qk,j(n).

Formal Methods in Switching 51

In [29], the authors recognize that a maximal matching decreases the above quantity by at least

one in every internal timeslot, whenever Qi,j > 0. Since s matchings are computed for each

external slot, and λ is admissible, the following is the fluid limit derivative of C, and it cannot

exceed zero if s ≥ 2.

C̄ ′
i,j(t) =

∑
k

λi,k +
∑
k

λk,j − s if Q̄i,j(t) > 0 (3.10)

Using the above, and some basic algebra, the product f(t) =
∑

i,j Q̄i,j(t)C̄i,j(t) is shown to

be zero, by proving that f(t) > 0 immediately implies f ′(t) ≤ 0. This leads to the result that

Q̄i,j(t) = 0 for all (i, j), thus establishing rate stability for the switch under maximal matching,

with a speedup that is at least 2. Paraphrased below, this result is the stochastic analog of the

Weller-Hajek maximal matching theorem.

Theorem (Dai-Prabhakar, Maximal Matching). Any maximal matching algorithm ensures asymp-

totic 100% throughput for a CIOQ switch, under admissible arrivals, as long as the internal

speedup exceeds 2.

If the arrival processes are such that the evolution of the system of queues can be described

by an irreducible discrete-time Markov chain (DTMC), an alternative approach to stability, and

hence for asymptotic 100% throughput, is to establish positive recurrence of the system state.

This goal may be achieved, without knowledge of the specific arrival distribution, by constructing

a quadratic Lyapunov function [68] of the queue lengths that has a negative drift whenever the

norm of the queue lengths is large.

Specifically, let the state of the system be described by Z(n), an N2-entry row vector of

VOQ lengths, i.e., for all n (ignoring the time argument for notational simplicity),

Z = (Q1,1, Q1,2, . . . , Q1,N , Q2,1, Q2,2, . . . , QN,N)

The norm of the vector, representing the cumulative level, is given by ‖Z(n)‖ =
√∑

i,j Q2
i,j(n).

Using any suitable N2 × N2 symmetric copositive matrix L, a Lyapunov function may be con-

structed from the queue state as follows:

V (Z(n)) = Z(n)LZT (n)

where L = LT and (x1, . . . , xK)L(x1, . . . , xK)T ≥ 0, whenever xi ≥ 0 for all i

52 Chapter 3

Notice that V (Z(n)) is merely a weighted cartesian product of the vector Z(n) with itself, the

respective weights being assigned by L. The second line above expresses the symmetric copos-

itive property of L. Note also that the identity matrix is a trivial instance of L. Recall that a

single-queue DTMC with state variable s(n), is positive recurrent, due to Foster’s criterion [82],

if there exists a positive function f(s) with a negative drift. More precisely, if there exist f(s),

ε > 0, and a set B such that the following is satisfied, the queue is stable.

E[f(s(n + 1))|s(n) = i] <∞ and

E[f(s(n + 1))− f(s(n))|s(n) = i] < −ε, i /∈ B.

This result can now be extended to a system of queues, by establishing a similar drift

for a Lyapunov function of Z(n). The choice to explore a Lyapunov function, as opposed to,

say, a positive function of the norm of the queue-state vector, is due to the former’s flexibility.

Specifically, the copositive matrix may be chosen depending on the matching being analyzed.

Several variations of this extension one of which is noted below, all inspired by [68], have been

used to prove the stability of the VOQ system of an input-queued switch. Note that the right hand

side of the second inequality below can strictly be just ε, however, the following formulation is

commonly preferred to exhibit that as the cumulative level increases, so does the negative drift.

Theorem (Lyapunov Stability). Given a system of queues with state vector Z(n), whose evolu-

tion is described by a DTMC, if there exists a Lyapunov function V (Z(n)) such that

E[V (Z(n + 1))|Z(n)] <∞ for all Z(n)

and if there exist ε > 0 and B > 0, such that ∀‖Z(n)‖ > B, the following condition holds

E[V (Z(n + 1))− V (Z(n))|Z(n)] < −ε‖Z(n)‖,

then all the states of the DTMC are positive recurrent.

Leonardi et al., in [70], comprehensively applied the above result to maximal matchings.

Several specific maximal algorithms, driven by rates as well as queue lengths, were proven to

yield asymptotic 100% throughput with s ≥ 2, for admissible traffic. The arrival processes for the

different input-output flows were assumed to be independent and identically distributed (i.i.d.),

Formal Methods in Switching 53

Matching Arrival Constraint Speedup Approach
General Maximal (Dai-Prabhakar) SLLN 2 Fluid limits

Specific Maximal (Leonardi et al.) i.i.d. 2 Lyapunov stability
LPF (Mekkittikul-McKeown) i.i.d. 1
C-MSM (Iyer-McKeown) Uniform Bernoulli 1
MWM (McKeown et al.) i.i.d. 1

MWM (Dai-Prabhakar) SLLN 1 Fluid limits

Table 3.3: VOQ stability for admissible arrivals using popular matching algorithms

in order to enforce a DTMC on the queue state. These results are as expected and encompassed

by the Dai-Prabhakar maximal matching result.

Maximum Matchings

One of the earliest results on asymptotic 100% throughput for IQ switches is due to McKeown

et al. [80], who showed that a maximum weight matching is sufficient for 100% throughput for

admissible i.i.d arrivals, without the need for internal speedup. The weight matrix was set to Q,

and the Lyapunov stability approach was used in conjunction with the Birkhoff result (3.5), with

the copositive matrix set to identity. Subsequently, the i.i.d. assumption was relaxed by Dai and

Prabhakar who established the same result using fluid limits [29].

Theorem (McKeown et al., MWM). A maximum weight matching, with the weights set to the

respective queue lengths, is sufficient for asymptotic 100% throughput in an IQ switch, without

speedup, for all admissible i.i.d. arrivals.

Using the Lyapunov result with a simple copositive matrix, Mekkittikul and McKeown

showed [79] that the less complex LPF matching, which is an MSM with maximum weight, where

the weights are set to the row sum plus the column sum of the queue length matrix, also achieves

asymptotic 100% throughput for admissible i.i.d arrivals. Iyer and McKeown, in [52], explore

whether this result holds for a more general class of MSM, e.g., an analog of the Weller-Hajek

C-MSM theorem for non-bounded traffic, and report that a C-MSM provides 100% throughput

for Bernoulli i.i.d. arrivals, which are uniformly distributed among all outputs. Actually, we show

in Chapter 5 that the analog does apply and prove, using fluid limits, that any critical matching

54 Chapter 3

indeed provides asymptotic 100% throughput for all admissible arrivals.

The Lyapunov function methodology, while restricted to i.i.d. arrivals, is superior in

comparison to the fluid limit approach in some respects. Specifically, it becomes feasible to gather

additional statistics about the queue lengths. Leonardi et al., in [71], use the former to derive

bounds on average queue lengths and the variance in lengths for maximum weight matchings

under uniform admissible traffic. Similarly, Shah and Kopikare [98] derive bounds on average

delay for an approximate MWM under non-uniform Bernoulli traffic. Table 3.3 summarizes the

stochastic stability results for cell-based input-queued switches in the literature.

Packet-based Matching

A few of the above results on stability have been recently extended [77, 36] to packet-mode

matchings. The authors of these works realize that it would be beneficial to serve all the cells

belonging to a single packet in a consecutive fashion. This is because the delay of a packet

depends on when its last cell is transferred by the space element. Marsan et al. [77] suggest a

modification to the usual matchings, in which if the first cell of a packet belonging to input-output

pair (i, j) is matched in slot k, that connection is held for as many slots as the number of cells

in the packet. While this connection is held, the pair is deemed busy, as opposed to free. The

matching in each timeslot only considers free pairs. Clearly, a packet-mode maximal matching

remains maximal in each slot, and hence continues to provide 100% throughput for admissible

arrivals, with s ≥ 2. However, it is evident that a C-MSM and an MWM operating on the free

pairs do not retain their properties in the overall matching, because a few pre-existing connections

are imposed in each slot.

Marsan et al. show that the Lyapunov stability result can be modified to consider only a

sub-sequence of timeslots, or epochs {tn}. Furthermore, the epochs, known as renewal points,

are chosen such that all the pairs are free in those slots. Using such epochs, it is shown in [77]

that MWM is stable for admissible Bernoulli arrivals, with finite average packet sizes. Ganjali

et al. [36] demonstrate that it is easy to construct a more general admissible pattern for which

such epochs do not exist (except n = 0). To overcome this limitation, a variation of MWM

is presented in which the system stalls at periodic intervals, waiting for all the pairs to be free,

Formal Methods in Switching 55

D
ep

ar
tu

re
s

5

3

5

12

O
ut

pu
ts

4 3

Virtual Output Queues Output FIFO
Order

12

3

5

0

0

2

1

4

30

0

5

0

10

15

4

22

In
pu

ts

A
rr

iv
al

s

Outputs

Figure 3.8: Lowest Output Occupancy First: A maximal matching

before proceeding. This variant is shown to ensure stability for all admissible traffic with bounded

packet lengths, with a speedup of (1 + ε), where ε can be made arbitrarily small, the trade-off

being the length of the forced renewal period.

3.2.5 Work Conservation and Exact Emulation

More sophisticated matching algorithms [65, 24, 107], than the ones covered so far, have been

proposed to achieve better emulation of an OQ switch as opposed to mere long-term stability for

admissible traffic. Such matchings, in general, use the backlog state of the scheduler of the output

memory element to drive the matching for the space element. The intuition is that any suitable

output scheduler, similar to the one deployed in a reference OQ switch, may be deployed in the

output memory element, and the entire switch will behave like the reference switch as long as the

cell departures from the switch are governed solely by the actions of the output scheduler. The

latter goal may be achieved as long as the scheduler receives the necessary cells from the space

element before they are due to be scheduled in the reference switch.

Krishna et al. proposed a specific maximal matching, called lowest output-occupancy first

algorithm (LOOFA) [65], and proved that for s ≥ 2, a switch operating under LOOFA for the

56 Chapter 3

space element, and a work-conserving scheduler at each output link, is overall work-conserving.

This was proven by establishing that the backlog of an output scheduler can never go to zero when

a cell destined to that output resides in a VOQ at the inputs. Let X(n) be a column vector that

denotes the backlog of respective FIFO schedulers at the output links. In LOOFA, the outputs are

first sorted by X(n), and a maximal matching visits the columns5 of Q(n) in increasing order

of X(n) (output selection). An arbitrary input, with a cell to offer, is chosen in each step (input

selection), as shown in Fig. 3.8. For a cell ci,j residing at a VOQ (i, j), an input thread (IT) is

defined as the set of cells in the same input that are destined to a lower or equal-order output.

The work-conservation property immediately follows due to the following inequality, which was

established in [65] by induction on n.

Xj(n) ≥ |IT (ci,j , n)| ∀ci,j ∈ Qi,j(n)

Theorem (Krishna et al., LOOFA). A CIOQ switch with a work-conserving scheduler in the

output elements, and a space element operating under LOOFA, is work-conserving as long as

s ≥ 2.

Note that a work-conserving scheme such as LOOFA is superior to those that just ensure

stable queues for admissible traffic in at least two aspects. It minimizes the average cell delay

because an output link never idles when a cell destined to it resides anywhere in the system,

and it isolates any instability, if it exists, i.e., if the offered traffic to output j is inadmissible, it

only affects the stability of the queues that contain cells destined to that output. Inspite of its

advantages, LOOFA has two limitations. Firstly, the cells may depart in a different order with

respect to a reference OQ switch with FIFO schedulers at its output links. Secondly, there is no

control on the service allocated to an input-output flow within each output, which is meaningful

to isolate instability (or offer fairness) on an input-output pair basis. Note that the latter can

readily be offered by a flow-based scheduler in an OQ switch. The authors of LOOFA realize

that such limitations may be overcome by improving input selection, e.g., by timestamping the

cells to reflect their desired departure, and in each step, choosing an unmatched input with a cell

that has the least timestamp. Specifically, the oldest cell first (OCF) criterion for input selection
5The algorithm described in [65] is implemented in a distributed fashion, with iterative steps of communication

between the input and output elements. The centralized version is covered here for simplicity.

Formal Methods in Switching 57

is suggested in order to better emulate an OQ switch with FIFO departures. For s ≥ 2, LOOFA

with OCF is shown to bound the difference in delay, with respect to the reference switch, by 2N

timeslots, and for s ≥ 3, exactly emulate the latter.

Chuang et al. [24], and independently, Stoica and Zhang [107], showed that it is possible

to achieve exact emulation with an OQ switch employing any scheduler, with a speedup s ≥ 2.

The idea is to run a parallel simulation of the reference OQ switch (not the same as just running

a scheduler in the output element that is identical to the OQ switch scheduler), and generate

a timestamp for each cell, which equals the departure time of the cell in the reference switch.

These timestamps are then used to create a priority list of outputs in each input, and vice-versa.

Such a list can be created for an input i (output j), for example, by first keeping the cells in each

VOQ sorted by their timestamps, and then sorting the outputs (inputs) based on the timestamps of

the head cells ci,j . These priority lists are used to create a stable matching, between the inputs and

outputs, by running the classical Gale-Shapely stable marriage algorithm, which runs in O(N2)

time.

The main property of this algorithm is that if input i is matched to k in a timeslot, then

all the outputs ahead of k in the priority list of i are guaranteed to have been matched to inputs

better preferred by those outputs. In other words, if a head cell ci,j is not picked, then input i is

matched to an output k ahead of j in the input priority list, and/or output j is matched to an input

l ahead of i in the corresponding output priority list. Defining the input thread (IT) of ci,j as the

cells ahead of it in the input priority list of i, and the output cushion (OC) as such cells in the

output priority list of j, it is easy to see that exact emulation follows as long as

|OC(ci,j , n)| ≥ |IT (ci,j , n)| ∀n ∀ci,j = Head (Qi,j(n))

The authors of [24, 107] show that the above inequality always holds for stable matchings,

provided s ≥ 2, using the property mentioned above. Note that both works assume monotonic

scheduling, i.e., a discipline in which the relative order of cells destined to the same output does

not change due to newly arriving cells. Presumably, this assumption was made in order to avoid

having to re-sort cells in a VOQ in every timeslot. Note also that the VOQ structure was not

used at all in [24, 107]. Instead, cells were inserted into a single queue at each input, sorted by

timestamps. This queue also served as the input priority list, and a stable matching algorithm

58 Chapter 3

Matching Complexity Property Speedup
LOOFA O(N2) Work conserving 2
LOOFA-OCF O(N2) Emulates OQ with FIFO 3
Stable O(N2) plus shadow OQ Emulates OQ with any scheduler 2

plus VOQ sorting

Table 3.4: Algorithms for emulation of a reference OQ switch

was run on the contents of the entire queue, as opposed to the heads of the VOQs as described

here. We chose to expound the VOQ variation since the stable matching would run in O(N2)

time in this case, compared to O(B) time required for the single-queue version, where B is the

total number of enqueued cells. The above inequality holds in either case.

Theorem (Stable Matching). A CIOQ switch can exactly emulate a reference OQ switch using

stable matching and a speedup s ≥ 2.

Exact emulation using stable matching remains a fundamental result in switching, how-

ever, practical implementation of such an algorithm has been hampered by the need to shadow

the reference OQ switch in parallel. Recently, Giaccone et al. [38] explored whether a near-work

conserving algorithm may be used at a lower speedup to achieve comparable delays as an OQ

switch, for a restricted class of traffic. Specifically, the traffic is restricted to arrivals that are

bounded admissible with timescale nT . A discipline is referred to as T -work conserving, if the

latter property holds at epochs {T, 2T, . . . , kT, . . .}. It was shown that using essentially a batched

critical matching with n = 2 (i.e., cells are batched faster than the timescale) and s ≥ 4/3, the

maximum cell delay is bounded by 3
2nT . Similarly, n = 3 and s ≥ 3/2 yields a delay bound

of 4
3nT . These compare to a delay bound of nT observed in a work conserving OQ switch for

similar traffic.

Table 3.4 summarizes the OQ emulation algorithms covered in this section.

3.2.6 Low-complexity Matchings

As mentioned in Sec. 3.2.2, several flavors of on-line maximal matching algorithms have been

preferred for implementation over maximum size and weight matchings, due to their low com-

plexity. In practice, even the O(N2) complexity of a sequential maximal matching is sometimes

Formal Methods in Switching 59

1Input 1

Input 2

Input 3

Input 4

0 1 3

5402

0 1 1 0

0 3 2 0

Step 1 Step 2

1 2 3 4 Outputs
V

ir
tu

al
 O

ut
pu

t Q
ue

ue
s

Figure 3.9: EREW Maximal Matching: A distributed implementation

prohibitive for a centralized arbiter of a high-speed switch. Two approaches are prevalent in the

literature to address this issue, namely, a parallel or distributed maximal implementation, and the

usage of larger data units and/or timeslots to switch.

Parallel and Distributed Implementation

One of the earliest approaches (e.g., used in PIM [1], iSLIP [78], LOOFA [65]) to generate a

maximal matching is the so-called request-grant-accept (RGA) technique. RGA may be used

for a parallel implementation in a centralized arbiter, or more beneficially, for a matching that is

computed by the input and output elements in a distributed fashion. In general, each step of an

RGA matching proceeds in three phases: (a) all the inputs, in parallel, generate a request to be

connected to one or more outputs, based on the VOQ occupancy and other criteria; (b) from the

set of inputs making a request, each output, in parallel, grants permission to a single input; and

60 Chapter 3

In
pu

ts

0 035

1 0 0 5

0 0 8 0

4 3 0 0

In
pu

ts

O
ut

pu
ts

1 2 3 4

Outputs Request Grant Accept

STEP 1

STEP 2

1

2

3

4

Figure 3.10: Parallel Iterative Matching: Example of an RGA algorithm

(c) if an input receives several grants, it accepts one of them and uses that as the match. The steps

are iterated till a maximal matching is generated.

The EREW maximal matching described in Sec. 3.2.2, and shown in Fig. 3.9, lends itself

to a straightforward RGA implementation. Each unmatched input requests a connection to a

single output in each step, if it has a backlogged cell for that output. The pointers that the inputs

use to generate the requests are staggered so that an output receives a request from at most one

input in one step. If unconnected, the output grants the request, and the corresponding input

always accepts the grant. Clearly, each step runs in O(1) time, and a maximal matching is

guaranteed in N steps, since all the N2 pairs are inspected. This remains one of the simplest

RGA techniques to generate a general maximal matching. A matching may be deemed sub-

maximal if the procedure stops after k < N steps. The dispatch algorithms of the Atlanta [19]

chip-set may be viewed as single-step (k = 1) sub-maximal variations. The advantage of a single

step here is that no communication in necessary between the inputs and outputs, yet simulations

show that the algorithm sustains uniform admissible traffic without speedup.

Parallel iterative matching (PIM) [1], iSLIP [78], and dual round-robin [11] are instances

of iterative RGA matchings that have found commercial applications. In all these algorithms,

Formal Methods in Switching 61

each step (at the inputs and outputs, in parallel) runs in O(N) time, however, the goal is to quickly

converge to a maximal matching without requiring N steps. The reasoning is that the commu-

nication overhead associated with a step dominates the required run-time, and hence should be

minimized. In the first phase of PIM, each unmatched input sends a request to all the outputs

for which it has a backlogged cell. An output makes a grant by choosing one requesting input at

random. Similarly, an input randomly breaks ties to accept a connection from a granting output.

Fig. 3.10 illustrates this technique, with two steps of the three phases. In iSLIP, the grants and ac-

cepts are performed using round-robin pointers at the output and input, respectively. Special care

is taken, much as in EREW maximal, to ensure that the pointers at the different inputs (outputs)

do not start at the same output (input), in each step.

In the worst-case, both the above algorithms need N steps to converge, for a total run-

time complexity of O(N2), which is extremely wasteful for a parallel algorithm. However, it was

shown that, on average, it takes only log N steps to arrive at a maximal configuration. Further-

more, simulation results suggested that iSLIP with a single step and no speedup provides 100%

throughput [78] for Bernoulli arrivals that are uniformly distributed among the outputs. This was

attributed to the desynchronization of the pointers used at the outputs (inputs) to generate a grant

(an accept). We show analytically, in a later section, that less is needed for any kind of uniform

traffic. These happen to be so benign that a sub-maximal matching generated by a single step

of the O(1) EREW maximal technique suffices. For non-uniform admissible traffic, all such al-

gorithms, with N steps, can be expected to sustain 100% throughput with a speedup s = 2, in

accordance with the Dai-Prabhakar maximal matching theorem.

Reducing Configuration Frequency

Reducing the frequency of space element configuration is desirable in practice due to two reasons.

First, it allows the implementation of more complex matchings, and second, it provides the means

to mitigate the overhead associated with each re-configuration, which happens to be large in

optical space elements.

Recall that a matching needs to be completed once every internal timeslot, whose length

equals sC/L, where C is the external link capacity and L is the length of the internal transfer

62 Chapter 3

2

Virtual Output QueuesEnvelope Assember

Arrivals

Space
Element

Input Memory Element

VO 1,1

VO 1,2

VO 1,3

Input 1

Output 1

3

2

123345

122

1

Figure 3.11: Assembling large envelopes for low-frequency matchings

unit (cell). Arbitrarily complex matchings can be implemented in each slot provided L can be

proportionately increased. Kar et al. [54] suggest envelope matching as a means to amortize

matching complexity over a large internal timeslot. The SAR component in the port processors,

responsible for chopping (re-assembling) packets into (from) fixed-size cells, is replaced by its

dual. At the inputs, several packets are assembled into a large fixed-size envelope, as shown in

Fig. 3.11. The arriving packets for each input-output pair are shown in the figure as numbered,

using the order of arrival. Packets wait in this assembler until sufficient bytes are accumulated to

fill an envelope. It is shown in [54] that the system remains stable without the need for additional

speedup (similar in intuition to the packet-based matching results in Sec. 3.2.4). A good side-

effect of this approach is that it handles variable-sized packets without the bandwidth overhead of

the SAR, caused by fragmentation. However, the authors also realize that waiting for an envelope

to fill adds to the packet delay. In some pathological cases, a partially filled envelope may remain

unserved forever if no additional cells arrive for the corresponding flow. A heuristic is suggested

to counter this, in which each matching is allowed to consider partial envelopes, in a separate

phase (similar to renewal points in Sec. 3.2.4), after it has accounted for all the full envelopes.

In some optical space elements, even if the central arbiter computes matchings at a

Formal Methods in Switching 63

frequency of sC/L, it becomes infeasible to use those matchings at that frequency, as the re-

configuration of the element is associated with a significant overhead. Towles and Dally pro-

pose [111] a combination of batch scheduling and efficient matrix decomposition to reduce the

number of re-configurations. Specifically, the arbiter continues to compute matchings at a high

frequency. The matchings are batched at epochs of period T , and then decomposed into k � T

permutations, each associated with the number of slots Nk for which it needs to be held. The k

permutations are applied to the space element in the next batch interval. The MIN and DOUBLE

algorithms, described in Sec. 3.2.3, are suggested to generate those permutations since k only

depends on N in those schemes, and is independent of T . Li and Hamdi [73] have since pro-

posed a method to measure the deterioration of average delay, which is one penalty in such batch

scheduling schemes. Note that the additional speedup required for efficient decomposition is not

a limiting constraint for optical elements.

3.3 Throughput and QoS in Packet Switching

3.3.1 Integrated Matchings

We reviewed a host of matchings for input-queued switches, each with its own specific proper-

ties and benefits, several contingent on arrival assumptions to meet the desired performance goal.

The decision chart in Fig. 3.12 puts it all together, for a selected set of matchings, all assuming

admissible6 traffic. The task of a switch designer is to choose one or more algorithms, given the

specific requirements and assumptions. For example, consider an ATM switch design, where the

only requirement is to ensure bandwidth guarantees for traffic shaped by the required-rate matrix

R, i.e., in-profile traffic. All that is needed in this case is a BVN template-based algorithm. Any

auxiliary matching for the out-of-profile traffic would suffice, as maximizing the throughput is

not a goal. In general, however, a switch may need to be designed for QoS satisfaction, specified

by R, and throughput maximization for offered rates λ, which may be unknown and indepen-

dent of R. Short of using a stable matching to emulate an OQ switch, which can ensure both

simultaneously, this is typically achieved by integrating two or more matchings at the same time.
6Strictly speaking, LOOFA does not assume admissible traffic.

64 Chapter 3

Yes/No

Maximal: s = 2
LPF: s = 1
MWM: s = 1
LOOFA: s = 2

CONTINUOUS:

Do we assume the
offered rates
to be known?

Yes

Yes

No

No

Yes

QoS

Throughput

Both of the above

BVN: s = 1
DOUBLE: s = 2

TEMPLATES:

Bounded λ ?

C−MSM: s = 1
Maximal: s = 2

BATCH:Are required rates
R specified?

λ

Figure 3.12: A decision chart to select matchings based on requirements

Let M1 and M2 be two policies chosen to satisfy two different performance criteria,

specifically, QoS and throughput in this case, with respective speedup requirements of s1 and s2.

We say that M2 is additive with respect to M1 if M2 can add to the configuration generated by

M1 without losing its own properties. Note that this relationship need not be symmetric. If M2

can add to M1, these can be integrated into a single multi-phase matching M , with speedup

sM = max(s1, s2). (3.11)

In each slot, M1 is first applied to generate a partial configuration, and M2, in a separate phase,

augments the configuration. Let T be an integer such that both s1T and s2T are also integers. If

s1 > s2 (and vice-versa), then, out of every s1T internal timeslots, M2 need not be applied for

Formal Methods in Switching 65

(s1 − s2)T timeslots on account of its lower required speedup. For example, a general maximal

matching is additive with respect to any other matching algorithm. Therefore, we can use a multi-

phase matching comprised of BVN templates for QoS, with s = 1, and maximal matching for

throughput, with s = 2, in the second phase. The templates are applied only once in every two

timeslots, and the overall required speedup remains 2.

We say that M1 conflicts with M2, if neither is additive with respect to the other. This

is a symmetric relationship. In this case, the two matchings can be integrated only through an

exclusive combination M , in which either one or the other algorithm is used by itself in each

timeslot. The speedup required then is

sM = s1 + s2. (3.12)

Out of every (s1 + s2)T internal slots, M1 is applied for s1T slots, and M2 for s2T . As an ex-

ample, an MWM, in general, conflicts with BVN template-based matching, as the latter does not

consider queue lengths. Therefore, an integration of those two policies, for throughput and QoS,

respectively, also results in an overall speedup requirement of 2, i.e., no better than the previous

example. Clearly, the amenability of general maximal matchings to multi-phase integration is yet

another of its many desirable properties.

Such integrations have not yet been studied extensively, though most switching systems

use them in some form or the other. Recently, Chiussi et al. [15] proposed a distributed frame-

definition algorithm (DFDA), which is an integration of rate-based templates and a single step

of a maximal matching algorithm. Using simulations, the throughput is shown to be 100% for a

class of admissible Bernoulli traffic, without speedup. This is likely because the templates require

s = 1, and the additive single-step maximal matching also requires only s = 1 for such traffic.

3.3.2 Hierarchical Switch Scheduling

All the matching algorithms for input-queued switches, except the ones that exactly emulate an

OQ switch, distribute bandwidth to coarse-grain input-output flows rather than to individual fine-

grain ones that comprise the pairs. The QoS-enabling policies guarantee a trunk of Ri,j to each

input-output pair (i, j), while the augmenting throughput-maximizing policies realize a portion

66 Chapter 3

Figure 3.13: Throughput and QoS for input-queued switches using distributed scheduling

Φ∗
i,j (Ri,j ≤ Φ∗

i,j ≤ C) of the output link capacity C to each pair. Φ∗
i,j represents the long-

term fairness in the allocation of output bandwidth. If the rates are admissible, then a policy that

ensures 100% throughput essentially yields Φ∗
i,j = λi,j for all the pairs, and long-term fairness is

moot. As it turns out, it suffices for the arbiter to consider only input-output flows, and fine-grain

flows within them can be handled adequately using hierarchical link scheduling contained within

the memory elements [103, 13, 14, 35].

The general approach is illustrated in Fig. 3.13. The output memory element contains

a scheduling structure that is identical to the one in a reference OQ switch. Each output link

j is served by a combination of a guaranteed-bandwidth scheduler (GBS), ensuring a rate R
(k)
i,j

to flow k in pair (i, j), and an excess-bandwidth scheduler (EBS), which, together with GBS,

determines the total service Φ(k)
i,j observed by the flow. For example, the EBS could use a simple

weighted allocation of the slots that are not used by GBS. Such a combination is referred to as

a fair-airport [40] link scheduler. Let Φi,j =
∑

k∈f(i,j) Φ(k)
i,j be the total service observed by the

pair (i, j), where f(i, j) is the set of flows for that pair. Let Φ̄i,j be the corresponding service

Formal Methods in Switching 67

observed by the flow in the above-mentioned reference OQ switch. These two quantities need not

be equal, as Φi,j is dependent on the actions of the space element.

The space element employs a rate-based policy in its first phase that ensures a trunk

of Ri,j =
∑

k∈f(i,j) R
(k)
i,j to pair (i, j). In other words, the trunk rate is exactly equal to the rate

guaranteed by the output scheduler to the aggregate of flows in the pair. A second phase augments

the above, resulting in a total observed rate of Φ∗
i,j for pair (i, j). Clearly, Φi,j ≤ Φ∗

i,j . Notice that

Φi,j = Φ̄i,j requires the space element to at least ensure Φ∗
i,j ≥ Φ̄i,j . Then, we may say that the

space element accords the same long-term fairness to the coarse-grain flows as an OQ switch. If

the offered rates are admissible, then any integrated matching that provides 100% throughput is

also long-term fair since Φi,j = Φ∗
i,j = λi,j = Φ̄i,j . However, it is not straightforward to ensure

the above equality for inadmissible traffic because the sum is not known beforehand, rather, it

just results from the continued operation of the output link scheduler.

The service allocated by the space element to coarse-grain pairs can be translated back to

per-flow service by employing a virtual output scheduler (VOS) for each output, as opposed to a

FIFO VOQ, in the input memory element. Each VOS is also implemented as a fair-airport sched-

uler. The configurations generated in the first phase of the space-element matching algorithm are

consumed by the GBS component. Since the rates required by the flows, within each pair, add up

to the service allocated in this phase, each flow ends up receiving its per-flow reservation R
(k)
i,j .

The penalty is in delay, which may be computed using hierarchical scheduling theory [4] as:

D
(k)
i,j ≤ d

(k)
i,j (GBS) + θi,j , (3.13)

where θi,j is the service burstiness of the first-phase matching, which is defined as the maximum

inter-service time observed by the GBS scheduler for pair (i, j), and d
(k)
i,j is the delay that would

be experienced by the flow had it been served by the same GBS scheduler in a continuous fashion

at capacity Ri,j .

The configurations generated in the second phase are consumed by the EBS component

within the VOS. If the matching is long-term fair, each flow can indeed receive the same share of

the output link capacity Φ̄(k)
i,j as in the reference OQ switch. For example, if the latter employs

a weight-based EBS, identical shares can be achieved by using the same normalized weights for

each flow in the EBS component. Note, however, that the system cannot enforce such fairness on

68 Chapter 3

a short timescale, as can be done in the reference switch. That continues to be dominated by the

matching algorithm of the space element.

3.3.3 Memory Element QoS

The final task in providing per-flow QoS and throughput is to determine the specific policies to be

used for the VOS in the input element, and the link scheduler in the output element. This choice

may be drawn from the literature in OQ switching, independent of the matching algorithm. In

other words, provided the above hierarchical scheduling framework is used, the memory elements

may be considered as independent OQ switches for per-flow scheduling purposes. The input

elements behave like a 1 × N OQ switch, whose output links are really the respective VOS

with capacity Φ∗
i,j , and output elements behave like a 1 × 1 OQ switch, in which the input link

capacity is s times that of the output. Therefore, for completeness, we briefly review the OQ

switch scheduling basics below.

Link Scheduling

Consider an N × N OQ switch with link capacity7 C. If per-flow allocations are unimportant,

a simple FIFO policy may be used at each output. In general, however, we assume per-flow

control, where the flows may be defined at a desired granularity. The goal is to allocate C among

the flows so as to provide isolated rate guarantees for each flow, delay bounds for well-behaved

traffic, and/or fairness in the overall allocation. A simple weight-based scheme is the Weighted

Round Robin [56] (WRR) scheduler, in which each flow i is associated with weight wi. The flow

is guaranteed a bandwidth of (wi/
∑

i wi)C. The worst-case latency between consecutive service

may approach the size of the WRR frame. Note that bandwidth guarantees as well as allocation

fairness are linked to the same weight. A popular credit-based implementation, which accounts

for variable sized-packets, is the Deficit Round Robin [99] policy.

A classical rate-based scheme, which provides a framework for perfect flow isolation, is

the fluid-model Generalized Processor Sharing (GPS) [87] policy. Each flow i is associated with
7The contents of this entire section can be easily extended to account for a more general N ×M OQ switch, with

varying capacities on each output link. We are adopting a square switch with uniform output capacity merely for
simplicity.

Formal Methods in Switching 69

a required rate ri, and receives an instantaneous service rate proportional to ri, whenever it is

backlogged. As long as the required rates are admissible, the service given to each flow meets or

exceeds its requirement. If two flows i and j are continuously backlogged in interval (t1, t2), the

amount of service received by the flows are related as:

Wi(t1, t2)/ri = Wj(t1, t2)/rj

The GPS scheduler has several interesting properties. Firstly, as seen from the above equation,

the rate-normalized service received by each backlogged flow is equal at every instant. Therefore,

the available bandwidth in excess of the rate requirements is also distributed in proportion to each

flow’s required rate. This led to one of the first formal measures for service fairness, defined as

the worst-case difference in normalized service between any two backlogged flows. Secondly, if

B(t) is the set of non-empty queues at instant t, the instantaneous service given to a queue i is

equal to riC/
∑

j∈B(t) rj . Each flow receives such isolated service with zero latency. Thirdly,

the observed delay depends only upon the flow’s own arrival process, as shown in Fig. 3.14. For

example, if the flow is token-bucket constrained [28] with a bucket size of σi, then the delay is

bounded above by σi/ri.

The packetized version of GPS, called Weighted Fair Queueing (WFQ) [30], works by

essentially simulating a fluid system. This is achieved by keeping track of the normalized work

done in the reference GPS scheduler, also called virtual time v(t), at every timeslot. Note that, in

GPS, v′(t) = C/
∑

i∈B(t) ri. On arrival, the kth packet of flow i with length lki is time-stamped

using its finishing virtual time F k
i , which is computed as:

F k
i = lki /ri + max(v(t), F k−1

i)

This policy simulates GPS with a worst-case added latency of (lki /ri + lmax/C). Several of the

subsequent packet-based scheduling algorithms proposed the use of approximations for v(t) that

were easier to compute, but yielded different delay bounds and service fairness. For example,

in Virtual Clock [117], v(t) is set to real time t, which leads to delay bounds comparable to

WFQ but unbounded service fairness. In Self-Clocked Fair Queueing (SCFQ) [39], the virtual

time is set to the timestamp of the currently served packet, yielding the best fairness properties

among GPS-related schedulers, but a delay bound which is O(n), where n is the number of

70 Chapter 3

S(t)

Time

Bits

B(t1)

t1

b1

D(b1)

D(b1): delay of bit b1
B(t1): buffer backlog at time t1

S(t): GPS service process
A(t): Arrival process

Slope = r

A(t)

Figure 3.14: GPS: Delays and backlog for a single flow

flows. A general model for packet-based schedulers, called rate proportional [105] servers, was

later devised, which showed that any scheme in which v(t) grows at least as fast as real time, but

always under-estimates it with respect to a GPS server, has the same added latency as WFQ, with

the service fairness dependent only on the extent of under-estimation. Examples of such schemes

include Virtual Clock and Frame-Based Fair Queueing (FFQ) [106].

The notion of worst-case fairness (which we use interchangeably with the term, service

burstiness) was introduced in [3]. This is especially suited for hierarchical [4] (see Fig. 3.15(a))

and distributed schedulers, and is defined as the worst-case inter-service time of a scheduler. It

was shown that the added latency, with respect to GPS, observed by a packet served by a hier-

archical scheduler, is equal to the sum of the normalized worst-case fairness of the intermediate

nodes. The inequality in (3.13) is essentially based on this result. In contrast to all the above

schemes, in which fairness is tied to the corresponding required rate, the Fair Airport [40] al-

gorithm allowed to decouple the scheduler into a non-work-conserving guaranteed bandwidth

scheduler (GBS) (e.g., shaped Virtual Clock) to ensure rates and delays, and a work conserving

excess bandwidth scheduler (EBS) (e.g., WRR), as shown in Fig. 3.15(b). Note that the results

Formal Methods in Switching 71

(b) Fair Airport Scheduler

Class

Customer

(a) Hierarchical Scheduler

Link

Org 1

Org 3

CL 1

CL 2

CL 1

CL 2

Flow Queues

Priority

GBS

EBS

Flow Queues

Org 2

Contention PointContention Point

Figure 3.15: Scheduler arrangements: (a) Hierarchical (b) Fair Airport

from hierarchical and fair airport scheduling were the ones that were used in the design of the

VOS and output link schedulers in the memory elements of an input-queued switch in Sec. 3.3.2.

Buffer Management

Link scheduling policies and space-element matching algorithms focus on the finite bandwidth

resource at contention points, with the goals of bandwidth isolation, fairness in service allocation

and throughput maximization, essentially assuming an infinite-size attached memory. While we

continue to make this assumption in the rest of this work, it is instructive to visit buffer manage-

ment policies to keep the effects of finite memory in perspective. Given a finite buffer resource

in a memory element, we may view buffer management as a mechanism to control the residue

of the scheduler to support its unhindered operation. For example, if the scheduler is willing to

allocate a long-term rate of Φ(k) (not known beforehand) to flow k, the buffer manager must not

inordinately drop packets belonging to that flow and bring the resultant service rate below Φ(k).

The goal in buffer management is fairly well-defined for the guaranteed-QoS component

72 Chapter 3

of the offered traffic. Typically, a rate reservation R(k) is accompanied by a burstiness specifica-

tion σ(k) (e.g., the token bucket size) during admission control. The task is to guarantee sufficient

space so that the specified burstiness may be absorbed. Memory elements may be allowed to

oversubscribe the buffer space if a small loss ratio is tolerated for the guaranteed component. Un-

fortunately, the goal is not as well-defined for the best-effort component. If the schedulers in the

system offer long-term stability to flow k (λ(k) = Φ(k), both unknown) assuming an infinite-sized

memory, how should the buffer manager control admission into the finite memory in the short-

term? Presumably, if the flow has non-conflicting access to a fixed share of the buffer space, and

we assume a specific arrival process, techniques such as those based on Chernoff bounds [83] can

be used to calculate the associated loss ratio. However, if two flows with guaranteed long-term

stability compete for buffer space, how do their stability properties in the infinite-space virtual

system translate to loss ratios in a finite-space system? More importantly, will an injudicious

buffer management scheme hinder with the scheduling outcomes? There are some recent ad-

vancements (e.g., [96]) on this subject, but these questions are still in an exploratory stage of

research.

In the absence of clear answers, the goal in maximizing throughput defaults to a combina-

tion of (i) allowing equal access to the available buffers; and (ii) sharing the buffers across flows

to increase throughput when some of the flows are inactive. As a result, a flow with offered rate

λ(k), and unspecified arrival profile, observes a bandwidth-buffer tuple of (Φ(k), B(k)), where the

former is the long-term service rate and the latter is a time-varying resultant buffer space. The tail

(Q(k)(t) > B(k)(t)) of the queue-length distribution will determine the observed loss ratio. The

intuitive reasoning behind equal access is that, if all profiles are “similar”, two stable flows, i.e.,

with λ(k) = Φ(k), will observe “similar” loss ratios, and the losses observed by unstable flows

will be significantly “higher”. Correspondingly, an unhindered scheduler may be assumed, which

continues to consider the system as one with infinite-sized memory. It is not a coincidence that

this redefined goal in buffer management is fairly well-addressed.

The classical complete partitioning [47] scheme may be used to generate a time-invariant

B(k) that is perfectly isolated from other flows. This is a special case of static thresholding [34]

in which the sum of the allocations is allowed to exceed the total buffer size. While the latter

Formal Methods in Switching 73

does not provide perfect isolation, it allows to share the buffers in a limited fashion by utilizing a

knowledge of the inter-dependencies of arrival processes. The dynamic thresholding [23] scheme

aims to equalize the queue lengths, while increasing throughput, by dynamically changing the

allocation as a linear function of the free space. We have since proposed the dynamic partition-

ing [66] algorithm to simultaneously realize a static share to absorb the negotiated burstiness, and

a dynamic share for the best-effort component.

All the above schemes fall into the category of arrival-drop policies in which the flow’s

buffer occupancy is checked against a threshold and the arriving cell dropped if the threshold is

violated. In contrast, push-out policies [37] allow to maintain full buffer occupancy, and hence

the lowest total cell loss, with exactly equal allocations to each backlogged flow in a congested

buffer. When a cell arrives into a full buffer, a (different) cell from the longest queue is discarded.

It was suggested in [108] that a cell from the head of the longest queue should be dropped to

optimize TCP performance.

It should be noted here that many commercial switches do not queue packets on the basis

of fine-grain flows. Instead, several flows are multiplexed into a common FIFO, and the link

scheduler does not allocate bandwidth to each individual flow. In such cases, buffer management

schemes have been adapted to control not just the residue of scheduling but also the per-flow

bandwidth allocation itself. By regulating the entry of packets belonging to different flows into

the same queue, such schemes essentially take up the role of a link scheduler. Popular examples

in this category are Random Early Detection [33] and its multitude of variants, as well as some

recent active queue management (AQM) schemes.

3.4 Summary

We reviewed several high-performance matching algorithms for input-queued (IQ and CIOQ)

switches with a focus on providing QoS guarantees, specifically, bandwidth and delay, and opti-

mizing throughput, independent of QoS. Note that most of the schemes in the literature address

the latter only for admissible offered traffic. Special attention was paid to the formal methods

from combinatorics and stochastic stability that were used to analyze and establish the properties

of matching algorithms. We shall use similar methods in the analyses of our own contributions

74 Chapter 3

in later sections. We concluded the review of matching algorithms by outlining two schemes,

envelope and batch matching, which can be used in conjunction with any specific algorithm to

lower its amortized complexity. The presence of such add-on mechanisms is assumed in the rest

of the dissertation without explicit elaboration.

We exposed a commonly used framework for integrating several matchings together, in

order to simultaneously provide QoS and maximize throughput. We finally showed how a hierar-

chical scheduling structure may be combined with the rich results on link scheduling and buffer

management, from OQ switching literature, to translate the coarse-grain properties of matchings

to per-flow performance. Again, in the rest of the dissertation, we will assume the presence of

these techniques (in memory elements) without specifically describing them. This allows us to

concentrate on meeting the desired performance goals by merely focusing on the arrivals and de-

partures on an input-output pair basis, and ignoring the effects on individual flows within them.

For all practical purposes, such pairs are synonymous with flows in the rest of the work, unless

otherwise specified.

We are now ready to extend the state of the art in two directions, namely, strengthening

the performance results for input-queued switches so as to achieve different levels of equivalence

with an ideal switch, and extending similar results to more general multi-module architectures.

75

Chapter 4

Buffered Clos Switches: A Framework

We introduce our taxonomy1 of a class of three-stage multi-module switches in this chapter. The

focus is on a constructive approach to build scalable switches using lower capacity logical el-

ements, inspired partly by similar work in circuit switching that yielded the non-blocking Clos

network. We call the resulting packet switches buffered Clos switches (BCS). This is accompa-

nied by a description of feasible implementations of such three-stage switches, along with the

design constraints that each resolves. We then introduce the performance framework of func-

tional equivalence to accurately characterize the capabilities of the algorithms employed in these

switches.

4.1 BCS Taxonomy

We defined two logical elements, in Sec. 2.4, that may be used to construct the forwarding path

of a packet switch. These were defined in terms of their external behavior, rather than the internal

implementations. Specifically, a memory element is a block in which an incoming packet is

immediately presented to its output link, where it is queued and later scheduled for dispatch.

In contrast, a space element is a memoryless interconnect that can realize a path for any given

conflict-free configuration of input-output pairs (2.5). Referring again to the question we had

asked ourselves as to what qualifies as the logical architecture of a multi-module switch, we
1The taxonomy of buffered Clos switches and the accompanying performance framework of functional equivalence

were briefly introduced in a prior technical report [67].

76 Chapter 4

O
ut

pu
ts

Single Memory Element

Knockout Configuration

Demultiplexors
Input

Memory Banks
Output

In
pu

ts

Figure 4.1: A Knockout configuration as a network of logical elements

suggest the following answer: any irreducible network of logical elements. This forms the basis

of our proposed taxonomy.

Definition 1. A network of logical switching elements is said to be irreducible if no subset of

interconnected elements may be combined to form a single logical element.

For example, consider the Knockout configuration shown in Fig. 2.4. This can be repre-

sented as a network of space and memory elements as shown in Fig. 4.1. If the interconnection

between the first and second stages is not oversubscribed, i.e., a memory element can receive a

packet simultaneously from all space elements, then the entire network can be trivially reduced

to a single memory element, based on its external behavior. Similarly, a subset of interconnected

space elements that form a non-blocking Clos network, as in Fig. 3.1, may be reduced to a sin-

gle space element. An advantage of characterizing a switch in terms of its logical structure is

that it allows us to isolate the defining algorithms of the switch, i.e., scheduling and arbitration,

from implementation details. Given a switch, an inspection of the interconnection should yield

its logical structure, which can then be meaningfully analyzed.

Let S represent the set of elements that comprise a multi-module network. A network

Buffered Clos Switches: A Framework 77

is said to be multi-stage, with K stages, if S can be partitioned into K disjoint subsets, Ak,

k = 1, 2, . . . ,K, such that the interconnections I ⊆
⋃K−1

k=1 Ak × Ak+1. Note that this definition

is similar to that of a layered network in graph theoretic terminology. When I is exactly equal to

the union of the above cartesian products, the K-stage network is referred to as fully connected.

In other words, each element in Ak is connected to every element in Ak+1. The input links of

the elements in A1 form the inputs to the overall system, while the output links of the elements

in AK form the outputs of the system. The elements in Ak are collectively referred to as the kth

stage of the network.

Definition 2. A stage k of a multi-stage network is uniform if all the elements in Ak are of the

same type.

For example, the Knockout configuration shown in Fig. 4.1 is a fully-connected two-stage

network, where both stages are uniform. Furthermore, the network is said to contain symmetric

stages if |Ai| = |AK+1−i|, for all i = 1, 2, . . . ,K. Essentially, the overall network exhibits bi-

lateral symmetry in terms of its interconnections. While our goal is to create a large switch as an

irreducible network of memory and space elements, we will narrow our scope to fully-connected

multi-stage networks with stages that are uniform and symmetric. A circuit-switching equiva-

lent of such a network may be obtained by replacing all memory elements with space elements,

essentially creating an isomorphic network of just space elements. Recall that a network is said

to have a non-blocking structure if the circuit-switching equivalent is non-blocking. Guided by

Proposition 2, which informally stated that a non-blocking structure is necessary for fitting ad-

missible flows, we further restrict our scope to networks whose equivalents are non-blocking.

Specifically, we consider the class of networks whose equivalent is the Clos network. While out-

side the scope of this work, we note here that such modeling can be extended to equivalents of

other non-blocking circuit networks such as the Cantor network.

Given a requirement for a N ×N switch with link capacities of C, the task of choosing a

specific multi-stage configuration is driven by design and reuse constraints. Note that a monolithic

OQ design would be limited by memory element constraints, namely, the memory bandwidth per

output and the required full-mesh connectivity, and an IQ design by space element constraints,

primarily, the arbitration frequency that limits the complexity of resident matching algorithms,

78 Chapter 4

1## 1

1

N/P

N

1

N/P

N

N/P x K

N/P x K

N/P x K

P x P

P x P

P x P

K x N/P

K x N/P

K x N/P

2# 2# 2#

P# K# P#

1

Space

:

Stage 1 Stage 2 Stage 3

or

Memory

Figure 4.2: General model of a buffered Clos switch

which in turn typically depend on the switch size. Driven by the same limitations, a switch

designer may use the largest such elements that can cost-effectively be implemented (or reused),

and then create a multi-stage network using several instances of them.

4.1.1 Multi-module Architecture

The general model of a buffered Clos switch (BCS) is shown in Fig. 4.2. A BCS is obtained

by augmenting selected stages of the circuit Clos network with memory elements. This class

lends itself to a rich set of feasible multi-stage implementations, including CIOQ switches, sev-

Buffered Clos Switches: A Framework 79

Sw
itc

h
O

ut
pu

ts

2

3

4

5

6

1

2

3

4

5

6

Space MemoryMemory

2 x 2 2 x 23 x 3

Sw
itc

h
In

pu
ts

1

Figure 4.3: BCS example: (6, [MSM], 3, 2, 2)

eral variants of memory-space-memory switches, and load balanced switches such as PPS. More

formally, we offer the following characterization.

Definition 3. A buffered Clos switch is a fully-connected irreducible three-stage network of mem-

ory and space elements, with uniform and symmetric stages.

For convenience, we will only consider multi-stage networks that realize square switches,

i.e., those with an equal number of inputs and outputs. In practice, this is not a limiting assumption

since the interfaces to most packet switches are full-duplex, each offering both an input and output

link. Besides, all the architectures and analyses of square switches, presented in this work, can

be easily extended to a general N ×M model. The square, uniform and symmetric properties of

the network allow us to represent a BCS using a compact 5-tuple notation:

S : (N,X,P,K, s),

where N is the number of inputs and N × N denotes the dimensions of the switch, P is the

number of first and third-stage elements, and K is the number of second-stage elements. We

assume that N/P is an integer. Due to symmetry, the first stage elements have dimensions of

80 Chapter 4

N/P × K, the second P × P , and the third K × N/P . X is a string that denotes the type

of element in each stage, with X[i] ∈ {S, M}, i = 1, 2, 3. Here, S denotes a space element,

and M a memory element. The parameter s refers to the speedup between the first and second

stages, and identically, between the third and second. The total input link bandwidth (nominal

forwarding capacity) of the switch is NC. If the capacity of the links between the stages is c, the

total nominal capacity between adjacent stages is equal to cPK. By definition,

c =
(

s
N

PK

)
C (4.1)

In other words, the given 5-tuple is sufficient to derive the normalized internal capacity c/C. For

example, Fig. 4.3 shows the layout of S : (6, [MSM], 3, 2, 2). Here, s = 2 immediately implies

that the internal links operate at twice the capacity of the external links. Note that s = 1 does

not give a feasible implementation because the memory in the third stage becomes redundant.

We used a similar configuration, as in this example, in the architecture of the Atlanta [19] and

π [21, 22] chipsets.

We define a BCS as single-path if each realizable path between any given input and output

contains the same memory element(s). If two such paths contain different memory elements,

the BCS is defined as multi-path. Note that we allow the paths between an input-output pair

of a single-path switch to consist of different space elements. We propose such a definition,

as opposed to a conventional one2, because the algorithms in a single-path switch defined in

this manner end up being markedly different from those in a multi-path switch. Specifically, as

shall be seen in the subsequent chapters, the former is dominated by the matching algorithms in

the space elements, and the latter by load-balancing scheduling algorithms. Furthermore, a cell

experiences no difference in delay between two candidate paths that only differ in space elements.

The BCS example in Fig. 4.3 is a single-path switch because each path between the input-output

pair (i, j) traverses through memory element d i
N/P e in the first stage, and element d j

N/P e in the

third. The paths may traverse any of the central space elements.

The space elements Ak in stage k of a BCS are configured either by a co-operating single

arbiter, or preferably, by |Ak| separate arbiters. If the matchings generated by stage k cause

a contention at the inputs of that stage, then k 6= 1 and the previous stage has to necessarily
2Conventional refers to a graph-theoretic definition.

Buffered Clos Switches: A Framework 81

X Feasibility Example

[SSS] No, reduces to [S] Circuit Clos network

[SSM] No, reduces to [SM] to [M] OQ switch: Knockout implementation

[SMS] Yes, if no contention at inputs Birkhoff Von-Neumann switch

[SMM] Yes, if no contention at inputs Parallel packet switch variant

[MSS] No, reduces to [MS] Simple IQ switch

[MSM] Yes CIOQ switch

[MMS] Yes None, so far

[MMM] Yes Cluster of OQ switches

Table 4.1: Feasibility of BCS implementations

consist of memory elements. The memory elements in stage k contain scheduling algorithms,

like the ones described in Sec. 3.3, with the requisite queueing structure. To prevent head-of-line

blocking, there are at least as many virtual output queues as the number of outputs in stage k +1.

Unless otherwise mentioned, we assume flows of the coarsest granularity, i.e., traffic belonging

to the N2 input-output pairs.

4.1.2 Feasible Implementations

The BCS taxonomy is obtained by varying X and the relationship between N , P and K. How-

ever, not all the eight permutations of X lead to feasible implementations. Note that two fully-

connected adjacent stages of space elements is always non-blocking and hence immediately re-

duces to a single space element. Therefore, X /∈ {[SSS], [SSM], [MSS]}. The other five

permutations may lead to feasible switches, as shown in Table 4.1. Additionally, some values of

speedup may not make sense in some configurations. For example, s = 1 with X = [MSM]

makes the memory in the third stage redundant.

The feasible items we propose for the BCS taxonomy are illustrated in Fig. 4.4. Note that

CIOQ-A, CIOQ-P and G-MSM are names we suggest, while the rest of the names are already

found in the literature. Expressed in terms of the 5-tuple notation, the items are characterized by

the following list.

82 Chapter 4

 BVN: Load−balanced Birkhoff Von−Neumann switch

Packet Switches
 OQ: Output Queued
 IQ : Input Queued
 Buffered Clos Switches
 Single Path

 CIOQ−A: CIOQ with Aggregation
 CIOQ−P: CIOQ with Pipelining

 Multi−Path
 PPS: Parallel Packet Switch

 G−MSM: General Memory−Space−Memory switch

 CIOQ: Combined Input Output Queued switch

Figure 4.4: The taxonomy of buffered Clos switches

OQ : (N, [M], 1, ø, ø)

IQ : (N, [MS], N, 1, 1)

CIOQ : (N, [MSM], N, 1, s)

CIOQ-A : (N, [MSM], P, 1, s)

CIOQ-P : (N, [MSM], N, K, s)

G-MSM : (N, [MSM], P, K, s)

PPS : (N, [xMx], N, K, s), x is variable

BVN : (N, [SMS], 1,K, s)

Strictly speaking, IQ and OQ switches are not members of this class, but we use the same

notation for uniformity. In subsequent analysis, we will continue to consider IQ as a special case

of CIOQ, with s = 1. Furthermore, for the named items above, henceforth, we will use the names

as short-form for the 5-tuple notations, as long as any constraints on N , P , K and s are clearly

defined.

The CIOQ switch essentially forms the starting point of the taxonomy. As seen from

the previous chapter, CIOQ is fairly well-studied and widely deployed. CIOQ-A, CIOQ-P and

G-MSM switches are already found in practice (e.g., [19, 21]), but their performance is relatively

Buffered Clos Switches: A Framework 83

less established. PPS and BVN switches are still mainly under theoretical investigation. We will

briefly overview these architectures here. Specifically, we show how complex single-path designs

can be obtained by applying aggregation and pipelining transformations to CIOQ switches, as

shown in Fig. 4.5, and how path parallelization may be applied to generate a multi-path design.

Aggregation

A CIOQ switch with aggregation (CIOQ-A) is obtained by grouping N/P consecutive interfaces

of the former into the same memory element, where N/P is an integer, and 1 < P < N . More

precisely, the aggregation transformation works as follows:

(N, [MSM], N, 1, s1)
a−→ (N, [MSM], P, 1, s) (4.2)

A CIOQ-A switch is illustrated in Fig. 4.5(a). The value of s may in general be differ-

ent from s1, and is determined by the performance of the resident matching algorithm. There

are P memory elements in the first and third stages, and a single space element in the second.

From (4.1), the internal links operate at a capacity of sN
P C. Consequently, each memory element

requires a bandwidth of (1 + s)N
P C. The space element requires an interface rate of sN

P C, and

an arbitration frequency of sN/P matchings per external timeslot. The last three values do not

compare favorably with respective values for a CIOQ switch with the same speedup, namely,

(1 + s)C, sC and s, respectively. Therefore, the disadvantages of aggregation include a higher

memory bandwidth and faster arbitration.

Nevertheless, the CIOQ-A offers three notable benefits. Firstly, it allows to decrease

the dimensions of the space element, and with it the number of interconnecting links (enabling

easier system design) and internal contention points. This is especially suitable for deploying

optical space elements [115], which are available today at very high interface rates yet in small

sizes. The problem of faster arbitration can be addressed by envelope matching as opposed to

cell-based matching. Secondly, aggregation allows to re-use existing space elements to support

multiple subports. In other words, the same space element can be used to interconnect memory

elements with a varying number of subports, provided their rates sum up to C. Finally, the smaller

size of the space element may be used to decrease the complexity of matching. For example, a

84 Chapter 4

(d) G−MSM

(a) CIOQ

s

Aggregate

Pipeline

sN/P

(b) CIOQ−A

Pipeline

s/K

(c) CIOQ−P

Aggregate

sN/PK

Figure 4.5: Single-path buffered Clos switches

Buffered Clos Switches: A Framework 85

sequential maximal matching on a CIOQ runs in O(N2) time, while the same algorithm runs in

O(P 2) time in a CIOQ-A. Accounting for the fact that N/P matchings need to be computed for

every one in a comparable CIOQ, the total run-time complexity of such matchings is O(NP),

still better than O(N2).

Pipelining

A CIOQ switch with pipelining (CIOQ-P) is obtained by replacing the single space element of

CIOQ with K instances of slower elements. This arrangement is very similar to the manner in

which super-scalar pipelines are constructed in microprocessor and ASIC designs. More pre-

cisely, the pipelining transformation works as follows:

(N, [MSM], N, 1, s1)
p−→ (N, [MSM], N, K, s) (4.3)

A CIOQ-P is illustrated in Fig. 4.5(b). Again, the value of s may in general be different

from s1. The number of memory elements in the first and third stages remain equal to N , though

their dimensions become (1×K) and (K×1), respectively. From (4.1), the internal links operate

at a capacity of sC/K. Correspondingly, the memory bandwidth required in first and third stages

remain comparable to a CIOQ. While the main design advantage of this approach is the usage of

slower space elements, if the arbiters of the elements can be made to operate concurrently, the

arbitration frequency goes down to s/K matchings per external timeslot, thereby facilitating more

complex policies. For example, the total run-time complexity of a sequential maximal matching

goes down to O(N2/K). In fact, pipelining can be combined with aggregation to address the

faster arbitration required for the latter. This leads us to general memory-space-memory (G-

MSM) designs.

A G-MSM switch is obtained by simultaneously applying aggregation and pipelining

transformations to a CIOQ switch, as shown in Fig. 4.5(d). Starting from (4.2) or (4.3), we

generate a G-MSM as follows:

(N, [MSM], P, 1, s1)
p−→ (N, [MSM], P, K, s) or

(N, [MSM], N, K, s2)
a−→ (N, [MSM], P, K, s) (4.4)

86 Chapter 4

CIOQ CIOQ-A CIOQ-P G-MSM

Number of elements in stage 1/3 N N/P N N/P

Number of elements in stage 2 1 1 K K

Memory Bandwidth (1 + s)C (1 + s)N
P C ↓ (1 + s)C (1 + s)N

P C ↓

Matchings per external timeslot s sN/P ↓ s/K ↑ sN/PK ↑

Maximal matching complexity O(N2) O(NP) ↑ O(N2/K) ↑ O(NP/K) ↑

Native support for subports No Yes ↑ No Yes ↑

Table 4.2: Properties of single-path BCS designs

The internal links operate at a normalized capacity of s N
PK , from (4.1). There are N/P

memory elements in the first and third stages, each with a memory bandwidth of (1 + s)N
P C,

which remains the same as in CIOQ-A. However, the space elements now have lower interface

rates of s N
PK C, and if they employ concurrent matchings, an arbitration frequency of s N

PK per

external timeslot. In addition, a G-MSM retains all the advantages of a CIOQ-A, namely, smaller

space elements, support for multi-rate subports, and the possibility of less complex matchings.

A sequential maximal matching, applied concurrently on the space elements, runs in O(NP/K)

time. Table 4.2 summarizes the properties of the various single-path BCS designs. The arrows

indicate whether the respective property is an advantage or a disadvantage compared to a CIOQ

switch.

The G-MSM architecture opens up an exciting possibility of building recursive BCS

switches. A circuit Clos network (Fig. 3.1) can be recursively expanded [88] by converting each

space element into a Clos network. In a similar fashion, we note that the memory elements of

a G-MSM may be converted into CIOQ switches, leading to a five-stage (not fully-connected)

multi-path design. Specifically, each N×K memory element may be replaced by a CIOQ switch

of the same dimensions. This can be used to decrease the relatively high memory bandwidth

of a G-MSM, which now approaches (1 + s N
PK)C, comparable to a stand-alone CIOQ switch.

While we note this possibility, and expand it in a later section, we will not explore such five-stage

switches in detail in this work.

Buffered Clos Switches: A Framework 87

1 x K

1 x K

1 x K

N x N

N x N

N x N

K x 1

K x 1

K x 1

De-multiplexors
Ingress Egress

Multiplexors

1

2

N

1

2

N

C

C

C

C

C

C

c = sC/K

1

2

K

Core Elements

Figure 4.6: A parallel packet switch (PPS)

Parallelization

A parallel packet switch (PPS) is a multi-path BCS that allows to pool the bandwidth resources

on several switching paths, in order to construct a high capacity switch. As shown in Fig. 4.6,

a N × N switch with interface rate C is composed of K parallel memory elements, each of

size N × N and interface rate c < C. A central-stage element is referred to as a core memory

element. The 1 ×K sized first-stage element is referred to as an ingress demultiplexor, and the

K×1 third-stage element as an egress multiplexor. The K logical core elements may be realized

by a single physical KN ×KN memory element yielding what we call an inverse multiplexed

88 Chapter 4

switch [17], or by K separate physical planes [62, 49].

If s is the internal speedup of the switch, then the internal links operate at a rate of

sC/K, much as in a CIOQ-P switch. While memory elements in the first and/or third stages,

each with memory bandwidth (1 + s)C, lead to feasible PPS implementations, the main promise

of a PPS lies in the possibility to make them both memoryless. If this can be achieved without

a performance penalty, then the fastest memory in the entire system can be made to run slower

than the external interfaces–a very attractive proposition given that memory capacities are not

growing as fast as link capacities. Irrespective of this ability, a PPS at the very least allows for

the reuse of lower capacity components in its core. The defining algorithms within the central

memory elements continue to be the scheduling schemes typical of such elements. However,

the performance of a PPS is dominated by the load-balancing policies at the demultiplexors, as

opposed to matching algorithms in single-path designs. These policies distribute the offered flow

traffic among the K candidate paths available for each input-output pair.

With the basics of the BCS architecture in place, we now introduce our performance

framework before embarking on a detailed analysis of each item in the taxonomy.

4.2 Functional Equivalence

We noted in Sec. 2.2 that the performance goals for a packet switch include successfully allo-

cating admissible required rates using the given rate matrix R, and at the same time, optimizing

throughput without the knowledge of the offered rates λ, which may or may not be admissible.

For a switch with a non-blocking structure, any desired allocation may be given by ensuring

them piece-wise in each component element. In a memory element this can be done using link

scheduling policies, e.g., based on WFQ, and in a space element using deterministic properties of

suitable matching algorithms, both of which were reviewed in the previous chapter. In addition,

if the switch is also work-conserving, we noted that the resulting performance may be considered

ideal.

Proposition 3 informally stated that queue stability may be used as a proxy for maximum

throughput, and any switch that ensures stability in the same set of queues as a well-known

ideal switch is also optimal in throughput. Short of establishing that a given design is ideal,

Buffered Clos Switches: A Framework 89

such equivalence essentially allows for an asymptotic emulation of the ideal. Our performance

framework formalizes this notion and provides a few meaningful levels of equivalence. We start

with the ability to fit flows with known offered rates, and make it progressively stronger by first

removing the necessity to know the rates, and then the constraints of admissibility. The goals of

both rate allocation (QoS) and optimal throughput are subsumed within the levels of equivalence.

4.2.1 Levels of Emulation

We denote a switch S1 operating under a set of algorithms A1 to be functionally equivalent to a

switch S2 operating under set A2 as follows:

(S1,A1)
T,f
' (S2,A2),

where T is the class of arrival processes for which the equivalence holds, and f denotes the level

of equivalence. We propose the following levels:

f1 Assuming all the average rates λi,j between the input-output pairs (i, j) are known and ad-

missible, given an algorithm set A2 which ensures the stability of the queues in S2, we

can find an algorithm set A1 which ensures the same in S1. In other words, f1 denotes

the ability to allocate known admissible rates, and therefore can be used to provide virtual

trunks between input-output pairs.

f2 Assuming the rates λi,j are admissible (but not necessarily known), given an algorithm setA2

which ensures the stability of all the queues in S2, we can find a set A1 which ensures the

same in S1 without explicit knowledge of the individual rates. We say that S1 is relatively

stable with respect to S2 for admissible traffic.

f3 Given an algorithm set A2 which ensures the stability of a subset of outputs {j} for which∑
i λi,j < 1, in switch S2, we can find a set A1 which enables the same in S1. We define

an output j to be stable if the system of queues which contain traffic destined to output j

is stable. In other words, f3 represents the ability of a switch to isolate unstable outputs in

the presence of inadmissible traffic, without knowledge of the offered rates. We say that S1

is relatively stable in the wide sense with respect to S2.

90 Chapter 4

f4 Given A2 which ensures the stability of a subset of input-output pairs in switch S2, we can

find A1 which guarantees the same in S1 for the same subset. We define an input-output

pair (i, j) to be stable if the system of queues, which contain traffic belonging to the pair,

is stable. In other words, f4 represents the ability of the switch to isolate unstable input-

output pairs within the same (unstable) output. This can immediately be seen as a measure

of long-term fairness in the distribution of link bandwidth among the flows destined to that

link. We say that S1 is relatively stable in the strict sense with respect to S2.

f5 Given an algorithm set A2 for S2, we can find a set A1 which ensures that cells depart from

S1 in an exact emulation of the departure from S2.

Properties and Goals

The methodology to prove the stability of a system of queues is left open, which might itself

restrict the traffic class T . We establish two important properties of functional equivalence to aid

in analysis. Notice that, by definition, each level of equivalence subsumes the previous one, i.e.,

if the equivalence holds at level fi, then it holds for all fj , j < i. This leads us to the containment

property:

(S1,A1)
T,fi' (S2,A2)⇒ ∀j < i, (S1,A1)

T,fj' (S2,A2) (4.5)

Also, it is easy to see that each level of equivalence lends itself to the transitivity property. That

is, if a set of equivalences of switch S2 with respect to S3 is well known, it suffices to show the

equivalence of a new switch S1 with S2, in order to establish the same equivalence with respect

to S3.

∀f (S1,A1)
T,f
' (S2,A2)

∧ (S2,A2)
T,f
' (S3,A3) ⇒ (S1,A1)

T,f
' (S3,A3) (4.6)

Since the optimality of work-conserving OQ switches is well established, we can unam-

biguously characterize the performance of any given switch S by finding algorithmsA, such that

it is functionally equivalent at level fi with the OQ switch, for the largest possible value of i and

Buffered Clos Switches: A Framework 91

the broadest traffic class T , i.e.3,

Goal : (S,A)
T,fi' (OQ, {Work Conserving (WC)}+)

Note that we can deduce exactly which queues remain stable in a work-conserving OQ switch at

each level. Specifically, if λ is admissible, meaningful for levels f1 and f2, every queue remains

stable. If λ is partially admissible, meaningful for f3, only those queues that contain traffic

destined to outputs j for which
∑

i λi,j ≥ C become unstable in the OQ switch. Finally, even

within such outputs in the reference OQ switch, only those queues (i, j) become unstable for

which the offered traffic λi,j is greater than the share of the output link bandwidth Φ̄i,j accorded to

that pair. As is evident, the last is meaningful for level f4. We chose to define optimal throughput

not directly in terms of the stability of those queues but as a comparison between two switches,

because the latter approach ends up being more flexible. More precisely, given a switch S, it

allows us to analyze throughput in comparison with another switch S1 with known properties,

instead of always having to establish asymptotic emulation of the ideal switch.

4.2.2 Meaning of Equivalence

We now provide some intuition and examples to crystallize the meaning of equivalence levels, and

see how existing measures in the literature compare with them. Recall that f1 equivalence ensures

bandwidth trunks of λ to each input-output pair, provided those rates are known and admissible.

However, a switch becomes QoS-capable only if trunks of required-rates R can be guaranteed in

short timescales, independent of λ. The length of the timescale determines the delay bound, while

ensuring R translates to guaranteed bandwidth for each flow. While f1 by itself does not make

a switch QoS-capable, it can be easily applied to QoS guarantees. The approach is to shape or

mark incoming traffic so that the algorithms only consider a portion of λ that confirms to R. This

was shown in Fig. 3.6 and will be methodically demonstrated for a CIOQ switch in Chapter 5.

All the schemes in the literature that ensure 100% throughput for admissible arrivals

essentially provide f2 equivalence with a work-conserving OQ switch. As noted before, overall

admissibility is assumed due to end-to-end flow control means such as TCP. Presumably, if the
3B = A+ ⇒ A ⊆ B

92 Chapter 4

offered rates remain inadmissible over some timescale T , packets belonging to some flows will

be dropped in the finite buffers, resulting in a throttling of the offered rates so that they become

admissible. Our main criticism of such logic is that it is circular. The algorithms in the switch,

which assume admissibility, effectively take an active part in determining which flows experience

huge backlogs, and therefore need to scale back in order to ensure the same admissibility. Note

that a work-conserving OQ switch needs no such circular reasoning for throughput optimization.

If some output j continues to receive traffic in excess of the link capacity, and remains that way

over any timescale, it does not affect the queue state of other outputs.

The levels f3 and f4 essentially address the above shortcoming of the results in the lit-

erature that claim 100% throughput. This limitation, of course, has not been completely lost on

the switching community. The qualitative notion of starvation prevention (e.g. [78]), i.e., guar-

anteeing that no input-output flow is starved of service, is commonly used as an add-on criterion

to 100% throughput. For admissible arrivals, however, such a notion offers no measurable ben-

efits to the long-term queue state. For inadmissible arrivals, the long-term benefits are unclear.

In contrast, f3 and f4 equivalence allow to isolate instability, and make additional measures like

starvation prevention unnecessary, at least for long-term throughput. The former isolates insta-

bility on an output basis, and the latter on a finer grain, namely, on an input-output pair basis.

Correspondingly, the offered traffic of one flow will not affect the long-term throughput of other

flows. Only those flows that persistently offer traffic in excess of what can be served by the output

links will experience huge backlogs, much as in an ideal switch.

Note that any scheme that ensures work-conserving behavior on a per-output basis, e.g.,

LOOFA for CIOQ switches, immediately implies f3 equivalence, though the converse is not

necessarily true. In other words, WC is a stronger property than f3. Accordingly, we will prefer

non-work conserving algorithms that ensure f3 only if their implementation is simpler. Clearly,

a WC algorithm does not necessarily translate to f4 equivalence with an ideal switch. A counter-

example is shown in Fig. 4.7. In the reference switch, flows are served using a weight-based

output link scheduler. If the weights given to flows (1,1), (2,1) and (3,1) are equal, the last flow

remains stable. On the other hand, in a work-conserving CIOQ switch, the space element may

ensure that output 1 never idles, but may give different allocations to each of the flows. In this

Buffered Clos Switches: A Framework 93

O
ut

pu
ts

1

1

1

S

Third−stage MemoryFirst−stage Memory

V
irt

ua
l O

ut
pu

t
Q

ue
ue

s

S
pa

ce
 E

le
m

en
t

0.85

0.85

0.3

0.425

0.425

0.15

(b) A work−conserving CIOQ switch

1

2

3

1

2

3

S

S

1

2

3

2

3

0.85

0.85

0.3
Weight−based

Scheduler

(a) Reference OQ Switch

In
pu

ts

O
ut

pu
ts

S
1

1

1

1

In
pu

ts

Figure 4.7: Example: Work-conservation does not lead to strict relative stability

94 Chapter 4

Direct implication

Shaping

1f 2f 3f 4f 5f

Guarantees
Bandwidth

100% Throughput
(Literature)

Work
Conserving

Flow−sense
Work−conserving

Long−term
Fairness

IDEAL

Figure 4.8: Relationship between various performance measures

case, all the virtual output queues can become unstable. Clearly, this situation arises because

the space element does not take into account the shares given to each flow by the output link

scheduler. The isolation of instability on an input-output pair basis, addressed by f4, may be

viewed as a form of long-term fairness in the allocation of the output link bandwidth. Atleast

from the point of view of stable flows, the switch provides the same long-term share of the output

link bandwidth as a reference switch with a fair output-link scheduler.

We define a system to be flow-sense work-conserving (FWC) if, for all j, the link sched-

uler of output j has access to a cell belonging to each pair (i, j), if such a cell exists anywhere in

the system, in its scheduling decisions. Furthermore, if the scheduler chooses (i, j) in a timeslot,

a cell belonging to that pair must be dispatched on the output link. A WC scheme merely offers

any cell belonging to an output to the respective link scheduler, if such a cell resides anywhere

in the system, without regard to its originating input. Consequently, it might not offer a cell orig-

Buffered Clos Switches: A Framework 95

inating from a specific input that might have been better preferred by the scheduler. It is clear

that an FWC scheme, on the other hand, directly implies f4 equivalence with an ideal switch,

though the converse is not necessarily true. Unfortunately, no such scheme exists even for CIOQ

switches, short of exactly emulating an ideal switch using stable matching.

It might be tempting to provide f4 equivalence using weight-based templates in space

elements, using the same weights of the output link scheduler. However, that approach does

not work because such templates are static and do not consider the offered traffic. For example,

in Fig. 4.7, let there be a fourth input and let the output scheduler allocate the link bandwidth

using equal weights to (1,1), (2,1), (3,1) and (4,1). Clearly, if flow (4,1) only offers a normalized

rate of 0.1, flow (3,1) continues to remain stable in the reference switch. On the other hand, a

weight-based template in the CIOQ would ensure a rate of 0.25 to each flow, and the unused

portion of flow (4,1) may be arbitrarily distributed, leading possibly to (3,1) becoming unstable.

It suffices to note here that the actual share of the link bandwidth given to each flow by an ideal

switch cannot be surmised by the static parameters used by its scheduler. Fig. 4.8 summarizes the

relationships between our levels of equivalence and the measures found in the related art.

We conclude this discussion by noting that equivalences f1–f4 suffer from the same lim-

itations as any measure that relies on long-term stability in an infinite-queue system. In practice,

of course, the traffic offered to a scheduler in a switch is always admissible, due to the actions of

the finite-memory buffer manager. Do such equivalences at least ensure that the packet-loss ratio

for a flow is a function only of its own long-term average rate and profile? Does the burstiness

in service observed by a flow that is guaranteed to be long-term stable translate to higher losses,

resulting in lower-then-optimal throughput? These are some of the issues, related to the inter-

action of scheduling and buffer management, and the timescale of offered service, that are not

resolved in this work. For our purpose, we merely offer the following arguments in defense of our

approach. To address the first question, we claim that if a queue is stable in the infinite-memory

system, the observed loss ratio in a corresponding finite-memory switch will indeed depend only

on its own profile, which determines the tail of its queue length distribution, at least for complete-

partitioning buffer management schemes. To address the second, we claim that the burstiness in

observed service might indeed lead to a heavier tail, and a higher loss ratio in a finite-memory

96 Chapter 4

system, but the ratio will not be materially affected by the other offered traffic. We realize that this

issue is related to the timescale of service, and probably, some additional measure like ensuring

that a backlogged queue does not starve (!) within a finite interval might be in order.

In summary, a stronger performance framework would indeed address the emulation of a

finite-memory OQ switch with the goal of providing comparable loss ratios to each flow. Another

alternative would be to provide for short-timescale OQ emulation as opposed to an asymptotic

one. Nevertheless, our framework of functional equivalence addresses the isolation of flows that

become congested in the reference switch, without the presumption of admissibility. The rationale

is that if the algorithms in the switch do not presume admissibility, it is unlikely to affect flows

that do not experience congestion in the reference.

4.2.3 Existing Results

We can now relate the specific results in input-queued switching, reviewed in the previous chap-

ters, using the relationships shown in Fig. 4.8. The theorems on matching seen so far yield the

following equivalences:

(IQ, {BVN Decomposition})
T,f1' (OQ, {Rate Scheduler})

(CIOQ, {DOUBLE})
T,f1' (OQ, {Rate Scheduler}), s ≥ 2

(IQ, {MWM})
T,f2' (OQ, {WC}), T : SLLN

(IQ, {LPF})
T,f2' (OQ, {WC}), T : i.i.d.

(IQ, {C-MSM})
T,f2' (OQ, {WC}), T : Bernoulli, uniform

(CIOQ, {Maximal Matching})
T,f2' (OQ, {WC}), s ≥ 2, T : SLLN

(CIOQ, {LOOFA})
T,f3' (OQ, {WC}), s ≥ 2

(CIOQ, {LOOFA, OCF})
T,f5' (OQ, {WC, FIFO}), s ≥ 3

(CIOQ, {Simulate OQ, Stable Matching})
T,f5' (OQ, {WC}+), s ≥ 2

Clearly, the performance of input-queued switches are well-represented in the literature,

except for practical algorithms to provide f4 equivalence with an OQ switch. Accordingly, the

latest interest in such switches revolve around providing similar properties using less-complex

matchings [52], and to characterize the quality of stability in terms of queue-length distribu-

Buffered Clos Switches: A Framework 97

tions [71, 98] and the effects of finite memory [96]. The other multi-module architectures pre-

sented here are less well-studied.

4.3 Summary

We demonstrated a constructive approach in this chapter to build three-stage switches using lower

capacity memory and space elements. The buffered Clos switches (BCS) taxonomy was formally

introduced, along with the architectures of several feasible implementations. We paid special

attention to the design constraints that each item addressed, so that switch designers may use

the largest building blocks that can cost-effectively be acquired, and interconnect them to realize

a larger switch. While several items in the taxonomy are already in existence, such a formal

model is unprecedented. The model may be extended in the future to build more sophisticated

multi-module designs, such as a recursive BCS or a buffered Cantor network.

We provided a performance framework to compare and contrast the algorithms residing in

such switches. Several levels of functional equivalence with an ideal switch, inspired by the sim-

ilarly tiered framework of blocking in circuit switching, were proposed as means for emulating

the ideal switch in QoS and throughput. We provided intuition and examples to see how existing

measures relate to this approach, and to outline the shortcomings of some of them. Most of the

levels of equivalence do rely on queue stability in an infinite-memory system, and admittedly,

additional work would be needed to characterize their applications to finite-memory systems,

specifically, to understand how buffer management would interact with switch scheduling and to

analyze the service burstiness of long-term stable schemes. Nevertheless, such functional equiv-

alence provides a good first step in isolating instability and providing optimal throughput to an

input-output flow, independent of the offered traffic to other flows in the system.

The rest of the dissertation essentially deals with detailed analysis of the individual items

in the BCS taxonomy. The goal is to design switching algorithms for those items in order to

achieve equivalence with an ideal switch.

98

Chapter 5

Combined Input-Output Queueing

You see, you know how to take a reservation, you just don’t know how to hold the reservation.

That’s really the most important part of the reservation, the holding. Anybody can just take

them...

– Jerry Seinfeld, Episode 28, NBC, 1991

Input-queued switches (IQ and CIOQ), which form the starting point of the BCS taxon-

omy, continue to be the most popular designs for the forwarding path of a high-capacity packet

switch, primarily because the memory bandwidth in such switches does not depend on the di-

mensions of the switch. The rich set of results in input-queueing literature have been leveraged in

several practical implementations. Bandwidth and delay guarantees are provided in practice using

some variation of the BVN decomposition technique [7, 111], and throughput by maximal match-

ings [29] as well as sub-maximal heuristics [1, 78, 11]. Due to the plethora of well-understood

results, the switching community has, for the most part, deemed input-queueing as a closed topic.

We report here that several of the well-known matching algorithms, or minor variations thereof,

lend themselves to stronger performance results than is currently accepted. It seems that many of

these results have eluded the community, despite the impressive research output, mainly because

we have not been asking the correct questions.

Specifically, we report the following results in this chapter. First, we present a simple

extension1 of the Weller-Hajek maximal matching theorem [114] for bounded admissible traffic,
1Sec. 5.1, which presents this extension, is an outcome of several discussions with Dimitrios Stiliadis, Bell Labs,

Combined Input-Output Queueing 99

and show that the same can be used to achieve bandwidth and delay guarantees in the presence of

arbitrary traffic. Second, we show using the Dai-Prabhakar fluid-limit approach [29] that a critical

matching suffices for 100% throughput to admissible arrivals, without speedup. Comparable

results in the literature are based on more complex matchings like LPF [79] and MWM [80].

Next, we expose the fact that a simple sub-maximal matching ensures 100% throughput for any

uniform admissible arrival pattern. This could (yet again) explain the similar simulation-based

observations for popular algorithms such as iSLIP. Finally, we show that maximal matchings

hold up well even in the presence of inadmissible traffic. More precisely, we present a specific

maximal matching, called shortest output-queue first, which ensures strict relative stability with

an OQ switch. To conclude, we put these QoS and throughput results together and present the

switched fair-airport framework to enable their combined operation.

We contend that the above results constitute a significant theoretical advancement to the

art of input-queued switching. In fact, the throughput results of critical and maximal matchings

may be considered fundamental, and belong alongside the various theorems reviewed in Chap-

ter 3. More beneficially, most of the material presented here are based on simple matchings, and

can be considered for practical implementations.

5.1 Maximal Matching: Application to QoS

Recall that the task in providing bandwidth guarantees in a switch is to ensure sufficient service

turns to each input-output pair so that the service rate meets or exceeds a reservation, specified

by a rate matrix R, independent of the offered arrivals λ. The maximum waiting time for an

input-output pair, or the latency of scheduling, together with the profile of a flow itself, end up

determining the delay bound for that flow. Given an admissible R, matrix decomposition using

Clos fitting [46] or the more efficient BVN [7] and DOUBLE [111] techniques can be readily

used to generate a repeating sequence of matching templates to satisfy R. The latency in all such

approaches, except for the GLJD algorithm [58], which uses a significant speedup, depends on r,

the greatest common divisor (GCD) of the values in R (see Sec. 3.2.3 for details).

The off-line template approach has two disadvantages. It imposes a high storage over-

and hence should be considered as joint work.

100 Chapter 5

Space Element

1

2

N

1

N

2

N x N

M

M

M M

M

MK

K

K K

K

K

Time−slot
Exchangers

Time−slot
Exchangers

Figure 5.1: A circuit Clos network: Time version

head, as the templates need to be stored in high-speed memory attached to the central arbiter

of the switch. Furthermore, the entire set of templates and their associated weights need to be

re-computed (e.g., at a run-time complexity of O(N4.5) for BVN) every time R changes, on the

addition or deletion of a fine-grain flow. A comparable online matching algorithm without the

storage overhead and a distributed processing of rate changes would certainly be preferable. The

Weller-Hajek result, which states that any batch-mode maximal matching with a speedup s ≥ 2

is sufficient for exact 100% throughput to bounded admissible arrivals, provides us an online al-

ternative. We show here that the constraint of bounded admissibility on λ may be removed by

explicitly shaping the arrivals to conform with the independent R. This may also be viewed as an

application of the Dai-Prabhakar maximal matching result to finite timescales.

We emphasize that the results in this section are but an extension of the Weller-Hajek

theorem, our additional contributions being the removal of its main constraint, delay bounds for

independently regulated sources, and a new proof methodology that proves the often conjec-

tured [1] analogy between CIOQ packet switches and circuit Clos networks. In some sense, these

are also expected results, e.g., by following the implication arrows in Fig. 4.8 starting from f2,

Combined Input-Output Queueing 101

since maximal matchings have already been proven to provide f2 equivalence with an OQ switch.

The closest similar results to the ones presented here are due to Smiljanic [100] who offers a spe-

cific maximal matching, based on rate-based credits instead of rate-shaping, to achieve the same

goal. The Clos analogy is also argumentatively established in that work.

5.1.1 Clos Networks: Space-Time Duality

Consider a NM ×NM circuit switch, implemented as a Clos network similar to the one shown

in Fig. 3.1. Each link in the network has a capacity of one circuit. There are N instances of

M ×K space elements in the first stage, K instances of N ×N elements in the second, and N

instances of K ×M elements in the third.

A particularly relevant property of Clos networks is that the links, internal and external,

may interchangeably be in space or time. Specifically, Fig. 5.1 shows a time version of such a

network. The NM ×NM switch with unit link capacities is replaced by a N ×N switch with

a capacity of M circuits on the external links and K on the internal ones. A frame of an external

link consists of M timeslots, each corresponding to an available circuit, and a frame of an internal

link consists of K timeslots, each available to fit exactly one circuit. A circuit request between an

input-output pair (i, j) of a time-version Clos network is admissible if input i and output j both

contain idle, not necessarily coinciding, timeslots.

Let the N × N matrix π(k) represent the configuration of the central space element for

internal timeslot k, 1 ≤ k ≤ K. The space element mandates that π(k) is conflict-free (2.5). A

request for an admissible circuit is satisfied by finding an idle slot m on the given input link i, a

similar slot n on the output j, and an internal slot k such that π(k)[i, j] = 0. If such a slot exists,

then the first-stage element i merely exchanges the traffic unit arriving at slot m to internal slot

k, the central element switches the unit from i to j in timeslot k, and output j exchanges the unit

to the correct external slot n. The timeslot exchange is accomplished by accumulating2 all the

traffic units belonging to a single frame and rearranging them. The existence of an idle internal

slot to fit an admissible circuit continues to be governed by the Clos theorem (pg. 31). Recognize

the duality of the M slots on the external links with M separate unit-capacity links, and the K

2The timeslot exchange operation is sometimes referred to as grooming.

102 Chapter 5

slots of the space element with K physical unit-capacity elements. For the switch of the above

dimensions, Clos theorem requires K ≥ 2M − 1.

Aggregate Circuit Requests

Consider a contrived circuit-arrival scenario, in which a number of circuit requests arrive at the

same instant to an idle time-version Clos network. Let the N×N matrix Π represent the aggregate

of simultaneous circuit requests, such that Π[i, j] equals the number of requested circuits between

the input-output pair (i, j). An aggregate request matrix Π is admissible as long as all the circuits

in Π can be accommodated on the external links. That is,

∀j
∑

i

Π[i, j] ≤M and ∀i
∑
j

Π[i, j] ≤M (5.1)

Let π(k) be initialized to the zero matrix for all k. Consider a sequential Clos fitting

algorithm, which operates as follows. We pick each circuit in Π, in an arbitrary order, and perform

Clos fitting by finding the smallest timeslot k for which π(k)[i, j] = 0 and setting it to 1. Notice

that irrespective of the order in which the circuits are picked, they remain individually admissible

as long as Π is admissible. Consequently, the Clos theorem may be extended as follows (a re-

statement of the corollary on pg. 32):

Lemma 1. An admissible aggregate-request matrix Π (5.1) is guaranteed to be satisfied by a

sequential Clos fitting algorithm on a time-version Clos network, with K internal timeslots, as

long as K ≥ 2M − 1.

As there are up to NM circuits to be fitted, the total run-time complexity can be found

as O(NM2). Since every circuit in Π is assigned to some configuration, the sequential Clos

fitting algorithm essentially partitions Π into π(k), 1 ≤ k ≤ K. Now, consider the operation of

a maximal matching algorithm on an admissible Π. For the purposes of the matching, Π[i, j] is

viewed as the length of a virtual output queue in a N×N input-queued packet switch. A sequence

of K matchings yields the corresponding configurations π(k). From basic combinatorial theory,

the condition on K in order to satisfy the aggregate requests is identical to the one in Lemma 1.

We highlight this fact in the following result, the proof of which is based on the same pigeon-hole

principle as that of the Clos theorem.

Combined Input-Output Queueing 103

Lemma 2. A sequence of K maximal matchings is guaranteed to satisfy an admissible aggregate-

request matrix Π (5.1), as long as K ≥ 2M − 1.

Proof. We prove the lemma by contradiction. Let there be a circuit request in Π for some input-

output pair (i, j), which is not assigned to any of the K configurations. Let Ti,j denote the sum

of the total requests from input i and the total requests destined to output j. Then,

Ti,j =
∑

l

Π[i, l] +
∑

l

Π[l, j]−Π[i, j]

≤ 2M − 1 (5.2)

The first two terms above are no greater than M (5.1) and the last term is at least 1 due to the

presence of the unassigned element. Let T ′
i,j(k) denote the sum of assigned circuits from input i

and destined to output j, in slot k. Then,

T ′
i,j(k) =

∑
l

π(k)[i, l] +
∑

l

π(k)[l, j]− π(k)[i, j]

≥ 1 ∀k. (5.3)

The above is due to the fact that a maximal matching ensures that if there is a pending request

for pair (i, j), one of the following is true. Either (a) π(k)[i, j] = 1, or (b) either i is connected

to another output or j is connected to another input, or both. From (5.2) and (5.3), and since

K ≥ 2M − 1, ∑
k

T ′
i,j(k) ≥ K ≥ Ti,j ,

which contradicts the assumption that there is an unassigned circuit for (i, j).

A sequential maximal matching (Sec. 3.2.2) has a total run-time complexity of O(N2M).

Notice that while a sequential Clos fitting algorithm operates in circuit-sequence, i.e., it finds an

internal slot k for each circuit in Π, a maximal matching operates in timeslot-sequence, i.e., it

fills π(k) until no more circuits from Π can be added to it, in increasing order of k. Indeed, the

latter is a specific instance of a sequential Clos fitting, where the matching determines the order

in which circuits are picked from Π. Clearly, it is a strategy for sequential Clos fitting so that the

fitting may be conducted in a timeslot-sequence.

104 Chapter 5

5.1.2 Packet-switching Equivalent

Consider now a N ×N CIOQ packet switch (Fig. 2.6). Let the offered average rates be denoted

by the matrix λ. Furthermore, let the rates be admissible, normalized to the external link capacity

(C = 1), and bounded in timescale M , i.e.,

∀i, j, n Ai,j [n, n + M)
M

≤ λi,j (5.4)

Assume that time is split into intervals of duration M by epochs kM , k ≥ 0. In addition, let

the switch operate under batch-mode arbitration by assembling an aggregate request matrix Π∗ at

each epoch, comprised of all the cells that arrived in the preceding interval. More precisely,

∀i, j, k Π∗
i,j(kM) = Ai,j [(k − 1)M,kM) ≤ λi,jM (5.5)

Since λ is admissible, Π∗ is constrained by the same inequalities as Π in (5.1). Therefore, from

lemmas 1 and 2, sequential Clos fitting, and equivalently, a sequence of maximal matchings, can

both partition Π∗ into K configurations, as long as K ≥ 2M − 1. Both the methods behave in

exactly the same fashion irrespective of whether the aggregate matrix consists of simultaneous

circuit requests in a time-version Clos network, or a batch of cells from a preceding fixed interval

in a CIOQ packet switch. In essence, we just proved the Weller-Hajek maximal matching result

(paraphrased below) as a direct consequence of the analogy between Clos fitting and maximal

matching. Note that all the cells in Π∗(kM) will be served before the next epoch as long as the

above K configurations can be completed in M external timeslots, leading us to the following:

Lemma 3. Any maximal matching algorithm guarantees exact 100% throughput to bounded

admissible arrival traffic, with timescale M , as long as the internal speedup s ≥ 2− 1/M .

Due to the bounded nature of the arrivals, the maximum cell delay is no greater than

2M . This is because every cell that arrived in [(k − 1)M,kM) is guaranteed to depart by epoch

(k + 1)M . Notice that as T → ∞, the minimum value of s approaches 2. The above lemma

then may be viewed as a short-timescale batch-mode matching version of the Dai-Prabhakar

asymptotic-throughput result for maximal matchings. Finally, it should be noted that the maximal

matching strategy is more suited for online implementation than Clos fitting because it operates

Combined Input-Output Queueing 105

Figure 5.2: CIOQ: Virtual output queues and guaranteed queues

in timeslot sequence on the aggregate matrix. Clos fitting requires the computation of the entire

sequence, of K matchings, to be completed before the first cell can be dispatched.

5.1.3 Bandwidth and Delay Guarantees

We now remove the constraint on λ, and apply the above result to ensure bandwidth and delay

guarantees. Let the offered arrivals be arbitrary, and let matrix R contain the requested rates for

each input-output pair. Let r be the GCD of the values in R, and define a timescale M = 1/r. We

introduce a rate shaper in the architecture that schedules the backlogged cells in VOQ (i, j) by

transferring up to Ri,jM cells into a guaranteed queue (GQ) (i, j), as shown in Fig. 5.2 (phase 1),

at epochs kM , k > 0. In other words, using the terminology in Sec. 3.2.1, we batch the arriving

cells into an eligible queue-length matrix Π at each epoch, where

∀i, j, k Πi,j(kM) = min(Ri,jM,Qi,j(kM)) (5.6)

We make the following observations. The arrival traffic into the guaranteed queues is

106 Chapter 5

bounded-admissible with timescale M . From lemma 3, all the cells in Π(kM) are guaranteed

to be dispatched before epoch (k + 1)M by a maximal matching operating on Π, as long as

s ≥ 2−1/M . In summary, the rate shaper ensures that each input-output pair (i, j) is guaranteed

the requested rate Ri,j into the guaranteed queue, irrespective of the arrivals, while the maximal

matching with the specified speedup ensures that every cell in a GQ departs with an additional

delay bounded above by M slots. This gives us the main result of this section:

Theorem 1. Any maximal matching, combined with rate shaping, is sufficient to provide isolated

bandwidth guarantees to input-output pairs of an input-queued switch, as long as the internal

speedup s ≥ 2− r.

For delay analysis, the input memory element of the CIOQ switch may be viewed as a

latency-rate server [104], where the shaper has a latency of 1/r due to the burst transfer at the

beginning of epochs, and the maximal matching also has a latency of 1/r. The actual delay

bound will depend on the profile of the arriving traffic. For example, if the traffic flow between

the input-output pair (i, j) is leaky-bucket [28] constrained with a token-bucket size of σi,j , then

the worst-case delay3 of a cell belonging to the flow is given by

Di,j ≤
σi,j

Ri,j
+

2
r

(5.7)

This is illustrated in Fig. 5.3. Here, t = 0 corresponds to the beginning of a busy period for the

considered flow. We use the worst-case arrival curve for a leaky-bucket constrained source, and

the worst-case service curve for the batch-mode matching operation. Consider two cases: (a) Let

σi,j ≤ Ri,j/r. In this case, basic geometry on the service curves in the figure leads to (5.7).

(b) Let k be the largest integer such that σi,j ≥ k
Ri,j

r . Then the maximum delay is given by

Di,j ≤ k + 2
r

≤ σi,j

Ri,j
+

2
r
,

3We refer the reader to [28] for properties of leaky-bucket constrained traffic, and to [104] for the theory of latency-
rate servers. Here, it suffices to note that a source is said to conform to a leaky bucket with parameters (σ, R) if
∀t, τ A[t, t + τ) ≤ Rτ + σ. If a server guarantees a trunk of R with a maximum initial waiting time (or latency) of
L to such a source, then the delay is upper bounded by σ/R + L.

Combined Input-Output Queueing 107

Maximum Delay

σ

(a) σ < R/r

Shaper

Time Time

B
its

B
its

1/r 2/r 3/r0

σ

1/r 2/r 3/r

2/r

(b) σ > R/r

Service curve

Matching
Service curve

Maximum Delay

Arrival traffic: Slope R

2R/r

R/r
/R

Figure 5.3: Maximum delay for leaky-bucket constrained traffic under maximal matching

which is also covered by (5.7). This delay bound for leaky-bucket constrained traffic, using the

online maximal matching, is comparable to the bound provided by a sequence of templates using

off-line BVN decomposition of the rate matrix R.

We can easily extend the delay analysis to determine the bounds for each fine-grain flow

within the input-output pairs. Recall the hierarchical scheduling framework, from Sec. 3.3.2, used

to provide QoS guarantees to fine-grain flows in a CIOQ switch. Let R
(k)
i,j denote the requested

rate for flow k belonging to pair (i, j). The shaper merely uses the aggregate rates Ri,j to transfer

cells to the respective GQ at each epoch, where,

Ri,j =
∑
k

R
(k)
i,j

The GBS component of VOS (i, j) consumes the service turns accorded to pair (i, j) by the

batch-mode maximal matching. Let αi,j be the latency in scheduling experienced by a fine-grain

flow served by the GBS. For example, if the GBS is a weighted fair-queueing scheduler, then

αi,j ≤ 1/Ri,j for cell-based traffic. If flow k is itself leaky-bucket constrained with token-bucket

size σ
(k)
i,j , then the per-flow delay bound may be calculated as

D
(k)
i,j ≤

σ
(k)
i,j

R
(k)
i,j

+ αi,j +
2
r

(5.8)

108 Chapter 5

Algorithm 1. Maximal matching for QoS

Initialize: For all (i, j)

1. Qi,j ← 0, Πi,j ← 0

2. Ri,j ← Rate request for (i, j)

M ← 1/GCD(R)

Cell Enqueue: If cell belongs to (i, j)

1. Increment Qi,j

Every Epoch, n = kM : For all (i, j)

1. Πi,j = min(Ri,jM,Qi,j)

Every Timeslot n: π ←Multi-phase matching

If πi,j = 1

1. If Πi,j > 0, decrement Πi,j

2. Decrement Qi,j

Figure 5.4: Maximal matching for QoS: Emulating a GQ using counters

Note that, in practice, the batch-mode maximal matching for QoS guarantees operates

in the first phase of a multi-phase combination. This phase uses the residual GQ lengths, while

additional phases (shown in Fig. 5.2 as phase 2) may augment the matching matrix π(n) in each

timeslot n, in order to optimize throughput. These additional phases continue to operate using

the total VOQ lengths. Recognize that if a flow (i, j) is granted service in a subsequent phase,

then GQ (i, j) is necessarily empty. Otherwise, it would violate the maximal matching property

in phase 1. Therefore, those service grants may be consumed by the EBS component of VOS

(i, j) without affecting the bandwidth guarantees.

Shaping: Implementation

The main implementation advantage of online maximal matchings for QoS guarantees, with re-

spect to template-based approaches, is that it does not need to pre-compute and store configura-

Combined Input-Output Queueing 109

tions. Furthermore, the proposed methodology can actually be implemented without designing

rate-shapers or maintaining a separate physical GQ for each input-output pair. This was merely a

logical concept, useful for the purpose of analysis. In practice, all that is needed is a counter Π

per input-output pair, which keeps track of the occupancy of an imaginary GQ. This is in addition

to the total queue-length counter Q for the VOQ. The updates of the counters, in order to emulate

the desired rate-shaping, is shown in the algorithm in Fig. 5.4.

The added processing required for rate-shaping is simply one counter update in every

timeslot. Notice that when a fine-grain flow is added or deleted, it affects the value of Ri,j for the

respective input-output pair, and possibly the value of M . The former is distributed among the

different input elements, while a change in the latter is used to reset the epoch interval. In other

words, the processing of rate changes is accomplished in a distributed fashion.

5.2 Critical Matching Algorithms

Critical matching algorithms (pg. 39), while more complex than maximal matchings, are some-

times more desirable as they provide comparable performance without the need for speedup.

Specifically, Weller and Hajek established [114] that a C-MSM (critical with maximum cardinal-

ity) provides exact 100% throughput for bounded-admissible arrivals. Here, we will first re-state

this result to remove the constraint of maximum cardinality. It is in fact unclear why the authors

insist on a critical matching that also maximizes the matching size, a combined constraint that

does not lend itself to any known polynomial-time algorithm. It might well have been a small

oversight, or possibly a different implied definition of C-MSM. Furthermore, we will demonstrate

the application of rate-shaping, seen in the previous section, to extend this result to bandwidth

and delay guarantees.

Much as the Dai-Prabhakar maximal matching result, for unbounded traffic, is an ana-

log of the Weller-Hajek batch-mode maximal-matching one, we establish a similar fundamen-

tal performance result for critical matchings. We show that a critical matching is sufficient for

asymptotic 100% throughput for any admissible arrivals. We prove this using the Dai-Prabhakar

fluid-limit theorem, whose only constraint is that the arrivals obey SLLN.

110 Chapter 5

5.2.1 Deterministic Properties

Consider again a N × N CIOQ packet switch (Fig. 2.6). To begin with, let the offered average

rates, matrix λ, be admissible and bounded in timescale M (5.4). Let Π be an aggregate request

matrix assembled at epochs kM, k ≥ 0 as shown in (5.5). Then, a C-MSM, operating on the

aggregate, is guaranteed to drain all the cells in M slots, according to the Weller-Hajek C-MSM

theorem, paraphrased below:

Lemma 4. A critical maximum-size matching guarantees exact 100% throughput to bounded

admissible arrival traffic, without internal speedup.

The worst-case latency of scheduling remains 2M , much as in the batch-mode maximal

matching seen before. Every cell that arrived in [(k − 1)M,kM) is guaranteed to depart by

epoch (k + 1)M . We now show that a critical matching, not necessarily maximum, operating on

Π suffices for the same result. Recall that a line (row or column) of Π is deemed critical if its

sum is the maximum. A critical matching π is one that covers all critical lines. Fig. 5.5 shows

an algorithm for generating such a matching in the batch-mode. It is based on first applying the

Von Neumann augmentation procedure on Π, at each epoch, to generate a matrix Π′, in which all

the line sums are equal. Then, in each timeslot, an MSM is generated using the bipartite graph

corresponding to the residual Π′, and only those edges (i, j) are retained for which the residual

Πi,j > 0. Since the Von Neumann procedure terminates in 2N − 1 steps, the complexity of the

algorithm is dominated by the MSM for a run-time of O(N2.5).

Lemma 5. The matching algorithm in Fig. 5.5 covers Π in no more than M timeslots.

Proof. Notice that Π′ has equal line sums, equal to m. Due to the admissibility of λ (5.5),

m ≤M . From basic combinatorics [43], there exists a matching algorithm A that covers Π in m

timeslots4. Since there are Nm elements in Π′, each matching πA generated by A is perfect.

Consider slot 0 within an interval. Since |πA| = N , and since step 3 in each timeslot,

in Fig. 5.5, is a maximum size matching, we must have |π′| = N . In the next slot, the residual

Π′ has equal line sums, equal to m − 1. Correspondingly, πA would again be perfect. Using
4For example, Slepian-Duguid fitting would partition Π′ into no greater than m configurations.

Combined Input-Output Queueing 111

Algorithm 2. Batch-mode critical matching

Initialize: For all (i, j)

1. Qi,j ← 0, Πi,j ← 0

M ← Timescale of arrivals

Cell Enqueue: If cell belongs to (i, j)

1. Increment Qi,j

Every Epoch, n = kM : 1. Π← Q, Q← 0 (Batch cells at epoch)

2. Π′ ← Von Neumann augmentation of Π

Every Timeslot n: 1. For all (i, j), Gi,j = 1{Πi,j>0}

2. For all (i, j), G′
i,j = 1{Π′

i,j>0}

3. π′ ←Maximum size matching on G′

4. π ← π′
⋂

G (Retain only edges in G)

5. Π← Π− π

6. Π′ ← Π′ − π′

Von Neumann Augmentation: 1. Define Ri =
∑

k Πi,k, and Cj =
∑

k Πk,j

2. Π′ ← Π, m← maxi,j{Ri, Cj}
3. Find (i, j) s.t. Ri < m and Cj < m

4. ε← m−max(Ri, Cj)

5. Increment Π′
i,j by ε

6. Increment Ri and Cj by ε

7. Go back to step 3, until ∀i, j, Ri = Cj = m

Figure 5.5: Algorithm for generating a batch-mode critical matching

112 Chapter 5

induction on the sequence of timeslots, each matching π′ covers N elements. Since m ≤M , the

algorithm in Fig. 5.5 covers Π′, and hence Π, in no more than M timeslots.

Lemma 6. The matching π generated in each timeslot by the algorithm in Fig. 5.5 is critical.

Proof. The algorithm in Fig. 5.5 generates π′ that has N entries in each timeslot. Therefore, π′

covers every row and column. Since the critical lines of Π were not augmented, π′
⋂

G covers

those lines in every timeslot. Therefore, π is a critical matching.

Note that since π′ is perfect, all the line sums of Π′ decrease by one in every timeslot.

Correspondingly, the maximum line sums of Π also decrease by one in every timeslot. In other

words, if the critical lines were re-determined in each slot (instead of only at the epochs), π is

still guaranteed to cover them. Furthermore, while π′ is also a maximum-size matching on the

augmented aggregate matrix, π need not have maximum cardinality with respect to the original

matrix, in each slot. A counter-example is shown in Fig. 5.6. The dotted entries are the ones

added by the augmentation procedure. The matchings π in slots 1–3 do not have maximum

cardinality, with respect to the residual Π. A different sequence (in the example, the exact reverse

of the shown sequence) might result in each matching being maximum, but such a property is not

necessary.

As a critical matching covers Π in no more than M timeslots (lemma 5), only M match-

ings are required to service an entire batch, which itself contains cells accumulated over M slots.

Therefore, lemma 4, i.e., the Weller-Hajek C-MSM theorem, can be refined as follows:

Theorem 2. A critical matching guarantees exact 100% throughput to bounded admissible ar-

rival traffic in an input-queued switch, without internal speedup.

Recall that Slepian-Duguid fitting is sufficient to partition Π into M conflict-free config-

urations. Such an algorithm would operate in circuit-sequence, i.e., it finds a slot k for each entry

in Π, possibly rearranging the existing configurations in each step. On the other hand, a critical

matching also performs a similar partitioning of Π, but operates in timeslot-sequence, i.e., it fills

π(k) in increasing order of k, possibly rearranging the current configuration so that it meets the

critical criterion. The previously computed configurations remain untouched. In other words,

Combined Input-Output Queueing 113

RetainSl
ot

 1
Sl

ot
 2

Sl
ot

 3
Sl

ot
 4

π(1)

π(2)

π(3)

π(4)

π(1)’

π(2)’

π(3)’

π(4)’

Epoch

Π’Π

Von Neumann
Procedure

2

2 1

2

1 1

2 2

2 11

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Batch Matrix Augmented

Start

Original

Figure 5.6: Example of a sequence of non-maximum critical matchings

114 Chapter 5

Algorithm 3. Critical matching for QoS

Initialize: For all (i, j)

1. Qi,j ← 0, Πi,j ← 0

2. Ri,j ← Rate request for (i, j)

M ← 1/GCD(R)

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

Every Epoch, n = kM : 1. For all (i, j), Πi,j = min(Ri,jM,Qi,j) (Shaper)

2. Π′ ← Von Neumann augmentation of Π

Every Timeslot n: 1. For all (i, j), Gi,j = 1{Πi,j>0}

2. For all (i, j), G′
i,j = 1{Π′

i,j>0}

3. π′ ←Maximum size matching on G′

4. Π′ ← Π′ − π′

5. π ← π′
⋂

G (Retain only edges in G)

6. π ← Augment matching (second-phase)

7. Π← Π− π, Q← Q− π

Von Neumann Augmentation: See Fig. 5.5

Figure 5.7: Critical matching for QoS: Emulating a shaper using counters

a critical matching may be considered a strategy for Slepian-Duguid fitting on an aggregate re-

quest matrix, so that the latter may operate in timeslot-sequence without rearrangements of prior

configurations.

Bandwidth and Delay Guarantees

As with maximal matchings, the exact 100% throughput provided by critical matchings to bounded-

admissible traffic can be applied to ensure bandwidth and delay guarantees under arbitrary traffic,

given a rate reservation matrix R. A rate-shaper, as shown in Fig. 5.2, may be used to create

Combined Input-Output Queueing 115

batches Π at epochs kM , where M = 1/GCD(R). A critical matching, operating only on Π, is

used in the first phase of a multi-phase combination, and a suitable augmenting matching, operat-

ing on Q, may be used to simultaneously optimize throughput. The algorithm shown in Fig. 5.5

needs to be slightly modified in order to implement rate-shaping (using counters Π), and is shown

in Fig. 5.7.

Theorem 3. A critical matching, combined with rate shaping, is sufficient to provide isolated

bandwidth guarantees in an input-queued switch, without internal speedup.

Proof. Referring to Fig. 5.7, the rate-shaper guarantees Ri,jM service turns to pair (i, j) in every

M timeslots. The critical matching ensures that all the (shaped) entries in Π are drained within

an additional M timeslots. Therefore, each input-output pair is guaranteed a virtual bandwidth

trunk of Ri,j .

The advantage of using critical matchings for QoS is that it needs no internal speedup,

much as with offline BVN decomposition. The penalty with respect to the latter is the online

complexity of O(N2.5). The latency of scheduling is the same as with batch-mode maximal

matching, namely, 2M timeslots. Therefore, the delay bounds remain exactly the same for leaky-

bucket constrained traffic, i.e., the bounds given by (5.7) and (5.8) continue to hold. All the

advantages of the batch-mode maximal matching are retained, namely, no template storage over-

head and a distributed processing of rate changes on addition and deletion of flows.

5.2.2 Stability without Speedup

While the QoS capability of maximal and critical matchings may be viewed as a direct conse-

quence of the work by Weller and Hajek on bounded admissible traffic, providing asymptotic

100% throughput for unbounded admissible arrivals has presented some interesting challenges.

The Dai-Prabhakar maximal-matching theorem (pg. 51) establishes the latter, provided the inter-

nal speedup is at least 2. The quest for 100% throughput without speedup has been sufficiently

addressed by LPF [79] and maximum-weight matching algorithms [80]. To date, these remain

the best results in the literature for such performance. A long unanswered question has been

whether 100% throughput can be achieved using less complex matchings. A recent exploration

116 Chapter 5

of this question is due to Iyer and McKeown [52], who enquire whether the result holds for a

general class of maximum-size matchings. Inspired by the Weller-Hajek C-MSM theorem, the

authors explore the use of C-MSM for unbounded traffic, and report that it is indeed sufficient for

100% throughput, but for a restricted class of admissible traffic, namely, uniform i.i.d. Bernoulli

arrivals.

We posit that asking whether a matching has maximum cardinality is an irrelevant ques-

tion. While any MSM does maximize instantaneous throughput, it does not necessarily seem to

translate to long-term maximum throughput. Instead, a fruitful exploration concerns the ability of

a critical matching, not necessarily maximum in size. We prove here that any critical matching,

which does not even maximize instantaneous throughput, ends up providing asymptotic 100%

throughput for admissible arrivals, without speedup. The proof is based on analyzing the fluid

limit of the system of queues.

Continuous-mode Critical Matching

Consider a N × N input-queued switch, with admissible offered rates λ (2.2). This implicitly

also assumes that the average λi,j exists for each input-output pair, i.e., the arrivals conform to

SLLN. Let the rates be normalized to the external link capacity, i.e., C = 1. As explained in

Sec. 3.2.1, let A, D and Q be discrete-time N × N matrices that keep track of the cumulative

arrivals, cumulative departures and the current VOQ length, respectively, for each input-output

pair. These are related as:

∀i, j, Qi,j(n) = Ai,j(n)−Di,j(n) (5.9)

A continuous-mode (as opposed to batch-mode) critical matching π is generated in every

timeslot, which ensures that all the critical lines of Q are connected. An algorithm to generate

the matching is shown in Fig. 5.8. As discussed before, this need not generate a maximum

cardinality matching in each slot. The main difference in the continuous-mode algorithm with

respect to Fig. 5.5 is that the Von Neumann augmentation procedure is repeated on Q in every

timeslot, and there are no epochs. If desired, for some other performance goal, e.g., to decrease

the average delay, π may be further augmented (not shown) to make it maximal by greedily adding

Combined Input-Output Queueing 117

Algorithm 4. Continuous-mode critical matching

Initialize: For all (i, j), Qi,j ← 0

Cell Enqueue: If cell belongs to (i, j), increment Qi,j

Every Timeslot n: 1. Q′ ← Von Neumann augmentation of Q

2. For all (i, j), Gi,j = 1{Qi,j>0}

3. For all (i, j), G′
i,j = 1{Q′

i,j>0}

4. π′ ←Maximum size matching on G′

5. π ← π′
⋂

G (Retain only edges in G)

6. Q← Q− π

Von Neumann Augmentation: 1. Define Ri =
∑

k Qi,k, and Cj =
∑

k Qk,j

2. Q′ ← Q, m← maxi,j{Ri, Cj}
3. Find (i, j) s.t. Ri < m and Cj < m

4. ε← m−max(Ri, Cj)

5. Increment Q′
i,j by ε

6. Increment Ri and Cj by ε

7. Go back to step 3, until ∀i, j, Ri = Cj = m

Figure 5.8: Algorithm for generating a continuous-mode critical matching

connections, which does not affect the critical criterion. Note that the algorithm in Fig. 5.8 can

be made more efficient by avoiding the re-computation of Ri and Cj , the row and column sums

of Q, respectively, in each slot. In either case, the run-time complexity is O(N2.5), dominated by

the MSM operation.

To analyze the stability of the VOQ system, we first need to establish how D(n) evolves

under critical matching. Let a 2N -entry vector Z(n) represent buckets that keep track of the

cumulative queue length of an entire line of Q(n). The first N entries correspond to rows of

Q(n), and the next N to columns. In other words,

Zk(n) =
∑
j

Qk,j(n), k = 1, . . . , N

118 Chapter 5

1,21,1
Q

2,1
Q

1,2
Q

2,2
Q

2,1
Q

2,2

Z 2Z 1 Z 4 Phantom BucketZ 3

Z 3
Q

1,1
QQ

Figure 5.9: Critical matching: Buckets of line sums

ZN+k(n) =
∑

i

Qi,k(n), k = 1, . . . , N (5.10)

Let DZk
(n) denote the cumulative departures from bucket Zk until timeslot n. Note that

DZk
is just the sum of the departures from the queues in line k of Q. Then, (5.9) and (5.10),

together with the critical criterion satisfied by the matching, lead to the following evolution of Z:

Zk(n) =
∑
j

Ak,j(n)−DZk
(n), k = 1, . . . , N (5.11)

ZN+k(n) =
∑

i

Ai,k(n)−DZN+k
(n), k = 1, . . . , N (5.12)

DZk
(n + 1) = DZk

(n) + 1{Zk(n)=supi{Zi(n)}}, if Zk(n) > 0, k = 1, . . . , 2N (5.13)

The last equation merely states that whenever a bucket is non-empty and has the maximum value,

it is guaranteed to receive one service turn by the critical matching.

Let Z be a phantom bucket that always has the maximum line sum. In other words, Z is

a bucket that keeps track of each real bucket, and sets its own length to that of a bucket k that has

the maximum length. The identity of k changes at a discontinuity, when the maximum-length

bucket changes. Fig. 5.9 illustrates this concept using an analogy of buckets with fluid, for a 2×2

switch. A critical matching makes sure that a cell is always dispatched from the phantom bucket.

To ensure this, all the buckets with the same length as the phantom bucket are ensured one service

turn in each timeslot. The specific VOQ that consumes this service is irrelevant. Since a VOQ

is represented in two different buckets, if a specific VOQ is starved of service in one bucket, the

other bucket will eventually catch up with the maximum. Since the average rate of arrival into

Combined Input-Output Queueing 119

the phantom bucket does not exceed one over the long-term, it has a negative drift and cannot

grow in an uncontrolled fashion. This is the intuition behind the sufficiency of critical matching

for system stability.

Let DZ(n) denote the cumulative departures from Z until timeslot n. Then, the above

equations for Zk(n) can immediately be applied to Z(n) as follows:

Z(n) ≤ max
i,j
{
∑
k

Ai,k(n),
∑
k

Ak,j(n)} −DZ(n) (5.14)

DZ(n + 1) = DZ(n) + 1, if Z(n) > 0 (5.15)

Asymptotic 100% Throughput

We first state the following basic result from calculus:

Lemma 7. Let f(t) be a continuous function of t, with f(0) = 0. If f ′(t) ≤ 0 for almost every t,

with respect to Lebesgue measure, such that f(t) > 0 and f is differentiable at t, then f(t) = 0

for almost every t ≥ 0.

Here f ′(t) is a short-form for df(t)/dt. This is the same as lemma 1 in [29], and the

reader may refer to that work for a simple proof. For our purposes, given f(0) = 0, we shall

conclude f(t) = 0 whenever it can be established that f(t) > 0 implies f ′(t) ≤ 0.

As explained in Sec. 3.2.4, a fluid model may be generated from a continuous-time func-

tion f(t) by scaling the time axis. Specifically, the fluid-limit of a random variable f(t) may be

obtained as follows (3.6):

f̄(t) = lim
r→∞

1
r
f(rt)

Assume that the definitions of (A,D, Q, Z,Z, DZ) are extended so that they become continu-

ous functions in time, e.g., by piece-wise linear interpolation between (n, n + 1) for all n. Let

(Ā, D̄, Q̄, Z̄, Z̄, D̄Z) be the respective fluid limits. Recall the Dai-Prabhakar fluid-limit theorem,

which states that a system of queues is rate-stable if every solution of Q̄, with Q̄(0) = 0, gives

Q̄(t) = 0 for all t ≥ 0. We use this result below to establish the sufficiency of critical matching

for asymptotic 100% throughput, for admissible arrivals.

Theorem 4. A critical matching is sufficient, without speedup, for asymptotic 100% throughput

in an input-queued switch, for admissible arrivals, i.e.,

120 Chapter 5

(IQ, {Critical Matching})
T,f2' (OQ, {WC}), T : SLLN

Proof. The evolution of Z (5.14) and DZ (5.15) translate to the following in the fluid limit:

Z̄(t) ≤ t− D̄Z(t) (5.16)

D̄′Z(t) = 1, if Z̄(t) > 0 (5.17)

The first inequality is because Āi,j(t) = λi,jt from the fluid-limit definition of Ā, and λi,j (2.1)

exists due to SLLN. Furthermore, for all (i, j), both
∑

i λi,j and
∑

j λi,j are no greater than one

due to the admissibility constraint. The above equations immediately lead to Z̄ ′(t) ≤ 0 whenever

Z̄(t) > 0. From lemma 7, the only solution for Z̄ yields Z̄(t) = 0, t ≥ 0.

Notice that Zk(n) ≤ Z(n) for all k, n. From the fluid-limit definition, this also implies

Z̄k(t) ≤ Z̄(t). Therefore, Z̄k(t) = 0 for all k. Since the length of VOQ (i, j) at timeslot n is no

greater than Zi(n) and ZN+j(n), we get Q̄i,j(t) = 0 for all (i, j). Therefore, using the fluid-limit

theorem, all the virtual output queues are rate-stable, thus establishing the sufficiency of critical

matchings for asymptotic 100% throughput.

The above is the strongest result so far regarding throughput of input-queued switches.

It subsumes the C-MSM result in [52], which addressed a significantly restricted class of traffic.

Also, critical matchings are less complex than LPF [79] and MWM [80], which have been shown

to provide similar throughput performance and, to date, were the best results for that purpose.

Theorem 4 mirrors the Weller-Hajek (and our refinement) C-MSM theorem, much as the Dai-

Prabhakar result, which states that a maximal matching with a speedup of two ensures 100%

throughput, mirrors the Weller-Hajek maximal-matching theorem for bounded traffic. In fact,

frequent such analogs lead us to the following conjecture, which we have not been able to prove

yet in its generality.

Conjecture 1 (Batch-Continuous Hypothesis). Given a matching algorithm π, if for any finite

timescale T , π ensures exact 100% throughput for admissible arrivals bounded by T , using

a speedup s in the batch-mode, then, π ensures asymptotic 100% throughput for unbounded

admissible traffic, also with speedup s, in the continuous mode.

Combined Input-Output Queueing 121

In other words, for an arbitrarily bounded traffic, batch the cells arriving in [(k−1)T, kT)

into matrix Π at epochs kT , and let the matching algorithm operate on Π. If all the cells in Π are

drained before the next epoch, using a speedup of s, then the algorithm also provides asymptotic

100% throughput for unbounded admissible traffic. It does so by operating directly on the VOQ

lengths Q (without batching) in every timeslot, also using a speedup of s. If the above is true,

then, for any matching algorithm, it would suffice to merely inspect its combinatorial properties as

to how it decomposes a matrix, and the asymptotic result would follow without needing to study

queue stability in each instance. We actually suspect that there is a stronger form of the result,

namely, if π ensures exact 100% throughput for a specific VOQ in the batch-mode, for bounded

traffic, i.e., Πi,j is completely drained for some (i, j), then it likely ensures stability of the same

VOQ in the continuous-mode, for unbounded traffic, regardless of the overall admissibility.

5.3 Uniform Traffic: Sub-maximal Perfect Sequence

An interesting challenge in input-queued switching has been whether it is possible to ensure

100% throughput for admissible arrivals using simple matchings (e.g., simpler than LPF or even

a critical matching) without speedup, for arrival patterns that are further restricted. Simulation

results have shown that algorithms such as iSLIP [78] and dual round-robin [11] seem to suffice

for traffic that is uniformly distributed among the outputs. In fact, iSLIP (pg. 60) has been shown

to provide 100% throughput for Bernoulli uniform5 traffic, with a single iteration. The intuition

supplied was that a single iteration converges to a maximum-size matching for uniform Bernoulli

arrivals, due to the desynchronization of the pointers used by the RGA algorithm.

Due to the popularity of iSLIP, since these results were first shared, there have been sev-

eral explorations to analytically establish the above. Most (e.g., [52, 97]) have taken it for granted

that it must be the fast convergence to a maximum that explains the results, and hence focused

on analyzing how an MSM behaves under restricted arrivals. Again, we report here that the car-

dinality of a matching is an irrelevant property, except maybe for instantaneous throughout and

lower average delay. We show that a single iteration of a parallel maximal matching (and hence,
5We refer to a traffic pattern as uniform if the arrivals at each input are equally distributed to each of the outputs,

in the long term.

122 Chapter 5

Algorithm 5. Sub-maximal Perfect Sequence

Initialize: 1. For all (i, j), Qi,j ← 0

2. Generate perfect sequence {φk}, k = 1, 2, . . . , N

Cell Enqueue: If cell belongs to (i, j)

1. Increment Qi,j

Every Timeslot n: 1. k ← n mod N

2. For all (i, j), Gi,j = 1{Qi,j(n)>0}

3. π ← φk
⋂

G

4. Q← Q− π

Generate Perfect Sequence: 1. For all (i, j), Ui,j ← 1

2. For k = 1 to N do steps 2a, 2b:

2a. φk ←Maximum-size matching on U

2b. U ← U − φk

Figure 5.10: Uniform traffic: A repeating sequence of perfect templates

also iSLIP) is sufficient for 100% throughput for all uniform arrivals. In light of this, optimizing

long-term throughput is definitely not a reason to run several iterations of iSLIP, without speedup.

Besides, for non-uniform traffic, iSLIP does need N iterations and a speedup of 2, the complexity

of which is no better than a centralized maximal matching algorithm, which provides the same

performance.

5.3.1 SPS Matching

Consider a N × N input-queued switch, with admissible offered rates λ (2.2). Let the rates

be normalized to the external link capacity, i.e., C = 1. Further, let the arrivals be uniformly

distributed to each of the outputs. Therefore,

∀i, j λi,j =
∑

k λi,k

N
≤ 1

N
(5.18)

Combined Input-Output Queueing 123

Let the space element of the switch operate under the matching algorithm shown in

Fig. 5.10. Notice that this is a template-based approach. We pre-compute a set of N templates

{φk} that cover a unit matrix. Such a set exists because each line sum of U is equal to N , and

hence U can be decomposed as a sum of N permutations. Then, each such permutation has N

entries, and therefore is a perfect matching (see Sec. 3.2.2). Correspondingly, the MSM tech-

nique shown at the bottom of Fig. 5.10 will generate a set of N permutations that cover U . The

templates φk are used in a repeating sequence, such that in N consecutive timeslots, φk is used

exactly once, for all k. In general, the resultant matching is not even maximal, because there

might not be any cells in one or more queues served by π, and at the same time, there might be

cells for other idle pairs (i, j), which remain unconnected. We call such a sequence a perfect

sequence, and the resultant matching as a sub-maximal perfect sequence (SPS) matching.

Theorem 5. An SPS matching is sufficient, without speedup, for asymptotic 100% throughput in

an input-queued switch, for uniform admissible arrivals, i.e.,

(IQ, {SPS Matching})
T,f2' (OQ, {WC}), T : SLLN, Uniform

Proof. Each element in {φk} is used once every N timeslots. For every (i, j), Ui,j = 1. There-

fore, for some k, φk covers (i, j), and every pair receives one service turn in every N timeslots.

Since λi,j ≤ 1/N (5.18), every queue is rate-stable.

Note that, strictly speaking, strong stability of the queues, i.e., E[Qi,j(n)] <∞, requires

the line sums to be strictly less than 1, i.e.,
∑

k λi,k < 1. In reality, the above theorem is a direct

consequence of the Birkhoff result (3.5) that was used in BVN decomposition. Uniform arrivals

are so benign that even if we do not precisely know the offered rates, we may behave as if each

λi,j is equal to 1/N , and use a pre-computed set of templates. Also, it just so happens that for

uniform traffic, such a set is among the simplest.

Theorem 5 may easily be extended towards deterministic properties and QoS. Specifi-

cally, let the arrivals be bounded in timescale M . Let M∗ be the least common multiple (LCM)

of M and N . Batch cells at epoch kM∗ to generate Π. Clearly, Π will be drained before the

next epoch by a batch-mode SPS, since each pair receives M∗/N (an integer) turns in every

124 Chapter 5

batch-interval, which is no less than the number of cells accumulated (λi,jM
∗) over the previous

interval. Thus, SPS provides exact 100% throughput, with a latency of twice the LCM(M,N).

Next, if a given rate-reservation matrix R is uniform, or merely, if Ri,j ≤ 1/N for each (i, j),

SPS with rate-shaping may be used to provide isolated bandwidth and delay guarantees, in a sim-

ilar fashion as seen in the previous sections. The shaping interval is just N timeslots, as all the

rates are considered equal. Therefore, the worst-case delay is determined by a scheduling latency

of 2N slots. For example, for leaky-bucket constrained traffic, the delay bounds in (5.7) and (5.8)

continue to hold with 2/r replaced by 2N . These extensions are summarized in the following

corollaries.

Corollary 1. An SPS matching guarantees exact 100% throughput to uniform bounded-admissible

arrivals in an input-queued switch, without internal speedup.

Corollary 2. An SPS matching, combined with rate shaping, is sufficient to provide isolated

bandwidth guarantees in an input-queued switch, without internal speedup, provided Ri,j ≤

1/N , ∀i, j.

5.3.2 Online Variants

A perfect sequence6 may be generated rather easily using online means, instead of pre-computing

templates. A single step of the EREW maximal matching (see Sec. 3.2.6) may be used to yield

such a sequence, as shown in Fig. 5.11. Note that this is a parallel matching, without the conven-

tional request-grant-accept phases. Each input memory element uses an output-pointer, which

is desynchronized during initialization, and remains so for the lifetime of the switch. The ele-

ment merely inspects the VOQ (i, Pi(n)), and dispatches a cell to output Pi(n) if the VOQ is

non-empty. The algorithm runs in O(1) time.

Theorem 6. The EREW sub-maximal matching is sufficient, without speedup, for asymptotic

100% throughput in an input-queued switch, for uniform admissible arrivals.

Proof. Referring to Fig. 5.11, notice that Pi(n) 6= Pj(n), for all i, j, n. Therefore, π(n) is a

perfect matching in every timeslot. Furthermore, Pi(n) covers all the outputs in any N consecu-
6The usage of such sequences is not new. For example, online perfect sequences have been used elsewhere in the

design of load-balanced BVN switches [9].

Combined Input-Output Queueing 125

Algorithm 6. EREW sub-maximal matching

Initialize: 1. For all (i, j), Qi,j ← 0

2. For all i, Pi = i (Initialize pointers)

Cell Enqueue: If cell belongs to (i, j)

1. Increment Qi,j

Every Timeslot n: For all i in parallel

1a. πi,j = 1 iff j = Pi

1b. If Qi,Pi > 0, decrement (dequeue)

2. Increment Pi mod N

Figure 5.11: EREW sub-maximal matching: Online generation of a perfect sequence

tive timeslots. Therefore, the resultant matching belongs to the class of SPS. From theorem 5, an

EREW sub-maximal matching is sufficient for 100% throughput.

This is one of the simplest practical matchings for input-queued switches. The concurrent-

dispatch algorithm in the Atlanta chipset [19] is a variant of such an algorithm. Above, we have

analytically established what had been observed in simulation studies in that work. This pos-

sibly also explains similar observations for iSLIP, with a single iteration, for Bernoulli uniform

traffic. It remains unclear why iSLIP needs N iterations, leading to a maximal matching, for

100% throughput to bursty uniform traffic. We venture that this is because iSLIP loses its perfect

matching property for bursty traffic, as its main priority is to converge to a maximal match. Each

parallel iteration in iSLIP is actually an O(N) operation, in which Pi is used merely as a starting

point to scan all the outputs. As we have seen, however, maximality is not required to provide

100% throughput for uniform arrivals.

We conclude by noting that any SPS algorithm seems to have limited applicability for

non-uniform traffic, even with speedup. However, we can make the following straight-forward

extension for such traffic, with some restrictions. If, for all (i, j), λi,j ≤ k/N , for some real k,

1 < k < N , then, an SPS matching with speedup k will provide 100% throughput. Other than

126 Chapter 5

for non-integer values of k < 2, this algorithm offers no performance benefits with respect to a

maximal matching, for such traffic.

5.4 Maximal Matching for Inadmissible Traffic

We now focus on the performance of an input-queued switch under inadmissible traffic. The goal

is to ensure that instability is isolated to outputs that receive more traffic than can be handled by

the output link. More precisely, we wish to find matching algorithms that can provide wide-sense

relative stability with a work-conserving OQ switch, or equivalently, f3 equivalence. Consider a

N ×N input-queued switch, with (unknown) normalized offered rates λ (2.1). Furthermore, let

λ be inadmissible, i.e., it violates (2.2). Let A be the set of oversubscribed outputs. Then, the

following is true for λ and A:

∀i
∑
j

λi,j ≤ 1

∀j /∈ A
∑

i

λi,j ≤ 1

∀j ∈ A
∑

i

λi,j > 1 (5.19)

Then, f3 equivalence with a work-conserving OQ switch may be achieved if all the virtual out-

put queues (i, j) for j /∈ A remain stable. Such a treatment of inadmissible traffic puts us in

unchartered territory with respect to the literature.

Note that an algorithm such as LOOFA [65], which ensures work-conservation in a CIOQ

switch, with a speedup no less than 2, would ensure f3 equivalence. We report here that any max-

imal matching with the same speedup also suffices. This strengthens the Dai-Prabhakar maximal

matching theorem, by extending it to inadmissible arrivals. At first glance, this seems like a

counter-intuitive result. For example, if a VOQ (i, j) for j ∈ A becomes unstable, as should be

the case, one might expect a bad matching to relentlessly connect (i, j) at the expense of some

other queue (i, k), k /∈ A, thereby also making the latter unstable. Indeed, this situation would

arise with an MWM that uses the queue lengths as weights, or even with a critical matching.

However, since an input can never be oversubscribed due to physical link limitations (first row

of (5.19)), maximal matching ends up isolating instability to oversubscribed outputs.

Combined Input-Output Queueing 127

5.4.1 Bounded Arrivals and Statistical Multiplexing

To provide intuition, and to demonstrate yet another instance of the batch-continuous hypothesis,

we first explore the behavior of the system for bounded traffic. Let the arrivals be bounded in

timescale M . Then the offered-rate matrix satisfies (5.4) and (5.19). Let cells be batched at

epochs kM , k > 0, as shown in (5.5). The aggregate matrix Π is served by a maximal matching.

The following result states that Πi,j(kM) is completely drained before epoch (k+1)M for j /∈ A.

Theorem 7. For arrivals bounded in timescale M , in an input-queued switch, any maximal

matching provides exact 100% throughput to flows (i, j) for which output j is not oversubscribed,

as long as the internal speedup s ≥ 2− 1/M .

Proof. The proof is similar to the one for lemma 2. From (5.5) and (5.19), Π satisfies the follow-

ing:

∀i, k
∑
j

Πi,j(kM) ≤ M

∀j /∈ A,∀k
∑

i

Πi,j(kM) ≤ M

In other words, even in the presence of inadmissible traffic, each row sum of Π does not exceed

M , and the same is true for each column sum of Π corresponding to a non-oversubscribed output.

Let Ti,j denote the number of cells originating from i plus the number destined to j. Then, for

Πi,j(kM) > 0,

∀j /∈ A,∀k Ti,j(kM) =
∑

l

Πi,l(kM) +
∑

l

Πl,j(kM)−Πi,j(kM)

≤ 2M − 1

No cells are added to Ti,j in [kM, (k + 1)M). Furthermore, assume Πi,j > 0 at the end of the

batch-interval. Then, a maximal matching would have ensured that Ti,j decreases by 1 in each

internal slot in the interval. If the number of internal timeslots is no less than 2M − 1, then

the above assumption is contradicted for j /∈ A. Therefore, for such outputs, Πi,j is completely

drained before the next epoch, as long as s ≥ 2− 1/M .

An example is illustrated in Fig. 5.12(a), for a 4× 4 switch and M = 10. The respective

line sums are shown next to the rows and columns. Here, outputs 2 and 4 are oversubscribed. For

128 Chapter 5

19
 ti

m
es

lo
ts

(kM+) ((k+1)M−)Π

Π (kM+) ((k+1)M−)Π

0 2 0 0

0000

0 0 0 1

0000

0 0 0 0

0000

0 0 0 0

0000

1 1 6 0

4130

3 3 0 2

4132

8

8

8

6

1 2 6 1

5140

3 4 0 3

4132

10

10

10

10

6 8

8

10

10 10

1313

Prune {2, 4}

(a)

(b)

Π

Figure 5.12: Example: Batch-mode matching for inadmissible traffic

any (i, j), as long as Πi,j remains non-zero, either row i or column j is served by the maximal

matching. For (i, j) such that j /∈ {2, 4}, since both the row sum and the column sum do not

exceed M = 10 at the beginning of an interval, Πi,j cannot remain non-zero after 2M − 1 =

19 internal timeslots. Therefore, all the cells destined to non-oversubscribed outputs {1, 3} are

served before the next epoch, if M external slots map to 2M − 1 internal ones.

Residue of Matching

In the previous example, the residue of Π at the end of the batch-interval contains some unserved

cells from {2, 4}. Even within an oversubscribed output, a maximal matching has special affinity

Combined Input-Output Queueing 129

Algorithm 7. Residue-aware maximal matching

Initialize: For all (i, j), Qi,j ← 0, Q′
i,j ← 0, Πi,j ← 0

Cell Enqueue: If cell belongs to (i, j), increment Qi,j

Every Epoch, n = kM : 1. Q′ ← Q′ + Π (Update residue)

2. Π← Q−Q′ (Arrivals in preceding interval)

3. Transfer entries from Q′ to Π s.t. ∀i,
∑

j Πi,j 6> M

Every Timeslot n: 1. For all (i, j), Gi,j = 1{Πi,j>0}

2. π ←Maximal matching on G

3. Π← Π− π

4. Q← Q− π

Figure 5.13: Batch-mode maximal matching with residue management for inadmissible traffic

for pairs (i, j) for which Ti,j ≤ 2M − 1 at the beginning of an interval, and all the cells for such

pairs are served anyway. Among pairs for which Ti,j > 2M − 1, circled in the figure, some

cells remain unserved as long as a cell is dispatched from input i or output j in each internal

timeslot. Notice that an adversarial maximal matching, which always gives preference to a pair

with a higher Ti,j , can in fact completely drain Π in this example. It is easy to see that the strict7

conditions for a non-zero residue at epoch (k + 1)M are:

∑
j∈A

∑
i∈Bj(kM)

Πi,j(kM) > 2M − 1 and

∃j s.t.
∑

i∈Bj(kM)

Πi,j(kM) > M,

where Bj(kM) = {i|Ti,j(kM) > 2M − 1}. If both inequalities hold, even a maximal matching

that gives strict priority to pairs (i, j), such that j ∈ A and i ∈ Bj , might not prevent a residue for

some pair in output j that satisfies the second condition. Minimizing the residue is a moot point,

however, since serving more than M cells for an output will lead to instability in the respective
7These conditions are not sufficient, but are strictly necessary. Otherwise, an adversarial maximal matching can

completely drain Π.

130 Chapter 5

third-stage memory-element queue.

It is important that a residue is not added to a future batch without special care, otherwise

a row sum might exceed M , and theorem 7 might not hold anymore. There are two options

to address this issue: (a) Cells that are not served at the end of an interval may be immediately

discarded, thereby ensuring that a VOQ only contains arrivals from the preceding interval, at each

epoch; (b) Alternatively, the switch may keep track of the cumulative residue Q′
i,j , and selectively

admit them in future batches, as long as the row sums are not violated. The latter is illustrated

in Fig. 5.13. Note that ∀j /∈ A, Q′
i,j(n) = 0, ∀n. Therefore, a residue admission will not affect

column sums for j /∈ A. In summary, flows (i, j) with j /∈ A receive exact 100% throughput,

and those with j ∈ A receive 100% throughput with some statistical multiplexing losses.

5.4.2 Matching on Pruned Requests

Referring to Fig. 5.12(b), a desired residue may be pre-computed by pruning an aggregate request

matrix before matching. More precisely, Π may be set to Q at each epoch, after a sufficient

number of cells are discarded from Q to ensure
∑

i Qi,j ≤ M , for all outputs j. In this case,

the row and column sums of Π do not exceed M , and every entry will be covered by a maximal

matching before the next epoch. Notice that, at each epoch, Q contains only the cells that arrived

in the preceding interval, and no cells need to be dropped for j /∈ A.

This approach, in contrast to the residue-management options (a) and (b) above, maxi-

mizes the discarded residue. However, it opens up the possibility of using other matching algo-

rithms, preferably with lower required speedup, which could otherwise not have ensured 100%

throughput for non-oversubscribed outputs. For example, a critical matching cannot be used in

lieu of a maximal one in Fig. 5.13. The addition of request pruning, shown8 in Fig. 5.14, allows

the application of a critical matching, leading to the following corollary. Note that simpler match-

ings such as SPS for restricted arrivals do not seem to find similar applications. In fact, SPS itself

is rendered irrelevant since no arrival pattern can be uniform and inadmissible at the same time.

Corollary 3. For arrivals bounded in timescale M , in an input-queued switch, any critical match-

ing with request-pruning provides exact 100% throughput to flows (i, j), such that output j is not

8The pruning operation in Fig. 5.14 can be made more efficient by discarding several cells in the same step.

Combined Input-Output Queueing 131

Algorithm 8. Critical Matching with Pruning

Initialize: For all (i, j), Qi,j ← 0, Πi,j ← 0

Cell Enqueue: If cell belongs to (i, j), increment Qi,j

Every Epoch, n = kM : 1. Prune Q: For all j ∈ A

1a. i← 1

1b. While
∑

i Qi,j > M do steps 1c, 1d

1c. If Qi,j > 0, decrement Qi,j (Discard cell)

1d. Increment i mod N

2. Π← Q

3. Π′ ← Von Neumann augmentation of Π

Every Timeslot n: Same as in Fig. 5.7

Von Neumann Augmentation: Same as in Fig. 5.7

Figure 5.14: Batch-mode critical matching with pruning for inadmissible traffic

oversubscribed, without internal speedup.

The flows destined to oversubscribed outputs experience statistical multiplexing, due to

the pruning operation, with losses given by the following mass function.

∀j, k p(Xj,k = X) = Prob{
∑

i

Ai,j [kM, (k + 1)M) > M + X},

where Xj,k denotes the number of cells arriving in [kM, (k + 1)M) that will be pruned and

discarded at epoch (k + 1)M . With pruning, there should be no losses in a work-conserving

third-stage element. Even for inadmissible traffic, p(X) could end up being rather small if not all

sources are expected to be active at the same time. The exact computation of the above sum will

depend on the joint distribution of the arrival processes. If we assume that the pruning is fair, i.e.,

each flow destined to j ∈ A experiences equal discards, then the expected loss for any flow (i, j)

may be computed as follows:

E[Li,j] =
1
N
{E[

∑
i

Ai,j [kM, (k + 1)M)]−M} (5.20)

132 Chapter 5

Further exploration of such statistical multiplexing is beyond the scope of this work, but presents

an interesting challenge.

Bandwidth Guarantees

The results for maximal and critical matching algorithms, for bounded inadmissible traffic, may

be easily extended to bandwidth and delay guarantees. Let R be a rate-request matrix, with one

or more oversubscribed outputs. In other words, the admission control procedure allows R to

violate output-link capacities, in order to take advantage of statistical multiplexing. A batch-

mode maximal matching, with M = 1/GCD(R), combined with rate-shaping, which ensures

that no more than RM cells are considered in each batch, ensures a bandwidth trunk of Ri,j to

each (i, j) in non-oversubscribed outputs. If request pruning is added, then the pairs (i, j) for

oversubscribed outputs are provided trunks with an expected loss given by (5.20). With pruning,

the latency of scheduling remains 2M for all pairs.

Corollary 4. Any maximal matching, combined with rate shaping, provides isolated bandwidth

guarantees to pairs (i, j), such that j is not oversubscribed, with speedup s ≥ 2− GCD(R).

Corollary 5. Any critical matching, combined with request pruning and rate shaping, provides

isolated bandwidth guarantees to pairs (i, j), such that j is not oversubscribed, without internal

speedup.

5.4.3 Stochastic Stability

Explicit residue management, and request pruning, for oversubscribed outputs is not feasible for

unbounded inadmissible traffic, because λ is not known, neither is a suitable timescale available.

The only information given is (5.19), and the goal is to ensure wide-sense relative stability with an

OQ switch, by guaranteeing VOQ stability for j /∈ A. For such outputs, recall that a batch-mode

maximal matching did not rely on any residue management. We show here that continuous-

mode maximal matching provides asymptotic 100% throughput to non-oversubscribed outputs

even for unbounded traffic, with a speedup of at least 2. We use the same combinatorial property

of maximal matching as in the bounded case, namely, if Qi,j remains non-zero, either input i

Combined Input-Output Queueing 133

or output j is guaranteed a service turn in each timeslot. The proof, based on fluid limits, is

similar to the one in [29], with minor modifications to only consider non-oversubscribed outputs.

The following result strengthens the Dai-Prabhakar maximal matching theorem by removing the

constraint of admissibility.

Theorem 8. A maximal matching is sufficient for asymptotic 100% throughput, in an input-

queued switch, to flows (i, j) belonging to non-oversubscribed outputs, as long as the speedup

s ≥ 2. i.e.,

(CIOQ, {Maximal Matching})
T,f3' (OQ, {WC}), s ≥ 2, T : SLLN

Proof. Fix s = 2. For each (i, j) define Ti,j as:

∀i, j, n Ti,j(n) =
∑
k

Qi,k(n) +
∑
k

Qk,j(n)

From (5.9) and the property of maximal matching, we can state the following, where DTi,j (n)

denotes the sum of the departures from row i and column j, until slot n:

∀i, j, n Ti,j(n) =
∑
k

Ai,k(n) +
∑
k

Ak,j(n)−DTi,j (n) (5.21)

DTi,j (n + 1) ≥ DTi,j (n) + 2, whenever Qi,j(n) ≥ 2 (5.22)

Let (Ā, Q̄, T̄ , D̄T) be the respective fluid limits (3.6) of (A,Q, T, DT) after necessary

linear interpolations. By definition, Āi,j(t) = λi,jt. Combined with (5.19) (assuming a strict

inequality in its second row), the above equations translate to the following in the fluid limit.

∀i, t ∀j /∈ A T̄i,j(t) < 2t− D̄Ti,j (t) (5.23)

D̄′
Ti,j

(t) ≥ 2, whenever Q̄i,j(t) > 0 (5.24)

The second row is on account of the linear interpolation of DTi,j (n), due to which DTi,j (t)

decreases at a rate of 2 the instant Qi,j(t) becomes greater than 0. This immediately gives

T̄ ′
i,j(t) < 0, ∀t ≥ 0, whenever Q̄i,j(t) > 0, for all pairs (i, j) such that j /∈ A. This is suf-

ficient for rate stability, using the Dai-Prabhakar fluid-limit theorem, as elaborated below9.
9We remind the reader that the proof so far mimics the proof for the Dai-Prabhakar maximal matching theorem [29].

134 Chapter 5

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

1τ 1 τ 2 2 τ 3 3t t t t

T (t)i,j

slope < 2 slope < 0

Q (rt)
i,j

= 0 > 0 = 0 > 0

Figure 5.15: How T̄i,j(t) varies with t based on Qi,j(rt)

Recognize that T̄i,j(t) is upper bounded by the curve shown in Fig. 5.15. The shaded

portions indicate intervals for which Qi,j(rt) = 0, where r is the scaling parameter of the fluid

limit. In such intervals, T̄i,j(t) increases at a rate no greater than 2. The instant t at which Qi,j(rt)

becomes positive, T̄i,j(t) decreases at some finite rate. Define two time series:

{τk|Qi,j(rτk−) > 0 and Qi,j(rτk) = 0} and

{tk|Qi,j(rtk−) = 0 and Qi,j(rtk) > 0}

If tk is an infinite series, then VOQ (i, j) is stable since the queue returns to zero infinitely often.

More precisely, we may re-define (pg. 49) the fluid limits as

Q̄i,j(t) = lim
k→∞

1
rnk

Qi,j(rnk
t) where rnk

t = rtk

In such a limit, Q̄i,j(t) = 0, ∀t ≥ 0, leading to rate stability.

The latter elegantly proceeds to establish Q̄i,j(t) = T̄i,j(t) = 0 for all pairs (i, j) ∀t by proving that the inner product
f(t) = 〈Q̄(t), T̄ (t)〉 = 0. This is based on the fact that f(t) ≥ 0 and

f ′(t) = 〈Q̄(t), T̄ ′(t)〉 < 0.

We need to depart from this approach because a partial inner product that only considers pairs (i, j) s.t. j /∈ A does
not yield f ′(t) = 〈Q̄(t), T̄ ′(t)〉. Instead, we resort to first principles of fluid limits. Notice in our proof that, for
inadmissible traffic, T̄i,j(t) need not be 0, even for pairs in non-oversubscribed outputs.

Combined Input-Output Queueing 135

We prove that tk is an infinite series by contradiction. Let |{tk}| = X , where X is finite.

By definition, there are no arrivals for (i, j) in [rτk, rtk) ∀k. Recall that

lim
r→∞

Ai,j [rτk, rtk) = λi,j(tk − τk)

> 0 whenever tk > τk.

Therefore, as r → ∞, tk → τk. Since T̄i,j(t) is upper bounded by the curve in Fig. 5.15, we

obtain

T̄i,j(tX) ≤ 2X
X∑

k=1

(tk − τk).

For finite X , T̄i,j(tX) → 0, and the entire series repeats itself, i.e., |{tk}| > X , leading to a

contradiction. Hence tk is an infinite10 series.

Theorems 7 and 8 provide an instance of the (strong-form) batch-continuous hypothe-

sis. Since batch-mode critical matchings require the addition of request-pruning for inadmissible

traffic, its analog is meaningless in the continuous mode. The above, then, is quite a remarkable

result for a general maximal matching, since it provides superior performance compared to more

complex algorithms, like MWM or critical matching, in the presence of inadmissible traffic. The

speedup of 2 is not prohibitive, as we will demonstrate later that such speedup is required anyway

for simultaneous satisfaction of QoS and optimal throughput. In light of this, and the fact that

it remains one of the simplest algorithms to implement, one would need a very strong reason to

prefer some other method for arbitration in an input-queued switch.

5.5 Strict Relative Stability

Our next focus is on providing strict relative stability to input-output flows in an input-queued

switch, with respect to a work-conserving OQ switch that employs some flow-based scheduler S

at its output links. More precisely, we wish to find matching algorithms that can ensure that every

flow (i, j) that is stable in the reference switch is also stable in the input-queued switch under

10For further intuition, notice that if |{tk}| is infinite, the last inequality need not tend to 0, neither is it guaranteed
to be finite. This is as expected since there are components in T̄i,j(t) that belong to oversubscribed outputs. Notice
also that any finite value of T̄i,j(tX), for finite X , would lead to the same conclusion, since the non-zero negative
slope when Qi,j(rt) > 0 would ensure that T̄i,j(t) returns to 0, thereby causing the series to repeat.

136 Chapter 5

C = s

Output Element 1

Arbiter

V
ir

tu
al

 O
ut

pu
t Q

ue
ue

s VO 3,1

VO 3,2

VO 3,3

Input Element 3

Memory
Elements

Memory
Elements

Space Element

Input Output

C = sC = 1 C = 1

1

2

3 3

2

1

Overall Structure
V

ir
tu

al
 I

np
ut

 Q
ue

ue
s VI 1,1

VI 2,1

VI 3,1

π

π

S

Figure 5.16: A CIOQ switch with virtual input queueing in the output elements

consideration, for the same arrival processes. In other words, the goal is to isolate instability on

a flow basis. We may say then that the input-queued switch provides the same long-term fairness

as an ideal switch in the distribution of output-link bandwidth. From the point of view of stable

flows, the switch would asymptotically emulate the ideal.

Consider a N×N CIOQ switch, under a discrete-time arrival process specified by matrix

A(n), with (unknown) normalized offered rates λ (2.1). Let the link scheduler of the third-stage

memory element be set to S, the output link scheduler of the reference OQ switch. We assume

virtual input queueing (VIQ) in the third-stage, which would enable S to choose any desired

flow (i, j) at each output j, without head-of-line blocking. This is illustrated in Fig. 5.16. We

additionally define the following N ×N matrices:

Combined Input-Output Queueing 137

Output element scheduler

VOQ (i,j) VIQ (i,j)

i,j
λ

i,j
Φ

i,j
π

j
S

i,j
µ

Space element arbiter

Figure 5.17: A CIOQ switch as a set of tandem queues

Qi,j(n) : Length of VOQ (i, j) at timeslot n

Di,j(n) : Cumulative departures from VOQ (i, j) until timeslot n

Xi,j(n) : Length of VIQ (i, j) at timeslot n

Φi,j : Long-term departure rate from VOQ (i, j)

µi,j : Long-term departure rate from the switch

µR
i,j : Long-term departure rate from the reference switch under A(n)

Then, each flow is served by a tandem of queues as shown in Fig. 5.17. The VOQ is served by

the arbiter of the space element, and gets a service whenever πi,j = 1, and the VIQ is served by

the output link scheduler S.

If λ is admissible, a maximal matching (s ≥ 2) or a critical matching (s ≥ 1) is sufficient

to ensure stability for each VOQ. Since S is work-conserving, each VIQ is also stable. Therefore,

additional means are required only when λ is inadmissible. Furthermore, if output j is not over-

subscribed (
∑

i λi,j < 1), a maximal matching with s = 2 is sufficient for the stability of flows

(i, j), from the previous section. Hence, the issue of strict relative stability is meaningful only

for flows destined to oversubscribed outputs. Let B denote the set of conforming flows, defined

as follows:

B = {(i, j)|λi,j = µR
i,j}

In other words, for the same arrival processes, flow (i, j) is stable in the reference switch. Short

of emulating the reference, µR
i,j is not known. As shown in Sec. 4.2.2, even if we know the static

weights used by S, µR
i,j cannot be deduced. It merely happens as a result of the operation of S

138 Chapter 5

Algorithm 9. Shortest output-queue first matching

Initialize: 1. For all (i, j), Qi,j ← 0

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

Every Timeslot n: 1. Y ← List of (i, j) sorted by Xi,j

2. For all (i, j), πi,j ← 0

3. For k = 1 to N2 do steps 3a, 3b, 3c

3a. (i, j)← Y [k]

3b. If
∑

i πi,j = 0 and
∑

j πi,j = 0, πi,j ← 1

3c. If Qi,j = 0, πi,j ← 0

4. Q← Q− π

Figure 5.18: Shortest output-queue first (SOQF) maximal matching

in the reference switch, under the specific arrival pattern given by A. However, we know that λ

satisfies the following:

∀i,
∑
j

λi,j ≤ 1

∀(i, j) ∈ B,
∑

i

λi,j ≤ 1 (5.25)

The first inequality is due to the physical limitation of the input links, and the second due to the

fact that λi,j is equal to µR
i,j for (i, j) ∈ B, which cannot sum up to a value greater than 1, for

each output. We establish strict relative stability if the VOQ and VIQ of each conforming flow

are both stable in the CIOQ switch.

A comparative stability analysis requires a characterization of how S behaves in the two

systems. We define S to be asymptotically convergent if, given S provides a long-term departure

rate of µ(1) under arrivals with rate λ(1), it will dispatch at a rate of at least µ
(1)
i,j for each flow

(i, j) if offered at least µ
(1)
i,j by that flow. Specifically, let µ(2) be the departure rate corresponding

to some arrival process with rate matrix λ(2). Then,

∀(i, j), µ
(2)
i,j = λ

(2)
i,j if λ

(2)
i,j ≤ µ

(1)
i,j

≥ µ
(1)
i,j otherwise

Combined Input-Output Queueing 139

Note that this property is defined in terms of the long-term departure rates, and furthermore, not

on the basis of any static service parameters used by the scheduler. This definition is satisfied by

a broad class of link schedulers, for example, any work-conserving scheduler based on weights

or WFQ.

Notice that, in our tandem-queue system (Fig. 5.17), S operates on the virtual input

queues, whose long-term arrival rates are given by Φ. Let S be asymptotically convergent. Then,

the following is true for the departure rates from the respective VIQ:

∀(i, j), Φi,j ≤ µR
i,j ⇒ µi,j = Φi,j

and Φi,j > µR
i,j ⇒ µi,j ≥ µR

i,j (5.26)

Since (i, j) ∈ B is covered by the first row, VIQ (i, j) is stable for conforming flows, though

the converse is not necessarily true. A non-conforming flow can end up receiving more than its

respective µR and remain stable, at the expense of some other flows. Irrespective of this fact, a

conforming flow will receive 100% throughput if its VOQ is stable.

The only algorithm in the literature that can ensure VOQ stability for (i, j) ∈ B under

inadmissible traffic is the stable matching [24, 107] policy that exactly emulates the reference

OQ switch (see pg. 58). For our less stringent goal, we show that a greedy maximal matching

that proceeds in a sorted order of the VIQ lengths is sufficient for strict relative stability, as long

as the speedup s ≥ 3. The intuition is that the length of the VIQ represents the congestion

experienced by each input-output pair under S, which may be used by the space element to serve

less congested flows, thereby allowing conforming flows to receive the same throughput as in an

ideal switch.

5.5.1 Shortest Output-Queue First

We introduce the shortest output-queue first (SOQF) maximal matching algorithm, shown in

Fig. 5.18. Here, an output queue refers to the virtual input queue of a flow, in the output mem-

ory element. In each timeslot n, flows are sorted in increasing order of Xi,j(n). A maximal

matching steps through this list and connects idle pairs, without backtracking. When Qi,j(n) is

decremented, the corresponding Xi,j(n) is incremented, as is expected in a tandem-queue sys-

140 Chapter 5

3

Virtual Output Queues

(Input Elements)

1 2 3 4

Outputs

In
pu

ts

0

0

0 2

0 8

0

6

6

0

31 23 5

11 51

0

1

2

3

2

1

3

4

Maximal

Input−Output Ordering

(Space Element)

1 5 8

62

3

497

12

1614

15

13

1110

Sort

(Output Elements)
Virtual Input Queues

0

8

1 2

0

0 2

0 7

3

5

22 0 1

11

Figure 5.19: Example: SOQF maximal matching algorithm

tem. An example is shown in Fig. 5.19, in which the boxed pairs denote the ones that become

connected. The order in which they are chosen is indicated in the left corner. The complexity

of the algorithm is dominated by the sorting operation, which runs in O(N2 log N) time. The

rich literature in parallel sorting may be used to decrease this run-time, e.g., using Cole’s merge

sort [26], which runs in O(log N) time using N2 EREW comparators, or using a parallel Batcher

sorting network. The complexity of SOQF then becomes O(N2) like any other maximal match-

ing algorithm. We could not find an EREW implementation that simultaneously sorts and chooses

elements satisfying the conflict-free property of the matching (2.5).

Since SOQF is maximal, it provides f3 equivalence with a work-conserving OQ switch

with s ≥ 2, in accordance with Theorem 8. In this section, we prove using the fluid-limit approach

that all conforming flows, even those destined to oversubscribed outputs (not addressed by f3),

remain stable as long as s ≥ 3. Note that SOQF does not rely on knowing µR. Instead, it lets

S operate independently, and deduces which flows are preferred by S by monitoring the state of

the virtual input queues. Also, unlike stable matching algorithms, SOQF does not simulate the

OQ link scheduler to drive the matching. Rather, it feeds sufficient traffic to less congested flows,

and the asymptotically convergent scheduler does the rest. Any flow that is served by the arbiter

in excess of what S can handle experiences larger queues in the output element, and the arbiter

Combined Input-Output Queueing 141

corrects itself. Since a conforming flow does not offer traffic in excess of what S can handle, the

VOQ ends up being stable.

The defining property of SOQF is that if a flow (i, j) has a cell in its VOQ, then either

πi,j = 1, πi,k = 1 for some flow (i, k) with a shorter or equal VIQ, or πk,j = 1 for a flow (k, j)

with a shorter or equal VIQ. The matching is not sensitive to the specific VOQ lengths. In other

words, for Ti,j defined below, a cell is dispatched from at least one of the queues on the right

hand side, in each internal timeslot, if Qi,j(n) > 0.

Ti,j(n) =
∑

{(i,k):Xi,k(n)≤Xi,j(n)}
Qi,k(n) +

∑
{(k,j):Xk,j(n)≤Xi,j(n)}

Qk,j(n) (5.27)

Asymptotic 100% Throughput

From (5.26), we know that VIQ (i, j) is stable for (i, j) ∈ B. However, given VIQ (i, j) is stable,

it does not imply (i, j) ∈ B. To aid in analysis, we further partition the flow-space and define set

C as follows:

C = {(i, j) /∈ B|Φi,j = µi,j}

In other words, C refers to the set of non-conforming flows, which end up with stable virtual

input queues. The arbiter neither knows the identity of such flows during its online operation,

nor does it use this knowledge in the matching. Note that the following is true for the set D of

non-conforming flows without stable VIQ:

D = {(i, j) /∈ C|Φi,j > µR
i,j}

We replace each virtual output queue of the tandem system in Fig. 5.17 with a pair of

imaginary queues Z and Y , defined as follows. For (i, j) ∈ {B ∪D}, Zi,j is the same as VOQ

(i, j), with offered rate λi,j and departure rate Φi,j , and Yi,j is always empty. For (i, j) ∈ C,

Zi,j is a queue that receives a portion of the offered traffic, equal to µi,j , and Yi,j retains the rest,

i.e., λi,j − µi,j . This is illustrated in Fig. 5.20, in which Zi,j contains no more than s cells (in

fact, any finite |Zi,j | would work), and whenever it is served, a cell is transfered from Yi,j to Zi,j .

The arbiter only serves Z, and Y is ignored. We just converted a two-queue tandem system into

a three-queue system for non-conforming flows, for which it is given that the respective VIQ is

stable.

142 Chapter 5

VOQ (i,j): Z (i,j) + Y (i,j)

λ

i,j
µ

i,j
µ

VIQ (i,j)

i,j
π

j
S

i,j
µ

Space element arbiter Output element scheduler

Y (i,j)

Z (i,j)

i,j

Figure 5.20: Imaginary queue system for non-conforming flows with stable output queues

We make the following observations about the imaginary queue system. The sequence

of configurations π generated by SOQF in the imaginary system is identical to the one in the

real system. This is because SOQF depends only on whether a VOQ is non-empty, and Zi,j is

always non-empty whenever Qi,j > 0. Furthermore, for (i, j) ∈ B, stability of Zi,j immediately

implies that VOQ (i, j) is stable, thus establishing f4 equivalence with the reference switch. We

redefine Ti,j(n) from (5.27) as Ci,j(n) for the imaginary queue system, and let DCi,j (n) be the

cumulative departures from the queues represented in Ci,j(n), until timeslot n. Then, the SOQF

property may be re-written as:

∀(i, j) Ci,j(n) =
∑

{(i,k):Xi,k(n)≤Xi,j(n)}
Zi,k(n) +

∑
{(k,j):Xk,j(n)≤Xi,j(n)}

Zk,j(n)

DCi,j (n + 1) ≥ DCi,j (n) + s, whenever Zi,j(n) ≥ s (5.28)

Theorem 9. SOQF maximal matching is sufficient for strict relative stability of an input-queued

switch, with respect to an OQ switch employing an asymptotically convergent link scheduler S,

as long as the speedup s ≥ 3, i.e.,

(CIOQ, {SOQF, S})
T,f4' (OQ, {WC, S}), s ≥ 3, T : SLLN

Proof. Let (Z̄, X̄, C̄, D̄C) be the respective fluid limits (3.6) of (Z,X, C,DC) after necessary

Combined Input-Output Queueing 143

linear interpolations to make the latter continuous functions of time. Then, by definition11,

∀(i, j) C̄i,j(t) =
∑

{(i,k):X̄i,k(t)≤X̄i,j(t)}
Z̄i,k(t) +

∑
{(k,j):X̄k,j(t)≤X̄i,j(t)}

Z̄k,j(t)

For (i, j) ∈ B, we know that X̄i,j(t) = 0, t ≥ 0, since the VIQ is stable. Also, for (i, j) ∈ C,

Z̄i,j(t) = X̄i,j(t) = 0, t ≥ 0. Finally, since the VIQ is unstable for (i, j) ∈ D, X̄i,j(t) > 0,

t ≥ 0. Therefore, for conforming flows (i, j), X̄k,l(n) ≤ X̄i,j(n) implies (k, l) ∈ B ∪ C. For

such flows, then, the SOQF property (5.28) translates to the following:

∀(i, j) ∈ B :

C̄i,j(t) =
∑

(i,k)∈B∪C

Z̄i,k(t) +
∑

(k,j)∈B∪C

Z̄k,j(t) (5.29)

=

 ∑
(i,k)∈B∪C

λi,kt +
∑

(k,j)∈B

µR
k,jt +

∑
(k,j)∈C

µk,jt

− D̄Ci,j (t) (5.30)

≤ 3t− D̄Ci,j (t) (5.31)

D̄′
Ci,j

(t) ≥ s, whenever Z̄i,j(t) > 0 (5.32)

Note that (5.30) results from the fact that, for (i, j) ∈ B, λi,j = µR
i,j , and for (i, j) ∈ C, the

arrival rate into Zi,j is equal to µi,j . The first summation is no greater than t because of the

physical limitation of input link i, and the second12 and third are no greater than t because the

departure rates cannot exceed 1 for the entire column j in both, the switch under consideration,

and the reference switch. The above set of equations imply, for (i, j) ∈ B, C̄ ′
i,j(t) ≤ 0 whenever

Z̄i,j(t) > 0, t ≥ 0, as long as s ≥ 3.

Let fX(t) be the partial inner product of Z̄(t) and C̄(t), defined for flows with a stable

virtual input queue. That is,

fX(t) =
∑

(i,j)∈B∪C

Z̄i,j(t)C̄i,j(t)

11The fluid limits in the ranges of the summations follow from the limit definition. Specifically, start with all pairs
(i, k) s.t. Xi,k(rt) ≤ Xi,j(rt), where r is the scaling parameter. If X̄i,k(t) > X̄i,j(t), it would violate the previous
inequality.

12We may not assume the second sum to be
∑

µk,jt, as it is indeed λk,j = µk,j that we are trying to prove.
However, we may for the third sum, by construction. Moreover, we are given that the VIQ for (i, j) ∈ C is stable. We
did not use the same condition to similarly split the traffic for (i, j) ∈ B since the proof needs Zi,j = Qi,j for such
flows.

144 Chapter 5

Clearly, fX(t) ≥ 0, for all t. Furthermore, fX(t) = 0 implies Z̄i,j(t) = 0 for (i, j) ∈ B, and

hence Q̄i,j(t) = 0. For (i, j) ∈ C, we already know that Z̄i,j(t) = 0, and no new information can

be gathered about Q̄i,j(t). Consider the case: fX(t) > 0. Then, using similar algebra as in [29],

we get

f ′X(t) = 2
∑

{(i,j)∈B∪C:Z̄i,j(t)>0}
Z̄i,j(t)C̄ ′

i,j(t)

= 2
∑

{(i,j)∈B:Z̄i,j(t)>0}
Z̄i,j(t)C̄ ′

i,j(t)

≤ 0, whenever fX(t) > 0, s ≥ 3.

From lemma 7, fX(t) = 0, t ≥ 0. This implies that Z̄i,j(t) = 0, t ≥ 0, for all conforming pairs.

Hence, from the Dai-Prabhakar fluid-limit theorem, the virtual output queues of such flows are

rate-stable.

In fact, it is possible to devise an alternate proof by relating C̄i,j(t) and Z̄i,j(t) using time

series {τk, tk}, in a similar fashion as shown in Fig. 5.15. We chose to use the inner product to

relate the two quantities, as in [29], due to its elegance.

The role of the imaginary-queue system as an analytical tool should now be apparent. It

allowed us to characterize the behavior of non-conforming flows C ∪ D, without requiring an

explicit determination of their long-term departure rates. For such flows, either the VIQ becomes

unstable (D), which is monitored by the arbiter allowing it to give preference to less congested

flows, or we know that the arbiter has already (magically!) isolated the instability caused by

such flows (C) to their respective VOQ. Note that our result establishes µi,j = λi,j = µR
i,j for

(i, j) ∈ B, as long as s ≥ 3. However, we have not established the same for non-conforming

flows. We know, by the definition of D and (5.26), that µi,j ≥ µR
i,j for (i, j) ∈ D. Furthermore,

the departure rates must satisfy ∀j,
∑

i µi,j ≤
∑

i µ
R
i,j . Otherwise, the asymptotically convergent

scheduler in the reference OQ switch would have ensured that the departure rates in that switch

end up higher than the given values. Therefore, we can state the following, for s ≥ 3:

∀(i, j) ∈ B, µi,j = µR
i,j

∀(i, j) ∈ C, µi,j ≤ µR
i,j

∀(i, j) ∈ D, µi,j ≥ µR
i,j

Combined Input-Output Queueing 145

Ideally, we would have liked equalities for each of the above sets. Nevertheless, for

equivalence purposes, queue stability for conforming flows suffices. It is worth noting here that

a practical implementation of SOQF might be encumbered by its high required speedup, and the

complexity of the sorting operation. In reality, while we proved the sufficiency of s ≥ 3, we

suspect that the same goal can be achieved with lesser speedup. More precisely, we now know

that µi,j ≤ µR
i,j for all flows in C, if the VOQ of conforming flows are stable. If this fact could

have been established independently, without presuming stability, then the summations in (5.30)

would lead to a value no greater than 2t, by collapsing the last two sums into a single sum, no

greater than t. Consequently, we could have established stability for (i, j) ∈ B for any s ≥ 2.

Furthermore, given s ≥ 3, we observe that Ci,j(t) drops faster than is required, when Zi,j(t) > 0.

We suspect that the higher speedup in our result is an outcome of our proof methodology13, and

likely, s ≥ 3 is not strictly necessary. All the same, since we do not possess an analytical proof

of the latter, we will settle for the sufficiency established in Theorem 9.

5.5.2 Alternative Approaches

LOOFA: Comparison

Notice that SOQF matching looks similar but is markedly different from LOOFA [65], previewed

in Sec. 3.2.5. In LOOFA, outputs are sorted (Fig. 3.8) using the total occupancy at each output

link, i.e.,
∑

i Xi,j in our terminology. On the other hand, SOQF requires virtual input queueing at

the outputs, and input-output pairs are sorted using the individual VIQ occupancy at each output

link. The order in the sorted list in SOQF immediately determines the pairs to be connected. In

contrast, LOOFA proceeds in sorted order of outputs, picking any input-output pair within those

outputs. LOOFA might prefer pairs with a high Xi,j within an output j with low
∑

i Xi,j , while

SOQF might serve pairs with a low Xi,j within outputs with a high cumulative queue-length.

Consequently, the performance of these two algorithms end up being significantly differ-

ent. LOOFA ensures that the CIOQ switch is work-conserving, for s ≥ 2. In terms of stability,

this implies f3 equivalence with an OQ switch (for which any maximal matching suffices). For
13Could we envision an iterative game-theoretic proof with a Nash equilibrium at s = 2? This is an intriguing

thought, yet beyond the current expertise of the author.

146 Chapter 5

emulation of an OQ switch with FIFO schedulers at the output links, nothing additional is neces-

sary. However, LOOFA does not ensure stability for specific input-output pairs, under flow-based

output schedulers. SOQF matching, in comparison, does not ensure work-conservation, yet meets

the stability goal, for s ≥ 3. Specifically, SOQF does not guarantee that an output occupancy

(
∑

i Xi,j) exceeds the input thread of each cell destined to that output, a property required for

work-conservation, but instead guarantees property (5.28), which leads to strict relative stability.

The authors of LOOFA suggest that the order in which inputs are selected within the

sorted output list would determine the fairness in the distribution of link bandwidth to input-

output pairs. Accordingly, we explored the possibility of combining LOOFA with SOQF as

follows. The arbiter first sorts the outputs, ensuring work-conservation for s ≥ 2, then chooses

the pair with the smallest Xi,j , within output j. Then Ti,j in (5.27) may be redefined as follows:

Ti,j(n) =
∑

{(i,k):∀l,Xi,k(n)≤Xl,k(n) and
∑

l
Xl,k≤

∑
l
Xl,j}

Qi,k(n) +
∑

{(k,j):Xk,j(n)≤Xi,j(n)}
Qk,j(n)

Atleast one of the queues in the summations is guaranteed a service turn whenever Qi,j > 0. For

(i, j) ∈ B, the stability of Xi,j would immediately imply X̄k,j = 0 in the second sum. However,

notice that the first sum does not depend on Xi,j . If both outputs k and j are oversubscribed, a

pair (i, k) in the first sum may refer to a flow with an unstable VIQ. Unfortunately, therefore, we

were unsuccessful in applying the above property towards any stability result. We conjecture that

the combined provision of work-conservation and strict relative stability is beyond the scope of a

maximal matching for non-trivial values of s, i.e., for s 6= f(N). The fairness property referred

to by the authors of LOOFA likely stands for some form of max-min fairness14 in the allocation

of bandwidth, considering the input and output elements as separate switching nodes. Clearly,

the latter allocation need not be the same as the one in the reference OQ switch.

Heuristic Approximations

A coarse approximation of the sorting operation in SOQF is to partition the input-output pairs

into two sets, a less congested set for which Xi,j(n) ≤ L for some finite L, and a congested set
14Max-min fairness has been a useful measure for studying the achievable bandwidth for a flow as it traverses a

network of nodes. An end-to-end network may be considered max-min fair if the minimum achievable service rate
for a flow, on its path, is maximized. We refrain from using such a measure inside a switch as it exposes the internal
switching structure to network engineering.

Combined Input-Output Queueing 147

Algorithm 10. Maximal matching with backpressure

Initialize: 1. For all (i, j), Qi,j ← 0

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

Every Timeslot n: 1. For all (i, j), Gi,j ← 1{Xi,j<L} ∩ 1{Qi,j>0}

2. π ←Maximal matching on G

3. Q← Q− π

Figure 5.21: A backpressure-based approximation of SOQF

for which Xi,j(n) > L. The arbiter may then isolate congestion by finding a maximal matching,

restricted to pairs in the first set, as shown in Fig. 5.21. In other words, the VIQ lengths are

being used to apply backpressure, or feedback control, to the arbiter, for congested pairs. Note

that the overall matching might not even be maximal, and hence the stability analysis of the

previous section will cease to apply. Nevertheless, such backpressure-based schemes are already

found in practice [19, 20, 16], especially suited for finite-sized memory elements. While an

analytical characterization of backpressure is currently a popular topic, in the guise of buffered

crossbar switching, the above older works have long since demonstrated the merit, primarily

using simulation studies on restricted arrivals, of using such an approach for isolating congestion.

5.6 Putting it Together: Switched Fair-Airport Policies

In the previous sections, we showed how several online matchings, combined with rate-shaping,

may be used to provide bandwidth and delay guarantees, specified by a reservation matrix R,

independent of the offered arrivals. We also established how various matchings may be used to

optimize throughput, at different levels of functional equivalence with a reference OQ switch. In

general, the task is to satisfy both goals simultaneously. We introduced the concept of integrated

matchings in Sec. 3.3.1, where two matching algorithms, M1 and M2, are used in conjunction

with each other to satisfy multiple goals. We now apply that concept to the results shown in this

chapter.

148 Chapter 5

Let M1 be the policy chosen to provide QoS guarantees, in order to satisfy R, with

speedup s1. M1 may be based on offline templates using a BVN decomposition of R (s1 = 1), or

a batch-mode matching operating on guaranteed-queue (GQ) counters, Πi,j for each pair (i, j),

assembled by the shaper at each epoch kM as:

Πi,j(kM) = min(Ri,jM,Qi,j(kM)),

where 1/M is the GCD of the rates, and Qi,j is the respective VOQ length. The matching may be

maximal (s1 = 2), critical (s1 = 1), or SPS (s1 = 1), the latter only applicable when Ri,j ≤ 1/N ,

∀(i, j). Each of these online policies ensures a bandwidth trunk of Ri,j and a worst-case latency

of 2M to each pair, for the specified speedup values. If R is inadmissible, request pruning is

performed on Π, prior to matching, as described in Sec. 5.4.2.

Let M2 be the policy chosen to optimize throughput, with speedup s2. This matching

operates directly on the VOQ lengths, Qi,j for each pair (i, j), adding to the service turns given

by M1. M2 may be maximal (s = 2 for f3), critical, MWM, LPF (s = 1 for f2), SOQF (s = 3

for f4), or SPS (s = 1 for f2), the latter only applicable for uniform arrivals. We refer to the

integrated policy (M1,M2) as a switched fair-airport (SFA) algorithm, as this may be viewed as

a two-dimensional variant of the fair-airport link scheduler (Sec. 3.3.3). The precise method of

integration depends on the relative properties of the two matchings. If hierarchical scheduling is

implemented, as described in Sec. 3.3.2, in order to distribute the service turns to individual flows,

then the connections made by M1 are consumed by the respective GBS in the input elements, and

those made by M2 are consumed by EBS.

5.6.1 Multi-phase Combination

Recall that a matching Mi is additive with respect to Mj , if Mi can start with the configuration

π generated by Mj in each timeslot, and generate a new configuration π′, which satisfies the

properties of Mj , by merely adding connections to π, i.e., πi,j = 1 implies π′i,j = 1. For example,

let M1 be a batch-mode critical matching operating on Π. Let M2 be a maximal matching that

adds connections, operating on Q. Clearly, since ∀(i, j), Πi,j > 0 also implies Qi,j > 0, the

overall matching is guaranteed to be maximal. On the other hand, if M2 is a critical matching,

Combined Input-Output Queueing 149

Algorithm 11. SFA-multiphase matching

Initialize: 1. For all (i, j), Qi,j ← 0, Πi,j ← 0

2. M ← 1/GCD(R)

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

Every Epoch, n = kM : 1. For all (i, j), Πi,j = min(Ri,jM,Qi,j)

2. Prune Π, if necessary (Fig. 5.14, step 1)

Every Timeslot n: 1. For all (i, j), Gi,j ← 1{Qi,j>0}

2. For all (i, j), G′
i,j ← 1{Πi,j>0}

3. π ← Apply M1 on G′

4. π ← Augment π using M2 on G

5. For all (i, j), if (Πi,j ∩ πi,j), decrement Πi,j

6. Q← Q− π (dispatch cell)

Figure 5.22: SFA policy using a multi-phase combination of matchings

the connections already generated by M1 may, in general, conflict with the goal of covering all

critical lines of Q. This is because a critical line of Π need not be a critical line of Q, and

vice-versa. The combined matching, therefore, may not remain critical with respect to the VOQ

lengths.

The advantage of additive matchings is that the configuration generated in a timeslot

satisfies the properties of both M1 and M2, thereby minimizing the total required speedup to

s = max(s1, s2), for simultaneously satisfying the performance goals of both. This integrated

matching is referred to as a multi-phase combination, illustrated in Fig. 5.22. For our purpose,

notice that there is no M1 that is additive to any given M2, primarily because Qi,j > 0 need not

imply Πi,j > 0. Therefore, M1 is always used in the first phase, and an M2, if additive, augments

the configuration in the second phase. In the policies seen so far, a general maximal matching is

additive to any M1. An SPS matching may be additive with another SPS, if the two sequences are

aligned, in which case it reduces to a single matching. Notice that, in multi-phase combinations,

150 Chapter 5

Algorithm 12. SFA-exclusive matching

Initialize: 1. For all (i, j), Qi,j ← 0, Πi,j ← 0

2. M ← 1/GCD(R), T ← s1 + s2

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

Every Epoch, n = kM : 1. For all (i, j), Πi,j = min(Ri,jM,Qi,j)

2. Prune Π, if necessary (Fig. 5.14, step 1)

Every Timeslot n 1. For all (i, j), Gi,j ← 1{Πi,j>0}

s.t. kT ≤ n < kT + s1: 2. π ← Apply M1 on G

3. Π← Π− π

4. Q← Q− π (dispatch cell)

Every Timeslot n 1. For all (i, j), Gi,j ← 1{Qi,j>0}

s.t. kT + s1 ≤ n < kT + s2: 2. π ← Apply M2 on G

3. Q← Q− π (dispatch cell)

Figure 5.23: SFA policy using an exclusive combination of matchings

the guaranteed queues (or the GBS) are given strict priority in the consumption of each service

turn.

5.6.2 Exclusive Combination

If M2, chosen to optimize throughput, is not additive to M1, chosen to satisfy the reservation

matrix R, then each policy must necessarily ignore the presence of the other, and operate inde-

pendently for the simultaneous satisfaction of the goals. Consequently, the required speedup be-

comes s = s1 + s2. This integrated matching is an exclusive combination, illustrated in Fig. 5.23

(for integral values of s1 and s2), in which either M1 or M2 operates in each timeslot. Let T be

an integer such that both s1T and s2T are integers. Since, in (s1 + s2)T consecutive timeslots,

Π receives at least as many service turns as it would under M1 in s1T timeslots, and Q receives

Combined Input-Output Queueing 151

XXXXXXXXXXX
M2

M1 BVN SPS Maximal Critical

s ≥ 1 s ≥ 1, Ri,j ≤ 1/N s ≥ 2 s ≥ 1
MWM/LPF 2 2 3 2
s ≥ 1, f2

Critical 2 2 3 2
s ≥ 1, f2

SPS 2 1 3 2
s ≥ 1, f2 (Uniform λ)
Maximal 2 2 2 2
s ≥ 2, f3

SOQF 4 4 5 4
s ≥ 3, f4

Table 5.1: SFA: Speedup required to simultaneously provide QoS and optimal throughput

at least as many turns as under M2 in s2T timeslots, both the goals are satisfied.

In the policies seen so far, critical and SOQF matchings are not additive, in general, to any

M1. Neither are matchings such as MWM and LPF in the literature. Consequently, the benefit

of the lower speedup required by some of these policies, for throughput and QoS, individually, is

annulled if they need to be integrated with other matchings. This is true even if both the matchings

belong to the same policy, e.g., a critical matching on Π for QoS (s = 1), integrated with a critical

matching on Q for throughput (s = 1), will need an overall speedup of 2. This is no better than a

multi-phase combination of any QoS-enabling matching, seen so far, with s ≤ 2, and a maximal

matching on Q for throughput (s = 2).

Table 5.1 shows the speedup required for various SFA combinations, for the simultaneous

satisfaction of QoS and optimal throughput. The individual speedup values are based on the

results in this chapter, and those reviewed from the literature. For known matching algorithms,

other than the restrictive case of (SPS, SPS), such combinations need a speedup of at least 2.

Consequently, for the above goal, a practical maximal matching for M2 is as good as any other

policy, due to its additive nature. We conclude by noting that the alternative to such integrated

matchings is the stable matching policy that exactly emulates an OQ switch.

152 Chapter 5

5.7 Extensions to Multicast Traffic

While the primary focus of this work is on unicast traffic, several of the results seen so far, for

admissible traffic, find direct application to a class of multicast scheduling schemes. There are

two main types of multicasting techniques in the input-queueing literature. The first, and the

more common, technique is to replicate cells in the space element. More precisely, each cell is

associated with a set of destinations, referred to as its fanout. To serve a cell at the head of a queue

in input element i, the input is connected to several outputs in the same timeslot, corresponding

to a subset of the fanout f(i). In other words, for k ⊆ f(i), πi,k = 1. The conflict-free property,

for space-element multicasting, is merely
∑

i πi,j ≤ 1, for all outputs j. Conflicts are allowed

at the inputs, i.e.,
∑

j πi,j may be greater than 1, as long as the same cell consumes all the

connections. The WBA algorithm [90] is one of the first such policies, which employs a single

queue of multicast cells in each input element.

It has long been recognized [41, 75] that such a scheme suffers from significant head-

of-line blocking. To alleviate this condition, a commonly used technique (e.g., [69, 42]) is to

maintain unicast cells in their respective VOQ, and employ a small number of dedicated queues

for multicast cells. Cells are hashed to specific queues on arrival. To completely eliminate block-

ing, however, we need a prohibitive 2N−1 multicast queues [76], one for each possible fanout set.

Determining the tradeoff between the number of queues and the observed throughput for various

traffic and fanout patterns has been a fertile playground in switching research. Nevertheless, most

practical schemes that utilize space-element replication suffer from less than 100% throughput,

and multicast is essentially treated as second-class traffic for throughput and QoS purposes.

An alternative approach, originally due to Turner [112] utilizes the concept of recycling,

in which each input element is used as a relay point for copying cells. This technique does not

employ space-element replication, and suffers from high delays, yet most of the results for unicast

throughput and QoS may now be applied to multicast traffic.

Recycling

Recycling uses a modified pipeline for the forwarding path, as shown in Fig. 5.24. The input

elements do not employ special multicast queues, and contain the same N virtual output queues,

Combined Input-Output Queueing 153

Input/Output Memory Element

Control

Data

CPU

Output

Input Header
Processing

Header
Update

PHY/

MAC

Segment

Sp
ac

e
E

le
m

en
t

Output
First

VOQ

Next
Output

Copy
Reassemble

Output Queues

Figure 5.24: Forwarding-path pipeline for multicast recycling support

originally meant for unicast traffic. A destination list is created for each cell (or for each fine-

grain flow) using its fanout set. When a cell first arrives, it is enqueued in precisely a single

VOQ, corresponding to the first output in its destination list. On arriving at the output element,

if there are additional destinations for the cell, a single copy of the cell is made, destined to the

next output in the list, and is injected into the ingress pipeline. If the fanout size is F , then all

the destinations receive a copy in F traversals of the space element. The multiple number of

traversals result in a high delay. In addition, it is evident that the memory bandwidth required in

the VOQ system is (1 + 2s)C, where s is the internal speedup, and C the external link capacity.

The main issue with multicast traffic is that admissibility does not imply both the condi-

tions in (2.2). While the output constraint remains, i.e, ∀j,
∑

i λi,j ≤ C, there is effectively no

input constraint. Even though the arrival rate at each input cannot exceed C, each cell represents

several copies, yielding a higher effective arrival rate. Recycling reins in the arrival process at

the virtual output queues. Notice that the VOQ system observes a unicast stream from the input

interface, with a total rate of no greater than C, and an additional stream from the egress pipeline,

which also cannot be greater than C due to the output constraint. Therefore the effective arrivals

λ into the VOQ system satisfies:

∀i
∑
j

λi,j ≤ 2C and ∀j
∑

i

λi,j ≤ C. (5.33)

154 Chapter 5

Throughput and QoS

The multicast admissibility condition implies that most of the matching results for unicast traffic

will yield similar results for multicast traffic, with an additional speedup of 1. Specifically, the

proof of Theorem 4 can be modified to account for (5.33) by simply changing (5.16) to

Z̄(t) ≤ 2t− D̄Z(t).

Consequently, for s ≥ 2, a critical matching provides 100% throughput to admissible multicast

arrivals. Similarly, the Dai-Prabhakar maximal-matching result can be modified by recognizing

that C̄ ′
i,j(t) ≤ 0 in (3.10) for s ≥ 3. This gives us two corollaries (below) for multicast traffic.

Unfortunately, the results for inadmissible traffic (Theorems 8 and 9) do not apply because the

input constraint in (5.33) ceases to hold. In fact, if a cell is recycled from an oversubscribed

output, it spreads the instability to the corresponding input VOQ system.

Corollary 6. A critical matching, with recycling, is sufficient for asymptotic 100% throughput in

an input-queued switch, for admissible multicast arrivals, as long as the speedup s ≥ 2.

Corollary 7. Any maximal matching, with recycling, is sufficient for asymptotic 100% throughput

in an input-queued switch, for admissible multicast arrivals, as long as the speedup s ≥ 3.

Similarly, maximal and critical matchings may be used in batch-mode to either provide

exact 100% throughput to bounded multicast traffic, or ensure bandwidth guarantees, combined

with rate shaping. A multicast cell with a fanout F finds itself in a sequence of F batches, leading

to a worst-case latency of F + 1. The delay bound for leaky-bucket constrained traffic (5.7)

becomes

Di,j ≤
σi,j

Ri,j
+

F + 1
r

.

Without further elaboration, we state the following corollaries of Theorems 1 and 3.

Corollary 8. Any maximal matching, combined with rate shaping and recycling, is sufficient

to provide isolated bandwidth guarantees to input-output pairs of an input-queued switch, for

multicast traffic, as long as the internal speedup s ≥ 3− r.

Combined Input-Output Queueing 155

Corollary 9. A critical matching, combined with rate shaping and recycling, is sufficient to pro-

vide isolated bandwidth guarantees in an input-queued switch, for multicast traffic, as long as

the speedup s ≥ 2.

5.8 Summary

We addressed the performance of matching algorithms for input-queued switches, the starting

point of the BCS taxonomy, with the dual goals of providing bandwidth and delay guarantees,

and optimizing throughput, based on the framework of functional equivalence with an OQ switch.

While input-queued switches are already well represented in the literature, we established several

new results, some fundamental, on stronger performance guarantees for well-known matching

policies.

We demonstrated that rate-shaping, combined with an online maximal or critical match-

ing (Theorems 1, 2, 3) may be used to provide bandwidth guarantees in an input-queued switch,

independent of the offered traffic. These are extensions of the Weller-Hajek theorems on C-MSM

and maximal matching for bounded traffic, and may be preferred to template-based schemes in

the literature that are associated with a high storage overhead. Our proof methodology analyti-

cally established the analogy between Clos fitting in space and maximal matching in time. The

latter may be viewed as a strategy for Clos fitting, to eliminate backtracking in time. We derived

delay bounds for leaky-bucket constrained traffic for such batch-mode matchings, and showed

how shaping may be implemented using simple counters. A method called request pruning was

introduced for applying such matchings to an oversubscribed reservation, so as to guarantee rates

(Theorem 7), while allowing for statistical multiplexing in overloaded outputs.

For admissible traffic, we proved (Theorem 4), using the fluid-limit theorem, that a criti-

cal matching suffices for 100% throughput, without speedup. For the same capability, the best re-

sults in the literature are for more complex policies, including LPF and maximum weight match-

ing. We answered the long-standing issue of whether 100% throughput can be provided by a

general class of maximum-size matchings by reporting that less is needed. The cardinality of a

matching, while beneficial for instantaneous throughput, turns out to be an irrelevant property for

long-term throughput. For the latter, a matching merely needs to cover all the critical lines in

156 Chapter 5

each timeslot. Next, we showed that uniform arrivals are so benign that a pre-determined perfect

sequence suffices for 100% throughput, without speedup (Theorem 5). The matching need not

even be maximal, and most popular algorithms such as iSLIP and dual round-robin turn out to

be overkill for such restricted arrivals. An O(1) parallel EREW matching, with staggered point-

ers, generates (Theorem 6) such a perfect sequence and is sufficient for optimal throughput to

uniform, including bursty, arrival traffic.

We next made an unprecedented foray into throughput optimization for inadmissible traf-

fic. Our first result, for such traffic, extended the Dai-Prabhakar maximal-matching theorem,

so far restricted to admissible traffic. We showed (Theorem 8) that a maximal matching, with

a speedup no less than 2, suffices to isolate instability to oversubscribed outputs and provide

100% throughput to the rest of the flows. This obviates the add-on heuristics we see in the lit-

erature for preventing starvation in the presence of hot-spot traffic. While any work-conserving

scheme, such as LOOFA, also provides the same wide-sense relative stability with an OQ switch,

this result holds for much simpler matchings. We then introduced the shortest output-queue first

maximal matching to provide 100% throughput (Theorem 9) to the same set of flows as in a ref-

erence OQ switch, i.e., strict relative stability, for a broad class of link scheduling schemes. The

only algorithms in the literature that exceed such a capability are the impractical stable matching

policies that exactly emulate the reference switch.

Finally, we showed (Sec. 5.6) how two policies, one for QoS and the other for optimal

throughput, may be integrated into a switched fair-airport combination. We noted that maximal

matching ends up as the best choice for implementation, due to its simplicity and its suitability

for integrated matchings without increasing the speedup requirement. Such combinations fit well

in a hierarchical scheduling framework, typically used (Sec. 3.3.2) to serve fine-grain flows, if

required. We concluded by showing (Sec. 5.7) that all the reported results for admissible unicast

traffic may be directly applied to multicast traffic as well, with an additional speedup of 1, for a

class of multicasting techniques that utilize cell recycling in the memory elements.

157

Chapter 6

CIOQ: Aggregation and Pipelining

Our next focus is on the remaining single-path buffered Clos switches, specifically CIOQ with

aggregation (CIOQ-A), CIOQ with pipelining (CIOQ-P), and general memory-space-memory

(G-MSM) switches. Such designs, especially G-MSM, are already found in commercial1 use [19,

21, 22], and in the literature [85, 93, 92, 101]. While less-studied than the CIOQ switch, the

general approach so far has been to propose and analyze matching algorithms for such switches

independently of CIOQ switching. We demonstrate in this chapter that such stand-alone treatment

is unnecessary, and the rich results of CIOQ may be directly applied to all single-path BCS. These

turn out to be straight-forward extensions of CIOQ, and a careful emulation of the latter suffices

to translate its results to single-path buffered Clos switches.

We show that shadowing a CIOQ followed by decomposition in CIOQ-A, and by a se-

quential dispatch or striping in CIOQ-P, is sufficient to exactly emulate a high-performance CIOQ

switch and thereby inherit its QoS and throughput performance. For lower complexity, the same

matching algorithms as in CIOQ may be used with a different queueing structure in CIOQ-A, and

with an equal dispatch method in CIOQ-P, to inherit most of the performance results. A G-MSM

employs a natural combination of the methods used individually by CIOQ-A and CIOQ-P. We

believe that these findings eliminate the need to individually analyze each item in single-path

BCS.
1The author was one of the architects of the Atlanta/π switching chipsets at Bell Labs in the 1995-2000 timeframe.

Most of the analytical results here are inspired by that work and the copious amounts of simulation studies done as
part of their performance evaluation.

158 Chapter 6

sN/P

In
pu

ts

O
ut

pu
ts

Input
Memory
Elements

Memory
Elements

Output

Space
Element

N/P x 1

P x P

1 x N/P

1

N/P

1

N/P

N N

C=1

Figure 6.1: CIOQ-A: CIOQ switch with aggregation

6.1 Aggregation

Fig. 6.1 shows a N × N CIOQ-A switch (N, [MSM], P, 1, s). We obtain such a switch by

aggregating N/P consecutive interfaces of a CIOQ switch into the same memory element. Con-

sequently, there are P first-stage memory elements of dimension N/P × 1, a single P ×P space

element in the center, and P instances of 1×N/P third-stage memory elements. We assume that

N/P is an integer and 1 < P < N .

We refer to the time required to transfer a cell on the external links as an external timeslot.

As in a CIOQ switch, this equals L/C, where L is the length of a cell, and C is the link capacity.

Normalized to an external capacity of one cell per timeslot, the internal links operate at sN/P ,

where s is the internal speedup. In other words, there are sN/P internal timeslots for the space

element, for every external timeslot. Clearly, s ≥ 1 is required to sustain the offered traffic. Recall

(Sec. 4.1.2) that the memory bandwidth of (1 + s)N
P and a space-element arbitration frequency

of sN
P matchings per external timeslot constitute the drawbacks of such a design with respect to a

CIOQ: Aggregation and Pipelining 159

N ×N CIOQ switch. The benefits include a smaller albeit faster space element, especially suited

to currently available optical components, support for subports, and possibly a lower matching

complexity, depending upon the queueing structure.

6.1.1 Queueing Strategies

We introduce three distinct queueing strategies for the first-stage elements, as shown in Fig. 6.2.

In virtual element queueing (VEQ), cells are organized per output element. Specifically, there

are P queues in every input element, one for each output element. A cell belonging to input-

output flow (i, j) arrives at element d i
N/P e, and is enqueued to VEQ d j

N/P e, irrespective of the

specific input and output ports. Let the N ×N discrete-time matrix A∗(n) denote the cumulative

arrivals for each pair until external timeslot n, with average rates λ∗. The evolution of the VEQ

system may then be described by P × P matrices (A(n), D(n), Q(n)), denoting the cumulative

arrivals, cumulative departures and current queue-length, respectively. Let λ be the average rates,

associated with A(n), for aggregate flows belonging to each input-output element pair. Then,

(A∗, λ∗) is related to (A, λ) as:

∀n,∀i ≤ P,∀j ≤ P, Ai,j(n) =
k≤N

P
i∑

k=N
P

(i−1)+1

l≤N
P

j∑
l=N

P
(j−1)+1

A∗
k,l(n)

∀i ≤ P,∀j ≤ P, λi,j =
k≤N

P
i∑

k=N
P

(i−1)+1

l≤N
P

j∑
l=N

P
(j−1)+1

λ∗k,l (6.1)

Clearly, if the average rates are admissible on the external links (2.2), i.e., if ∀i ≤ N ,
∑

j λ∗i,j ≤ 1,

and ∀j ≤ N ,
∑

i λ
∗
i,j ≤ 1, then

∀i ≤ P,
P∑

j=1

λi,j ≤
N

P
and ∀j ≤ P,

P∑
i=1

λi,j ≤
N

P
. (6.2)

The arbiter operates on Q(n), and finds a matching π(k) in each internal timeslot k. Since Q is a

P × P matrix, in general, the matching complexity on VEQ is lower than the corresponding one

in a CIOQ switch. As there are sN/P internal slots for each external one, the VEQ evolution is

described by the following:

∀n, Q(n) = A(n)−D(n), (6.3)

160 Chapter 6

(a) Virtual Element Queueing

2 x 1

2 x 2

1 x 2

1 1

2

3

4

2

3

4

#1 #1

#2 #2

Element
Input

Space
Output
Element

π

3

4

(c) Virtual Input−Output Queueing

o/p 1

o/p 2

VIO 3,1

VIO 3,3

VIO 3,4

VIO 4,1

VIO 3,2

VIO 4,4

VIO 4,3

π

3

4

(b) Virtual Output Queueing

o/p 1

o/p 2

VO 2,1

VO 2,4

π

VE 2,1

VE 2,2

3

4

o/p 1

o/p 2

Figure 6.2: Different queueing strategies for CIOQ-A switches

D(n) =
s N

P
n∑

k=1

π(k). (6.4)

In virtual output queueing (VOQ), shown in Fig. 6.2(b), cells are organized per output

port. There are N queues in every input element, one for each output port. A cell belonging to

flow (i, j) is enqueued to VOQ j in input-element d i
N/P e, irrespective of the specific input port.

The evolution of the VOQ system is described by P × N matrices (A(n), D(n), Q(n)), with λ

denoting the average rates associated with A(n). Then (A∗, λ∗) is related to (A, λ) as:

∀n,∀i ≤ P,∀j ≤ N, Ai,j(n) =
k≤N

P
i∑

k=N
P

(i−1)+1

A∗
k,j(n)

CIOQ: Aggregation and Pipelining 161

∀i ≤ P,∀j ≤ N, λi,j =
k≤N

P
i∑

k=N
P

(i−1)+1

λ∗k,j

If the average rates λ∗ are admissible on the external links, then

∀i ≤ P,
N∑

j=1

λi,j ≤
N

P
and ∀j ≤ N,

P∑
i=1

λi,j ≤ 1. (6.5)

The arbiter operates on the VOQ matrix Q(n) to compute a P ×P matching π(k) in each internal

timeslot k. Depending on how the P ×N queue-state is reduced to a matching of smaller dimen-

sions, the complexity may or may not be lower than in a CIOQ switch. For the algorithms con-

sidered in this chapter, matching on such a queueing structure yielded no benefits in performance

with respect to the less complex VEQ. Nevertheless, for posterity, we note here that the VOQ

evolution is described by (6.3) and a modification of (6.4), shown below, the latter because a ser-

vice turn given to element pair (i, j) is distributed to some output k, where N
P (j − 1) < k ≤ N

P j,

within input element i.

∀n, i, j,

N
P

j∑
l=N

P
(j−1)+1

Di,l(n) =
s N

P
n∑

k=1

πi,j(k) (6.6)

Finally, in virtual input-output queueing (VIOQ), shown in Fig. 6.2(c), the structure ex-

actly resembles that of a CIOQ. Cells are organized separately per input-output port pair. Each

input element contains N2

P queues, for the N
P inputs to the element and N output ports, for a total

of N2 queues in the first-stage. The evolution of the VIOQ system is described by N × N ma-

trices (A(n), D(n), Q(n)), with λ denoting the average rates associated with A(n), all of which

exactly correspond to the respective matrices in a N × N CIOQ switch. In other words, (A, λ)

is the same as (A∗, λ∗) for VIOQ. The arbiter operates on the N ×N matrix Q(n) to compute a

P ×P matching π(k) in each internal timeslot. Due to the dimensions of Q, we do not expect the

matching complexity to be any lower than in a CIOQ switch. Each service turn given to element

pair (i, j) is distributed to port pair (k, l), where k is an input to first-stage element i, and l is an

output of third-stage element j. Therefore, the VIOQ evolution may be described by (6.3) and

the following modification of (6.4):

∀n, i, j,

N
P

i∑
k=N

P
(i−1)+1

N
P

j∑
l=N

P
(j−1)+1

Dk,l(n) =
s N

P
n∑

k=1

πi,j(k) (6.7)

162 Chapter 6

Notice that cells do not experience head-of-line blocking in any of the queueing struc-

tures. The choice then would be determined by a tradeoff between matching complexity and

performance. The output elements may independently employ any queueing strategy, unless a

specific organization is mandated by the matching algorithm (such as, e.g., SOQF). At a mini-

mum, cells are organized per output port, within each output element. As in the previous chapter,

we note, without elaboration, that the service turns given to each coarse-grain VEQ, VOQ, or

VIOQ may be translated to per-flow service using virtual schedulers in a hierarchical fashion, as

described in Sec. 3.3.2.

6.1.2 Shadowing a CIOQ

We first introduce a method called shadowing in order to exactly emulate a CIOQ switch and

inherit its performance. Consider a N ×N CIOQ-A switch (N, [MSM], P, 1, s). Let a N ×N

CIOQ switch, employing a set of matching algorithms A, be the reference switch. Let s∗ be

the internal speedup required to meet the desired QoS and/or throughput performance with A,

in the reference. Here, A may contain an algorithm such as critical (s∗ ≥ 1), SPS (s∗ ≥ 1),

maximal (s∗ ≥ 2), or SOQF (s∗ ≥ 3) matching for throughput optimization (f2, f2 for uniform

traffic, f3 and f4 equivalence with an OQ switch, respectively), or rate-shaping (Sec. 5.1.3) com-

bined with critical (s∗ ≥ 1), SPS (s∗ ≥ 1), or maximal (s∗ ≥ 2) matching for bandwidth and

delay guarantees, or an SFA combination of both, with associated internal speedup as shown in

Table. 5.1.

For exact emulation, the CIOQ-A switch employs virtual input-output queueing. The

arbiter, under shadow-A, first computes a matching π∗ by running A on the VIOQ state matrix

Q, at a frequency of s∗ per external slot. If rate-shaping is required, Q is used to derive a batch

matrix Π (5.6) using the requested rates R, and the computation is instead (or additionally, for

SFA) applied on Π. Clearly, if a cell is dispatched, from the first to the third stage, for every

connected pair in π∗ before the next computation, then the space element exactly emulates the

one in the reference switch. The link schedulers at the outputs are chosen to exactly match the

one in the reference. Consequently, the queue states in the two systems become indistinguishable,

except in the interval between two consecutive matchings.

CIOQ: Aggregation and Pipelining 163

1

1

1

1

1

1

1

1

1

3

3

1

1

1

1

1

1

1

1

1Shadow CIOQ: π∗ Aggregated: Π∗ Critical
Matching

2
π(1)

π(2)

π(3)

π(4)

N entries P x P

Figure 6.3: CIOQ-A: Emulating a CIOQ using shadowing and decomposition

To ensure that a cell is dispatched through the P × P space element for every connected

pair in the N ×N matching π∗, an aggregate matrix Π∗ is assembled as follows:

∀i ≤ P,∀j ≤ P, Π∗
i,j =

N
P

i∑
k=N

P
(i−1)+1

N
P

j∑
l=N

P
(j−1)+1

π∗k,l. (6.8)

In other words, Π∗ represents the aggregate number of connections for each input-output element

pair. From (6.8), each line sum of Π∗ is no greater than N/P . We may then decompose the ma-

trix into a sequence of P × P matchings π using well-known matrix decomposition techniques.

Specifically, a maximal matching decomposes Π∗ using a sequence of no greater than 2N
P − 1

configurations (lemma 2), and a critical matching does the same using no more than N
P configu-

rations (lemma 5). Such a combination of shadowing and decomposition is illustrated in Fig. 6.3,

for an 8× 8 switch with P = 2.

When πi,j(k) = 1 for some internal slot k, input element i is connected to output element

j, providing a path for exactly one connection in the respective quadrant of π∗. In practice, a

cell may first be transferred from Qi,j to a temporary FIFO Q′
d i

N/P
e,d j

N/P
e immediately when

π∗i,j = 1, and the matchings π may subsequently be used to drain Q′. Due to its small size,

upper bounded by N/P cells, Q′ may be implemented using on-chip queues. An instance of

the shadow-and-decompose method for the exact emulation of a CIOQ switch is illustrated in

Fig. 6.4.

164 Chapter 6

Algorithm 13. CIOQ-A: Shadow and Decompose

Initialize: 1. For all (i, j), i ≤ N, j ≤ N , Qi,j ← 0

2. For all (i, j), i ≤ N, j ≤ N , Πi,j ← 0 (Batches for QoS)

3. For all (i, j), i ≤ P, j ≤ P , Q′
i,j ← 0 (Temporary FIFOs)

4. M ← 1/GCD(R), T ← sN
s∗P

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

Every external epoch n = kM : 1. For all (i, j), i ≤ N, j ≤ N , Πi,j = min(Ri,jM,Qi,j)

Every internal epoch n = kT : 1. π∗ ← Apply A on Q,Π

2. For all (i, j), i ≤ N , j ≤ N , with π∗i,j = 1 do steps 2a, 2b

2a. Decrement Qi,j

2b. Increment Q′
d i

N/P
e,d j

N/P
e

Every internal slot n: 1. π ←Maximal/critical matching on Q′

2. Q′ ← Q′ − π (Dispatch cells)

Figure 6.4: CIOQ-A: Emulating a CIOQ using shadowing and decomposition

Theorem 10. A CIOQ-A switch, with virtual input-output queueing, exactly emulates a CIOQ

switch with algorithm setA and speedup s∗, by shadowingA to compute matchings π∗, followed

by a maximal or critical decomposition to exactly cover π∗, as long as the internal speedup

s ≥ (2− P
N)s∗ for maximal decomposition and s ≥ s∗ for critical decomposition, i.e.,

(CIOQ-A, {Shadow-A, Maximal Decomposition})
T,f5' (CIOQ,A), s ≥ (2− P

N)s∗

(CIOQ-A, {Shadow-A, Critical Decomposition})
T,f5' (CIOQ, A), s ≥ s∗

Proof. The shadowing method computes an N × N matching π∗ at a rate of s∗ per external

timeslot. Since there are sN
P internal timeslots for every external one, the shadowing occurs at

internal epochs kT , where T = sN
s∗P , k ≥ 1. A maximal matching covers Π∗(kT) in no greater

than 2N
P − 1 configurations. A cell is dispatched for every connection in Π∗(kT) as long as the

CIOQ: Aggregation and Pipelining 165

configurations are implemented before epoch (k + 1)T , i.e., if

sN

s∗P
≥ 2

P

N
− 1

This immediately yields s ≥ (2 − P
N)s∗ for maximal decompositions. In the same way, since

Π∗(kT) is covered in no more than N
P configurations by a critical decomposition, s ≥ s∗.

In other words, a CIOQ-A switch can exactly emulate a reference CIOQ switch, with the

same speedup as the latter using critical matching to decompose Π∗, or with approximately twice

the speedup2 of the latter using maximal matching. The VIOQ departure matrix D(n) is then

governed by the following modification of (6.7):

∀n, i ≤ N, j ≤ N, Di,j(n) =
ns∗∑
k=1

π∗i,j(k)

∀n, i ≤ P, j ≤ P,

N
P

i∑
k=N

P
(i−1)+1

N
P

j∑
l=N

P
(j−1)+1

π∗k,l(n) =

sN
s∗P

n∑
k=(n−1) sN

s∗P
+1

πi,j(k)

Nevertheless, an explicit characterization of D(n) is not required to deduce the QoS and through-

put performance of the switch. If A suffices in the reference CIOQ switch for functional equiva-

lence with an OQ switch, at level fi, with speedup s∗, then the CIOQ-A switch using shadowing

and decomposition achieves the same level of equivalence with the OQ switch, with an inter-

nal speedup specified by Theorem 10. The containment (4.5) and transitivity (4.6) properties of

equivalence lead us to the following straight-forward extension:

Corollary 10. (CIOQ, A)
T,fi' (OQ, A′), s ≥ s∗ ⇒

(CIOQ-A, {Shadow-A, Maximal Decomposition})
T,fi' (OQ, A′), s ≥ (2− P

N)s∗, and

(CIOQ-A, {Shadow-A, Critical Decomposition})
T,fi' (OQ, A′), s ≥ s∗

This allows us to translate the performance results for a CIOQ switch, from the literature

and Chapter 5, to a CIOQ-A switch. Table 6.1 shows the speedup s required for various combina-

tions of A, and maximal or critical decomposition, for different levels of functional equivalence

with a work-conserving OQ switch. The values of s∗ are derived from the result by McKeown et
2The speedup requirement becomes much less than twice that of the CIOQ switch as P approaches N , i.e., as the

CIOQ-A switch starts to look more like a CIOQ switch itself.

166 Chapter 6

`````````````̀A
Decomposition

Critical Maximal
N
P = 2 N

P = 4 N
P = 8

MWM/Critical 1 1.5 1.75 1.88
s∗ ≥ 1, f2

SPS 1 1.5 1.75 1.88
s∗ ≥ 1, f2 (Uniform λ)
Maximal 2 3 3.5 3.75
s∗ ≥ 2, f3

SOQF 3 4.5 5.25 5.63
s∗ ≥ 3, f4

Table 6.1: Shadowing in CIOQ-A: Speedup required for throughput optimization

al. for MWM [80], and Theorems 4, 5, 8 and 9 for critical, SPS, maximal and SOQF matchings,

respectively. Note that the value of s for maximal decomposition depends on N/P .

The same values of internal speedup apply for critical, SPS and maximal matching on the

batch matrix Π, for bandwidth guarantees. Since the queue states at internal slot kT , ∀k, in the

CIOQ-A switch, and at slot k in the reference CIOQ switch are indistinguishable for the same

arrivals, the delay bounds in (5.7) and (5.8) continue to hold. For the combined provision of opti-

mal throughput and QoS, A may correspond to an SFA combination. For critical decomposition,

the speedup values remain the same as in the reference CIOQ switch, shown in Table 5.1. For

maximal decomposition, the latter needs to be multiplied by the appropriate entry in the first row

of Table 6.1 for the respective values of N/P . Clearly, the less complex maximal matching be-

comes impractical for decomposing more complexA. For example, forA = {Maximal, SOQF},

the required speedup for shadowing approaches a ridiculously prohibitive value of 10.

Matching Complexity

The run-time complexity of each matching in a maximal decomposition is O(P 2), and that in a

critical decomposition is O(P 2.5). Since there are sN
P internal slots for every external one, the de-

composition runs in O(NP ) and O(NP 1.5) time, respectively, with respect to the external clock.

If the algorithm set A runs in O(ξ) time, the total complexity of the shadow-and-decompose

method becomes O(ξ + NP ) and O(ξ + NP 1.5), respectively. For the parallel EREW imple-

mentation of a maximal matching, each decomposition step runs in O(P ) time, or O(N) on the



CIOQ: Aggregation and Pipelining 167

`````````````̀A
Decomposition

Critical Maximal EREW Maximal

MWM ξ = N3 O(N3) O(N3) O(N3)

Critical ξ = N2.5 O(N2.5) O(N2.5) O(N2.5)

SPS ξ = 1 O(NP 1.5) O(NP) O(N)

Maximal ξ = N2 O(N2 + NP 1.5) O(N2) O(N2)

EREW Maximal ξ = N O(NP 1.5) O(NP) O(N)

SOQF ξ = N2 log N O(N2 log N + NP 1.5) O(N2 log N) O(N2 log N)

Table 6.2: CIOQ-A: Arbitration complexity of the shadow-and-decompose method

external clock. As is evident, there is no benefit in arbitration complexity using this approach,

inspite of the smaller space element. Table 6.2 shows the run-time complexity for various com-

binations.

Recall (Sec. 3.1) that Clos fitting or Slepian-Duguid (SD) fitting may also be used to par-

tition Π∗ into 2N
P − 1 or N

P configurations, respectively. This is as expected due to the analogy of

the two algorithms respectively to maximal and critical matching. Since there are N entries to be

fitted into P ×P matrices, the former runs in O(N2

P) time, while the latter runs in O(NP 2+ N2

P).

However, since these algorithms do not operate in timeslot sequence, all the matrices need to be

pre-computed before they can be used to drain the connections represented in Π∗. Consequently,

the decomposition is performed in two steps. First, Π∗(kT) is decomposed into a set of matrices

π in [kT, (k+1)T). The connections in Π∗(kT) are subsequently drained in [(k+1)T, (k+2)T).

Hence, the departures emulate those in the reference CIOQ switch, with a lag of exactly one in-

ternal slot of the reference.

Batch-mode Decomposition

We say that a switch S2 emulates a reference switch S1 with a constant lag of δ if all the cells that

depart in S1 by external timeslot n also depart in S2 by slot (n+δ), for the same arrivals. Clearly,

168 Chapter 6

Algorithm 14. CIOQ-A: Batch-mode Shadow and Decompose

Initialize: 1. For all (i, j), i ≤ N, j ≤ N , Qi,j ← 0

2. For all (i, j), i ≤ P, j ≤ P , Q′
i,j ← 0 (Temporary FIFOs)

3. M ← Batch-size, T ← sN
s∗P

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

Every epoch n = kT : 1. π∗ ← Apply A on Q

2. For all (i, j), i ≤ N , j ≤ N , with π∗i,j = 1 do steps 2a, 2b

2a. Decrement Qi,j

2b. Increment Q′
d i

P
e,d j

P
e

Every epoch n = kMT : 1. Π∗ ← Q′

Every internal slot n: 1. π ←Maximal/critical matching on Π∗

2. Π∗ ← Π∗ − π

3. Q′ ← Q′ − π (Dispatch cells)

Figure 6.5: CIOQ-A: Batch-mode shadowing and decomposition to emulate a CIOQ with lag

emulation with lag does not imply f5 equivalence. However, since δ is a constant, assuming the

queueing structures in the two switches are the same, stability of a queue in S1 implies the same

in S2. In other words,

(S2,A2)
T,f4' (S1,A1) (6.9)

This opens up the possibility of batch-mode decomposition of the shadow configuration π∗, and

yet inherit most of the performance of the reference switch, specifically, everything except f5

equivalence with another (e.g., ideal) switch.

Fig. 6.5 shows the batch-mode shadow-and-decompose method for CIOQ-A, to emulate

a CIOQ switch with lag. The shadowing operation remains the same3 as in Fig. 6.4. In other
3The batch-mode decomposition here is not to be confused with the batch-mode matching on the rate-shaper

counters Π for bandwidth guarantees. In fact, the latter may co-exist and contribute to π∗ much as in Fig. 6.4. We

CIOQ: Aggregation and Pipelining 169

words, π∗ is computed by running A on the VIOQ state matrix at a frequency of s∗ per times-

lot. However, instead of immediately assembling the aggregate matrix Π∗ (6.8), followed by its

subsequent decomposition before the next computation of π∗, the connections in M consecutive

shadow matchings are assembled at internal epochs kMT , k ≥ 1, where M is the suitably chosen

size of a batch, and T = sN
s∗P , the number of internal slots between consecutive computations of

π∗, i.e.,

∀k,∀i ≤ P,∀j ≤ P, Π∗
i,j(kMT) =

n<kMT∑
n=(k−1)MT

N
P

i∑
k=N

P
(i−1)+1

N
P

j∑
l=N

P
(j−1)+1

π∗k,l(n). (6.10)

If all the connections represented in Π∗(kMT) are realized before epoch (k + 1)MT , in a total

of MT internal slots, then the CIOQ-A emulates the reference switch with a constant lag. For

online decompositions of Π∗, as shown in Fig. 6.5, the lag is exactly MT , or δ = M/s∗ external

slots. The decomposition maybe the offline (not shown), i.e., all the configurations π may be

pre-computed in [kMT, (k +1)MT), and used in [(k +1)MT, (k +2)MT) to drain Π∗(kMT),

in which case δ = 2M/s∗.

Note that the line sums of Π∗ never exceed NM/P . Since the shadow operation is per-

formed at the same frequency as before, the batch-mode method offers no complexity advantage

with respect to the reference switch. However, there may be significant advantages in the de-

composition step itself. For example, referring to Table 6.2 for uniform traffic, while the SPS

matching runs in O(1) time, the overall complexity is dominated by the decomposition. Consider

a batch-mode method instead, with M = N . Due to the property of SPS, π∗i,j = 1 for at most

one configuration in such a batch, for all (i, j). Consequently,

∀n,∀i ≤ P, j ≤ P, Π∗
i,j(n) ≤ N2

P 2

A sub-maximal perfect sequence of P configurations provides a single service turn to each pair in

Π∗. Therefore, a repeating sequence will drain Π∗ in N2/P internal slots, which exactly equals

the batch interval with s = s∗ = 1. In other words, a batch-mode SPS decomposition is sufficient

for uniform traffic, bringing the overall complexity down to O(1) for each internal slot, or O(N
P)

with respect to the external clock.

have not explicitly shown that batching in Fig. 6.5 for the sake of brevity.

170 Chapter 6

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700

S
pe

ed
up

 s

Batch size M

Low aggregation: P=2

X=10
X=15
X=20

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700

S
pe

ed
up

 s

Batch size M

Low aggregation: P=2

X=10
X=15
X=20

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400

S
pe

ed
up

 s

Batch size M

High aggregation: P=16

X=10
X=15
X=20

Figure 6.6: CIOQ-A shadowing: Relationship between speedup and batch-size

Recall that one of the advantages of aggregation is the usage of smaller albeit faster space

elements, making it especially suited to all-optical cross-connects. The latter, however, suffer

from huge reconfiguration delays. Batch-mode operation may be used to resolve this issue in

CIOQ-A switches, much like the usage of batch-mode matchings in CIOQ switches proposed by

Towles and Dally in [111]. The efficient matrix decomposition technique DOUBLE, from that

work, can decompose Π∗ as a convex combination of 2P configurations using a total of 2NM
P

internal slots. Let X be the reconfiguration overhead in external timeslots. Then, the amount of

internal slots wasted in context-switching in each batch equals (X× sN
P × 2P), or 2sXN . Since

the total number of slots to cover Π∗ cannot exceed MT , we obtain

M
sN

s∗P
≥ 2

NM

P
+ 2sXN,

or s ≥ 2s∗

1− 2s∗XP
M

(6.11)

This gives us the following revision of Corollary 10, for batch-mode decompositions:

Corollary 11. ∀fi, i 6= 5, (CIOQ, A)
T,fi' (OQ, A′), s ≥ s∗ ⇒

(CIOQ-A, {Shadow-A, DOUBLE})
T,fi' (OQ, A′), s ≥ 2s∗

1− 2s∗XP
M

Note that M > 2s∗XP is required to at least cover the context-switching overhead.

When the reconfiguration delay is negligible, i.e., as X → 0, the speedup approaches 2, much as

CIOQ: Aggregation and Pipelining 171

in maximal decomposition. For large X , a suitably large value of M may be chosen to get the

speedup close to 2, at the expense of a higher lag, as shown in Fig. 6.6 for a 32× 32 switch. The

lag 2M/s∗ adds to the upper bounds in (5.7) and (5.8), hence worsening the delay guarantees.

The complexity of DOUBLE, which equals O(P 2 log P), amortized over a batch interval of

M/s∗ > 2XP external slots, results in an overall run-time complexity of O(ξ + P log P). If

the temporary FIFOs Q′ can be implemented using on-chip queues, the bandwidth of the external

VIOQ memory remains unaffected by the high speedup.

6.1.3 Low-complexity Matchings

While shadowing a CIOQ (Fig. 6.4) provides a convenient way to inherit its throughput and QoS

performance, we lose one of the benefits of the CIOQ-A design, namely, there is no advantage

in terms of arbitration complexity inspite of using a smaller space element. This is primarily

because the matching was based on a virtual input-output queue matrix, which exactly resembles

the VOQ matrix in a CIOQ switch of the same dimensions. We show here that matching on virtual

element queues retains the performance of a CIOQ switch for admissible traffic, and realizes the

complexity advantage.

Consider a CIOQ-A switch (N, [MSM], P, 1, s), with virtual element queueing. Let

A∗(n) be the cumulative arrivals until external slot n, for the input-output port pairs, with as-

sociated average rates λ∗. Let Q(n) be the P × P VEQ length matrix, with A(n) denoting the

arrivals into those queues, and λ the average rates. As seen before, (Ai,j(n), λi,j), for element

pair (i, j), is simply the summation of (A∗
k,l(n), λ∗k,l) over all the port pairs (k, l) belonging to

element pair (i, j). A matching algorithm A is applied directly on the VEQ matrix, without re-

gard to the specific input and output port, thereby configuring the space element in each internal

timeslot, as shown in Fig. 6.7. For QoS guarantees, if desired, rate-shaping is performed on the

virtual element queues, using an aggregate of the given N ×N reservation matrix R∗, to derive a

P ×P batch matrix Π. In that case,A operates on Π instead of or in addition (SFA combination)

to Q.

Let the average rates λ∗ be admissible (2.2). We assume an arbitrary work-conserving

policy in the output memory elements, which ensures stable queues for admissible arrivals. Then,

172 Chapter 6

Algorithm 15. CIOQ-A: VEQ Matching A

Initialize: 1. For all (i, j), i ≤ P, j ≤ P , do steps 1a, 1b, 1c

1a. Qi,j ← 0

1b. Πi,j ← 0 (Batches for QoS)

1c. Ri,j ←
∑N

P
i

k=N
P

(i−1)+1

∑N
P

j

l=N
P

(j−1)+1
R∗

k,l

2. M ← 1/GCD(R)

Cell Enqueue: 1. If cell belongs to (i, j), increment Qd i
N/P

e,d j
N/P

e

Every external epoch n = kM : 1. For all (i, j), i ≤ P, j ≤ P , Πi,j = min(Ri,jM,Qi,j)

Every internal slot n: 1. π ← Apply A on Q,Π

2. Q← Q− π (Dispatch cells)

Figure 6.7: CIOQ-A: Direct matching on virtual element queues

the switch provides asymptotic 100% throughput as long as the VEQ system is stable. We first

introduce the following general result on the throughput of the system, based solely on the prop-

erties of A.

Theorem 11. Given a matching algorithm A, if A ensures asymptotic 100% throughput to a

CIOQ switch for admissible traffic, with a speedup lower-bounded by s∗, thenA suffices for 100%

throughput to a CIOQ-A switch with virtual element queueing for similarly restricted traffic,

provided s ≥ s∗, i.e.,

(CIOQ, A)
T,f2' (OQ, {WC}), s ≥ s∗ ⇒

(CIOQ-A, A)
T,f2' (OQ, {WC}), s ≥ s∗

Proof. For admissible λ∗, the average arrival rates λ into the virtual element queues of a CIOQ-A

switch satisfy the following, from (6.2):

∀i ≤ P,
P∑

j=1

λi,j ≤
N

P
and ∀j ≤ P,

P∑
i=1

λi,j ≤
N

P
.

CIOQ: Aggregation and Pipelining 173

Consider a shadow P × P CIOQ switch with virtual output queues, served by a space element

operating under A. Let the interface rates be equal to N
P , normalized to the interface rates of the

CIOQ-A switch under consideration. Further, let the arrivals into the VOQ system exactly mimic

those into the VEQ system of the latter.

Clearly, λ is admissible for the shadow switch. Therefore, A ensures VOQ stability with

a speedup no less than s∗, or an internal link rate of at least s∗N
P and a matching frequency

of at least s∗N
P per external slot of the CIOQ-A. The departures from the VEQ system of the

latter, under A, would exactly mimic the ones from the VOQ of the shadow switch, for the same

matching frequency. Since the VEQ is matched once every sN
P slots, the VEQ remains stable for

s ≥ s∗.

The above result allows us to apply all the well-known stability results for CIOQ match-

ings, for admissible traffic, without the need for analyzing them independently on a CIOQ-A

switch. Specifically, we obtain the following results, for virtual element queueing:

(CIOQ-A, {MWM})
T,f2' (OQ, {WC}), T : SLLN

(CIOQ-A, {LPF})
T,f2' (OQ, {WC}), T : i.i.d.

(CIOQ-A, {Maximal Matching})
T,f2' (OQ, {WC}), s ≥ 2, T : SLLN

(CIOQ-A, {Critical Matching})
T,f2' (OQ, {WC}), T : SLLN

(CIOQ-A, {SPS Matching})
T,f2' (OQ, {WC}), T : SLLN, Uniform

The first three are consequences of the CIOQ results on MWM, LPF, and maximal matching

from [29, 79]. The next two are derived from Theorems 4 and 5, respectively. Note that a direct

proof for each of the above results may be easily obtained as an extension of the respective CIOQ

proof. For example, the stability proof for maximal matching in [29] may be extended to the

VEQ system by modifying (3.10) (pg. 51) as

∀i, j ≤ P, C̄ ′
i,j(t) =

∑
k

λi,k +
∑
k

λk,j − s
N

P
if Q̄i,j(t) > 0

From (6.2), C̄ ′
i,j(t) ≤ 0 for s ≥ 2, leading to VEQ stability. Similarly, referring to critical

matchings in a CIOQ, the phantom bucket evolution in our proof (pg. 120) yields the following

174 Chapter 6

12

P P P P

1

1

1

1 1 1 1

1

1 1

1

1 1

1 1

1

?

Output Elements

1 2 3

1

2

3

In
pu

t E
le

m
en

ts

MatchingVOQ State Matrix

N Output Ports

P
In

pu
t E

le
m

en
ts

1

2

3

1 2 3 45 9 6 7 810 11

Figure 6.8: CIOQ-A: How do we generate a P × P matching from a P ×N queue state?

extensions of (5.14) and (5.15):

Z̄(t) ≤ N

P
t− D̄Z(t)

D̄′Z(t) =
N

P
, if Z̄(t) > 0

This immediately leads to a negative drift on the phantom bucket, and the stability of each VEQ.

Nevertheless, in light of Theorem 11, there is no need for such independent analyses.

Unfortunately, the stronger equivalence results of CIOQ do not lend themselves to match-

ing on per-element queues in a CIOQ-A. For intuition, notice that if some output j is oversub-

scribed, we may have
∑

i λi,d j
N/P

e > N
P . In other words, the over-subscription of j will affect the

stability of all the outputs in the same element as j, thereby ruling out any isolation of instability

per output. We explored virtual output queueing in a CIOQ-A to resolve this situation, since at

the very least, the traffic belonging to different output ports are kept separate in such a queueing

structure. However, a VOQ structure opens up the challenge of generating a P × P matching

based on a P ×N queue state, as shown in Fig. 6.8. Note that a matching on Q has a constraint,

in addition to (2.5), that if an output j is connected in element i, all the other outputs (empha-

sized in the figure) in the same element as j need to remain unconnected in that slot, thereby

resulting in one output affecting the others. Matching concurrently on separate quadrants of Q

presents the same issue. Therefore, the problem of providing stronger equivalence, specifically,

for inadmissible traffic, without shadowing a CIOQ switch remains open.

CIOQ: Aggregation and Pipelining 175

A VEQ Matching

MWM ξ = P 3 O(NP 2)

Critical ξ = P 2.5 O(NP 1.5)

SPS ξ = 1 O(N
P)

Maximal ξ = P 2 O(NP)

EREW Maximal ξ = P O(N)

Table 6.3: CIOQ-A: Arbitration complexity for VEQ matching

Memory Bandwidth and Matching Complexity

The memory bandwidth required for VEQ matching might be slightly higher than that for shad-

owing a CIOQ switch. Recognize that, if the queues belonging to each input in the latter are

maintained in separate physical memories as in a CIOQ switch, and if the cells served by the

shadowing operation are immediately placed in a temporary on-chip FIFO (Fig. 6.4), then the

memory bandwidth required equals (1 + s∗)C per output, where s∗ ≤ s is the speedup of the

shadow switch and C is the external link rate. On the contrary, VEQ matching, in general, re-

quires a bandwidth of (1 + s)N
P C. This is because each input-output pair in the former is served

no more than once every sN
s∗P internal timeslots, while cells belonging to such pairs may be served

in consecutive slots with VEQ matching. Consequently, we may also expect the average delay in

VEQ to be lower.

If each invocation of A runs in O(ξ) time on the P × P VEQ matrix, then the over-

all matching complexity becomes O(ξ N
P) based on the common external clock. Therefore, the

complexity results in Table 6.2 for shadowing may be contrasted with those in Table 6.3 for di-

rect VEQ matching. As is evident, the run-time advantage due to the smaller queue-state matrix

comes at the expense of unsatisfactory performance in the presence of inadmissible traffic. Note

that, much as in a CIOQ switch (pg. 62), the effective complexity can be further reduced using

envelope matching, without additional speedup.

Similar to the shadowing case, we may reduce the reconfiguration frequency using batch-

176 Chapter 6

mode matchings, to make the design suitable for the usage of optical elements. Specifically, let

s∗ be the minimum speedup required by A to ensure VEQ stability, and s be the actual speedup

employed to account for batching. Then A is invoked on Q once every s/s∗ internal slots. Let

M resulting P ×P configurations be accumulated into matrix Π∗, which is subsequently decom-

posed. Since the line sums of Π∗ do not exceed M , we know that DOUBLE decomposes Π∗

into 2P configurations using a total of 2M internal slots. The amount of slots wasted in context-

switching remain equal to 2sXN , where X is the reconfiguration overhead in external timeslots.

Since the total number of slots to cover Π∗ cannot exceed M s
s∗ , we obtain the following modifi-

cation of (6.11):

M
s

s∗
≥ 2M + 2sXN,

or s ≥ 2s∗

1− 2s∗XN
M

(6.12)

This gives us the following corollary of Theorem 11 for batch-mode VEQ matching.

Corollary 12. (CIOQ, A)
T,f2' (OQ, {WC}), s ≥ s∗ ⇒

(CIOQ-A, {A, DOUBLE})
T,f2' (OQ, {WC}), s ≥ 2s∗

1− 2s∗XN
M

Hierarchical Output Scheduling

For queue stability under admissible traffic, there is no need to explicitly distribute the service,

given by the VEQ matching to per-element queues, to specific input-output pairs within the el-

ements. However, a hierarchical policy might be beneficial for short-term properties like delay.

Fig. 6.9 shows a modified structure suitable for this purpose, in which a VEQ is replaced by a

virtual element scheduler (VES). A service turn given by the matching is consumed by the VES

and is distributed to an input-output pair, or alternatively, just an output (not shown). Note that

this is not the same as VIOQ or VOQ matching, since the arbiter continues to operate on the total

VEQ occupancy, without regard to VIOQ/VOQ state. As in CIOQ switches, the hierarchy may

be extended to per-flow queues.

Consider the special case of uniform traffic, i.e., λ∗i,j ≤ 1/N , for all input-output port

pairs (i, j). Then, λk,l ≤ N/P 2 for each element pair (k, l), and an SPS matching that serves

each VEQ once every P internal slots, or P 2/N external slots for s = 1, suffices to keep the

CIOQ: Aggregation and Pipelining 177

S

2 x 1

2 x 2

1 x 2

1 1

2

3

4

2

3

4

#1 #1

#2 #2

Element
Input

Space
Output

Element

π

3

4

3,2

4,1

4,2

3,3

3,4

4,3

4,4

3,1

Virtual Element Scheduling

VES 2,1

VES 2,2

S

Figure 6.9: CIOQ-A: Replacing a VEQ with a virtual element scheduler

VEQ stable. Let the service turns be explicitly distributed to individual VIOQ in a round-robin

fashion. Since there are N2/P 2 queues for each element pair, each VIOQ is guaranteed one turn

per P 2

N ×
N2

P 2 slots, i.e., N external slots, thereby getting a virtual bandwidth trunk of 1/N . Such a

two-dimensional SPS matching (based on EREW maximal) is illustrated in Fig. 6.10, a variant of

which can be found in the Atlanta/π [19, 21] chipsets. While there is no advantage with respect

to a plain SPS matching on VEQ, it provides a guaranteed trunk to each input-output pair, with

a short latency. Furthermore, the required memory bandwidth reduces to (N
P + 1)C per output

port, since each output port can get no more than a single service turn in each external slot.

Hierarchical scheduling is also beneficial for bandwidth and delay guarantees to input-

output pairs. Given a N × N rate reservation matrix R∗, referring to Fig. 6.7, note that an

aggregate P×P matrix R is first derived for VEQ matching purposes. The rate-shaper assembles

a batch Π at each epoch kM of the external clock as follows:

∀i, j ≤ P, Πi,j(kM) = min(Ri,jM,Qi,j(kM)),

where M is the reciprocal of the GCD r of the aggregate rates in R. Since the row and column

178 Chapter 6

Algorithm 16. Two-dimensional EREW sub-maximal

Initialize: 1. For all i, j ≤ P , Qi,j ← 0

2. For all i ≤ P , do steps 2a, 2b

2a. Ti = i (Output element pointer)

2b. For all j ≤ P , Si,j = 1 (I/O pair pointer)

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

Every Timeslot n: For all i ≤ P in parallel (Input elements)

1. j ← Ti (Output element)

2. k ← d Si,j

N/P e+ (i− 1)N
P (Input port)

3. l← Si,j − (d Si,j

N/P e − 1)N
P + (j − 1)N

P (Output port)

4. If Qk,l > 0, do steps 4a, 4b

4a. πi,j ← 1

4b. Decrement Qk,l (Dispatch cell)

5. Increment Ti mod P

6. Increment Si,j mod N2

P 2

Figure 6.10: Example of a two-dimensional O(1) matching in CIOQ-A for uniform traffic

sums of Π are no greater than NM/P , a maximal matching would drain Π(kM) in no more than

2NM/P − 1 internal slots, and a critical matching would do so in no more than NM/P slots.

As there are sN
P M internal slots in a batch interval, each element pair (i, j) is guaranteed a trunk

of Ri,j , provided s ≥ 2 − r
N/P for maximal matching and s ≥ 1 for critical matching. Notice

that the former speedup is slightly less than the corresponding one for a CIOQ switch. Also, the

latency of scheduling 2M experienced by a VEQ is typically less than the latency in a CIOQ

switch, since GCD(R) ≥ GCD(R∗).

Unlike the stability goal, for which an explicit distribution of service turns to input-output

pairs was optional, notice that providing isolated trunks to element pairs is an artificial result– an

outcome of the internal switch architecture, which provides no meaningful isolation to input-

output pairs. Therefore, hierarchical scheduling becomes mandatory, by which the service given

CIOQ: Aggregation and Pipelining 179

to a VEQ is distributed in proportion to the required rates to fine-grain flows within an element

pair, or to the contained input-output pairs. The delay bound for leaky-bucket traffic, in both

cases, is given by (5.8). This leads us to the following corollaries of Theorem 11 for bandwidth

guarantees, which mirror Theorems 1 and 3 for a CIOQ switch.

Corollary 13. Any maximal matching, combined with rate shaping and hierarchical rate schedul-

ing, is sufficient to provide isolated bandwidth guarantees to input-output pairs of a CIOQ-A

switch with virtual element queueing, as long as the internal speedup s ≥ 2− r
N/P .

Corollary 14. A critical matching, combined with rate shaping and hierarchical rate scheduling,

is sufficient to provide isolated bandwidth guarantees to input-output pairs of a CIOQ-A switch

with virtual element queueing, without internal speedup.

For simultaneous provision of optimal throughput and QoS, an SFA combination (Sec. 5.6)

of the above method on the batch matrix Π, and a direct matching on Q, is required. Since the

speedup requirement is not materially different, for both, from a CIOQ switch, the values in Ta-

ble 5.1 continue to hold for CIOQ-A switches. In fact, the algorithm A in Fig. 6.7 was an SFA

combination.

Extensions for Multicast Traffic

Theorem 10 for shadowing a CIOQ switch subsumes recycled (Sec. 5.7) multicast traffic to a

CIOQ-A switch. If a cell is copied and recycled at the output elements, once for every output

port in its fanout set, then the arrivals into a VIOQ at epochs kT , where T is the shadowing

interval, would exactly mimic those into the respective VOQ of the reference switch, for identical

arrivals at the inputs. Accordingly, the proof of Theorem 10 continues to hold for recycling-based

multicast traffic. From Corollaries 10 and 6, for A = {Critical Matching}, s∗ = 2 for 100%

throughput to admissible traffic, leading to s ≥ 2 with critical decomposition and s ≥ 4−2N
P for

maximal decomposition in CIOQ-A. Similarly, from Corollary 7, forA = {Maximal Matching},

s∗ = 3 yielding s ≥ 3 for critical decomposition and s ≥ 6 − 3 P
N for maximal. Since no

more than s∗ cells are dispatched to each output port per external slot, it is easy to verify that the

memory bandwidth required per input port becomes (1 + 2s∗)C, assuming the employment of

temporary FIFOs for decomposition, where C is the external link capacity.

180 Chapter 6

Notice that shadowing a CIOQ switch for multicast traffic might lead to wasteful copying,

since we do not leverage the fact that a cell may be enqueued to several output ports within the

same output element at the same time. If F (c) ⊆ {i ≤ N} is the fanout set for cell c, then it

takes |F (c)| traversals through the space element for all the copies to be dispatched. On the other

hand, direct VEQ matching allows the usage of a more efficient recycling strategy. Specifically,

F (c) may be partitioned as follows:

Fe(c) = {i ≤ P |
⌈

i

N/P

⌉
∈ F (c)}

∀i ∈ Fe(c), Fo(c, i) = {j ∈ F (c) |
⌈

j

N/P

⌉
= i}

In other words, Fe(c) is the set of destination elements for c, and Fo(c, i) is the set of ports within

output element i to which c is to be dispatched. Clearly, F (c) =
⋃

i∈Fe(c) Fo(c, i). When a

multicast cell c reaches output element i, it is immediately copied to all the output ports Fo(c, i),

and is recycled to the next element j in Fe(c), by enqueueing it to VEQ (i, j). As a result, it

takes |Fe(c)| ≤ |F (c)| traversals through the space element, possibly resulting in lower delays.

However, the speedup requirement remains the same as in a CIOQ switch, even with efficient

recycling. For admissible traffic, the arrivals into the VEQ satisfy:

∀i ≤ P,
P∑

j=1

λi,j ≤ 2
N

P
and ∀j ≤ P,

P∑
i=1

λi,j ≤
N

P
.

Therefore, following the same reasoning as in the proof of Theorem 11, the VEQ system remains

stable with s ≥ 2 for critical matching, and with s ≥ 3 for maximal matching. The memory

bandwidth required becomes (1 + 2s)N
P C.

Support for Subports

The CIOQ-A architecture, with virtual element queueing, provides an efficient way to build

switches with heterogeneous link capacities. Consider a N × N switch, with capacity Ci for

external link i ≤ N . Let Cmin and Cmax be the minimum and maximum values of Ci, re-

spectively. A CIOQ design would require each element to be dimensioned for a N × N switch

with homogeneous link capacities of Cmax. If s∗ is the lower bound on the speedup, assuming

CIOQ: Aggregation and Pipelining 181

(a) CIOQ: Switching Capacity: 12

C=1 2

2

0.4

0.4

0.3

0.3

0.4

C=1 2

2

2

2

2

2

0.4

0.4

0.3

0.3

0.4

2

s* = 2

(b) CIOQ−A: Switching Capacity: 6

Figure 6.11: The CIOQ-A architecture applied to a switch with heterogeneous links

homogeneous external links, then the effective speedup of the CIOQ design equals

s =
NCmax∑

i≤N Ci
s∗

On the other hand, several external links may be aggregated in a CIOQ-A switch to ho-

mogenize the total element capacity, as shown in Fig. 6.11. In general, the task of selecting the

specific links to aggregate is a linear programming problem. Select integer P < N and a P -

partition Ni, i ≤ P of the external link set, i.e., |
⋃

i≤P Ni| = N . Furthermore, select a rate value

C, Cmin ≤ C <
∑

i≤N Ci, and minimize PC under the constraint:

∀i ≤ P,
∑

k∈Ni

Ck ≤ C

Then, the effective speedup for a CIOQ-A design would equal the following expression for s,

which, depending on the relative values of Ci, may be significantly lower than the comparable

value for a CIOQ design. Clearly, links Ni have been relegated to the role of subports of port

i, of the space element, and since the arbitration on the VEQ system is unaware of the specific

input-output pairs, the value of s∗ in Theorem 11 continues to hold.

s =
PC∑
i≤N Ci

s∗

To summarize, one of the main benefits of the CIOQ-A design, namely, lower matching

complexity with respect to CIOQ, is realized by virtual element queueing at the expense of un-

182 Chapter 6

satisfactory throughput performance in the presence of inadmissible traffic. VEQ may also be

expected to yield a lower delay-bound for the guaranteed component of the offered traffic. Shad-

owing a CIOQ switch, on the other hand, retains all the performance results of CIOQ, but without

the complexity advantage. The memory bandwidth at (1 + s)C per input port (assuming on-chip

decomposition FIFO queues and separate per-input physical memories) is less than the bandwidth

required by VEQ, namely, (1+ s)N
P C. We may address the issue of higher arbitration frequency,

which is at least N
P times that in CIOQ, by using envelope-based matching. Finally, both shadow-

ing and VEQ matching might require batch-mode operation, with additional speedup, to reduce

the reconfiguration frequency and make it suitable for optical components, in order to realize the

smaller space-element advantage.

6.2 Spatial Pipelining

Fig. 6.12 shows a N ×N CIOQ-P switch (N, [MSM], N, K, s). We obtain such a switch by re-

placing the single space element of CIOQ, running at interface rate s, by K instances of elements

running at s/K, normalized to the external rate. Consequently, there are N first-stage memory

elements, much as in a CIOQ switch, of dimensions 1 × K, K N × N space elements in the

second stage, and N third-stage memory elements of dimensions K × 1. Note that this design

refers to a spatial (or super-scalar) pipeline, and not to a temporal one. To prevent head-of-line

blocking, virtual output queueing (VOQ) is employed in the input elements. The VOQ system is

simultaneously served by the K space elements, resulting in a memory bandwidth requirement

of (1 + s) times the external capacity, comparable to a CIOQ switch. Clearly, the primary benefit

of this design is the employment of slower space elements. Furthermore, if their configurations

can be computed in parallel, the arbitration frequency may go down by a factor of K.

The time required to transfer a cell on the external links is again referred to as an external

timeslot. As s cells may be transferred per external timeslot through the second stage, from/to

each memory element, we refer to the time unit of 1/s as an internal timeslot. While one cell may

be placed by an input element in each internal slot on some space element k, the latter takes a total

of K internal slots, or K/s external ones, to transfer the cell to the respective output element. We

refer to this transfer time as the space element (SE) timeslot. For convenience, we assume that

CIOQ: Aggregation and Pipelining 183

s/K

N x N

1 x K K x 1#1

#K

1

2

N N

2

1

Input
Memory
Elements

Output
Memory
Elements

In
pu

ts

O
ut

pu
ts

Virtual Output Queueing

π(K)

N,1

N,2

N,N

π(1)

C=1

Figure 6.12: CIOQ-P: CIOQ switch with spatial pipelining

the SE slots are staggered as shown in Fig. 6.13. In other words, an SE slot n for space element

k occupies the interval [(n − 1)K + k, nK + k) of internal timeslots. Then, the VOQ system

is served by space element k, k ≤ K at internal clock epochs KT + k, T > 0. Let π(k)(n)

be the configuration, which satisfies (2.5), of space element k at its SE slot n. Let π(n) be the

configuration that serves the VOQ system in internal timeslot n. Then, we have

∀n, π(n) = π(k)(
⌈

n

K

⌉
), where k = n mod K + 1. (6.13)

A sequential matching would compute π(n) in each internal slot, i.e., at the same frequency as

in a CIOQ switch, and assign it to the appropriate π(k). On the other hand, a parallel matching

would compute each π(k) concurrently, and set π(n) to the correct π(k)(n/K) in each internal

slot n.

Let the N ×N discrete-time matrix A(n) denote the cumulative arrivals for each input-

output pair until external timeslot n, with associated average rates given by λ. The evolution

of the VOQ system may then be described by N × N matrices (A(n), D(n), Q(n)), denoting

the cumulative arrivals, cumulative departures and current queue-length, respectively. The rela-

tion between them continue to be governed by (3.2) and (3.3) as in a CIOQ switch. Therefore,

184 Chapter 6

SE3 Clock

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4

1 2 43

1 2 3

External Clock

Internal Clock

SE 1 Clock

SE2 Clock

Figure 6.13: Staggered timeslots in a CIOQ-P switch: s = 2, K = 3

from (6.13), the cumulative departures are given by

∀n, D(n) ≥
K∑

k=1

bs n
K
c∑

m=1

π(k)(m) (6.14)

Note that (6.14) only considers SE slots that are completed in all space elements, mainly for

notational convenience. A more precise formulation is given below, though not necessary for

most throughput analysis.

∀n, D(n) =
K∑

k=1

bs n
K
c∑

m=1

π(k)(m) +
sn mod K∑

k=1

π(k)(
⌈
s

n

K

⌉
)

6.2.1 Shadowing a CIOQ

We introduce a shadowing method, similar to the one seen in the context of a CIOQ-A switch, in

order to exactly emulate a CIOQ switch and inherit its performance. Let a N ×N CIOQ switch,

employing a set of matching algorithms A, with speedup s∗, be the reference switch. Again, A

may contain a throughput-optimizing algorithm such as critical (s∗ ≥ 1, for f2 equivalence with

a work-conserving OQ switch), SPS (s∗ ≥ 1, f2 for uniform traffic), maximal (s∗ ≥ 2 for f3)

or SOQF (s∗ ≥ 3 for f4) matching; or rate-shaping, given reservation matrix R for input-output

CIOQ: Aggregation and Pipelining 185

pairs, combined with a batch-mode version of critical (s∗ ≥ 1) or maximal (s∗ ≥ 2) matching;

or an SFA combination of both, with associated speedup as shown in Table 5.1.

For exact emulation, the CIOQ-P switch computes a matching π∗ by running A on the

VOQ state matrix Q, at a frequency of s∗ per external slot. If rate-shaping is desired, Q is used

to derive a batch matrix Π (5.6) using the required rates R, and the computation is instead (or

additionally, for SFA) applied on Π. Clearly, if a cell is dispatched, from the first to the third

stage, through some space element, for every connected pair in π∗, then the departures from the

VOQ exactly emulate those in the reference switch. The link schedulers at the outputs are chosen

to exactly mimic the one in the reference switch. Since a space element takes K/s external slots

to transfer a cell, as opposed to 1/s∗, the arrivals into the output element lag those in the reference

CIOQ switch by δ = (K
s −

1
s∗) external slots. As the output schedulers are identical, each cell

departs from the system with a constant lag of δ with respect to the reference. For equivalence

purposes, focusing only on the VOQ system, we will accept such behavior as exact emulation, or

f5 equivalence.

The task then is to ensure that there is a free space element to realize the connections

in each computation of π∗. We introduce a simple method called sequential dispatch, shown in

Fig. 6.14, which merely assigns π∗(m) to the space element k(m) ≤ K, whose SE slot t(m)

begins exactly at, or immediately after, the end of the mth computation of π∗. That is,

∀m, π(k(m))(t(m)) = π∗(m) (6.15)

Theorem 12. A CIOQ-P switch, with virtual output queueing, exactly emulates a CIOQ switch

with algorithm set A and speedup s∗, by shadowing A to compute matchings π∗, followed by a

sequential dispatch method, as long as s = s∗, i.e.,

(CIOQ-P, {Shadow-A, Sequential Dispatch})
T,f5' (CIOQ, A), s = s∗

Proof. Fix s = s∗. Then, π∗ is computed once every internal timeslot. Therefore, π∗(m) co-

incides with slot dm
K e of space element m mod K + 1, from (6.13). As a result, (6.15) may be

re-written as

∀n, k, π(k)(n) = π∗(K(n− 1) + k) (6.16)

186 Chapter 6

Algorithm 17. CIOQ-P: Shadow and Sequential Dispatch

Initialize: 1. For all (i, j), i ≤ N, j ≤ N , Qi,j ← 0

2. For all (i, j), i ≤ N, j ≤ N , Πi,j ← 0 (Batches for QoS)

3. M ← 1/GCD(R)

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

Every external epoch n = kM : 1. For all (i, j), i ≤ N, j ≤ N , Πi,j = min(Ri,jM,Qi,j)

Every internal slot n: 1. k ← n mod K + 1 (Select space element)

2. π∗ ← Apply A on Q,Π

3. π(k) ← π∗

4. Q← Q− π(k) (Dispatch through SE k)

Figure 6.14: CIOQ-P: Emulating a CIOQ using shadowing and sequential dispatch

We make two observations. First, notice that each computation of π∗ is assigned to some space

element. Second, there are K internal slots between consecutive selections of space element k,

∀k, therefore ensuring that the element is free when selected.

Fig. 6.14 is actually a special case of the sequential dispatch method, for s = s∗. It is

instructive to recognize that, for general values of s, the selected space element k(m), and its SE

slot t(m), for the mth computation of π∗ is given by

k(m) =
⌈
ms

s∗

⌉
mod K + 1, and

t(m) =
⌈

ms

Ks∗

⌉
Since π∗(m) is computed at instant ms

s∗ of the internal clock, the method in Fig. 6.14 may be

generalized by running the lower block at epochs dms
s∗ e, m > 0. Clearly, if s < s∗, several

computations of π∗ may be assigned to the same slot of a space element, thus establishing the

necessity of the speedup in Theorem 12. If s > s∗, several internal slots are skipped resulting

in an under-utilization of the space elements. Nevertheless, f5 equivalence with the reference

switch continues to hold.

CIOQ: Aggregation and Pipelining 187

Much as with shadowing A in a CIOQ-A switch, if A suffices in the reference CIOQ

switch for functional equivalence fi with an OQ switch, with speedup s∗, then the CIOQ-P

switch using shadowing and sequential dispatch achieves the same level of equivalence for the

same speedup. The properties of containment (4.5) and transitivity (4.6) lead us to the following

corollary of Theorem 12.

Corollary 15. (CIOQ, A)
T,fi' (OQ, A′), s ≥ s∗ ⇒

(CIOQ-P, {Shadow-A, Sequential Dispatch})
T,fi' (OQ, A′), s ≥ s∗

This allows us to translate the performance results for a CIOQ switch, from the litera-

ture and Chapter 5, to a CIOQ-P switch, without requiring an independent analysis of the latter.

Specifically, sequential dispatch may be combined with MWM or critical matching, s ≥ 1, for

asymptotic 100% throughput for admissible arrivals, with SPS matching, s ≥ 1, for uniform

arrivals, with maximal matching, s ≥ 2 for non-oversubscribed outputs, or with SOQF match-

ing, s ≥ 3 for conforming input-output pairs. Similarly, sequential dispatch may be combined

with BVN templates or batch-mode critical matching on Π, s ≥ 1, or with batch-mode maximal

matching, s ≥ 2, for bandwidth and delay guarantees. The delay bounds in (5.7) and (5.8) con-

tinue to hold, with an additional latency of δ. For simultaneous provision of optimal throughput

and QoS, the required speedup values remain the same as in the reference CIOQ switch, shown

in Table 5.1.

Recognize that the sequential dispatch method relies on the same space-time duality of

Clos networks exposed in Sec. 5.1.1. We merely transformed K consecutive slots, of a CIOQ

switch, to K spatially separated slots. If the algorithm set A runs in O(ξ) time in the reference

switch, the matching complexity remains O(ξ) in the CIOQ-P switch, since π∗ is computed by a

centralized arbiter at the same frequency as in the reference CIOQ design. In other words, there

is no complexity advantage for sequential dispatch, despite using a super-scaler pipeline.

6.2.2 Concurrent Dispatch

We now address the issue of parallelizing the computation of matchings, over the K space el-

ements, with the goal of reducing the overall complexity. A parallel variant of the sequential

188 Chapter 6

Algorithm 18. CIOQ-P: Concurrent Dispatch

Initialize: Same as in Fig. 6.14

Cell Enqueue: Same as in Fig. 6.14

Every external epoch n = kM : Same as in Fig. 6.14

For every space element k in parallel:

Every SE slot n: 1. Q← Q− π(k) (Dispatch through SE k)

2. π(k) ← Apply A on Q,Π

Figure 6.15: CIOQ-P: Emulating a CIOQ using a concurrent matching

dispatch method of Fig. 6.14, called concurrent dispatch, is shown in Fig. 6.15. Here, each com-

putation of π(k) takes an entire SE slot, and is carried out by a separate arbiter for each space

element, using, in general, the queue state at the beginning of the SE slot. The matching com-

puted in internal slots [n−K, n), by space element (n mod K + 1), is subsequently set to π(n),

and is used to dispatch cells from the VOQ system at slot n. Clearly, if A runs in O(ξ) time, the

matching complexity becomes O(1 + ξ
K).

Observe that π(n) does not shadow the configurations in a reference CIOQ switch, under

identical arrivals, since it is based on Q(n−K). More importantly, a pair (i, j) may be connected

by several, say k ≤ K, space elements concurrently, even if Qi,j < k, leading to several wasted

connections, and possibly less than 100% throughput. This situation arises because π(k)(d n
K e) is

based on Q(n), and before the configuration may be used to dispatch any cell, at the end of SE slot

d n
K e, several cells are dispatched from Q based on configurations that completed in (n, n + K).

To provide further intuition, let A = {Maximal Matching}. Let Ci,j(n) denote the sum of row i

plus the sum of column j, of the VOQ matrix, at the beginning of the SE slot that ends at internal

slot n. Let D
(k)
Ci,j

(n) be the cumulative connections made for those queues, by space element k,

until slot n. Then, for a maximal matching, we have

∀i, j, n, Ci,j,k(n) =
∑

l

Qi,l(n−K) +
∑

l

Ql,j(n−K)

D
(k)
Ci,j

(n) ≥ D
(k)
Ci,j

(n−K) + 1, if Qi,j(n−K) > 1, k = n mod K + 1

CIOQ: Aggregation and Pipelining 189

In the fluid model, therefore, D̄
(k)′

Ci,j
(t) ≥ s

K , in terms of the external clock. Unfortunately,

however, the total departures DCi,j (n), from the queues represented in Ci,j , do not increase at a

rate of s, because

DCi,j (n) 6=
∑
k

D
(k)
Ci,j

(n)

Therefore, the conditions in the maximal-matching proof in [29] that lead to C̄ ′
i,j(t) ≤ 0, when-

ever Q̄i,j(t) > 0, cease to hold for any constant value of s. In other words, a maximal matching

on stale queue states fails to ensure asymptotic 100% throughput, for admissible traffic, with

s = 2.

Nevertheless, a restricted class of matching algorithms does lend itself to concurrent dis-

patch, without losing performance. As is evident, algorithms that are insensitive to the queue

state, such as BVN templates and SPS matching, may readily be applied. More interestingly,

by slightly modifying the queue-state update procedure of Fig. 6.15, so that an update is made

immediately when a connection is granted by a space element, some greedy matching algorithms

may also be applied to concurrent dispatch. The intuition is that, for greedy methods, a connec-

tion once made remains unaffected by the actions in the remainder of the SE slot, and hence may

be immediately reflected in the queue state, even though the corresponding cell departs in the

next SE slot. This ensures that each space element uses the latest VOQ information. We show a

specific instance of a parallel maximal matching that illustrates such an application, later in this

section.

BVN Decomposition

For bandwidth and delay guarantees, the same repeating sequence of templates, generated using

a BVN decomposition (pg. 46) of R, may be applied on each space element. Recall that, given an

admissible R, it can be expressed as a convex combination of permutations, such that the sum of

the weights does not exceed one. Therefore, ∃T, T ≤ 1/GCD(R), such that a sequence of size

T , of the above permutations, guarantees Ri,jT service turns to each pair (i, j). Consequently,

with s = 1, each space element, in KT external slots, ensures Ri,jT turns to the pair, for a total

of Ri,jKT over all the space elements. We may therefore state the following corollary of the

BVN decomposition theorem.

190 Chapter 6

Algorithm 19. CIOQ-P: Best-fit BVN assignment

Initialize: 1. {Pi} ← Set of permutations from a BVN decomposition of R

2. M ← |{Pi}|
3. φi ←Weight of permutation Pi, φ← GCD(φi)

4. For all i ≤M , Ti ← φi/φ (Size of sub-sequences)

5. T ←
∑

i Ti

Assign: 1. For all k ≤ K, P (k) ← Empty set

2. k ← 1, T (k) ← 0

3. For all i ≤M , do steps 3a–d

3a. T (k) ← T (k) + Ti

3b. P (k) ← P (k) ⋃
{Pi}, φ

(k)
i ← φi (Assign Pi to element k)

3c. If T (k) = d T
K e, increment k, T (k) ← 0

3d. While T (k) ≥ d T
K e, split (i, k+, T (k) − d T

K e)

Split (i, k, δ): 1. φ
(k)
i ← φ

(k)
i − δφ

2. T (k+1) ← δ

3. P (k+1) ← {Pi}, φ
(k+1)
i ← δφ (Also assign Pi to element k + 1)

Figure 6.16: Best-fit assignment of BVN templates to K space elements

Corollary 16. The BVN decomposition procedure on an admissible R is sufficient to ensure

bandwidth guarantees, specified by R, to input-output flows in a CIOQ-P switch, by concurrently

applying the same sequence of permutations on each space element.

Notice that the scheduling latency becomes KT slots as opposed to T in a CIOQ switch

under BVN decomposition. Each space element ends up providing a trunk of bandwidth Ri,j/K

to pair (i, j), in a balanced fashion. Similar to the above result, template sequences based on

other matrix decomposition schemes, such as MIN and DOUBLE, with the associated speedup

values, may also be applied to concurrent dispatch, yielding a similar latency.

In reality, a lower latency of T external slots, comparable to a CIOQ switch, may be

achieved by selectively assigning the BVN permutations, and associated weights, to the K space

CIOQ: Aggregation and Pipelining 191

elements, at the expense of a modest internal speedup. An unbalanced best-fit BVN-template

assignment method is shown in Fig. 6.16, in which the set of permutations {Pi}, with respective

weights φi, are partitioned into K sets P (k), k ≤ K, one for each space element. Note that some

of the permutations may be represented in more than one element. A sequence of size dT/Ke,

over all the space elements in a concurrent fashion, end up providing Ri,jT turns to each pair.

The minimum speedup smin, therefore, is given by

smin =
dT/Ke
T/K

≤ (T + K)/K

T/K
≤ 1 +

K

T

≤ 1 + Kr, where r = GCD(R)

Notice also that smin ≤ 2 if T ≥ K. Also, recognize that the speedup can be made close to

one, at the expense of additional latency, by performing best-fit on Ks ≤ K repeating sequences

of templates, in which case smin ≤ (1 + Ks
K r). As is evident, when Ks = K, the speedup

requirement drops to one (since dKsT/Ke = KsT/K), and the latency becomes exactly KT

slots, no better than with a balanced assignment of all the permutations to each space element, as

in Corollary 16. Then, the delay bound for leaky-bucket constrained input-output flows (pg. 106)

may be easily verified as

Di,j ≤
σi,j

Ri,j
+

K

r
(6.17)

Concurrent SPS

Recall (pg. 123) that a repeating sequence of N perfect configurations that cover the unit matrix,

or SPS matching, is sufficient for 100% throughput to uniform arrivals in a CIOQ switch. Since

the configurations are insensitive to queue state, the matching lends itself to concurrent dispatch.

Fig. 6.17 shows a concurrent version of the O(1) EREW sub-maximal algorithm in Fig. 5.11,

which generates K perfect sequences, one on each space element. It is evident that each element

guarantees a single service turn to each input-output pair in N consecutive SE slots. For s = 1,

therefore, each pair receives a total of K turns in KN external slots, or a trunk of bandwidth

1/N , which suffices for VOQ stability under uniform arrivals. Hence, we state the following

corollary of Theorem 5.

192 Chapter 6

Algorithm 20. CIOQ-P: Concurrent SPS

Initialize: 1. For all (i, j), Qi,j ← 0

2. For all k ≤ K do (For all space elements)

2a. For all i ≤ N , P
(k)
i = i (Initialize pointers)

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

For every space element k in parallel:

Every SE slot n: For all i ≤ N in parallel (all inputs)

1. π
(k)
i,j = 1 iff j = P

(k)
i

2. Increment P
(k)
i mod N

Every internal slot n: 1. k ← n mod K + 1, π ← π(k)

2. For all (i, j), if Qi,j > 0 and πi,j = 1, dequeue cell

Figure 6.17: Concurrent SPS matching: EREW sub-maximal implementation

Corollary 17. A concurrent SPS matching is sufficient, without speedup, for asymptotic 100%

throughput in a CIOQ-P switch, for uniform admissible arrivals, i.e.,

(CIOQ-P, {Concurrent SPS})
T,f2' (OQ, {WC}), T : SLLN, Uniform

Notice that each space element uses N desynchronized pointers, each of which, in paral-

lel, is updated with a single O(1) operation in each SE slot. Therefore, the concurrent matching

itself runs in O(1
K) time on the external clock. Recognize also that a slightly different pointer

initialization, specifically, P
(k)
i = (i+k) mod N +1, reduces the timescale over which the trunk

of 1/N is provided to each pair, from KN to N external slots. Most of the concurrent dispatch

schemes in the literature [19, 85], for such switches, are iterative request-grant-accept (RGA) (see

pg. 58) implementations of the EREW sub-maximal matching above. We have merely shown

here, based on the SPS analysis on CIOQ switches, that a single iteration of such algorithms

would suffice for uniform traffic.

CIOQ: Aggregation and Pipelining 193

Algorithm 21. CIOQ-P: 3D Maximal Matching

Initialize: 1. For all (i, j), Qi,j ← 0

2. For all k ≤ K do (For all space elements)

2a. For all i ≤ N , P
(k)
i = i (Initialize pointers)

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

For every space element k in parallel:

Every SE slot n: 1. For all (i, j), π
(k)
i,j ← 0

2. For each output j, D
(k)
j = 0 (Column state)

3. For each input i in parallel, until connected, do N steps of 3a–d

3a. j ← P
(k)
i

3b. If D
(k)
j = 1, go to 3d (Column already connected)

3c. If Qi,j > 0, do 3c1 and 3c2, else do 3d

3c1. π
(k)
i,j ← 1, decrement Qi,j

3c2. D
(k)
j ← 1, P

(k)
i ← i (Reset for next SE slot)

3d. Increment P
(k)
i mod N

Every internal slot n: 1. k ← n mod K + 1, π ← π(k)

2. For all (i, j), if πi,j = 1, dequeue cell

Figure 6.18: A three-dimensional EREW concurrent matching for CIOQ-P

3D Maximal Matching

We now present a concurrent dispatch algorithm, called 3D maximal matching (3DMM), shown

in Fig. 6.18, which provides 100% throughput to non-uniform arrivals, under some restrictions.

The basic idea is to run a N -step EREW maximal matching (Fig. 3.9) in each SE slot of all the

space elements, in parallel. Each element uses an independent EREW column-state vector D
(k)
N ,

and N desynchronized pointers, one for each input. A single matching π(k) is computed in each

SE slot by element k, which is then used to dispatch cells at the end of the slot.

The space elements share the VOQ length matrix Q. If K ≤ N , due to the staggering

194 Chapter 6

Figure 6.19: 3D maximal matching: A cube of desynchronized pointers

of SE slots, ∀i, P (k)
i 6= P

(l)
i for k 6= l, at every instant. Therefore, ∀i, j, Qi,j is never accessed

simultaneously by more than one space element, hence ensuring EREW operation. In m internal

timeslots, within an SE slot, each pointer is advanced bmN
K c times. As a result, the NK pointers

occupy non-conflicting positions in a N × N ×K cube, as shown in Fig. 6.19. In other words,

if (i, j, k) is occupied by a pointer, all the three lines originating from that point are free of other

pointers. To ensure that the same cell is not served by more than one space element, Qi,j is

immediately decremented when π
(k)
i,j is set to one, for any k. Clearly, such a concurrent scheme

works only because the queue states are inspected in an orderly fashion by each element, and

since the algorithm is greedy. As there are N steps in each SE slot, 3DMM runs in O(N
K) time.

Theorem 13. A 3D maximal matching is sufficient for asymptotic 100% throughput in a N ×

N CIOQ-P switch, for all flows (i, j) belonging to non-oversubscribed outputs, as long as the

speedup s ≥ 2, and K ≤ N , i.e.,

CIOQ: Aggregation and Pipelining 195

(CIOQ-P, {3DMM})
T,f3' (OQ, {WC}), s ≥ 2, K ≤ N , T : SLLN

Proof. For each (i, j), and external slot n, define Ti,j as:

Ti,j(n) =
∑

l

Qi,l(n) +
∑

l

Ql,j(n)

Let DTi,j (n) represent the cumulative departures from row i and column j of Q, until

timeslot n. Notice that, given Qi,j(n) ≥ K, every space element either serves (i, j) once, or a

distinct cell from row i and/or column j, in the interval [n, n + K
s), i.e., in K internal slots. This

is because K slots are sufficient, for each element, to visit every location (i, j) in Q, unless row

i and/or column j are already connected by that element in its current configuration. Therefore,

∀i, j, n Ti,j(n) =
∑
k

Ai,k(n) +
∑
k

Ak,j(n)−DTi,j (n)

DTi,j (n +
K

s
) ≥ DTi,j (n) + K, whenever Qi,j(n) ≥ K

As a result, for s = 2, the above equations translate exactly to (5.23) and (5.24), respectively, in

the fluid limit. The rest of the proof is identical to the proof of Theorem 8.

We conclude by noting that, while a general algorithm set A might not easily lend itself

to concurrent dispatch, template-based methods and greedy matchings that proceed in an orderly

fashion may be adapted, to lower the complexity by a factor of K with respect to sequential

dispatch. For the algorithms shown here, we have demonstrated functional equivalence with an

OQ switch, up to level f3, for K ≤ N . In fact, concurrent BVN templates and 3DMM may be

integrated into a multi-phase SFA combination, with s ≥ 2, for simultaneously providing QoS

and optimal throughput.

6.2.3 Balanced Matchings

To complete our analysis of CIOQ-P switches, we propose two low-complexity methods to

achieve comparable performance with a CIOQ switch, without the limitations posed by the con-

current dispatch schemes of the previous section. We leverage the fact that each space element

of a CIOQ-P switch may be viewed as the central stage of a N ×N CIOQ switch, with interface

196 Chapter 6

Algorithm 22. CIOQ-P: Shadow and Stripe

Initialize: 1. For all (i, j), i ≤ N, j ≤ N , Qi,j ← 0

2. For all (i, j), i ≤ N, j ≤ N , Πi,j ← 0 (Batches for QoS)

3. M ← 1/GCD(R)

Cell Enqueue: 1. If cell belongs to (i, j), increment Qi,j

Every external epoch n = mKM : For all (i, j), i ≤ N, j ≤ N ,

1. Πi,j = min(Ri,jMK, Qi,j)

2. If Qi,j mod K 6= 0, pad Πi,j

Every internal epoch n = mK: 1. For all (i, j), Gi,j ← 1{Qi,j≥K} (Consider full envelopes)

2. For all (i, j), G′
i,j ← 1{Πi,j≥K}

3. π∗ ← Apply A on G, G′

Every internal slot n: 1. k ← n mod K + 1

2. π(k) ← π∗

3. Q← Q− π(k) (Dispatch through SE k)

Figure 6.20: CIOQ-P: Emulating an envelope-based CIOQ matching using striping

rates of 1/K times that of the switch under consideration. Accordingly, if each input-output pair

(i, j), with average rate λi,j , offers λi,j/K to each element, we may expect the throughput per-

formance (except exact emulation) of a general algorithm setA to be equivalent to that in a CIOQ

switch. Essentially, the offered load is balanced over all the space elements, on an input-output

pair basis. We call such methods balanced matchings.

Striping

Consider a N ×N CIOQ-P switch with VOQ and K space elements. We introduce a sequential

method called striping, which translates a general algorithm set A to a balanced matching, as

shown in Fig. 6.20. Such a load-balancing technique is commonly used in other areas like parallel

CIOQ: Aggregation and Pipelining 197

disk arrays. Given A, we essentially shadow a reference CIOQ switch, operating under A on

envelopes [54] (see pg. 62) of size K, with speedup s∗. A centralized arbiter first computes a

matching π∗ by running A on the VOQ state matrix, at a frequency of s∗/K per external slot.

The method only considers queues with at least a full envelope of K cells. In practice, the

matching may be computed using a temporal pipeline, in which the configuration generated in

[(m − 1)K
s∗ ,m

K
s∗) is consumed by the VOQ system at epoch mK

s∗ . For a constant s∗, therefore,

the complexity becomes O(ξ
K) on the external clock, if each invocation of A runs in O(ξ) time.

To ensure that an envelope worth of cells are dispatched for every connected pair in π∗,

the same configuration is assigned to each space element in a sequential fashion, in the ensuing

internal slots. Thereafter, each of those elements transfer a single cell from the connected en-

velopes. In essence, after an envelope-based matching is generated, we break the envelopes and

assign a single cell to each element. Consequently, the overall matching complexity becomes

O(1 + ξ
K).

Theorem 14. A CIOQ-P switch, with K space elements, exactly emulates a CIOQ switch, operat-

ing underA on envelopes of size K, with speedup s∗, by shadowingA to compute envelope-based

matchings π∗, followed by striping π∗ over all the space elements, provided s ≥ s∗, i.e.,

(CIOQ-P, {Shadow-A, K-Striping})
T,f5' (CIOQ, A

⋃
{K-Envelopes}), s ≥ s∗

Proof. The envelope-based matchings π∗ are ready at epochs mK
s∗ , ∀m > 0, of the external clock,

exactly as in the reference CIOQ switch with envelope matching. Furthermore, both switches

serve the same envelopes, under identical arrivals, provided a single envelope is fully assigned,

for every connection made at epoch mK
s∗ , in the interval [mK

s∗ , (m+1)K
s∗). Since it takes K con-

secutive internal slots to assign all the cells in connected envelopes, we achieve exact emulation

as long as sK
s∗ ≥ K, or s ≥ s∗.

We hasten to add that exact emulation holds only for the departures from the VOQ system.

Since each space element takes an additional δ = (K
s −

1
s∗) slots to transfer a cell, with respect

to the reference switch, the CIOQ-P emulates the reference with a lag of δ. The above result

holds for a general setA, thereby allowing to inherit the properties ofA on a CIOQ switch, while

198 Chapter 6

lowering the run-time complexity. A direct consequence of the main result in [54] is that queue

stability is not affected in envelope-based matching, with respect to a cell-based matching. In

terms of functional equivalences, therefore,

∀k, (CIOQ,A ∪ {k-Envelopes})
f4' (CIOQ,A) (6.18)

The speedup requirement in both cases are identical. Recall that the primary disadvantage of

envelope-based matching is a higher, possibly infinite, cell delay, as a flow may have a perpetually

unserved partial envelope. In practice, this situation may be rectified by using the fix suggested

for packet-based matchings in [36], namely, using a modest increase in speedup. If the cell-based

scheme requires a speedup of s, the envelope-based variant may operate at (1 + ε)s, where ε

is arbitrarily small, so that partial envelopes are considered in the matching once every (1 + 1
ε)

internal slots. From (6.18), together with the containment (4.5) and transitivity (4.6) properties

of equivalences, we obtain the following corollary of Theorem 14.

Corollary 18. ∀fi, i 6= 5, (CIOQ, A)
T,fi' (OQ, A′), s ≥ s∗ ⇒

(CIOQ-P, {Shadow-A, K-Striping})
T,fi' (OQ, A′), s ≥ s∗

Much as in sequential dispatch, this allows us to translate the performance results for

a CIOQ switch, from the literature and Chapter 5, to a CIOQ-P switch, without independent

analysis of each algorithm. For example, an MWM or critical matching, with s ≥ 1 and lower

complexity with respect to sequential dispatch, may be used for 100% throughput to admissible

arrivals. Similarly, a simple maximal matching, with s ≥ 2, and without the restriction of K ≤ N

in 3DMM, suffices for the same using a comparable run-time. Matchings such as SOQF, not

easily adaptable to concurrent dispatch, may now be used for similar functional equivalence with

an OQ switch.

Note thatA subsumes QoS-capable algorithms, such as BVN decomposition (s ≥ 1) and

rate-shaping combined with batch-mode critical (s ≥ 1) or maximal matching (s ≥ 2). To ensure

that batches reside on envelope boundaries, the batching is performed at epochs mKM , m > 0,

as opposed to mM in a cell-based CIOQ switch. In addition, as shown in Fig. 6.20, batches

with partial envelopes are padded to prevent infinite delays. No additional speedup is required

CIOQ: Aggregation and Pipelining 199

Figure 6.21: CIOQ-P: Per-element virtual output queues

to account for the wasted SE slots, since such slots are already earmarked as part of the virtual

bandwidth trunks, of the respective flows with partial envelopes. Consequently, the scheduling

latency becomes 2KM , and the delay bounds in (5.7) and (5.8) hold, with 2/r replaced by 2K/r.

In other words, for leaky-bucket constrained input-output flows, the bound is given by

Di,j ≤
σi,j

Ri,j
+

2K

r
(6.19)

As with concurrent BVN decomposition (6.17), the delay with striping is worse compared to

sequential dispatch. Finally, note thatAmay correspond to an SFA combination for the combined

provision of QoS and optimal throughput.

Equal Dispatch

In order to remedy the primary issue in striping, namely, that of unbounded latency, we introduce

a concurrent method called equal dispatch to translate A into a balanced matching. The benefit

comes at the expense of a slightly increased implementation overhead. Instead of allowing a

200 Chapter 6

striping operation to balance the offered load of each input-output pair, over the K space elements

on an envelope basis, we explicitly distribute the load to K different sets of queues, on cell arrival,

and let each space element operate A concurrently in the cell-mode, on a single set.

The queueing structure in each memory element is modified as shown in Fig. 6.21. Instead

of a single VOQ per pair (i, j), we maintain a separate queue Q
(k)
i,j , k ≤ K, per space element

for each pair. We call these queues space-element (SE) VOQ. The arriving traffic for (i, j) is split

evenly cell by cell, using a round-robin pointer, among the K queues for that pair. Therefore, if

A(k)(n) represents the cumulative arrivals into the SE VOQs for element k, we obtain

∀i, j, k, n, A
(k)
i,j (n) =

⌊
Ai,j(n)

K

⌋
+ 1{Ai,j(n) mod K≥k}, (6.20)

where A(n) is the arrival matrix for the input-output pairs. Clearly, by definition (2.1), the average

arrival rates into Q
(k)
i,j , ∀k is equal to λi,j/K. Therefore, the average-rate matrices for all the space

elements are equal, and are given by

∀k, λ(k) =
1
K

λ (6.21)

Each space element k computes matchings π(k) concurrently, once per SE slot, using the given

algorithm set A, as shown in Fig. 6.22. The matchings are based only on the state of Q(k), and

are consumed only by the latter. Essentially, such a queueing structure allows to distribute the

traffic belonging to each pair (i, j) to K concurrent planes, each being served by a separate space

element. If D
(k)
i,j represents the cumulative departures for pair (i, j) through k, then the evolution

of each SE VOQ matrix may be described by (A(k), D(k), Q(k)). These are related according

to (3.2), with superscript k, and D(k) is given by

∀k, n, D(k)(n) ≥
bs n

K
c∑

m=1

π(k)(m) (6.22)

For implementation efficiency, and to avoid cell mis-sequencing, the SE VOQs for each

pair (i, j) need not be physically separate. In fact, all the cells may be enqueued into the same

VOQ structure as before, and only per-SE occupancy need to be maintained. We can keep track

of such occupancies using simple counters, as in Fig. 6.22. The counters are viewed as actual

queue lengths for matching (and analysis) purposes, and when π
(k)
i,j = 1 for any k, a cell is

CIOQ: Aggregation and Pipelining 201

Algorithm 23. CIOQ-P: Equal Dispatch

Initialize: 1. For all (i, j), i ≤ N, j ≤ N , do steps 1a–d

1a. Qi,j ← 0

1b. For all k ≤ K, Q
(k)
i,j ← 0 (Per-SE occupancy)

1c. Pi,j ← 1 (Round-robin pointer)

1d. For all k ≤ K, Π(k)
i,j ← 0 (Batches for QoS)

2. M ← 1/GCD(R)

Cell Enqueue: If cell belongs to (i, j):

1. Increment Qi,j (Enqueue cell)

2. Increment Q(Pi,j) (Distribute cell to the correct SE)

3. Increment Pi,j mod K

Internal epoch n = mKMs + k: 1. For all (i, j), i ≤ N, j ≤ N , Π(k)
i,j = min(Ri,jM,Q

(k)
i,j)

(m > 0, k ≤ K) (Create independent batches for each SE)

For every space element k in parallel:

Every SE slot n: 1. π(k) ← Apply A on Q(k),Π(k)

2. Q(k) ← Q(k) − π(k) (Decrement SE counters)

Every internal slot n: 1. k ← n mod K + 1 (Select space element)

2. Q← Q− π(k) (Dispatch through SE k)

Figure 6.22: CIOQ-P: Emulating a CIOQ using equal dispatch

202 Chapter 6

drawn from the respective physical VOQ. Since each space element consists of an independent

arbiter, running at a frequency of s/K matchings per external timeslot, the run-time complexity

of equal dispatch is O(1 + ξ
K), if each invocation of A runs in O(ξ) time. Therefore, the overall

complexity is comparable to striping. The following straight-forward result establishes that the

performance is also comparable.

Theorem 15. Given a matching algorithmA, ifA suffices in a CIOQ switch for asymptotic 100%

throughput to a set of input-output flows {(i, j)}, under some arrival process, then equal dispatch

combined with a concurrent application of A on each space element suffices for the same, under

identical arrivals, i.e,

∀fi, i 6= 5, (CIOQ, A)
T,fi' (OQ, A′), s ≥ s∗ ⇒

(CIOQ-P, {Equal Dispatch}
⋃
A)

T,fi' (OQ, A′), s ≥ s∗

Proof. Let S be the set of flows {(i, j)} for which Qi,j is stable in a N × N CIOQ switch,

for arrival matrix A(n), under A operating at s∗ matchings per external timeslot. Consider a

N ×N shadow CIOQ switch with interface rates of 1/K, under arrival matrix A(k)(n), for any

k. From (6.21), the average rates of arrival λ(k) equal 1/K times those into the original CIOQ

switch. Normalized to the new interface capacity, the average rates are exactly equal. Therefore,

the set S is stable in the new CIOQ switch, under A operating at s∗ matchings per new external

slot, or at s∗/K matchings per old slot.

The departures through the space element k, for arrivals A(n) into a CIOQ-P switch

with unit interface rates, exactly mimic those from the shadow CIOQ switch, if A operates on

Q(k) at a frequency of exactly s∗/K matchings per external slot. Therefore, all the SE VOQ

{Q(k)
i,j |(i, j) ∈ S} remain stable. Since this holds for any k, each SE VOQ that contains cells

belonging to S remains stable, for s ≥ s∗.

In reality, it is easy, though voluminous, to rigorously prove Theorem 15, separately for

each level of functional equivalence. For example, notice that if λ is admissible in CIOQ-P,

λ(k) would be admissible in the shadow CIOQ switch. The same is true for non-oversubscribed

outputs and conforming flows. These observations may then be used for separately proving f2,

CIOQ: Aggregation and Pipelining 203

f3 and f4 equivalence with an OQ switch, respectively. We rely on the fact that long-term queue

stability, underA, only depends upon the average rates. In addition, if µ is the average departure-

rate matrix for offered rates λ in a CIOQ switch, then, under the same matching algorithm and

identical speedup, 1
K µ would result for offered rates 1

K λ in a CIOQ switch with 1/K times the

interface rate of the former.

The above theorem allows us to apply all the well-known stability results for CIOQ

matchings, without the need for independent analysis, to a CIOQ-P switch. Specifically, we

obtain the following results for equal dispatch (ED):

(CIOQ-P, {ED, MWM})
T,f2' (OQ, {WC}), T : SLLN

(CIOQ-P, {ED, LPF})
T,f2' (OQ, {WC}), T : i.i.d.

(CIOQ-P, {ED, Critical Matching})
T,f2' (OQ, {WC}), T : SLLN

(CIOQ-P, {ED, SPS Matching})
T,f2' (OQ, {WC}), T : SLLN, Uniform

(CIOQ-P, {ED, Maximal Matching})
T,f3' (OQ, {WC}), s ≥ 2, T : SLLN

(CIOQ-P, {ED, SOQF, S})
T,f4' (OQ, {WC, S}), s ≥ 3, T : SLLN S: Convergent

The first two are consequences of the CIOQ results on MWM and LPF matching from [29, 79],

respectively. The next four are respectively derived from Theorems 4, 5, 8, and 9. Note that

SOQF will require per-SE virtual input queue (VIQ) counters. The SE k VIQ for flow (i, j) is

incremented when a cell is received from element k for pair (i, j), and decremented on a round-

robin basis, over the K space elements, when the output scheduler S serves (i, j). Note also

that, while equal dispatch is a concurrent method, the departure process is, in general, different

from concurrent dispatch (Fig. 6.15) based on A. For example, in concurrent SPS, the K space

elements together provide K consecutive service turns to a pair (i, j) in an interval of length KN .

If Q
(k)
i,j > 0, ∀k, in equal dispatch with SPS, the departures will be identical. However, this may

not always be the case, since, in the latter, while K consecutive turns are indeed provided to (i, j)

in the same interval, a turn given by element k can be consumed only by the corresponding SE

VOQ, which may be empty even when Qi,j > 0.

A direct proof for each of the above results, on individual matching algorithms, may be

obtained as an extension of the respective CIOQ proof, applied separately on each space element

and its corresponding SE VOQ system. For example, referring to critical matchings, we may

204 Chapter 6

chart the evolution of a phantom bucket for each space element (pg. 120), yielding the following

extensions of (5.14) and (5.15):

∀k, Z̄(k)(t) ≤ t

K
− D̄

(k)
Z (t)

D̄
(k)′

Z (t) =
1
K

, if Z̄(k)(t) > 0

This leads to a negative drift on all the K phantom buckets, for s ≥ 1, leading to the stability

of each SE VOQ. Similarly, referring to the f3 result for maximal matching, for s ≥ 2, (5.23)

and (5.24) in the proof of Theorem 8 may be extended to each SE VOQ system as

∀i, k, t ∀j /∈ A T̄
(k)
i,j (t) <

2t

K
− D̄

(k)
Ti,j

(t)

D̄
(k)′

Ti,j
≥ 2

K
, whenever Q̄

(k)
i,j (t) > 0

Following the same reasoning as in pg. 133, this leads to the stability of all SE VOQ for non-

oversubscribed outputs. Both these extensions are based on the invariant property of the re-

spective algorithm on (6.22), and the effect of admissibility on (6.21). In light of Theorem 15,

nevertheless, there is no need for such independent analyses.

Much as with striping,A subsumes QoS-capable algorithms, such as BVN decomposition

(s ≥ 1) and rate-shaping combined with batch-mode critical (s ≥ 1) or maximal matching

(s ≥ 2). In contrast, however, the same sequence of templates is applied concurrently to each

space element, operating on Q(k). For batch-mode online matchings, K separate batch matrices

Π(k) are assembled using reservations 1
K R, essentially by batching Q(k) at external slot epochs

mKM . Consequently, the scheduling latency remains 2KM , and the delay bound for leaky-

bucket shaped input-output flows is given by (6.19). As expected, A may also correspond to an

SFA combination, as shown in Fig. 6.22, for the combined provision of optimal throughput and

QoS.

To summarize, shadowing a CIOQ switch of comparable dimensions, followed by a se-

quential dispatch, is sufficient to inherit all the performance results of CIOQ. However, there is

no benefit in matching complexity with respect to a CIOQ switch, despite using slower space

elements, due to the requirement of a centralized arbiter. Concurrently applying a matching algo-

rithm, on each space element, directly serving the VOQ system, does reduce the complexity by a

CIOQ: Aggregation and Pipelining 205

factor of K. Unfortunately, several known algorithms do not lend easily to a concurrent version,

with the exception of some template-based and well-ordered greedy methods. To overcome this

limitation, striping may be used to shadow an envelope-mode CIOQ switch and inherit most of

its performance results, for general matching algorithms. While striping also lowers complexity,

the main disadvantage is the possibility of unbounded latency, which may be addressed using

a modest speedup, or using cell-based equal dispatch at the expense of a slightly higher imple-

mentation overhead. The low-complexity concurrent and equal dispatch methods may actually be

used in a CIOQ switch to implement arbitrarily complex matching algorithms, as an alternative to

envelope-based matching [54]. The approach would be to compute K configurations in parallel

and use them, in sequence, on the single space element of CIOQ. We did not specifically consider

multicast traffic, since recycling-based multicast, as in a CIOQ switch, may be directly applied to

CIOQ-P, without any further enhancements.

6.3 General MSM Switches

A general space-memory-space (G-MSM) switch is obtained by simultaneously applying aggre-

gation, on the memory elements, and spatial pipelining, on the space element of a CIOQ switch.

As shown in Fig. 6.23, structurally speaking, this design most resembles a circuit Clos network,

and hence has become synonymous with terms like Clos-network packet switch, in the literature

(e.g., [85, 93, 92]). In fact, G-MSM switches are more common, in practice and in the literature,

than CIOQ-A or CIOQ-P switches. We chose to address the latter in isolation, since, as shall be

seen in this section, the methods to be employed in a G-MSM switch may be derived as a natural

combination of those used individually by CIOQ-A and CIOQ-P designs.

A N ×N G-MSM switch (N, [MSM], P, K, s) contains P first-stage memory elements

of dimensions N/P ×K, K instances of P × P space elements in the center, and P third-stage

elements of dimensions K × N/P . We assume that N/P is an integer and 1 < P < N . The

first-stage elements may either employ virtual element queueing (VEQ) or virtual input-output

queueing (VIOQ), similar to a CIOQ-A switch, as shown in Fig. 6.2(a) and (c), respectively. If

VIOQ is employed, as seen before, we may expect closer emulation of a CIOQ switch. However,

the space elements are required to decompose each N×N configuration into several P ×P ones.

206 Chapter 6

#K

In
pu

ts

O
ut

pu
ts

Input
Memory
Elements

Memory
Elements

Output

1

N/P

1

N/P

N N

C=1

P x P
N/P x K

sN/PK

Elements
Space

K x N/P
#1

Figure 6.23: G-MSM: CIOQ switch with aggregation and pipelining

If equal dispatch is used, among the K space elements, the input elements also require per-SE

queueing, as in Fig. 6.21. We note, without elaboration, that the service turns given to each VEQ

or VIOQ may be distributed to finer-grain flows using virtual schedulers in a hierarchical fashion,

as described in Sec. 3.3.2.

As is evident, this architecture combines the benefits of CIOQ-A and CIOQ-P. Normal-

ized to an external interface capacity of one cell per timeslot, the internal links operate at sN/PK.

Thus, the space elements are smaller than in a CIOQ switch, but not necessarily (if N ≤ PK)

faster as in CIOQ-A. For sequential dispatch methods, the arbitration frequency remains as high

as sN/P matchings per external slot. However, this may be reduced to a frequency of sN/PK

by using concurrent or balanced matchings over all the space elements. The complexity of each

matching may be further reduced by employing VEQ, and matching on the resulting smaller

queue-state matrix. In addition, G-MSM retains native support for subports as in a CIOQ-A

CIOQ: Aggregation and Pipelining 207

switch (pg. 181). The VEQ/VIOQ system is simultaneously served by K space elements, neces-

sitating a memory bandwidth, in general, of (1 + s)N
P times the external capacity, comparable to

a CIOQ-A switch. This remains the sole disadvantage of this design.

As sN
P cells may be transferred, per external timeslot, from/to each memory element, we

refer to the time unit of P/sN as an internal timeslot. In other words, there are sN
P internal

slots for every external one, each associated with a distinct P × P matching π(n) serving the

VEQ/VIOQ system. While one cell may be dispatched by an input element in each internal slot,

the serving space element takes a total of K internal slots, or KP/sN external ones, to transfer

the cell to the respective output element. We refer to this transfer time as the space element (SE)

slot. As in a CIOQ-P switch, we assume that the SE slots are staggered, such that an SE slot n

for space element k occupies the interval [(n− 1)K + k, nK + k) of internal slots. Let π(k)(n)

be the configuration, satisfying (2.5), of space element k at its SE slot n. Then, π(k)(n) is related

to π(n) exactly as in a CIOQ-P switch:

∀n, π(n) = π(k)(
⌈

n

K

⌉
), where k = n mod K + 1. (6.23)

For calculating departures, we assume that a cell leaves the first-stage element at the beginning

of the SE slot. A sequential dispatch method computes π(n) in each internal slot and assigns it

to the appropriate π(k)(n), while a concurrent or balanced dispatch method computes π(k)(n) in-

dependently for each space element, using parallel arbiters, and directly provides service turns to

the VEQ/VIOQ system. The complexity of each such procedure would depend on the employed

queueing strategy.

System Evolution

In virtual element queueing, a cell belonging to input-output flow (i, j) is enqueued into VEQ

(d i
N/P e, d

j
N/P e). The evolution of the VEQ system may be described by P × P matrices

(A(n), D(n), Q(n)), denoting the cumulative arrivals, cumulative departures and current VEQ

length, respectively. In other words, Q(n) has the same dimensions as π(n). If the N × N ma-

trix A∗(n) denotes the cumulative arrivals for each input-output flow until external slot n, with

associated average rates λ∗, then (A∗, λ∗) is related to (A, λ) as in (6.1). Furthermore, if λ∗ is

208 Chapter 6

admissible, then the line and column sums of λ sum up to no greater than N/P (6.2). If per-SE

queueing is employed, the cumulative arrivals and average rates into the SE queues continue to

be governed by (6.20) and (6.21). It is easy to verify that the queue evolution is constrained by:

∀n, Q(n) = A(n)−D(n) (6.24)

D(n) =
s N

P
n∑

m=1

π(m)

≥
K∑

k=1

bs N
PK

nc∑
m=1

π(k)(m) (6.25)

Note that VEQ does not rule out hierarchical output queueing as in Fig. 6.9. It merely implies that

the matching is performed on an element-pair basis. Also, note that (6.25) is derived from (6.23),

considering only SE slots that are completed in all space elements, for notational convenience.

In virtual input-output queueing, a cell belonging to input-output flow (i, j) is enqueued

into VIOQ (i, j). The evolution of the VIOQ system may be described by N × N matrices

(A(n), D(n), Q(n)), defined similarly as above. The main difference, with respect to VEQ, is

that the N × N matrix Q(n) is used to compute a P × P matching π(n). This is achieved

essentially by shadowing some N × N switch to derive a configuration π∗, followed by a de-

composition into several P × P configurations to be used in a sequence. Accordingly, the queue

evolution is constrained by (6.24), and a combination of (6.7) and (6.14):

∀i, j ≤ P, ∀n
N
P

i∑
k=N

P
(i−1)+1

N
P

j∑
l=N

P
(j−1)+1

Dk,l(n) ≥
K∑

k=1

bs N
PK

nc∑
k=1

πi,j(k) (6.26)

We shall not explicitly analyze the departures and queue states in a G-MSM, instead relying on

extending and combining the individual results on CIOQ-A and CIOQ-P. The above constraints

on the system evolution were presented for the sake of completeness.

Matching Algorithms: Alternatives

Matching algorithms for a G-MSM switch are a combination of the shadow-and-decompose

method (Fig. 6.4) or direct VEQ matching (Fig. 6.7) to account for the aggregation transfor-

mation, and one of sequential dispatch (Fig. 6.14), concurrent dispatch (Fig. 6.15), striping

CIOQ: Aggregation and Pipelining 209

`````````````̀P
A Shadow-Decompose VEQ Matching

Sequential Dispatch f5, O(h(N) + N
P g(P )) f2, O(N

P h(P ))

Striping/Equal Dispatch f4, O( 1
K h(N) + N

PK g(P )) f2, O( N
PK h(P ))

Concurrent Dispatch f3, O( 1
K h(N) + N

PK g(P )) f2, O( N
PK h(P ))

Table 6.4: G-MSM: Equivalence with CIOQ, and complexity for various combinations

(Fig. 6.20) or equal dispatch (Fig. 6.22) to account for the pipelining transformation. Recall

(pg. 85) that a G-MSM may be obtained by starting with a CIOQ switch and applying aggrega-

tion and pipelining as follows:

(N, [MSM ], N, 1, s∗) a−→ (N, [MSM ], P, 1, s1)
p−→ (N, [MSM ], P, K, s) or

(N, [MSM ], N, 1, s∗)
p−→ (N, [MSM ], N, K, s2)

a−→ (N, [MSM ], P, K, s)

Let A be the algorithm set that provides fa equivalence with the original CIOQ switch (with

speedup s∗), following the arrow marked a, using speedup sa. Similarly, let P be the set that

provides fp equivalence with the CIOQ switch, following the arrow marked p, using speedup sp.

It follows that a combined application ofA and P will provide the lower of the two equivalences,

using the higher of the two speedup values. This leads us to the following informal4 result.

Proposition 4. Let a reference CIOQ switch employ A′ with speedup s∗. Then,

(CIOQ-A, A)
T,fa' (CIOQ, A′), s ≥ sa

∧ (CIOQ-P, P)
T,fp' (CIOQ, A′), s ≥ sp ⇒

(G-MSM, A
⋃
P)

T,f
' (CIOQ, A′), where s ≥ max(sa, sp), f ≤ min(fa, fp)

The above provides an intuition behind the achievable performance for various combina-

tions. If the reference CIOQ switch is functionally equivalent with some ideal switch, at a level

no higher than f , the employment of A ∪ P , in G-MSM, allows to inherit that equivalence, due

to the containment (4.5) and transitivity (4.6) properties.
4This result is kept informal because the calculus of functional equivalence is not mature enough to account for a

sequence of transformations. Formal results for individual instances of A and P are easily obtained on a case-by-case
basis.



210 Chapter 6

Table. 6.4 shows the gamut of performance, and associated run-time complexity, for var-

ious such combinations, based on the individual results on CIOQ-A and CIOQ-P. The reference

for equivalence is a cell-based CIOQ switch. Here O(h(n)) denotes the complexity of the match-

ing algorithm being emulated, on an (n× n) queue-state matrix, and O(g(n)) is the complexity

of the chosen algorithm that decomposes a (n × n) aggregate matrix. For instance, h(n) equals

1 for SPS, n for EREW maximal, n2 for maximal, n2.5 for critical, n2 log n for SOQF and n3 for

maximum weight matching. Similarly, g(n) equals n2 for maximal and n2.5 for critical decom-

position. The combinations in the first column require VIOQ, as opposed to VEQ in the second

column. Furthermore, the ones in the second row require per-SE queueing.

Notice that, for asymptotic 100% throughput to admissible traffic, matching on virtual

element queues suffices, with the concurrent and balanced dispatch methods affording the lowest

complexity. For uniform traffic, concurrent SPS (or round-robin) is sufficient with s ≥ 1, while

for non-uniform traffic, a concurrent EREW maximal (3DMM) matching suffices for the same,

with s ≥ 2. Lower speedup is made possible by critical matching on SE-VEQ, striping the re-

sults of a critical matching on VEQ, or more simply, a critical matching followed by sequential

dispatch, at the expense of higher complexity. For isolating instability in the presence of inad-

missible traffic, however, VIOQ is required for known matchings. Note that these are based on

analytically proven results on CIOQ switches, and the theorems on aggregation and pipelining,

from the previous section, that allow to transfer those results to a G-MSM.

6.3.1 Shadowing Approaches

Fig. 6.24 shows four methods for shadowing a N×N switch, followed by a decomposition into a

sequence of P ×P configurations, suitable for a G-MSM switch. Instead of providing the precise

algorithms, we have merely shown the flow of events for each of the combinations. The reader

is referred to the respective CIOQ-A and CIOQ-P algorithms for further details. Each method

requires virtual input-output queueing. In addition, the equal-dispatch method requires per-space

element VIOQ. Note that if the cells served by the shadowing operation are immediately trans-

ferred to temporary on-chip FIFOs, the external memory bandwidth for all such techniques goes

down to (1 + s∗) times the interface capacity.



CIOQ: Aggregation and Pipelining 211

Algorithm 24. G-MSM: Shadow and Decompose

(a) Shadow-A-Decompose-Sequential Dispatch:

1. π∗(m)← Apply A on VIOQ at epochs mT , T = sN
s∗P , m > 0

2. Decompose π∗(m) into π(n), n = mT,mT + 1, . . . , (m + 1)T − 1

3. π(k)(d n
K e)← π(n), k = n mod K + 1

(b) Shadow-A-Decompose-Stripe:

1. π∗(m)← Apply A on full envelopes in VIOQ at epochs mKT , m > 0

2. Decompose π∗(m) into πe(l), l = mT,mT + 1, . . . , (m + 1)T − 1

3. π(n)← πe(l), n = lK, lK + 1, . . . , (l + 1)K − 1

4. π(k)(d n
K e)← π(n), k = n mod K + 1

(c) Equal Dispatch-Shadow-A-Decompose:

For all space elements k in parallel:

1. π∗(k)(m)← Apply A on SE-VIOQ at SE epochs mT , m > 0

2. Decompose π∗(k)(m) into π(k)(n), SE slot n = mT, . . . , (m + 1)T − 1

(d) Concurrent-A-Decompose:

For all space elements k in parallel:

1. π∗(k)(m)← Apply A on VIOQ at SE epochs mT , m > 0

2. Decompose π∗(k)(m) into π(k)(n), SE slot n = mT, . . . , (m + 1)T − 1

Figure 6.24: G-MSM: Combination methods based on shadowing and decomposition



212 Chapter 6

As shown in Fig. 6.24(a), we may shadow a CIOQ switch employing A (Fig. 6.4), with

speedup s∗, followed by a critical (s ≥ s∗) or maximal decomposition (s ≥ s∗(2− P
N )) to yield

a sequence of configurations π(n), using a centralized arbiter. These configurations may then be

assigned to the staggered SE slots of the K space elements, using sequential dispatch (Fig. 6.14)

without the need for additional speedup. From Theorems 10 and 12, the combination exactly

emulates the reference CIOQ switch. The proofs of these theorems may be put together to give

us the following result.

Corollary 19. (CIOQ, A)
T,fi' (OQ, A′), s ≥ s∗ ⇒

(G-MSM, {Shadow-A, Critical Decomposition, Sequential Dispatch})
T,fi' (OQ, A′), s ≥ s∗

Maximal decomposition yields a similar result with about twice the speedup. Note that

this result holds any general A, providing the strongest throughput performance for a G-MSM

switch. For example, the switch provides asymptotic 100% throughput for all admissible traffic

for A = {Critical Matching}, without speedup. Similarly, A = {Maximal Matching} suffices

with s ≥ 2. The method also subsumes rate-shaping with batch-mode maximal or critical match-

ing for QoS. The primary drawback is that there is no complexity advantage despite using smaller

and slower space elements. For example, critical matching would run in O(N2.5) time, and max-

imal matching in O(N2 + NP 1.5) time.

Decomposing balanced matchings, including striping and equal dispatch, allows to sup-

port a general A, while retaining most of the throughput performance, namely, all the func-

tional equivalence results of the reference CIOQ switch except exact emulation. As shown in

Fig. 6.24(b), we may shadow a CIOQ switch (Fig. 6.4) employing A on full envelopes of K

cells, followed by a maximal or critical decomposition. The resulting configurations are uni-

formly assigned (Fig. 6.20) to each space element, each of which transfers a single cell for a

connected envelope. Alternatively, to avoid the unbounded latency issue in striping, arriving cells

may be equally distributed to each space element (Fig. 6.22). The K space elements may then

concurrently shadow a CIOQ switch, employing A, with interface rates of 1/K, as shown in

Fig. 6.24(c). A subsumes QoS-capable matching algorithms, with a scheduling latency of K

times that of the sequential dispatch method. Notice that, with respect to the latter, we reduce

the run-time complexity by a factor of K. Theorem 10, with 14 and 15, gives us the following



CIOQ: Aggregation and Pipelining 213

1

Input
Ports

1

2

3

4

1
2

3
4

2

3

Elements

Space

Output
Ports

In
pu

t E
le

m
en

ts

Output Elements

1

1

2

2

1

1
1

1

1

1 1

1

1

1

1

Figure 6.25: G-MSM: 3D maximal matching with critical decomposition, P = 2,K = 3

results:

Corollary 20. ∀fi, i 6= 5, (CIOQ, A)
T,fi' (OQ, A′), s ≥ s∗ ⇒

(G-MSM, {Shadow-A, Critical Decomposition, K-Striping})
T,fi' (OQ, A′), s ≥ s∗

Corollary 21. ∀fi, i 6= 5, (CIOQ, A)
T,fi' (OQ, A′), s ≥ s∗ ⇒

(G-MSM, {Equal Dispatch, Shadow-A, Critical Decomposition})
T,fi' (OQ, A′), s ≥ s∗

The lowest implementation overhead, and a comparable run-time complexity as the above

two methods, may be achieved by concurrently running A (Fig. 6.15) directly on the VIOQ,

for each of the space elements, followed by parallel decomposition operations, as shown in

Fig. 6.24(d). This essentially shadows a CIOQ-P switch using concurrent dispatch. An exam-

ple is illustrated in Fig. 6.25, in which a concurrent 3DMM (Fig. 6.18) is followed by a critical



214 Chapter 6

decomposition on each space element.

Unfortunately, this approach is not applicable to a general A. Accordingly, the results so

far are restricted to asymptotic 100% throughput for uniform traffic using concurrent SPS, and to

partially admissible traffic using 3DMM. The utility of concurrent SPS (Fig. 6.17) on VIOQ, with

a complexity dominated by decomposition, is debatable since the same performance may be had

using concurrent SPS on VEQ, with a lower run-time. Among established results for concurrent

dispatch, 3DMM provides the best performance. Specifically, from Theorem 13, 3DMM may

be used to provide 100% throughput to non-oversubscribed outputs, i.e., f3 equivalence with a

work-conserving OQ switch.

Corollary 22. (G-MSM, {3DMM, Critical Decomposition})
T,f3' (OQ, {WC}), s ≥ 2, K ≤ N ,

T : SLLN

The run-time complexity of O(NP 1.5/K) is again dominated by the critical decompo-

sition. In fact, with a higher speedup of s ≥ 4 − 2 P
N , the complexity may be brought down to

O(N
K ), using an EREW maximal matching to decompose the N ×N shadow configurations.

6.3.2 Matching on Virtual Element Queues

Matching on virtual element queues, as shown in Fig. 6.26, reduces the matching complexity,

compared to the corresponding shadowing schemes, by taking advantage of the smaller size of

the space elements. The basic approach is to compute matchings based directly on the P×P VEQ

matrix, as in CIOQ-A (Fig. 6.7), combined with a sequential, concurrent or balanced dispatch to

distribute the matchings over the K space elements. Again, we have not shown the precise al-

gorithms here, and the reader is referred to the respective CIOQ-A and CIOQ-P algorithms for

further details. The main disadvantage of any VEQ-based method is that the throughput perfor-

mance, for known results, is unsatisfactory in the presence of inadmissible traffic. Nevertheless, it

suffices for asymptotic 100% throughput to admissible arrivals, and to provide virtual bandwidth

trunks specified by an admissible rate-reservation matrix.

As shown in Fig. 6.26(a), we may directly apply the chosen matching algorithmA on the

VEQ matrix, once in every internal timeslot, to yield a sequence of P × P configurations. These

may then be assigned to the staggered SE slots of the K space elements, using sequential dispatch



CIOQ: Aggregation and Pipelining 215

Algorithm 25. G-MSM: VEQ Matching

(a) VEQ-A-Sequential Dispatch:

1. π(n)← Apply A on VEQ at each internal slot n, n > 0

2. π(k)(d n
K e)← π(n), k = n mod K + 1

(b) VEQ-A-Stripe:

1. πe(m)← Apply A on full envelopes in VEQ at epochs mK, m > 0

2. π(n)← πe(m), n = mK, mK + 1, . . . , (m + 1)K − 1

3. π(k)(d n
K e)← π(n), k = n mod K + 1

(c) Equal Dispatch-VEQ-A:

For all space elements k in parallel:

1. π(k)(n)← Apply A on SE-VEQ at each SE slot n, n > 0

(d) Concurrent-VEQ-A:

For all space elements k in parallel:

1. π(k)(n)← Apply A on VEQ at each SE slot n, n > 0

Figure 6.26: G-MSM: Combination methods for matching on virtual element queues

(Fig. 6.14), without the need for additional speedup. From Theorems 11 and 12, the combination

ensures VEQ stability for admissible traffic, providedA ensures the same in a CIOQ switch. The

proofs of these theorems may be put together to yield the following result.

Corollary 23. (CIOQ, A)
T,f2' (OQ, {WC}), s ≥ s∗ ⇒

(G-MSM, A
⋃
{Sequential Dispatch})

T,f2' (OQ, {WC}), s ≥ s∗

For example, a critical matching or MWM, without speedup, or maximal matching with

s ≥ 2, on the VEQ matrix, followed by a sequential dispatch of the configurations to the K space

elements, suffices for queue stability. Similarly, a SPS (or a single-step round-robin) suffices for

uniform traffic. The complexity of these methods remain the same as in a CIOQ-A (Table 6.3) as

these methods do not rely on space element parallelism.

For a slightly higher implementation overhead, balanced matchings, including striping



216 Chapter 6

(Fig. 6.20) and equal dispatch (Fig. 6.22), allows to provide the same performance, while lever-

aging parallelism to reduce the complexity. For example, cells may be equally dispatched, on

arrivals, to per-space element VEQ, and concurrent arbiters may run critical/MWM or maximal

matching on the latter, to provide 100% throughput. The run-time complexity then goes down by

a factor of K, with respect to the values in Table. 6.3. Theorem 11, with 14 and 15, gives us the

following results:

Corollary 24. (CIOQ, A)
T,f2' (OQ, {WC}), s ≥ s∗ ⇒

(G-MSM, A
⋃
{K-Striping})

T,f2' (OQ, {WC}), s ≥ s∗

Corollary 25. (CIOQ, A)
T,f2' (OQ, {WC}), s ≥ s∗ ⇒

(G-MSM, A
⋃
{Equal Dispatch})

T,f2' (OQ, {WC}), s ≥ s∗

Since the best results for virtual element queueing are restricted to f2 equivalence with

an OQ switch, it is an ideal candidate for concurrent matching. In fact, VEQ stability may be

achieved, at a complexity comparable to striping and equal dispatch, without the added imple-

mentation overhead of the latter. Provided K ≤ N , a 3DMM operating concurrently on the VEQ

matrix, with s ≥ 2, is sufficient for 100% throughput to any admissible traffic. This result may

be easily established by combining the proofs of Theorems 11 and 13. The resulting complexity

remains O(N
K ) as in shadowing and decomposing a N × N 3DMM (pg. 214), but the speedup

required is lower. For uniform traffic, a concurrent5 SPS matching suffices for 100% throughput,

as a consequence of Theorem 11 and Corollary 17. The resulting complexity is O( N
PK ) on the

external clock. Note that, for non-uniform traffic, with s < 2 or K > N , striping and equal

dispatch remain viable alternatives.

Corollary 26. (G-MSM, {3DMM})
T,f2' (OQ, {WC}), s ≥ 2, K ≤ N , T : SLLN

Corollary 27. (G-MSM, {Concurrent SPS})
T,f2' (OQ, {WC}), T : SLLN, Uniform

5As a historical note, the Atlanta/π chipsets employed an iterative variant, i.e., several steps, of SPS on virtual-
element state, combined with both sequential and concurrent dispatch, in different versions. A speedup s > 1 was
typically used, combined with input-output pair backpressure, to better serve non-uniform traffic and account for the
finite buffers. All the performance results were based on simulations, which provided the inspiration for the analytical
work here.



CIOQ: Aggregation and Pipelining 217

Figure 6.27: Recursive G-MSM switch: N = 4, P = 2,K = 3

6.3.3 Recursive G-MSM

The sole disadvantage of the G-MSM design is its relatively high memory bandwidth, which

in general equals N
P times that of a CIOQ switch. In practice, this is addressed by implement-

ing the VIOQ/VEQ system as small on-chip queues [19, 21], with backpressure between stages.

Specifically, the queues in the output elements block input-output pairs whose occupancy exceed

a certain threshold. Similarly, the queues in the input elements send feedback to each port pro-

cessor (Fig. 2.1), which contains the external memory to buffer the backlog. In such a scheme,

the memory bandwidth becomes comparable to a CIOQ switch. Unfortunately, analytical results

on the throughput performance of such backpressure-based schemes have remained elusive6.

Another intriguing alternative, which retains the performance results of a CIOQ switch,

at least for admissible traffic, is to recursively construct a G-MSM switch, as shown in Fig. 6.27.

We start with a G-MSM switch (N, [MSM ], P, K, s), employing an equal dispatch method and

a well-chosen matching algorithm A, applied concurrently on the per-space element queues by

the K central elements. Let K be chosen such that N
P ≤ K. For the sake of this discussion, let the

6Some of the ongoing research work on buffered crossbars may be applicable, to remedy this situation



218 Chapter 6

input memory elements of the G-MSM switch employ virtual element queueing. Furthermore,

the SE queues are kept physically separate in external memory. From Corollary 25, if the K space

elements apply critical matching, with s ≥ 1, or maximal matching, with s ≥ 2 on the respective

SE-VEQ matrices, all the queues remain stable for admissible traffic. The memory elements of

this base G-MSM switch are shown as dotted in Fig. 6.27.

We may then replace each of the memory elements of the original G-MSM design with a

CIOQ (or another G-MSM) switch. Specifically, the first-stage memory elements are replaced by
N
P ×K CIOQ switches, and the third-stage by K × N

P switches. The resulting design is a seven-

stage multi-path switch, which is not fully connected. The main task of stage-2 space elements

is to ensure that arriving cells, for each input-output pair, are equally dispatched to each stage-4

space element. Each stage-3 memory element has a single output, corresponding to one of the

K central elements. Accordingly, the first-stage elements implement virtual output queueing,

where an output refers to a central element, and not the eventual output. Thus, each stage-2

space element performs a matching on a N
P ×K VOQ matrix. Let the speedup required for this

operation be s′. The third-stage elements implement virtual element queueing, where an element

refers to a dotted block. The central space elements applyA concurrently on the respective P×P

VEQ matrices, with the same speedup s as in a G-MSM switch. Stages 5, 6, and 7 are mirror

images of 3, 2, and 1, respectively.

Notice that the links between stages 1-2, 2-3, 5-6, and 6-7 operate at a capacity of s′,

normalized to the external link rate. The links between stages 3-4 and 4-5 operate at s N
PK as in

G-MSM. Therefore, the memory bandwidth required in the third and fifth stage elements equal

(s′ + s N
PK ). Similarly, the first and seventh stage elements require (1 + s′). These are now

free of the multiplicative factor imposed by aggregation, in G-MSM, and compare favorably with

the memory bandwidth of a CIOQ switch, inspite of using much smaller elements. Provided

the matching algorithms in the second and sixth-stage space elements ensure queue stability in

the preceding stages, the switch continues to provide asymptotic 100% throughput. The benefits

of recursion come at the cost of possible cell mis-sequencing–a common issue in all multi-path

switches, which we address separately in Sec. 7.4. This situation arises because the K SE-VEQs,

for each element pair, need to be kept physically separate to make recursion feasible.



CIOQ: Aggregation and Pipelining 219

Stage Type Method

1 Memory Route: For each input-output pair (i, j), equal dispatch to K destinations

Queue: Enqueue into VOQ (i, k), one for each stage-4 element

2 Space SPS matching on stage-1 VOQ

3 Memory Enqueue into VEQ, one for each dotted block in Fig. 6.27

4 Space Apply A (concurrently) on respective stage-3 VEQ matrix

A: Maximal (s ≥ 2), Critical/MWM (s ≥ 1)

5 Memory Enqueue into VOQ (k, j), k : Stage-4 element, j: Output

6 Space SPS matching on stage-5 VOQ

7 Memory Dispatch cell (memory is redundant, for SPS in stage 6)

Table 6.5: Combination method for a 7-stage recursive G-MSM switch

We now show that, for admissible traffic, SPS matching with s′ = 1, slightly adjusted to

account for the asymmetric queue-state matrices, suffices in the second and sixth stages. Let the
N
P × K matrix λ(2,p) denote the average rates into the virtual output queues, of the first stage,

connected to stage-2 space element p. Similarly, let the K × N
P matrix λ(6,p) denote the average

rates into the VOQ, of the fifth stage, connected to stage-6 space element p. Furthermore, let λ

be an admissible (2.2) N ×N average-rate matrix for the entire system. Then, we have

∀k ≤ K, ∀p ≤ P, λ
(2,p)
i,k =

1
K

N∑
j=1

λi,j

≤ 1
K

, where
N

P
(p− 1) < i ≤ N

P
p

The first equality is due to equal dispatch, and the second line holds irrespective of the admissibil-

ity of λ, due to the physical limitation of the input links. Since each entry is no greater than 1/K,

SPS (Theorem 5) suffices to keep the first stage stable. Similarly, for the stage-6 space element,

∀k ≤ K, ∀p ≤ P, λ
(6,p)
k,j =

1
K

N∑
i=1

λi,j

≤ 1
K

, where
N

P
(p− 1) < j ≤ N

P
p

Here, the second row utilizes the fact that λ is admissible. Due to the above, SPS with s′ =

1 suffices to keep the fifth stage stable, ensuring 100% throughput to admissible traffic. Note that,



220 Chapter 6

for inadmissible traffic, the column sums of λ(6,p) remain lower than 1 for non-oversubscribed

outputs. However, the sum of each row may exceed 1, hampering the deployment of maximal

or SOQF matching for the isolation of instability. In fact, instability at a single output spreads

uniformly across all the rows. Table. 6.5 summarizes the methods employed in each stage. Above,

we have essentially proved the following proposition.

Proposition 5. The combination method in Table. 6.5 is sufficient for asymptotic 100% through-

put to admissible arrivals in a recursive G-MSM switch, provided A suffices for the same in a

CIOQ switch.

6.4 Summary and Discussion

We conclude our coverage of single-path buffered Clos switches by summarizing the main results.

We showed how a CIOQ switch may be converted into more general three-stage architectures,

while retaining most (depending on the employed methods) of its throughput and QoS perfor-

mance. Specifically, the transformations of aggregation, yielding a CIOQ-A (Sec. 6.1) switch,

spatial pipelining, yielding CIOQ-P (Sec. 6.2), or both, yielding a G-MSM switch (Sec. 6.3)

were presented and analyzed, as recipes for such architectures. These designs, especially the G-

MSM one, are already found in the industry and in the literature. Most of the performance results,

however, are based on simulation studies of algorithms tailor-made for such designs. We have

instead presented methods that apply the well established (and the new ones from Chapter 5) re-

sults of CIOQ matching algorithms, and analytically showed them to be sufficient for throughput

and QoS in single-path switches. In fact, the main message of this chapter is that there is no need,

for the most part, to individually propose and analyze matching algorithms for such switches.

Fig. 6.28 shows our results, in terms of the functional equivalence framework of Chapter 4.

The CIOQ-A switch allows us to use smaller albeit faster space elements, compared to

a CIOQ switch of the same dimensions. We showed that such a switch retains all the perfor-

mance results of CIOQ matching algorithms, by using virtual input-output queueing (Sec. 6.1.1)

and the shadow-and-decompose method (Theorem 10). Optical space elements are perfect can-

didates for such designs, due to their higher speeds but smaller sizes, compared to electronic



CIOQ: Aggregation and Pipelining 221

VIOQ:

1

f
1

: Concurrent BVN

f
3

: 3D Maximal Matching

f
1

VEQ:

: BVN/DOUBLE Decomposition

: Critical/Maximal/LPF Matching, MWMf
2

CIOQ−A CIOQ

OQ

CIOQ−P

: Maximal Matching

: Shortest Output−Queue First

: Stable Matching

f
3

f
4

f
5

: BVN/DOUBLE Decomposition

: Critical/LPF Matching, MWMf
2

G−MSM
f
2

: Critical/Maximal/LPF/MWM, Sequential Dispatch

f
2

: Envelope−Critical/Maximal/LPF/MWM, Striping

f
2

VEQ:

: Equal Dispatch, Critical/Maximal/LPF/MWM

f
2

: 3D Maximal Matching

f
5

: Shadow−and−Decompose, Sequential Dispatch

f
4

: Envelope−Shadow−and−Decompose, Striping

f
4

: Equal Dispatch and Match, Decompose

VIOQ:

f
5

: Shadow−and−Decompose

VIOQ: f
5

: Shadow, Sequential Dispatch

f
4

: Envelope−Shadow, Striping

f
4

: Equal Dispatch and Match

f
3

: 3D Maximal Matching, Decompose

f

Figure 6.28: Functional equivalences for single-path buffered Clos switches

crossbars. To address their high re-configuration overhead, we may combine shadowing with

batch-mode decomposition while retaining the same performance (Corollary 11), at the expense

of a higher latency. A lower matching complexity results by employing virtual element queue-

ing (Sec. 6.1.1) and directly applying the base CIOQ matching algorithm on such queues. We

showed (Theorem 11 and its derivative results) that this suffices for QoS and 100% throughput to

admissible traffic. Providing optimal throughput in the presence of inadmissible traffic remains

an open problem for VEQ. Extensions for natively supporting subports, with heterogeneous rates,

and increasing the efficiency of recycling-based multicast support were also briefly covered.

A CIOQ-P switch provides the means to use several instances of relatively slower space

elements, of the same size, compared to a CIOQ switch. We showed (Theorem 12) that such a

design exactly emulates a CIOQ switch, with any base matching algorithm, using the sequential



222 Chapter 6

dispatch method, thereby inheriting its performance. This method requires a centralized arbiter

and does not afford a lower arbitration frequency to go with the slower space elements. We

proposed three methods, namely, concurrent matching, striping and equal dispatch to propor-

tionately reduce the frequency. We showed that striping (Theorem 14) the outcome of a general

envelope-based CIOQ algorithm, as well as explicitly distributing the offered load uniformly to

all the space elements, i.e., equal dispatch (Theorem 15), retains almost all the performance of a

CIOQ switch, except exact emulation. The tradeoff with striping is the possibility of unbounded

latency, and with equal dispatch is a higher implementation overhead. Both provide similar QoS

performance as a CIOQ switch, but with a significantly higher scheduling latency.

We recognized the benefit of allowing for a low arbitration frequency without being

hampered by the tradeoffs of equal dispatch and striping, and proposed the concurrent dispatch

method to realize it. Unfortunately, many of the known matching algorithms do not lend them-

selves to such an implementation. On the positive side, template-based schemes as well as orderly

and greedy methods, in general, do allow a meaningful concurrent realization. Specifically, we

showed (Corollary 16) that BVN decomposition may be used for bandwidth guarantees, and a

concurrent SPS matching (Corollary 17) for 100% throughput to uniform traffic. We adapted

the EREW maximal matching for a CIOQ switch to a three-dimensional greedy maximal match-

ing (3DMM) algorithm, and proved its sufficiency (Theorem 13) for 100% throughput to non-

uniform, including partially admissible, traffic, under certain restrictions on the dimensions of

the elements. Providing better functional equivalence with an OQ switch, without such restric-

tions, remains an open problem for concurrent dispatch.

We claim here that the low-frequency methods of concurrent dispatch and equal dispatch,

for CIOQ-P, may in fact be used in a CIOQ switch to reduce its matching complexity. Recognize

the space-time duality of the spatial pipeline in CIOQ-P with a temporal pipeline in CIOQ. With-

out elaboration, we leave the reader with a tantalizing suggestion that these methods may be used

in a CIOQ switch to reduce its arbitration complexity to O(1 + ε), for an arbitrarily small ε, by

viewing the consecutive timeslots of a CIOQ switch as SE timeslots of a CIOQ-P switch, with

a well-chosen number of space elements. We claim that these methods provide a better alterna-

tive to reduce matching complexity in input-queued switches as opposed to using envelope-based



CIOQ: Aggregation and Pipelining 223

matchings [54], with its issues of unbounded latency.

Finally, we covered a G-MSM switch–a general memory-space-memory design obtained

by simultaneously applying aggregation and pipelining to realize the benefits of both. The meth-

ods presented for a G-MSM were natural combinations of those for CIOQ-A and CIOQ-P. We

showed (Corollaries 19, 20, 21, 22) that the shadow-and-decompose method, operating on virtual

input-output queues, combined with sequential dispatch, striping, equal dispatch or concurrent

dispatch may be used to achieve performance comparable to a CIOQ switch. The first offers

strictest equivalence, but with a high matching frequency. The latter three afford a significantly

lower frequency, resulting in lower complexity. We then showed that similar sequential, con-

current or balanced matchings may be performed on virtual element queues (Corollaries 23, 24,

25) to further lower the matching complexity, and provide 100% throughput to admissible traffic.

Specifically, we analytically established that a concurrent SPS, or round-robin, on VEQ (Corol-

lary 27) suffices for uniform traffic, and a 3DMM (Corollary 26) on VEQ for non-uniform traffic.

We opened up the intriguing possibility of recursion on BCS, by replacing the memory

elements of a G-MSM by individual CIOQ switches (Sec. 6.3.3). The resulting 7-stage multi-path

switch supports 100% throughput for admissible traffic (Proposition 5) using the combination

method in Table 6.5. More beneficially, the required memory bandwidth becomes comparable to a

CIOQ switch, thus addressing the single disadvantage of a G-MSM design. While we introduced

this possibility, we did not cover such recursive designs in detail. Pending an evaluation of its

practical utility, this may present an interesting topic for further research.

6.4.1 Related Work

The Atlanta/π chipsets [19, 21, 22], of which the author was fortunate to be a contributor, was

among the earliest switching products that employed a G-MSM design. Essentially, the match-

ing algorithms used were similar to the EREW sub-maximal implementation (Fig. 5.11) of SPS

matching, with sequential and concurrent dispatch (in different versions) among the central space

elements.

No centralized arbiter is required for such matchings. Specifically, each input element

may choose an output on a round-robin basis, and dispatch a cell if one exists for the unique and



224 Chapter 6

non-conflicting output indicated by its pointer. While the matching was on an element-pair basis,

queues were kept separate for each input-output pair, for backpressure from the third to the first

stages, essentially yielding a hierarchical output scheduling structure (pg. 177). Copious amounts

of simulations indicated that the switch provided 100% throughput for uniform traffic, and also

for some non-uniform patterns, with speedup. We have, in this work, established the theoretical

basis for those observations. We now know that an EREW sub-maximal matching (Theorem 6

on SPS), combined with sequential (Theorem 12) or concurrent (Theorem 17) dispatch on VEQ

suffices for uniform traffic, without speedup. Furthermore, the same suffices for slightly non-

uniform traffic with speedup, specifically, a speedup of k for average rates that are less than k/N

for each input-output pair.

Concurrent Round-Robin Dispatch

Oki et al. [85] proposed the concurrent round-robin dispatch (CRRD) algorithm for a G-MSM

switch, and proved its sufficiency for 100% throughput to uniform traffic, using simulations.

CRRD is an iterative algorithm, which essentially performs several steps of request-grant-accept

(RGA, see pg. 59) operations, based on desynchronized round-robin pointers in the input el-

ements. Much as the rationale for iSLIP [78], the intuition provided was that uniform traffic

always keeps the pointers desynchronized leading to a maximal matching in each timeslot. We

have analytically shown that less is needed. A single iteration of such schemes, evidenced by

our results on EREW sub-maximal matchings, combined with sequential or concurrent dispatch,

suffices for uniform traffic. The zeal to converge to a maximum-size matching ironically leads to

worse performance, which then needs iteration as a remedy.

As a follow-up, the maximum weight matching dispatch (MWMD) was proposed by

Rojas-Cessa et al. [93], who essentially showed that a MWM on VEQ, combined with sequen-

tial dispatch, is sufficient for 100% throughput to admissible traffic. Of course, this has been

subsumed by our more general result on VEQ matching (Theorem 11) combined with sequential

dispatch (Theorem 12), which established that any matching algorithm for input-queued switches,

including critical, LPF, MWM, without speedup, and maximal, with speedup, that provides 100%

throughput to admissible traffic, suffices for the above combination.



225

Chapter 7

Parallel Packet Switches

Our final focus is on multi-path buffered Clos switches, which are characterized by memory

element(s) in the central stage, and require markedly different methods compared to the single-

path designs of the previous two chapters. Specifically, we present and analyze a parallel packet

switch (PPS) architecture, concentrating on load balancing and sequence control methods. While

CIOQ switches and their derivatives are currently in the later stages of research, and common in

deployment, much less is understood about the performance of a PPS. Though the initial steps

towards that goal have been taken, including the contributions in this chapter, we are still away

from deploying a truly high-performance PPS. There are some commercially available routers

that employ clustering of several switching blades, and hence provide realizations of nominally

multi-path switches, though the throughput and QoS performance of such products do not come

close to our benchmark, the OQ switch.

We first introduce the PPS architecture, followed by a classification into flow-based and

cell-based PPS. The former is a model for the aforementioned clustered routers, while the lat-

ter promises better throughput performance. For cell-based PPS, we propose and analyze equal

and fractional dispatch methods for load balancing, in order to emulate an OQ switch. We then

present a few sequence control schemes and analyze their suitability for such multi-path designs.

Some of the results here, specifically, a few of the original contents in Sec. 7.3 and 7.4, were

previously shared with the research community in a series of publications [17, 18, 64, 62, 63].



226 Chapter 7

Our research1 on this topic was interleaved by some pioneering contributions by Iyer and McK-

eown [49, 50], which are included as related work in Sec. 7.3. For completeness, we also review

the load-balanced Birkhoff-Von Neumann (BVN) switch, which has emerged recently as an al-

ternative multi-path BCS, in the discussion section.

7.1 Switch Architecture

A N ×N PPS (N, [xMx], N, K, s), previously shown in Fig. 4.6, is expanded in Fig. 7.1. Here

x may refer to a memory or a space element. We obtain such a switch by pooling the bandwidth

resources of K memory elements, and balancing the offered load among them. Consequently,

there are N elements of size 1×K in the first-stage, which perform load balancing and are called

ingress demultiplexors. Similarly, there are N elements of size K × 1 in the third-stage, which

reassemble the output traffic and are referred to as egress multiplexors. The K central memory

elements of dimensions N ×N are called core elements. Normalized to an external capacity of

one cell per timeslot, the internal links operate at s/K. The time required to transfer a cell on the

latter is referred to as an internal timeslot, the size of which equals K/s that of an external slot.

Notice that the architecture is structurally similar to a CIOQ-P switch. However, due to

the presence of memory in the central stage, there is no simultaneous input and output contention

as in CIOQ-P. Accordingly, the two dimensional scheduling, which we referred to as arbitration,

necessary to account for the conflict-free property (2.5) in a MSM design, may now be replaced

by a uni-dimensional algorithm that merely matches an incoming cell to one of the K possible

core elements. Such matching may be performed by a centralized load balancer, or preferably by

each demultiplexor in a concurrent fashion. Let the outcome of load balancing, in external slot n,

be denoted by the N ×K configuration π(n), where πi,k(n) = 1 implies that a cell arriving on

input i is dispatched to core element k. For unambiguous dispatch, we impose

∀n, ∀i ≤ N,
K∑

k=1

πi,k(n) ≤ 1 (7.1)

1The architecture and performance studies detailed here were motivated by the π-group chip project, a prototype
cell-based PPS co-architected and analyzed by the author in 1999–2002, as part of the commercial Atlanta/π chipset
effort at Bell Labs. Furthermore, part of the contents of Sec. 7.3 and 7.4 should be considered joint work with Denis
Khotimsky, then at Bell Labs.



Parallel Packet Switches 227

Multiplexor 1

π

Demultiplexor 1

R

1

2

3

K

1

1

2

N

1

2

N

C

C

C

C

C

C

1

K

Core Elements

N x N

Ingress

c = sC/K

De−multiplexors

Egress

Multiplexors

c = sC/K

1

1

2

3

K

2

1 x K

1 x K

1 x K

N x N

N x N

K x 1

K x 1

K x 1

Figure 7.1: A parallel packet switch (PPS) with load balancers and re-assemblers



228 Chapter 7

If the link from demultiplexor i to core element k is free, the cell may immediately be placed on

the internal link. Otherwise, there is a contention for link k, and cells are enqueued into per-path

dispatch queues in the demultiplexor. Notice that a transmission to link k that begins at slot n is

completed by the end of slot (n + dKs e). Therefore, if an internal link is chosen at most once in

those many consecutive slots, the demultiplexors do not need any queueing. In other words, we

achieve memoryless dispatch as long as

∀n, ∀i ≤ N, ∀k ≤ K,

n+dK
s e∑

m=n

πi,k(m) ≤ 1 (7.2)

We define an input-output subflow (i, j, k) as the portion of traffic belonging to input-

output pair (i, j) that is dispatched to core element k. Let A
(k)
i,j (n) denote the cumulative number

of arrivals for subflow (i, j, k), until external slot n. If Ai,j(n) denotes the cumulative arrivals

into the system for the pair (i, j), the load balancing splits the incoming traffic as follows, which

becomes an equality when the first stage is memoryless.

∀i, j, k, n, A
(k)
i,j (n) ≤

n∑
m=1

(Ai,j(m)−Ai,j(m− 1))πi,k(m) (7.3)

In contrast to a CIOQ-P switch, however, cells belonging to the same input-output pair

may experience significantly different delays in different paths, and hence may require resequenc-

ing in the multiplexor. More precisely, cells of subflow (i, j, k) eventually contend for the output

link j of core element k. The contention experienced by subflow (i, j, l) in core element l may, in

general, be different, resulting in several cells of flow (i, j) being delivered to multiplexor j out

of sequence. If in-sequence delivery2 is desired, cells may be enqueued into per-path reassembly

queues in the multiplexor. A reassembler schedules cells out of those queues, restricting itself

to those that are eligible for dispatch (shown shaded in Fig. 7.1). A cell is considered eligible

if there are no other cells ahead of it in the arrival sequence that are still inside one of the core

elements. Alternatively, the third stage may be memoryless, with the reassembler drawing cells

from the heads of the respective core element queues, as and when they become eligible, and

immediately dispatching them on the output link. Clearly, in either case, this depends upon the
2Bennett and Partridge, in [2], report that packet re-ordering in the Internet is typically not pathological network

behavior, rather, it results due to incorrect network node functionality. As frequent losses play havoc on higher layer
protocols such as TCP, maintaining in-sequence delivery should be considered a requirement for switching nodes.



Parallel Packet Switches 229

ability to identify eligible cells as such. The reassembler is said to suffer from redundant wait, an

undesirable scenario, if it is unable to correctly recognize eligible cells at all points in time.

So far, we have noted that the first stage may be comprised either of memory elements,

with dispatch queues, or of space elements, if the load balancing satisfies (7.2). Similarly, the

third stage may consist of memory elements, with reassembly queues, or of space elements, if

the re-assemblers directly draw cells from the core element queues and immediately dispatch

them. Note also that, if s = 1, and in-sequence delivery is not required, the third stage reduces

to a trivial space element. In addition to these possibilities, we introduce a new type of element

S̃, which stands for a memory element with a small fixed amount of memory. For all practical

purposes, such an element may be considered a space element, as long as the memory can be

implemented as on-chip (e.g., registers, static RAM) buffers. In this case, there is no need for

external memory, and the on-chip buffers are no different from registers found within regular

space elements, e.g., in the hardware pipeline. For our analysis, we will consider a memory size

that depends only upon the switch dimensions, for arbitrary arrivals, as small enough so as to

designate the element as S̃.

7.1.1 Benefits

The main benefits of the PPS architecture are modularity and component reuse. A N ×N mem-

ory element with interface capacity of s/K < 1, used to build a lower-capacity switch, may

now be reused to construct a N × N switch with an interface capacity of 1. Instead of build-

ing the higher capacity switch from scratch, one may add the latter to one’s portfolio by merely

building the requisite demultiplexors and multiplexors. The memory bandwidth of a core ele-

ment is (1 + N)s/K at each output, while that of the first and third stage elements are upper

bounded by (1+s), if those elements contain external memory. This is the motivation behind the

design of most of the commercially available clustered and stackable routers, in which several

blades, often offered separately as stand-alone lower-capacity switches, are interconnected by a

cluster controller that encompasses the demultiplexor and multiplexor functionality. Clearly, the

bandwidth of the fastest memory in the system becomes (1 + s) when

K ≥ s(1 + N)
1 + s



230 Chapter 7

3

1 x 3

1 x 3

3 x 1

3 x 1

1

2

1

2

MultiplexorsDemultiplexors

Core CIOQ Switches

1

2

Figure 7.2: A 2× 2 PPS with CIOQ switches for central memory elements

The benefit of reuse may be extended by replacing a core element with another switch.

Provided it does not affect the throughput and QoS performance of a PPS, a core memory element

may be replaced by a CIOQ switch, as shown in Fig. 7.2. In this case, the memory bandwidth

required in the core drops to (1 + s′)s/K, where s′ is the internal speedup of the chosen CIOQ

switch. The fastest memory in the system, residing in the first and last stages, continues to run at

(1 + s), but without any restriction on the dimensions. In fact, all the K central elements (dotted

in the figure) may be realized by a single KN × KN CIOQ switch. We introduced such an

architecture in [17], motivated by the goal to build a 8× 8 OC-192 switch using a 32× 32 OC-48

switch from the Atlanta/π [22] family. Due to the similarity with classical inverse multiplexing

of low-rate links, also called link bonding, we dubbed this an inverse multiplexed switch.

Notice that if component reuse is not a concern, we might prefer a plain CIOQ architec-

ture over PPS, as it affords a comparable memory bandwidth without being hampered by issues

such as cell sequencing. However, if the first and third stage elements of a PPS can be real-



Parallel Packet Switches 231

ized as space elements S or S̃, the fastest memory in the system would run at (1 + s′)s/K, or

a/K for some constant a. As K is a design parameter under our control, this would allow us

to build switches in which the fastest external memory runs slower than the external interfaces.

As memory bandwidths are not keeping pace with increases in link transmission rates, this repre-

sents the biggest promise of a PPS architecture. In fact, by appropriately choosing K, we might

finally be able to remove the interdependence of interface rates with memory bandwidths. If the

resulting PPS emulates an OQ switch, we may also recursively replace the core elements with

PPS switches, allowing the usage of arbitrarily slow memories. While we consider this academic

possibility, we do not explore a recursive PPS in this work.

To make the above (non-recursive) high-capacity low-memory bandwidth switch a reality,

the methods in the switch need to provide optimal throughput and QoS, while (i) maintaining cell

sequence; (ii) preferably allowing for a memoryless first and third stages, or at least memories

that run slower than the external interfaces, and (iii) enabling the employment of a CIOQ switch

in the core without degrading performance.

7.1.2 Queueing Strategies

Demultiplexor

A small-memory demultiplexor may use per-path FIFO for dispatch queues, irrespective of how

the incoming cells are distributed, as shown in Fig. 7.1. A cell arriving at timeslot n, for input-

output flow (i, j), is enqueued into FIFO (i, k), of length Xi,k(n), where k is such that πi,k(n) =

1. Therefore, there are exactly K FIFO queues in each demultiplexor. Let X
(j)
i,k refer to the

number of cells in FIFO (i, k) that belong to flow (i, j). Then, we may extend (7.3) as follows,

where DXi,k
(n) refers to the cumulative departures from queue (i, k) until timeslot n.

∀i, j, k, n, A
(k)
i,j (n) =

n∑
m=1

(Ai,j(m)−Ai,j(m− 1))πi,k(m)−X
(j)
i,k (n) (7.4)

Xi,k(n) =
N∑

j=1

X
(j)
i,k (n) (7.5)

Xi,k(n) =
N∑

j=1

n∑
m=1

(Ai,j(m)−Ai,j(m− 1))πi,k(m)−DXi,k
(n) (7.6)



232 Chapter 7

Demultiplexor  i

S

(i, 1, 1)

(i, 2, 1)

(i, N, 1)

S
Link K

(i, 1, K)

(i, 2, K)

(i, N, K)

π

Link 1

Input i

Figure 7.3: Ingress demultiplexor with per-path virtual output queueing

DXi,k
(n +

⌈
l
K

s

⌉
) = DXi,k

(n) + l, ∀l s.t. Xi,k(n) ≥ l (7.7)

The last line assumes that the demultiplexor is work conserving on each internal link, i.e., as long

as Xi,k > 0, link k remains busy and transfers cells at a rate of s/K per external slot. Note that

cells belonging to different flows may be multiplexed into the same queue. Due to their small

sizes, the stability of X is moot, however, a cell destined to link k may experience a worst-case

delay of |Xi,k|K.

Clearly, if the demultiplexors are composed of memory elements, cells may experience

unbounded delay with per-path FIFO queueing. While this may not affect the throughput of

input-output pairs as a whole, it prevents any provisioning of bandwidth and delay guarantees.

Hence, such a demultiplexor requires hierarchical queueing at each link, as shown in Fig. 7.3. We

may either employ per-path VOQ or per-flow queueing for each link, depending upon the desired

granularity of traffic isolation, with a work-conserving scheduler at each internal link. For per-

path VOQ, a cell arriving at timeslot n, for input-output flow (i, j), is enqueued into VOQ (i, j, k),

of length X
(j)
i,k (n), where k is such that πi,k(n) = 1. Hence, there are NK virtual output queues

in each demultiplexor, one for each subflow. The evolution of the per-path VOQ (and similarly, of

per-path flow queues, if employed) may be expressed as the following modification of the above



Parallel Packet Switches 233

2

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Demultiplexor

1

2

2 1 1

2

B A B

A

Core

2

1

A

B

Multiplexor

1

Figure 7.4: PPS: FIFO in the core may be incompatible with a buffered first stage

equations for per-path FIFO queueing.

∀i, j, k, n, A
(k)
i,j (n) =

n∑
m=1

(Ai,j(m)−Ai,j(m− 1))πi,k(m)−X
(j)
i,k (n) (7.8)

X
(j)
i,k (n) =

n∑
m=1

(Ai,j(m)−Ai,j(m− 1))πi,k(m)−D
X

(j)
i,k

(n) (7.9)

N∑
j=1

D
X

(j)
i,k

(n +
⌈
l
K

s

⌉
) =

N∑
j=1

D
X

(j)
i,k

(n) + l, ∀l s.t.
N∑

j=1

X
(j)
i,k (n) ≥ l (7.10)

Since there is no contention at an internal link, as long as the average arrival rate into the VOQ

system at that link is less than s/K, all those queues remain stable. The link scheduler controls

the bandwidth trunk and latency observed by each subflow.

Core Elements

Core element k receives cells for each subflow (i, j, k), i ≤ N , j ≤ N , with respective cumulative

arrivals A
(k)
i,j (n), where n is the external timeslot. These may be enqueued into FIFO queues, one

per output j, with length Q
(k)
j (n). Let D

(k)
j (n) be the cumulative departures from output j until

timeslot n, and B
(k)
j (n) denote an indicator of whether the output is allowed to send a cell to

multiplexor j. Then, the evolution of the N FIFO queues in each core element may be given by

∀j, k, Q
(k)
j (n) =

N∑
i=1

A
(k)
i,j (n)−D

(k)
j (n) (7.11)



234 Chapter 7

D
(k)
j (n +

⌈
K

s

⌉
) = D

(k)
j (n) + 1 if Q

(k)
j (n)B(k)

j (n) > 0 (7.12)

It is evident that if the average arrival rate into a FIFO is less than s/K, and if the core element

is work conserving, that queue remains stable. Memoryless and small-memory multiplexors may

explicitly indicate a preference for specific flows by setting B
(k)
j = 1. Such a backpressure

technique might prevent work conserving behavior, in which case queue stability will need to be

separately established.

An important observation is that FIFO queueing may be incompatible with a buffered

demultiplexor, as shown in an example in Fig. 7.4. The figure shows two flows (1, 1) and (2, 1),

both of which are split across multiple core elements. In general, depending upon the occupancies

of the per-path queues in the demultiplexor, an older cell of one flow might find itself ahead of

a more recent cell of another flow, in the same core FIFO queue. Since this may happen in

multiple core elements simultaneously, we may arrive at a reassembly deadlock and mutual head-

of-line blocking. Notice that this situation will not arise if the demultiplexors are memoryless.

Furthermore, if they are implemented as S̃, with per-path FIFO size B, HOL blocking can be

prevented by ensuring that each cell is delayed by exactly BK/s slots, with respect to its arrival

into the system, irrespective of how long it spends in the demultiplexor. Such a delay equalization

technique has been used in other architectures with buffers in multiple stages, e.g., in a load-

balanced BVN switch [10].

Alternatively, a cell belonging to subflow (i, j, k) may be enqueued into a virtual input

queue (VIQ) (i, j), of length Q
(k)
i,j (n), at the output j of core element k. Let D

(k)
i,j (n) and B

(k)
i,j (n)

denote the cumulative departures for VIQ (i, j) and an input-output indicator, respectively. Then,

the evolution of the N2 VIQ system in each core element is given by

∀i, j, k, Q
(k)
i,j (n) = A

(k)
i,j (n)−D

(k)
i,j (n) (7.13)

∀j, k,
N∑

i=1

D
(k)
i,j (n +

⌈
K

s

⌉
) =

N∑
i=1

D
(k)
i,j (n) + 1 if

N∑
i=1

Q
(k)
i,j (n)B(k)

i,j (n) > 0 (7.14)

The last line expresses the fact that if some flow (i, j) has a backlogged cell, with Bi,j = 1, a

cell (not necessarily for (i, j)) is dispatched to multiplexor j. A link scheduler, at each output

j of the core element, determines which subflow is served in each internal timeslot. Note that,

for performance guarantees to finer grain flows, the VIQ system may be exchanged with per-flow



Parallel Packet Switches 235

Figure 7.5: A PPS with virtual input queues in the core elements and multiplexors

queues at each output. Also, if the core elements are implemented as CIOQ switches, the queues

covered in this section refer to their output-element queues.

Multiplexor

The queueing structure in buffered multiplexors has a one-to-one relationship with the core ele-

ment structure. Specifically, if the core employs per-output FIFO queues, a multiplexor j contains

K FIFO queues (k, j), as shown in Fig. 7.1. Alternatively, it may employ per-path VIQ (i, j, k)

(or per-path flow queues for finer granularity) as shown in Fig. 7.5. The dark arrows in the figure

illustrate the multiple paths, and the respective queues encountered on those paths, for flow (1, 2).



236 Chapter 7

Recognize that at all points in time, the first cell in sequence for flow (i, j), still in the system,

which we henceforth call the head cell, resides at the head of the multiplexor VIQ (i, j, k) for

some k, or at the head of VIQ (i, j, k) in some core element k, or in the demultiplexor. If the

head cell of any flow (i, j) is already in multiplexor j, by definition, it contains cells eligible for

dispatch. Let Ei,j(n) be the indicator of the existence of eligible cells for flow (i, j). Further, let

Z
(k)
i,j (n) be the length of VIQ (i, j, k) at external slot n, and D

Z
(k)
i,j

(n) the cumulative departures.

Then, we have

∀i, j, k, n, Z
(k)
i,j (n) = D

(k)
i,j (n)−D

Z
(k)
i,j

(n) (7.15)

∀j, n,
K∑

k=1

N∑
i=1

D
Z

(k)
i,j

(n + 1) =
K∑

k=1

N∑
i=1

D
Z

(k)
i,j

(n) + 1, if
N∑

i=1

Ei,j(n) > 0 (7.16)

The first equation is true because the VIQ systems in the core and in the multiplexors

work in tandem, and the cumulative arrivals into the third stage equals the cumulative departures

from the second. The second equation merely states that if there are eligible cells in multiplexor

j, one will be dispatched in each slot. Notice that this assumes the ability of the multiplexor to

avoid redundant wait. The specific flow (i, j), with Ei,j(n) = 1, which gets served at timeslot

n, is determined by the output link scheduler. In other words, the scheduler at link j first selects

a flow (i, j), and then dequeues the head cell. We emphasize that if the core elements employ

VIQ (or per-flow queues), the multiplexor is required to at least maintain the same granularity of

queueing. It is evident that if the multiplexor instead employs per-path FIFO queues, in-sequence

delivery of cells is ruled out.

A small-memory multiplexor may employ the same queueing structure as above, with

backpressure to the core elements. More precisely, if the size of VIQ (i, j, k) is equal to B,

a signal is sent to VIQ (i, j, k) in core element k to prevent further arrivals to that subflow,

whenever Z
(k)
i,j = B. In other words, the tandem queueing systems are related to each other by

∀i, j, k, n, B
(k)
i,j (n) = 1{Z(k)

i,j (n)<B}, (7.17)

which might affect the stability of the core element queues. A memoryless multiplexor, on the

other hand, may explicitly schedule cells directly from the core element, assuming it has the

necessary information to do so, by setting the signal for the desired subflows. The received cells



Parallel Packet Switches 237

Algorithm 26. PPS: Static Dispatch

Initialize: 1. For each flow f , assign p(f)

For each demultiplexor i in parallel

Every Timeslot n: If a cell arrives for (i, j)

1. f ← Identify flow

2. k ← p(f)

3. πi,k(n) = 1 (Dispatch to path k)

4. Enqueue into VOQ (i, j, k)

Figure 7.6: Flow-based PPS: Static dispatch method

are serialized and immediately placed on the output link. To indicate an unambiguous preference,

and to ensure the memoryless property, the signals are constrained as follows:

∀j, k,
N∑

i=1

B
(k)
i,j = 1 (7.18)

∀j,
K∑

k=1

N∑
i=1

B
(k)
i,j ≤ K

s
(7.19)

7.2 Flow-based PPS

A PPS (N, [xMx], N, K, s) may statically assign a flow, from input i to output j, to one of the

possible K paths between (i, j). Once a path is assigned, each cell of the flow follows its pre-

determined route through the switch. We refer to such a switch as a flow-based PPS, and the

method as static dispatch, illustrated in Fig. 7.6. Path determination, on each cell arrival for flow

f , may be carried out using a persistent hash function or a pre-populated lookup table p(f). Flows

may correspond to the traffic belonging to input-output pairs, or finer-grain streams within those

pairs, identified using fields in the cell header. Note that the figure does not show the dequeue and

enqueue operations in the rest of the system, which proceeds as described in the previous section.

Let the average arrival-rate λi,j (2.1), for each input-output pair (i, j), normalized to the

external link capacity, be known and admissible (2.2). Define λmax = maxi,j{λi,j} and λmin =



238 Chapter 7

GCD{λi,j}. To ensure that each flow may fit in a single path, impose λmax ≤ s
K , limited by

the capacity of the internal links. A greedy Clos fitting algorithm (pg. 32) may be used to assign

paths to each of the N2 flows. This merely visits the central elements, one by one, for each flow

(i, j) in a sequential fashion, until a core element k is found with sufficient bandwidth on both

its input i and output j. The well-established theory of multi-rate Clos networks (e.g., see [81]),

from circuit switching, may directly be applied to yield the following sufficiency condition.

Lemma 8. A flow-based PPS is guaranteed to find a path for an admissible flow, without re-

arranging existing path assignments, provided λmax ≤ s
K and

s ≥ (1− λmax)
K⌈

K−1
2

⌉ + (λmax − λmin)K (7.20)

Proof. Consider the assignment of an admissible flow between (i, j), with rate λmax. The total

bandwidth already allocated at input i (output j) cannot exceed (1− λmax). Let I be the number

of links between demultiplexor i and the core elements that cannot accommodate λmax. It follows

that those links have an existing bandwidth assignment of at least ( s
K −λmax +λmin). Therefore,

I is an integer such that

I(
s

K
− λmax + λmin) ≤ (1− λmax) (7.21)

or I ≤
⌊

1− λmax
s
K − λmax + λmin

⌋
(7.22)

The number of links J between multiplexor j and the core elements that cannot accommodate

λmax is also given by (7.22). Therefore, we are guaranteed to find a core element that can accom-

modate λmax, on both its input and output, provided

K ≥ I + J + 1

≥ 2

⌊
1− λmax

s
K − λmax + λmin

⌋
+ 1 (7.23)

Since a ≥ bbc implies dae ≥ b, we may rewrite (7.23) as

1− λmax
s
K − λmax + λmin

≤
⌈
K − 1

2

⌉
,

rearranging which, we obtain s ≥ (1− λmax) K

dK−1
2 e

+ (λmax − λmin)K



Parallel Packet Switches 239

The above proof, in reality, is a simple application of fitting additive scalars, in the interval

[λmin, λmax], in a circuit Clos network (3.1). Notice that result (7.20) continues to hold for fitting

finer grain flows f , within input-output pairs (i, j), with known average rates λf , provided they

are admissible, i.e., if

∀i
∑
j

∑
f∈(i,j)

λf ≤ 1 and ∀j
∑

i

∑
f∈(i,j)

λf ≤ 1 (7.24)

Clos fitting ensures that the total (average) bandwidth assigned at the inputs and outputs of each

core element does not exceed s/K, the internal link capacity. Therefore, irrespective of the

queueing strategy, a work-conserving scheduler at each output of the demultiplexors, core ele-

ments and the multiplexors, is sufficient to guarantee the stability of the attached queues. Fur-

thermore, since a flow is assigned to a unique path, there is no need for sequence control. Note,

however, that the first stage needs to be comprised of memory elements because there may be an

unbounded number of back-to-back cells arriving for the same flow, at a peak rate of 1, destined

to the same internal link, with capacity s/K. Similarly, the third stage also needs memory to en-

sure work-conserving service at each core-element output. Therefore, from Lemma 8, we obtain

the following result for flow-based PPS.

Theorem 16. For a PPS with memory elements in the first and third stages, Clos fitting of ad-

missible flows, with known average rates, is sufficient to ensure 100% throughput with speedup

s, provided λmax ≤ s
K and

s ≥ (1− λmax)
K⌈

K−1
2

⌉ + (λmax − λmin)K

That is, for the above speedup,

(PPS, {Clos Fitting})
T,f1' (OQ, {WC}), T : SLLN

Depending upon the relative values of λmax and λmin, the required speedup may be pro-

hibitive, due mainly to the fragmentation of bandwidth in the internal links. For instance, for

λmax = s/K and λmin → 0, the minimum value of s → K. In this situation, parallelization

offers no benefits! On the other hand, if all the rates are equal, e.g., if λmax = λmin = s
K , we



240 Chapter 7

Figure 7.7: Clos fitting in PPS: Effect of unbalanced load on speedup

obtain3:

s ≥
(1− s

K )K⌈
K−1

2

⌉
or s ≥ K

1 +
⌈

K−1
2

⌉ (7.25)

More meaningfully, in a switch with a large number of fine-grain equal-bandwidth flows, as

λmax → 0 (and hence λmin → 0), the required speedup is given by

s ≥ K⌈
K−1

2

⌉ , (7.26)

which is equal to 2 for even K, and slightly higher for odd values of K. Fig. 7.7 shows an

example of how the relative values of offered load affects the required speedup. As long as the

minimum offered load is not insignificant, the speedup approaches the lower bound (7.25) for

large K.

This may be directly applied to clustered routers, which assign paths for each IP flow,

based upon a hash function of the source and destination fields in the packet header. The main
3Note that this example makes sense only when F s

K
≤ 1, where F is the maximum number of flows at an input

or output



Parallel Packet Switches 241

assumption is that if there are a large number of flows, each offering a load that equals a miniscule

portion of the link capacity, a uniform hash function suffices without knowledge of the average

rates. The performance of such functions have been studied in the past, in the context of multi-link

load-balancing (e.g., [53, 6]). The relevant observation in such works is that such hash functions

lead to instability if the load offered by the flows vary widely with respect to each other. For

switch load-balancing, in our case, this manifests as bandwidth fragmentation, necessitating a

higher speedup. Moreover, the hash function needs to ensure that no internal link is overloaded,

a task that, in general, is difficult without knowledge of the average rates. We might infer such

knowledge using measurements of instantaneous load on each internal link, but such techniques

do not allow us to establish long-term stability.

Due to the above limitations, a flow-based PPS (or a clustered router) fails to provide

100% throughput, even for admissible traffic and a high speedup, if the offered load of each

flow is not known. Nevertheless, Theorem 16 may be applied to provide bandwidth and delay

guarantees in a flow-based PPS. For the guaranteed component of the traffic, rate reservation Rf

for each flow f is known during admission control, which may be used to assign a path, using

Clos fitting and a speedup specified by (7.20). Per-flow queueing is employed in each stage, with

the link schedulers on the assigned path programmed to provide a service rate of at least Rf to

flow f . Then, if λf ≤ Rf , the corresponding per-flow queues remain stable. Furthermore, if

the flow is leaky-bucket constrained, with bucket size σf , the total delay experienced by a cell

belonging to f is upper bounded by

Df ≤
σf

Rf
+ αi,k + βj,k + γj , (7.27)

where f ∈ (i, j), k = p(f), αi,k is the latency of link scheduler k in demultiplexor i, βj,k of

the scheduler at output j of core element k, and γj of the output link scheduler at multiplexor j.

This is because the three stages may be viewed as an end-to-end path composed of latency-rate

servers [104]. Recognize that a QoS-capable CIOQ switch may easily replace each core element,

without violating the ability of the flow-based PPS to provide bandwidth guarantees. Since an ad-

ditional contention point is encountered, a value of 2/λmin gets added (an easy extension of (5.8))

to the above delay bound if each central CIOQ employs batch-mode maximal matching or BVN

decomposition.



242 Chapter 7

Flow Splitting

The high speedup required to address bandwidth fragmentation may be alleviated by splitting a

selected set of flows across multiple paths. Specifically, let λf be the average rate associated

with flow f between some input-output pair (i, j). Flow splitting results in a portion λ
(k)
f ≥ 0

assigned to path k, i.e., between input i and output j of core element k, such that
∑

k λ
(k)
f = λf .

The assignments are constrained by the available internal-link bandwidth at input i and output j,

namely,

∀i
∑
j

∑
f∈(i,j)

λ
(k)
f ≤ s

K
and ∀j

∑
i

∑
f∈(i,j)

λ
(k)
f ≤ s

K
(7.28)

To adhere to such an assignment, path determination, for each arriving cell, becomes more in-

volved than the step shown in Fig. 7.6. For a split flow, a path is selected such that each core

element k receives a fraction λ
(k)
f /λf of the arriving cells. In addition, such flows require rese-

quencing of cells in the multiplexor.

Splitting may instead be performed using rate reservation Rf , as opposed to a known λf ,

in order to provide bandwidth guarantees to flow f . In that case, per-flow queueing is employed

in each stage, with the link schedulers, on each assigned path k, programmed to provide a service

rate of R
(k)
f to flow f . We extend the delay bound in (7.27), without elaboration, to

Df ≤ max
k s.t. R

(k)
f

>0

 σf

R
(k)
f

+ αi,k + βj,k

 + γj (7.29)

Observe that a rather simple strategy of splitting each flow equally among all the paths,

i.e., ∀k, f , λ
(k)
f = λf/K, satisfies the internal link constraint (7.28), for s ≥ 1. In fact, for

queue stability under admissible arrivals, even the knowledge of λ(f) is not required4. Cells may

be dispatched in a round-robin fashion across all the K paths, for each flow. Furthermore, such

equal splitting may be carried out on coarse-grain input-output flows, or N flows in each de-

multiplexor and multiplexor, with work-conserving schedulers in each stage, in order to maintain

queue stability for each input-output pair as a whole, irrespective of the individual values of λf .

On the other hand, for QoS guarantees, equal splitting requires the rate reservation of each flow

to be divided equally across all paths. While path determination, for the incoming cells, may be
4This fact will be used in the next section to establish stability results for a cell-based PPS.



Parallel Packet Switches 243

performed using round-robin per flow, without the knowledge of the rates, each scheduler on its

path needs to be programmed with a service rate of Rf/K.

We may contemplate other strategies for flow fitting only if the number of split flows can

be reduced. Specifically, for stability, the goal is to split the offered load for less than N input-

output pairs in each first (and third) stage element. For QoS guarantees, on the other hand, the

number of split flows in each element may be any value less than F , where F is the maximum

number of flows on each external link. Minimizing the number of split flows is a variation of

the classical bin-packing problem in operations research. While an exhaustive treatment of this

minimization problem is outside the scope of this work, we introduce the first-fit Clos fitting

algorithm, which may be used to reduce the speedup, with respect to (7.20), and can be applied

to reduce the number of split flows. For each flow, this algorithm visits the core elements in

sequence and first attempts to fit the flow without splitting. If the flow cannot be accommodated

as such, it is split in some arbitrary fashion. While Theorem 16 was an application of multi-rate

Clos networks, splitting brings it back into the realm of unit-capacity Clos networks.

Theorem 17. For a PPS with memory elements in the first and third stages, and flow splitting,

assuming the flow rates are known and admissible, the first-fit Clos fitting algorithm is sufficient

to ensure 100% throughput, with speedup s ≥ 2− λmin. That is,

(PPS, {First-fit Clos Fitting})
T,f1' (OQ, {WC}), T : SLLN, s ≥ 2− λmin

Proof. Let C = 1/λmin. Consider a circuit Clos network with N first (third) stage elements with

C inputs (outputs) each, and sC second-stage elements, with N inputs and outputs each. Let the

second-stage elements be partitioned into K sets of size sC/K. For each flow f , f ∈ (i, j) with

rate λf , generate a simultaneous request for Cf = λf/λmin circuits between elements i and j of

the circuit Clos network. If f is admissible in the PPS, all of the Cf circuits are admissible in the

latter. From Clos theorem, a path may be found for each circuit provided

sC ≥ 2C − 1

or s ≥ 2− λmin

For the Cf requests, let C
(k)
f denote the number of paths realized through second-stage



244 Chapter 7

elements in set k, k ≤ K. Then, an assignment of C
(k)
f λmin on core element k ensures that (7.28)

is never violated. Since Cf =
∑

k C
(k)
f , the flow is fully assigned.

The above is a simple application of the space-time duality of Clos networks. Notice

that a first-fit assignment can be made such that, when a flow between (i, j) is split, at least one

internal link k (one set k in the circuit equivalent) is fully saturated at either input i or output j.

As a result, no more than 2K flows need to be split at each demultiplexor and multiplexor. In

a dynamic system, however, with a changing set of flows, this requires the existing set of split

flows to be re-assigned whenever there is a new flow added to the system. Thus, for stability

under known admissible rates, we may prefer first-fit Clos fitting over equal splitting if N > 2K.

Similarly, Theorem 17 may be applied towards bandwidth guarantees, given rate-reservations for

each flow, if F > 2K.

Corollary 28. For admissible flows, a PPS with first-fit Clos fitting can assign paths by splitting

no more than 2K flows, with a reassignment of no more than 2K existing flows on each flow

addition, with s ≥ 2− λmin.

To summarize, a flow-based PPS may statically assign a unique path to each flow, with

known offered load, so as to ensure stability, or with known rate-reservation, to provide QoS

guarantees, provided λmax ≤ s
K and the speedup satisfies (7.20). While this value might be high,

the advantage is that there is no need for sequence control. To reduce the speedup to a value

close to 2, we may choose to split upto 2K flows, and rearrange upto 2K on each flow addition.

The penalties of such splitting include the cumbersome reassignment operation, and in-sequence

reassembly for a small number of flows. Irrespective of splitting, the PPS requires memory in the

first and third stages. Due to these factors, and its limited amenability to throughput optimiza-

tion, the flow-based PPS model, which subsumes currently available clustered routers, cannot be

considered a particularly high-performance design.

7.3 Cell-based PPS

We now present and analyze a cell-based PPS, as an alternative to a flow-based one, in order to

address the throughput limitations of the latter. Specifically, we concentrate on input-output flows,



Parallel Packet Switches 245

1/K
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

A

Core

1

2

B

S

S

1/K

S

S
π

π

Demultiplexor Multiplexor

2

1

AA

BB

1/K

Figure 7.8: Cell-based PPS: Round-robin on arrivals leads to instability

with a goal to provide functional equivalence with an OQ switch, without explicit knowledge of

their offered load. A secondary goal is to provide for a memoryless or small-memory first and

third-stage elements, a possibility lacking in the flow-based model.

A cell-based PPS (N, [xMx], N, K, s) dynamically assigns each arriving cell, from input

i to output j, to one of the possible K paths between (i, j). Since this decision is made on a cell-

by-cell basis, inherently, the switch splits the traffic belonging to each flow, in some fashion

determined by the path assignment method in the demultiplexor. The assignment results in a

portion λ
(k)
i,j , of the offered average load λi,j for each pair (i, j), to be dispatched to each path

k ≤ K, such that
∑

k λ
(k)
i,j = λi,j . In other words, those portions are not pre-determined as

in a flow-based PPS, rather, it just results as an outcome of cell-based path assignment. One

obvious downside of this model is the need to perform in-sequence reassembly for each flow.

This translates to a requirement of at least N sequencing engines in each multiplexor.

We first rule out a tempting dispatch strategy, which might be contemplated to yield a

memoryless first-stage. Recognize that a simple round-robin dispatch of the arriving cells, at

each input, across the K internal paths, removes the need for memory in the first stage, for s = 1.

The dispatch rule is given by

∀i, n, πi,k(n) = 1, iff k = n mod K + 1

Therefore, ∀n, πi,k(n) = 1 implies πi,k(n+k) = 0, k ≤ K, thereby ensuring that a path is never



246 Chapter 7

chosen before the prior cell to that path is fully dispatched. However, this may cause instability

in some core elements, even for admissible traffic, as shown in Fig. 7.8. Here, flows A and B,

destined to the same output j offer a load of 1/K. If both the flows arrive at a constant bit-rate,

all their cells may be dispatched to the same core element, whose output j cannot handle the total

offered load of 2/K. No amount of speedup, less than the trivial value of K, is guaranteed to

avoid such a concentration.

Fortunately, any algorithm that equalizes the offered load of each flow, across the K paths,

turns out to be a viable candidate to ensure stability. Though the switch dynamics are different

in a PPS, the rationale behind balanced matchings for CIOQ-P may be beneficially applied here.

Specifically, we show that PPS variants of the striping and equal dispatch methods suffice for

relative stability with an OQ switch. For further intuition, consider a fluid model of a PPS switch,

which divides the incoming fluid equally among all paths, at each instant. Clearly, the offered load

for each subflow (i, j, k) becomes λi,j/K, ensuring that the queues at each non-oversubscribed

core-element output j remain stable, for any work-conserving scheduler.

Proposition 6. A fluid-model PPS, with equal dispatch of the incoming fluid across all the paths,

at each instant, and a work-conserving scheduler at each link, is relatively stable (f3) with respect

to a fluid-model work-conserving OQ switch.

Furthermore, the arrival patterns are identical at each core element, resulting in identical

departures, assuming homogeneous and deterministic schedulers at their outputs. The central el-

ements behave as mirror images of each other. These observations form the basis of the methods

proposed in this section. Even though a cell-based PPS cannot balance the load at each infinites-

imally small instant, we expect a similar approach, on a cell timeslot granularity, to yield similar

long-term results. The additional challenge is to maintain those results without requiring memory

elements in the first and third stages, while ensuring in-sequence delivery.

7.3.1 Envelope Striping

We first apply the striping method previously seen in the context of a CIOQ-P switch, in Sec. 6.2.3,

to a cell-based PPS. Consider a PPS (N, [xMx], N, K, s) with virtual output queues (VOQ) (i, j),

j ≤ N , in each demultiplexor i. Let Xi,j(n) denote the respective VOQ length at timeslot n. This



Parallel Packet Switches 247

Algorithm 27. Cell-based PPS: Envelope Striping

Initialize: 1. For all (i, j), i ≤ N , j ≤ N , Xi,j ← 0

For each demultiplexor i in parallel

Every Timeslot n: If a cell arrives for (i, j)

1. Increment Xi,j (Enqueue into VOQ)

If internal links are not busy

1. Select (k, l) such that Xk,l ≥ K

2. If (k, l) found, do steps 2a-2b

2a. Xk,l ← Xk,l −K (Dequeue K cells)

2b. Dispatch a cell on each internal link

Figure 7.9: Cell-based PPS: Striping envelopes across the core elements

is a slight modification of the structure described in Sec. 7.1.2, in that the queues are not grouped

on a per-path basis. As shown in Fig. 7.9, an incoming cell for flow (i, j) is enqueued into VOQ

(i, j), and a path assignment is not made immediately. Instead, when all the internal links are

simultaneously free, the demultiplexor selects a VOQ (k, l) with an envelope worth of backlog,

of size K. An entire envelope is simultaneously served, within dKs e external slots, by dispatching

one cell from (k, l) to each of the paths. Let DXi,j (n) be the cumulative departures from VOQ

(i, j) until slot n. Then,

∀i, n,
N∑

j=1

DXi,j (n +
⌈
K

s

⌉
) =

N∑
j=1

DXi,j (n) + K, if ∃(k, l) s.t. Xk,l ≥ K (7.30)

In other words, provided there is at least one full envelope, for any s ≥ 1, K cells

are served from demultiplexor i within K external slots. This is sufficient for demultiplexor

stability, irrespective of how (k, l) is selected. In practice, the envelopes may be chosen in FIFO

order of completed arrival. If there are no full envelopes, the maximum number of cells in the

demultiplexor is upper bounded by N(K − 1). As with any envelope-based scheme, these may

perpetually be starved if there are no further arrivals into those queues.



248 Chapter 7

Lemma 9. For a PPS under envelope striping and s ≥ 1, the backlog at each demultiplexor is

upper bounded by N(K − 1) + 1 cells.

Proof. Let us designate an envelope arrival at slot n, if an arriving cell completes an envelope

of K cells. Similarly, an envelope departure is designated at slot n, if all the K cells of an

envelope finish their departure, on the K internal links, at slot n. Consider the envelope arrival

and departure processes, for s = 1.

Notice that the input link can sustain a rate of no greater than 1 envelope per K slots.

Since there may be a maximum of N partial envelopes in a demultiplexor, with K − 1 cells

each, N back-to-back cells may complete N envelopes. In other words, the arrival process is a

leaky-bucket [28] constrained source with sustained rate 1/K, peak rate 1, and a maximum burst

size of N . Fig. 7.10 shows the (interpolated) worst-case arrival curve for such a source, and the

associated service curve, due to (7.30). The envelope backlog is the vertical distance between the

two curves, which is upper bounded by

N − N − 1
K

,

or N(K − 1) + 1 cells.

These cell buffers may be shared among the N flows. Due to this upper bound, which

is independent of the arrival process, the demultiplexors may be implemented as small-memory

elements, or S̃.

Lemma 10. For a PPS under envelope striping and s = 1, the multiplexors may be memoryless.

Proof. Let the cumulative arrivals, until timeslot n, for flow (i, j) into core element k be A
(k)
i,j (n).

Then, the striping process ensures that

∀i, j, n, ∀k, l ≤ K, A
(k)
i,j (n) = A

(l)
i,j(n) (7.31)

Therefore, each core element is subject to identical arrivals. Furthermore, the cells that arrive at

input i, at slot n, one at each core element, belong to the same envelope and hence to the same

flow. Therefore, assuming that the schedulers in the core elements are homogeneous, each such

cell experiences the same delay.



Parallel Packet Switches 249

N

Service

Arrival
Curve

Time0 1 N

(N−1)/K

N − (N−1)/K

Slope: 1/K

Slope: 1/K
Curve

Slope: 1

E
nv

el
op

es

Figure 7.10: Arrival and service curves for envelopes in a PPS with striping

Consequently, cells belonging to the same envelope depart from the core element in the

same slot, and can be immediately combined. For s = 1, therefore, all the arrivals from the core

elements may be dispatched, without queueing, by the multiplexor.

Much as in the fluid model, the central elements behave as mirror images of each other.

A significant side-effect is that no sequence control is needed. Note however that the above result

does not hold for s > 1. While all the cells arriving into a multiplexor, in each slot, still belong to

the same envelope, queueing will be required, to absorb the difference between the external link

capacity and the aggregate capacity of the internal links, at each multiplexor. Nevertheless, with

s = 1, most of our desired performance goals are met.

Theorem 18. A cell-based PPS (N, [S̃MS], N, K, 1), i.e., with memoryless multiplexors, demul-

tiplexors with a buffer size bounded by N(K−1)+1 cells, and without speedup, operating under

envelope striping and work-conserving core elements, provides asymptotic 100% throughput to

flows destined to non-oversubscribed outputs, i.e.,

(PPS, {K-Striping})
T,f3' (OQ, {WC}), T : SLLN, s = 1

Proof. Let the N ×N matrices (A(k)
i,j (n), D(k)

i,j (n), Q(k)
i,j (n)), defined in Sec. 7.1.2, describe the

evolution of the VIQ system in core element k. Fix s = 1. Consider a non-oversubscribed output



250 Chapter 7

j. By definition, the average arrival rates (2.1) for flows (i, j), i ≤ N , satisfy
∑

i λi,j ≤ 1.

From (7.31), we obtain

λ
(k)
i,j = lim

n→∞

A
(k)
i,j (n)
n

≤ 1
K

lim
n→∞

Ai,j(n)
n

≤ 1/K

Since there is no backpressure, therefore, from (7.14) and summing (7.13) over all inputs, the

fluid limits (3.6) of (A(k)
i,j (n), D(k)

i,j (n), Q(k)
i,j (n)) satisfy

∀k,
N∑

i=1

Q̄
(k)
i,j (t) ≤ t

K
−

N∑
i=1

D̄
(k)
i,j (t)

N∑
i=1

D̄
(k)′

i,j (t) = 1/K, whenever
N∑

i=1

Q̄
(k)
i,j (t) > 0,

for all non-oversubscribed outputs j. From the Dai-Prabhakar fluid limit theorem,
∑N

i=1 Q̄
(k)
i,j (t) =

0, t ≥ 0. Therefore, all the queues at output j, for each core element, is rate-stable. From Lem-

mas 9 and 10, the queue lengths in the first and third stages are finite and zero, respectively.

Therefore, every queue encountered by flows destined to j remain stable, as in the reference OQ

switch.

Furthermore, assume, as we did in the analysis of CIOQ-P, that if µ is the average

departure-rate matrix for offered rates λ in an OQ switch, then, under the same scheduler, 1
K µ

would result for offered rates 1
K λ. This is true for most flow-based schedulers such as weighted

round-robin and WFQ-based ones. Then f4 equivalence with the OQ switch follows, provided

the output link schedulers in the core elements are the same as the link schedulers in the refer-

ence switch. These results continue to hold if a core element is replaced by a CIOQ switch that

is functionally equivalent to an OQ switch, at the same level.

Corollary 29. ((N, [S̃MS], N, K, 1), {K-Striping})
T,f4' (OQ, {WC}), T : SLLN

Recognize that if bandwidth guarantees are desired for fine-grain flows f , with admissi-

ble rate reservations Rf , each core element scheduler may be programmed to provide trunks of



Parallel Packet Switches 251

Rf/K. This may be used as a bandwidth trunk of Rf by flow f , provided its arriving cells are

distributed equally to each core element. Clearly, this necessitates creating envelopes and strip-

ing on a per-flow basis. In other words, a cell-based PPS may provide bandwidth guarantees with

per-flow striping, and a total buffer size of F (K − 1) + 1 cells in each demultiplexor, where F

refers to the maximum number of flows associated with an input. This buffer size may prohibit

the implementation of the first stage as S̃. Delay guarantees are beyond the scope of striping due

to the unbounded latency associated with partially filled envelopes.

Thus, the envelope striping method, in a cell-based PPS, meets our goal of optimal

throughput, without speedup. It allows for memoryless multiplexors and small-memory demul-

tiplexors, and most beneficially, does not require explicit sequence control. The second-stage

delay is inherently equalized for each per-path component of the same flow. Striping provides

these desirable properties since, in essence, it emulates a fluid-model PPS with instantaneous

equal dispatch (Proposition 6), but on an envelope timescale. Furthermore, bandwidth guarantees

may be provided to individual fine-grain flows using per-flow envelope striping, but the buffers

required in the first-stage grow as O(F ). The only disadvantage of this method is the unbounded

delay associated with creating full envelopes. As opposed to a CIOQ switch with envelope-based

matching, we cannot contemplate adding speedup to mitigate this issue, since, on doing so, the

multiplexors will need to be implemented as memory elements.

7.3.2 Equal Dispatch

As we suggested for CIOQ-P switches, an equal dispatch method may be used as an alternative

to striping, in order to address the unbounded latency issue of the latter. Indeed, we report here

that all the material results, on throughput and QoS, for striping continue to hold for equal dis-

patch. Unlike a CIOQ-P switch, however, which benefits from a lack of any significant delay in

the second stage, the penalty in a PPS, for such a dispatch, includes a cumbersome sequencing

operation at each output.

Consider a PPS (N, [xMx], N, K, s) with per-path FIFO queues (i, k), k ≤ K in each

demultiplexor i, as described in Sec. 7.1.2. Furthermore, let each core element k employ virtual

input queues (VIQ) (i, j) for each subflow (i, j, k), and let each multiplexor j employ per-path



252 Chapter 7

Algorithm 28. Cell-based PPS: Equal Dispatch

Initialize: 1. For all (i, k), i ≤ N , k ≤ K, Xi,k ← 0

2. For all (i, j), Pi,j ← 1

For each demultiplexor i in parallel

Every Timeslot n: If a cell arrives for (i, j)

1. k ← Pi,j

2. Increment Xi,k (Enqueue into FIFO)

3. Increment Pi,j mod K

For each internal link k in parallel

If link not busy, and Xi,k > 0

1. Decrement Xi,k (Dequeue from FIFO)

Figure 7.11: Cell-based PPS: Per-flow equal dispatch across core elements

VIQ (i, j, k). Note that VIQ (i, j) in core element k operates in tandem with VIQ (i, j, k) in

multiplexor j, as shown in Fig. 7.5. As shown in Fig. 7.11, a multiplexor i maintains a round-

robin pointer for each flow (i, j), j ≤ N . When a cell arrives for (i, j), it is dispatched to path

k, determined by its own round-robin pointer, by enqueueing it into FIFO (i, k). The FIFOs

are drained into their respective paths, in a work-conserving fashion, at a rate of s/K cells per

external slot. Clearly, therefore, the dispatch satisfies the following:

∀i, k, n, πi,k(n) = 1, iff ∃j s.t. Ai,j(n) > Ai,j(n− 1) and Pi,j(n) = k

∀i, j, n Pi,j(n + 1) = (Pi,j(n) + 1) mod K, if Ai,j(n) > Ai,j(n− 1)

As a result, the arrivals A
(k)
i,j into core element k, for flow (i, j), satisfies (similar to (6.20)

for CIOQ-P):

∀i, j, k, n, A
(k)
i,j (n) ≤

⌊
Ai,j(n)

K

⌋
+ 1{Ai,j(n) mod K≥k} (7.32)

The inequality is because some cells of flow (i, j) may still be in the demultiplexor at slot n.

Note that this is a round-robin dispatch per flow, which is not the same as input-stream round-



Parallel Packet Switches 253

robin shown in Fig. 7.8. If the pointers for more than one flow become synchronized, back-to-

back cells may be dispatched to the same per-path FIFO, at a peak rate of 1. As each FIFO is

served at a sustained rate of s/K, whenever non-empty, this may lead to a per-path backlog in

the demultiplexor. An example of such dispatch is shown in Fig. 7.12.

Lemma 11. For a PPS under equal dispatch and s ≥ 1, the backlog at each demultiplexor is

upper bounded by NK cells.

Proof. The proof is similar to that of Lemma 9. The input link can sustain a rate of no greater

than 1 cell per K slots into each per-path FIFO. As N consecutive cells, each belonging to a

different flow, may enter a FIFO back-to-back, the cell arrival process into each FIFO is leaky-

bucket constrained, with sustained rate 1/K, peak rate 1, and a maximum burst size of N . Since

each FIFO is served at a constant rate of s/K, for s ≥ 1, the backlog is bounded by

N −
⌊
N − 1

K

⌋
.

Therefore, each FIFO may contain no more than N cells, at all instants, and the total backlog at

the demultiplexor is upper bounded by NK cells.

As a result, the demultiplexors may be implemented as small-memory elements S̃. Note

that this is true for any dispatch method that equalizes the per-flow load over any finite-sized

sequence of back-to-back cells. For instance, we introduced the uniform dispatch method in [62],

which ensures that no more than dMK e cells are distributed to the same path in a sequence of M

cells, for each flow. In that case, the backlog in a demultiplexor is upper bounded by NM cells.

Consider a PPS without backpressure from the multiplexors to the core elements. Clearly,

for s = 1, we may employ a memoryless multiplexor if in-sequence delivery is not required. The

following result establishes that, with memories and cell sequencing in the third stage, equal

dispatch suffices for relative stability with an OQ switch.

Theorem 19. A cell-based PPS (N, [S̃MM ], N, K, s), with demultiplexors of buffer size NK

cells, and s ≥ 1, operating under equal dispatch and work-conserving elements, provides asymp-

totic 100% throughput to flows destined to non-oversubscribed outputs, i.e.,

(PPS, {Equal Dispatch})
T,f3' (OQ, {WC}), T : SLLN, s ≥ 1



254 Chapter 7

To output 1

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Input Link  i

Core Element 1

Core Element 2

Core Element 3

Demultiplexor i

111

111

222

22 2

3

3

3

3

45645

4

5

4

5

6

78

7

8

To output 2 To output 3

Figure 7.12: Example of per-flow equal dispatch in a PPS with N = 3, K = 3

Proof. First, consider core element k. From (7.32), the average rate of arrival into VIQ (i, j, k)

does not exceed λi,j/K, where λi,j denotes the long-term average rate offered by flow (i, j) (2.1).

Summing (7.13) over all the inputs, we obtain

∀j, k, n
N∑

i=1

Q
(k)
i,j (n) =

N∑
i=1

A
(k)
i,j (n)−

N∑
i=1

D
(k)
i,j (n)

Combining with (7.14), since B
(k)
i,j (n) = 1, ∀i, j, k, n, due to the absence of backpressure, each

output link j dispatches cells at a rate of s/K, whenever Q
(k)
i,j > 0, for some i. For non-

oversubscribed outputs j, the average rate of arrival cannot exceed
∑

i λi,j/K ≤ 1/K. Therefore,

each VIQ (i, j, k) is rate-stable, for s ≥ 1.

Next, consider multiplexor j for a non-oversubscribed output. Let each VIQ (i, j, k) be

split into an eligible component, with length W
(k)
i,j (n), and an ineligible component, with length



Parallel Packet Switches 255

Y
(k)
i,j , waiting for cells ahead of its head, in arrival sequence for flow (i, j), to arrive. Then, by

definition,

∀i, j, k, n, Z
(k)
i,j (n) = W

(k)
i,j (n) + Y

(k)
i,j (n) (7.33)

For the eligible component, from (7.13), (7.15), and (7.16), we obtain

∀j, n,
K∑

k=1

N∑
i=1

W
(k)
i,j (n) ≤

K∑
k=1

N∑
i=1

A
(k)
i,j (n)−

K∑
k=1

N∑
i=1

D
Z

(k)
i,j

(n)

∀j, n,
K∑

k=1

N∑
i=1

D
Z

(k)
i,j

(n + 1) =
K∑

k=1

N∑
i=1

D
Z

(k)
i,j

(n) + 1, if
K∑

k=1

N∑
i=1

W
(k)
i,j (n) > 0

For a non-oversubscribed output j, the average rate of arrival, associated with the second sum-

mation in the first line, cannot exceed 1. Therefore, the combined occupancy of W
(k)
i,j , ∀i, k, is

stable, resulting in the stability of the eligible components of each VIQ.

The ineligible component of VIQ (i, j, k) can increase only as long as the head cell, for

flow (i, j), remains inside some core element l, l 6= k. Since the VIQ (i, j) in element l is

stable, for non-oversubscribed j, the expected delay of the head cell is finite. From Little’s law,

therefore, the expected value of Y
(k)
i,j is also finite. Thus, Q

(k)
i,j and Z

(k)
i,j are both stable, ∀i, k.

The final result, for s ≥ 1, follows by combining this with Lemma 11.

The proof relies on work-conserving behavior at each multiplexor, whenever it contains

eligible cells. This implicitly assumes that the sequencing engine does not suffer from redun-

dant wait. We provided an alternative proof in [64], which established that, if the maximum

differential delay, across different paths, is bounded (as opposed to the expected value being fi-

nite) and the arrivals are bounded in a finite timescale, the multiplexor buffer-size can also be

bounded. However, this bound may be too large to allow a small-memory implementation for the

multiplexor, as it depends on arrival properties. Notice that, in addition to the requirement of a

well-behaved sequencing engine, the proof only relies on the fact that the average arrival rate of

a subflow (i, j, k) does not exceed λi,j/K. Also, it is evident that the result continues to hold if

the core elements are replaced by a CIOQ switch that provides wide-sense relative stability with

an OQ switch5. We further stipulate, using the same rationale as Corollary 29, that, if the core
5The proof would be identical to the one for Theorem 19, with VIQ (i, j) in the core replaced by a tandem of VOQ

(i, j) in the input element of the CIOQ switch and a VIQ (i, j) in the output element, and a matching algorithm that
ensures the stability of both.



256 Chapter 7

element schedulers are identical to the one in a reference OQ switch, equal dispatch provides f4

equivalence with the latter.

Equal Dispatch and Backpressure

The equal dispatch method, without backpressure, provides throughput performance comparable

to envelope striping, without the latency issue of the latter. However, the third stage requires

memory elements to ensure work-conserving behavior in all stages. Note that a memory archi-

tecture may be designed with each VIQ implemented as a separate physical memory. Since a

VIQ is accessed at most once in K timeslots, due to equal dispatch, the bandwidth required for

such memories is a fraction of the external link rate, thus realizing the memory bandwidth benefit

of a PPS, inspite of a S̃MM design. We now establish that the same throughput result holds even

with small-memory third-stage elements, using backpressure.

Consider a multiplexor with a buffer size of exactly one cell per subflow. Therefore, each

third-stage element contains no more than NK cells, and a backpressure signal is asserted to VIQ

(i, j) in core element k, whenever Zi,j = 1. In other words, we may modify (7.17) as

∀i, j, k, n, B
(k)
i,j (n) = 1{Z(k)

i,j (n)=0} (7.34)

For simplicity, we assume that B
(k)
i,j is set to 1 at the instant that a non-empty VIQ (i, j, k)

is served at multiplexor i. Similarly, it is reset at the instant at which core element k begins

transmission of a cell from VIQ (i, j). Furthermore, we assume that a core element is work-

conserving (7.14) at each output j, whenever B
(k)
i,j = 1 for some non-empty VIQ (i, j). Since

the buffer size at each multiplexor is finite, we may claim 100% throughput for a flow (i, j) by

merely establishing the stability of VIQ (i, j), with length Q
(k)
i,j (n), in each core element k.

Lemma 12. For a PPS under equal dispatch, with s ≥ 1, whenever there is a cell at output j of

core element k, i.e.,
∑

i Q
(k)
i,j (n) > 0, the inner product

∑
i Q

(k)
i,j (n + T )B(k)

i,j (n + T ) > 0, for

some finite T ≥ 0.

Proof. Fix output j and core element k. Let
∑

i Q
(k)
i,j (n) > 0 at timeslot n. If

∑
i Q

(k)
i,j (n)B(k)

i,j (n) >

0, the result is proved with T = 0.



Parallel Packet Switches 257

Let
∑

i Q
(k)
i,j (n)B(k)

i,j (n) = 0. In other words, every non-empty VIQ at output j is back-

pressured. Therefore, from (7.34), we obtain

Z
(k)
i,j (n) = 1, ∀i s.t. Q

(k)
i,j (n) > 0

Case 1: Let VIQ (i, j, k) contain the head cell of flow (i, j), for some i such that

Q
(k)
i,j (n) > 0. Then, flow (i, j) will be served within slot (n + ∆), where ∆ is the finite la-

tency of the link scheduler in the multiplexor. Consequently, B
(k)
i,j (n + T ) = 1 for some T ≤ ∆,

satisfying the result.

Case 2: Let there be no head cells in VIQ (i, j, k), for all i such that Q
(k)
i,j (n) > 0. Due to

equal dispatch, there may be at most N(K−1) cells that need to be scheduled before one of VIQ

(i, j, k) contains a head cell. Since any head cell, at all points in time, is either at a multiplexor

VIQ, or at the head of the respective core element queue, without being backpressured, or at the

demultiplexor, it takes no more than

N
K

s
+ N

K

s
+ 1

slots to dispatch each such cell. The first term accounts for the delay in the demultiplexor, the

second for the worst-case time to transmit a head cell from the core to the multiplexor, and the last

for scheduling it on the external link. Therefore, for s ≥ 1, and some T ≤ N(K−1)(2NK +1),

B
(k)
i,j (n + T ) = 1 for some i such that Q

(k)
i,j (n + T ) > 0.

Theorem 20. A cell-based PPS (N, [S̃MS̃], N, K, s), with demultiplexors and multiplexors of

buffer size NK cells, and s ≥ 1, operating under equal dispatch and backpressure, provides

asymptotic 100% throughput to flows destined to non-oversubscribed outputs, i.e.,

(PPS, {Equal Dispatch})
T,f3' (OQ, {WC}), T : SLLN, s ≥ 1

Proof. Let j be a non-oversubscribed output. Let (Ā(k)
i,j (t), D̄(k)

i,j (t), Q̄(k)
i,j (t)) be the fluid lim-

its (3.6) of the respective discrete-time variables. From Lemma 12, we obtain

∀j, k, t, lim
r→∞

1
r

N∑
i=1

Q
(k)
i,j (rt− T ) > 0⇒ lim

r→∞
1
r

N∑
i=1

Q
(k)
i,j (rt)B(k)

i,j (rt) > 0



258 Chapter 7

for some finite T ≥ 0. Combining with the fluid limits of (7.13) and (7.14), the above leads to

the following evolution of the VIQ system in the core elements.

∀j, k, t
N∑

i=1

Q̄
(k)
i,j (t) =

N∑
i=1

λ
(k)
i,j t−

N∑
i=1

D̄
(k)
i,j (t)

≤ t

K
−

N∑
i=1

D̄
(k)
i,j (t), if j is not oversubscribed

N∑
i=1

D̄
(k)′

i,j (t) =
s

K
if

N∑
i=1

Q̄
(k)
i,j (t) > 0

Therefore, the aggregate of the VIQ system at each non-oversubscribed output, for all the core

elements, is rate-stable for s ≥ 1.

We stipulate, using the same rationale as Corollary 29, that, if the core element schedulers

are identical to the one in a reference OQ switch, equal dispatch provides f4 equivalence with the

latter, using backpressure. Unlike Theorem 19, however, we cannot extend the above result easily

to a PPS with CIOQ switches for core elements. Lemma 12 does not hold anymore for a finite

T since a head cell may reside in the input element of the CIOQ. Even if the respective VOQ is

stable, the delay becomes an unbounded variable, though with a finite expected value. We are

uncertain whether g(n) = f(n + T (n)) with finite E[T (n)] implies ḡ(t) → f̄(t), a condition

that is required in the last inequality of the above proof. It is likely that we are limited primarily

by our proof methodology.

Much as with envelope striping, bandwidth guarantees may be provided to fine-grain

flows f , with reservation Rf , by programming the incident output schedulers, in each core ele-

ment, to provide a trunk of Rf/K. In addition, the respective multiplexor, with or without back-

pressure, is programmed to provide a trunk of Rf . Equal dispatch is carried out on a per-flow

basis. This necessitates a buffer size of FK cells in the demultiplexor, and in the multiplexor, in

case backpressure is utilized, where F is the maximum number of flows at each input and output.

As an advantage over striping, delay bounds may be provided to conforming flows. For example,

for a leaky-bucket constrained flow between (i, j), with bucket size σf , the delay is bound by

Df ≤ FK +
σf

Rf
+ max

k≤K
(βj,k) + γj ,



Parallel Packet Switches 259

Algorithm 29. Cell-based PPS: Fractional Dispatch

Initialize: 1. For all (i, j), Pi,j ← {1, 2, . . . , dKs e − 1}

For each demultiplexor i in parallel

Every Timeslot n: If a cell arrives for (i, j)

1. Select k ≤ K s.t. k /∈ Pi,j and link k not busy

2. πi,k ← 1 (Dispatch to path k)

3. Remove head of Pi,j

4. Insert k at the tail of Pi,j

Figure 7.13: Cell-based PPS: Per-flow fractional dispatch across core elements

where βj,k is the latency of the output scheduler j in core element k, and γj of the link scheduler

in multiplexor j. The first term is because of the per-path FIFO dispatch in the demultiplexor,

and the second due to the fact that each core element receives 1/K of a burst.

7.3.3 Fractional Dispatch

We now show that a speedup of s > 1 may be judiciously employed to render the first-stage

elements memoryless, while maintaining the throughput and QoS properties of equal dispatch.

Consider a PPS (N, [SMM ], N, K, s) operating under a fractional dispatch method, shown in

Fig. 7.13. Each flow is associated with a list Pi,j , which keeps track of the previous (dKs e − 1)

path assignments for that flow. When a cell arrives for (i, j), a path k is chosen such that it is not

a member of Pi,j , and the internal link to core element k is free. The cell is then immediately

placed on link k, thus ensuring a memoryless first stage. If such a link is guaranteed to exist at all

timeslots, each arriving cell is successfully assigned.

Notice that in any sequence of dKs e back-to-back arrivals, for each flow, the same core

element is chosen no more than once. Therefore, the cumulative arrivals A
(k)
i,j (n) into central-

stage element k, for flow (i, j), satisfies

∀i, j, k, n, A
(k)
i,j (n) ≤ Ai,j(n)⌈

K
s

⌉ (7.35)



260 Chapter 7

Therefore, the average rate of arrival λ
(k)
i,j for subflow (i, j, k) cannot exceed λi,js/K, where

λi,j denotes the long-term average rate offered by flow (i, j) (2.1). In essence, we are fully

utilizing the fact that each internal link can sustain a rate of s/K, and therefore we may relax

the strict requirement of equal dispatch, which mandates that each element must experience a

load of exactly λi,j/K for each flow. Fractional dispatch, in other words, allows for a controlled

unbalancing of the offered load. Note however that it is possible for a path to be excluded for an

indefinite amount for time.

Lemma 13. A PPS under fractional dispatch and memoryless demultiplexors is guaranteed to

assign a path to each arriving cell, provided s ≥ K
dK/2e .

Proof. Recognize that in each external timeslot, no more than dKs e − 1 internal links may be

busy. Therefore, there are at least (K−dKs e+1) free paths on each cell arrival. Since the size of

Pi,j is exactly dKs e − 1, a free path satisfying fractional dispatch is guaranteed to exist provided

K −
⌈
K

s

⌉
+ 1 ≥

⌈
K

s

⌉
or

⌈
K

s

⌉
≤ K + 1

2
,

i.e., provided
K

s
≤

⌊
K + 1

2

⌋
or s ≥ K⌊

K+1
2

⌋ =
K⌈
K
2

⌉

Fig. 7.14 shows the speedup required as K varies. As K increases, this compares favor-

ably with the lower bound in Fig. 7.7 for static dispatch using Clos fitting, without the necessity of

first-stage memory as in the latter. Notice also that the maximum subflow load is forced to be no

greater than s/K, as opposed to it being a requirement in Clos fitting. Due to Lemma 13, we may

extend Theorem 19 as follows, for a PPS with memories in the third stage and no backpressure.

Theorem 21. A cell-based PPS (N, [SMM ], N, K, s), with memoryless demultiplexors, and s ≥
K

dK/2e , operating under fractional dispatch and work-conserving elements, provides asymptotic

100% throughput to flows destined to non-oversubscribed outputs, i.e.,



Parallel Packet Switches 261

 0.5

 1

 1.5

 2

 2.5

 3

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

S
pe

ed
up

: s

Number of core elements: K

PPS: Fractional Dispatch

Figure 7.14: PPS: Speedup required for fractional dispatch

(PPS, {Fractional Dispatch})
T,f3' (OQ, {WC}), T : SLLN, s ≥ K

dK
2 e

Proof. The proof is identical to that of Theorem 19. Each core element VIQ (i, j), for non-

oversubscribed j, is stable since the average rate of arrival into output j cannot exceed s/K,

equal to the service rate of the attached link. Each VIQ (i, j, k) in multiplexor j is also stable,

since the average arrival rate cannot exceed 1, provided the sequencing engine does not suffer

from redundant wait.

Again, it is evident that the result continues to hold if the core elements are replaced by a

CIOQ switch that provides wide-sense relative stability with an OQ switch. We further stipulate

that if the core element schedulers are identical to the one in a reference OQ switch, fractional

dispatch provides f4 equivalence with the latter. Unfortunately, however, we have not been able

to conclusively establish the above result for a PPS with small-memory multiplexors and back-

pressure. Since a path may be excluded from dispatch for an indefinite amount of time, Case

2 of Lemma 12 does not hold anymore for a finite T . Consequently, we were unable to extend

Theorem 20 towards fractional dispatch. Nevertheless, the above remains a significant result,



262 Chapter 7

since, if each VIQ in the multiplexor is implemented as a separate physical memory, each such

memory is accessed no more than once every dKs e external slots, allowing us to realize the PPS

memory-bandwidth benefit. As with equal dispatch, per-flow bandwidth and delay guarantees

may be provided by performing fractional dispatch on a per-flow basis.

Combining the results of equal and fractional dispatch, we know that the buffer-size

bound in the demultiplexors goes from NK cells to 0 as the speedup increases from 1 to K
dK/2e .

An interesting open problem [62] is to determine how the bound varies for intermediate speedup

values, for a continuum of policies between equal and fractional dispatch.

7.3.4 Related Work

Iyer and McKeown made some pioneering contributions [49, 50] towards the understanding of

a PPS around the same timeframe of our research work. Specifically, in [49], the focus was

on a PPS with memoryless first and third stages. It was shown that such a switch can exactly

emulate an OQ switch with a FIFO discipline, using a speedup of approximately 2. The proposed

emulation algorithm, called the centralized PPS algorithm (CPA), maintains a shadow OQ switch,

and for every incoming cell at slot n, for flow (i, j), determines the departure time m in the

reference. Similar to our proof of Theorem 21, a core element with a free input i at slot n, and a

free output j at slot m, is guaranteed to exist, with a similar speedup as in our proof.

In [50], a distributed algorithm, resembling the equal dispatch method, was proposed to-

wards the same goal. Similar to our stability results, it was shown that a PPS, without speedup

and small-memory first and third stages, can emulate a FIFO OQ switch. To overcome the issue

with FIFO queueing, in the core element, which we showed in Fig. 7.4, delay equalization [51]

may be required at the inputs of the central stage. While these results are restricted to FIFO

dispatch, they mirror our stability results for work-conserving schedulers. A similar load equal-

ization algorithm has since been proposed by Wang et al., in [113], which specifically addresses

a switch with a CIOQ central stage.



Parallel Packet Switches 263

7.4 Sequence Control

Most multi-path switches6, including the PPS and the recursive G-MSM seen in Sec. 6.3.3, suffer

from out of sequence arrivals at the egress element, due to the differential delays experienced by

the subflows. As opposed to a multi-path point-to-point environment, differential delays occur in

the switched environment due to uneven cross-traffic experienced by the subflows. If dmax is the

bound on differential delay, and µ the upper bound on the service rate received by a flow, then

the amount of mis-sequencing, calculated as the volume of traffic that can arrive before the next-

in-sequence cell, is bound by dmaxµ. While it is beneficial to have dispatch schemes in which the

output order is pre-computed, e.g., as in the CPA algorithm, or for which dmax is limited and can

be accurately ascertained, in general, both those objectives might be infeasible. Accordingly, we

need sequence control schemes that properly deal with the factors in the switching environment.

Such schemes should necessarily be open-loop because of the latency associated with feedback-

based schemes, and should work with a fixed overhead which is limited by the available bits in

the local header of a cell.

In addition to possibly large or inestimable differential delays, two other factors, in prac-

tice, make open-loop sequence control within a switch challenging. The presence of finite buffers

in the paths opens up the possibility of cell loss, which may go undetected by the re-assembler.

This situation causes the output to idle even when an eligible cell is already present in the output

element, the phenomenon we referred to as redundant wait. Presumably, this situation can be

handled by using the information in the next cell that arrives from the same path, or if all the

per-path re-assembly queues have at least one cell to offer. However, the effectiveness of such

a strategy is diminished if the dispatch is uneven, especially if it causes certain paths to be ex-

cluded from the dispatch for an arbitrary duration, e.g., as in fractional dispatch. In the presence

of excluded paths, redundant wait may also be handled by using a timeout based on the estimate

dest of dmax. The scheme then becomes heavily dependent on the accuracy of dest. Specifically,

if dmax is underestimated, then there is a possibility of late arrivals of cells which need to be

handled gracefully, and if dmax is overestimated, the size of the re-assembly buffers increases,
6The contents of this section were previously presented in [64]. As a departure from the rest of the this work, this

section contains simulation results. We urge the reader to use such results only to gain some flavor about the issues
being addressed here.



264 Chapter 7

Original  Cell Transmission Order:

P2

P1

P0

P3

P2

P1

P0

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

6789 10 5 4 3 2 1  0

00001111 222

Re−assembly Buffers

00

012

12

12

1

012

12

012

10 0

Frame boundary

0

S
w

itc
hi

ng
 P

at
hs

: 
Subflow Seq

P3

Figure 7.15: Sequence control using SCIMA

possibly leading to instability.

We presented and compared three open-loop schemes in [64]. The first is the classical

total-order sequencing scheme, in which the ingress element simply appends a sequence number

(or timestamp) to each cell before it is dispatched to a path. The range N is limited by the

available number of bits BTOT in the fixed local header of the cell. The egress element uses a

timeout based on dest to detect losses in the presence of excluded paths. Clearly, the re-assembly

is guaranteed to be unambiguous as long as the egress is never presented with two cells carrying

the same timestamp, which is ensured as long as

N = 2BTOT ≥ destµ

Furthermore, the correctness of the re-assembly is guaranteed as long as dest is an overestimate.

The same ensures the stability of the system even in the presence of redundant wait since the total

number of cells waiting to be re-assembled is bound by destµ. Therefore, total order sequencing

is recommended, even in the presence of an arbitrary amount of cell losses, if the delay can be

overestimated and the above value can be contained within the fixed cell header.

We proposed a sequencing scheme called Switched Connections Inverse Multiplexing for

ATM (SCIMA) in [18] for multi-path systems, for which it is not possible to accurately estimate

delay. The working of SCIMA is illustrated in Fig. 7.15. The ingress element uses a predictive



Parallel Packet Switches 265

  pair P0, P1

P2

P1

P0

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

6789 10 5 4 3 1  02

: Packet blocks
0,x,0

0,1,x0,1,x

x,1,1

2,x,2

2,3,x

x,3,3

4,x,44,x,4

x,5,3

4,5,x

Sw
itc

hi
ng

 P
at

hs
: 

Original  Cell Transmission Order:

  for the path

Figure 7.16: Sequence control using the rank-based protocol

dispatch scheme7 and appends, to every header, a pointer to the path where the next cell of the

same flow is to be scheduled, which we call the NextPath value. The egress element simply

traverses through the NextPath chain to re-order the cells. In addition, each cell also contains a

subflow sequence number, of range S, to correctly detect up to S consecutive losses on a path.

In order to recover the NextPath chain in the presence of losses, there are two separate means

offered by the scheme. The cell header contains a history of s(s ≤ S) NextPath values belonging

to cells that were previously transmitted on the same path. If l(l ≤ s) back-to-back losses are

detected by the egress element, the re-assembly can proceed by looking at the lth value in the

NextPath history.

In the case when s < l ≤ S, the scheme uses what we refer to as the frame recovery

mode. For this purpose, the ingress element delineates the incoming stream, of each flow, into

frames and appends a current frame number to each cell. The first cell of each frame is explicitly

marked (shaded in Fig. 7.15). When an unrecoverable loss burst is detected on a path, or when

the re-assembly times out waiting for a cell on the expected path, the egress element flushes all

the cells belonging to its current frame and re-synchronizes on the next frame for all the subflows.

The overhead for SCIMA can be calculated as:

BSCIMA = log S + (s + 1)dlog Ke+ f + 2,

where F = 2f is the range of the frame number, and the 2 extra bits are required for marking
7Predictive dispatch is feasible when the outgoing order can be pre-ascertained, as is the case with equal dispatch

in a cell-based PPS, or static dispatch in a flow-based PPS with split flows.



266 Chapter 7

Delay Estimates Loss Bounds
Total Order Overestimate dest for correctness; No dependence

header size dependence

SCIMA Low, indirect dependence inside Loss burst l < s for provable correctness;
advanced frame recovery mode l < S for frame recovery

Rank Overestimate dest for correctness Loss burst size l < 2m − 2 for
provable correctness

Table 7.1: Sequence Control: Dependence on loss bounds and delay estimates

cells. Note that the overhead does not depend on dest. The frame sizes Sf are chosen in such a

way that frame numbers do not wrap around within dmax, i.e.,

Sf × F � destµ

In the case of an inaccurate dest, frame numbers allow to identify late arrivals. The downside

is that a large Sf leads to a large number of already enqueued cells being flushed inside the

recovery mode. Therefore, this scheme is recommended when it is not possible to accurately

estimate delay, however, only if the loss burst on a path can be bounded by S to ensure correct

re-assembly.

The rank-based protocol [61], illustrated in Fig. 7.16, also relies on bounding the loss

burst, but without the need for flushing cells. This scheme defines a packet block on a path A

with respect to another path B as any sequence of cells belonging to a flow which are transmitted

over path A with no interleaving cells of the same flow transmitted on path B. Packet blocks

are constructed for every one of the K(K − 1) path pairs, for each flow. The ingress element

enumerates the blocks for every pair, and appends a vector of packet block numbers into every

header. The ith component of the vector is the number of the current block with respect to (the

other) path i. If each component is of size m, then the cell overhead for this scheme is calculated

as

BRank = m · (K − 1)

The egress element makes a pair-wise comparison, of the vector components, of the head cells

of each subflow to determine the next-in-sequence cell. The scheme also uses a dest to time out



Parallel Packet Switches 267

Egress

Dispatcher

λ

λ

Switch
Buffers

Scheduler Re−assembly queues

λ

Ingress
Demultiplexor Multiplexor

Core Element

µ

µ

µ

µ

Re−assembler
Scheduler +

λ

(t)

1(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

3

4

λ2

1

2

3

4

Figure 7.17: The split flow model for sequence-control analysis

on empty per-path queues while attempting the pair-wise comparisons. Table 7.1 summarizes the

findings of [64].

7.4.1 Simulation Results

We now present a few of the simulation results from [64], which show how delay estimates and

cell loss affect sequencing in multi-path switches. We studied the behavior of a single flow in

isolation and modeled the cross-traffic by varying the delay and loss ratios. The system as seen

by a single flow is represented by two stages of queues, as shown in Fig. 7.17. The offered load

is distributed by the ingress element in a controlled fashion to the multiple paths, and the cells

belonging to subflow i are enqueued into the ith core element queue. Some of the cells are lost

in the core switch, and the rest undergo a controlled amount of delay before they are sent to

the egress element, where they are enqueued into the corresponding re-assembly queue. The re-

assembly process is scheduler driven, i.e., the output link scheduler polls the re-assembly queues

at a constant allocated rate µ, and on every visit, a re-assembler module examines the cell headers

at the head of the queues. Either one of the cells is served, or the turn is skipped if the expected

cell in sequence is deemed not to be present in any of the queues.

All the rates were normalized to the output scheduling rate, i.e., µ = 1. The arrival



268 Chapter 7

10 60 110 160
Estimate of maximum delay

0.20

0.40

0.60

0.80

1.00

G
oo

dp
ut

Load: 0.8, Maximum delay: 300, No excluded paths

P(Loss)=0.0001
P(Loss)=0.01
P(Loss)=0.1

Figure 7.18: Performance of the rank-based protocol

process was chosen to be Bernoulli with a peak rate of 1 and an average rate of 0.8, and were

dispatched to the paths using a uniform distribution. The core element losses were modeled using

another Bernoulli process with mean pL. The delay distribution in the queues was chosen to be

uniform within [1, 300] timeslots. The value of pL and the delay estimate dest form the variables

of the experiment. The fixed cell overhead was chosen to be 8 bits, thus limiting the total order

range to 256. In the case of SCIMA, we set s = 1, F = 4, and Sf to twice the delay estimate. For

the rank-based protocol, the size of each rank component was set to 2 bits. Admittedly, the arrival

process is benign, yet it allows us to see the differences in the behaviors of the three protocols,

with varying dest and pL. The goodput is measured by counting the fraction of the arrived cells

that leave the egress in proper order.

Fig. 7.18 shows the performance of the rank-based protocol as it varies with different

underestimations of the maximum delay, for three values of pL. At higher values of estimated

delay, the goodput approaches unity, with most of the lost throughput due to cell discards on late

arrivals. When the delay estimates become grossly lower than the actual maximum delay, the

goodput falls drastically due to a high number of misordered cells. For the same value of dest, the



Parallel Packet Switches 269

10 60 110 160
Estimate of maximum delay

0.20

0.40

0.60

0.80

1.00

G
oo

dp
ut

Load: 0.8, Maximum delay: 300, No excluded paths

P(Loss)=0.0001
P(Loss)=0.01
P(Loss)=0.1

Figure 7.19: Performance of SCIMA

goodput improves with decreasing loss ratio, which is to be expected.

Fig. 7.19 shows the dependence of SCIMA on dest. For low loss levels, the goodput ap-

proaches unity even for grossly underestimated delays. However, as losses increase, the goodput

goes down because of a large number of cells being flushed in the frame recovery mode. In

fact, when losses are high, the goodput worsens with increasing delay estimate because the frame

sizes which are flushed become higher. Essentially, this tells us that SCIMA is less dependent on

accurate delay estimates, but is very sensitive to core element losses.

Finally, as expected, we also found (not shown here) that, for a total-order scheme, there

is no appreciable difference with increasing loss ratios. However, the goodput worsens progres-

sively with higher underestimations.

7.5 Summary and Discussion

We introduced a parallel packet switch (PPS) architecture in this chapter, as a multi-path BCS,

which allows to pool the bandwidth resources of several memory elements, and balance the of-



270 Chapter 7

fered load among them. We noted that, in addition to component reuse, a PPS becomes attractive

if the first and third stages can be implemented as memoryless or small-memory elements, without

losing performance, thereby allowing to support interface rates in excess of the fastest memory

in the system.

We analyzed a flow-based PPS, which statically assigns flows to one of the available

paths, based on Clos fitting of the offered-load values. Such a model is used by most clustered

routers available today. We established (Theorem 16) that the speedup required depends on how

the per-flow loads vary with each other, and may be prohibitively high for highly unbalanced

traffic. In addition, there seems to be no possibility of deploying memoryless or small-memory

first and third stages. The biggest advantage of a flow-based PPS is that there is no need for

sequence control. While the static dispatch method suffices to provide bandwidth and delay

guarantees, throughput optimization is inherently impossible without the prior knowledge of the

offered load. The speedup may be reduced (Theorem 17) by splitting the load of a few flows, and

reassigning the allocations of a few on the addition of a new flow to the system. However, this

necessitates sequence control for the set of split flows.

In order to address the throughput limitations of a flow-based PPS, and to possibly realize

the memory-bandwidth benefit of this model, we introduced a cell-based PPS, which balances the

load of each flow across the available paths. We showed (Theorem 18) that assembling per-flow

envelopes and striping them equally across all the paths is sufficient for relative stability with an

ideal switch, without speedup. Most beneficially, striping requires no explicit sequence control

despite the fact that each flow is split. Furthermore, we may employ a small-memory demul-

tiplexor and a memoryless multiplexor, without losing performance. Striping also suffices for

bandwidth guarantees, though at a cost of larger buffers in the first stage. The only disadvantage

of this method is the possibility of infinite delay.

We proposed and analyzed an equal dispatch method, which equalizes the load of each

flow across all the paths, on a cell-by-cell basis. While this resolves the latency issue of striping,

it requires per-flow sequence control. Furthermore, to preserve optimal throughput, the sequencer

needs to ensure that it does not suffer from redundant wait, which we were not able to conclu-

sively establish for known open-loop sequence control schemes. Assuming an ideal sequencer,



Parallel Packet Switches 271

#N

In
pu

ts

O
ut

pu
ts

Input Element Output ElementMemory

1

2

3

N

1

2

3

N

#1

#2

#3

Figure 7.20: A load-balanced Birkhoff-Von Neumann switch

we proved (Theorem 19) that equal dispatch ensures relative stability with an ideal switch, with-

out speedup, while employing small-memory demultiplexors. Further, the same performance

holds (Theorem 20) with small-memory multiplexors, with the application of per-flow backpres-

sure from the third to the second stage. Finally, we showed that the first stage may be made

memoryless by employing a modest speedup (Theorem 21).

Clearly, a flow-based PPS with static dispatch provides the best option for bandwidth and

delay guarantees, while a cell-based PPS with striping is best suited for optimal throughput, both

methods avoiding the need for sequence control. An efficient way to provide both in the same

switch is a subject that may benefit from further research.

7.5.1 Alternative Multi-path Architectures

A rather interesting multi-path architecture, called the load-balanced Birkhoff Von-Neumann

(BVN) switch, was introduced by Chang et al. in [9]. It happens to fall into the category of

multi-path BCS, as shown in Fig. 7.20. A (N, [SMS], 1, N, 1) switch is composed of a single

N × N space element in both the first and third stages. The second stage is composed of N

memory elements of dimensions 1× 1. A cell arriving at input i and destined to j is dispatched,

immediately on arrival, to one of the memory elements k, depending upon a perfect matching in



272 Chapter 7

the first-stage element in that slot. Subsequently, each cell contends for its output in its chosen

memory element, which is served by the matching in the third stage.

A remarkable observation in [8] is that if the traffic arriving into the second stage is

uniformly distributed, a perfect sequence (e.g., a SPS matching described in Sec. 5.3) would

suffice to keep the queues in the second-stage stable. Furthermore, a perfect sequence in the first

stage distributes the load, for arbitrary traffic patterns, in such a way that the traffic contending for

the output element becomes uniform. In other words, an O(1) perfect sequence takes arbitrary

arrivals and homogenizes the input-output load, as seen from the third stage, and the latter, in

turn, ensures stability by implementing another O(1) perfect sequence, all without speedup. The

main result may be paraphrased as follows.

Theorem ( Chang et al., Load-balanced BVN). A load-balanced BVN switch, with a perfect

sequence in the first and third stages, provides asymptotic 100% throughput to all flows destined

to a non-oversubscribed output, i.e.,

(BVN, {Perfect Sequence})
T,f3' (OQ, {WC}), T : SLLN, s = 1

The memory bandwidth in the second stage is exactly twice the interface rate. Note that

the objective of load balancing here is not to pool the resources of many smaller elements, as in a

PPS, and consequently, the memories run at a speed comparable with a CIOQ switch. However,

this multi-path design offers a variety of benefits. It offers the same throughput performance as

CIOQ, under maximal matching and a speedup of 2, using an O(1) matching and no speedup.

Furthermore, the expected delay approaches that of an OQ switch since the latency of scheduling,

in both space elements, is exactly N slots. Using a slightly complex queueing structure, in which

cells are arranged in each element on an input-output pair basis, creating a three-dimensional

structure, such a switch also provides bandwidth and delay guarantees [57] to conforming flows.

In a following work [10], Chang et al. address the mis-sequencing problem in a load-

balanced BVN. Suggestions of delay equalization at the input, and reassembly at the output, are

made, much as in a PPS. This, however, requires small buffers at the two edges of the switch, es-

sentially converting it into a 5-stage design. A more complex algorithm, using three-dimensional

queues in the second stage, was suggested by Keslassy and McKeown in [59], which prevents



Parallel Packet Switches 273

mis-sequencing by intelligently selecting cells in an in-sequence fashion, whenever a memory

element is served. A similar multi-path architecture was proposed by Prakash and Aziz in [91],

to emulate an OQ switch, in which it was proved that 4N memory elements in the second stage,

and an algorithm that can compute the desired departure time on cell arrival, suffices for OQ

emulation.



274

Chapter 8

Conclusions

We addressed the subject of constructing, characterizing, and analyzing high-capacity packet

switches using an interconnection of lower-capacity logical elements. Building scalable switches

is, by no means, a new topic. However, this work was motivated by a displeasure with the ad-

hoc nature in which it has been previously tackled. The modus operandi, so far, has been to

propose and analyze different architectures in isolation, often with varying degrees of perfor-

mance satisfaction, and a few dubious methods of arriving at them. We started with two logical

building blocks, namely, memory and space elements, and methodically exhibited the various

ways to interconnect them, each associated with well-specified design constraints. We proposed

high-performance switching algorithms for each, with an exhaustive analysis using a uniform per-

formance framework. This work is also meant to provide some perspective on the current state of

research in switching, and share some of the lessons learned by the author while architecting the

commercial Atlanta/π switching chipsets.

We started with two questions: what qualifies as the logical architecture of a multi-module

packet switch, and what models can be used to characterize optimal performance of a packet

switch design? Inspired by similar work in circuit switching, specifically, on the classical three-

stage Clos network, we established a taxonomy of three-stage packet switches, called Buffered

Clos Switches (BCS). To characterize the performance of their algorithms, we introduced a new

performance framework, of multi-level functional equivalence with an ideal switch. The latter is

similar to the levels of blocking used to characterize the performance of circuit switches. In this



Conclusions 275

work, we restricted our performance goals to the ability of a switch to provide per-flow virtual

bandwidth trunks for Quality of Service, and its ability to maintain stable queues for throughput.

With a taxonomy and performance framework in place, we analyzed the different items in the

BCS class, proposing new algorithms, wherever the literature was lacking.

All the contributions contained here are original, except the surveys in Chap. 3, Sec. 7.3.4

and Sec. 7.5.1. Moreover, these are individual contributions by the author, though some parts of

Sec. 5.1, Sec. 7.3 and Sec. 7.4 received significant inputs from co-researchers. Also, note that

some of the work here has been published before in [17, 18, 62, 63, 64, 67, 22, 66].

8.1 Summary of Contributions

The following are the specific contributions of this work.

Survey of Formal Methods We presented some of the notable performance results of switch-

ing algorithms in the literature, placing them in a new perspective and categorizing them

so as to enable meaningful comparisons. We focused on the methods from graph theory,

combinatorics and stochastics, which may be used as tools in switching analysis. Spe-

cial attention was paid to matrix decomposition techniques and stochastic stability, based

mainly on Lyapunov functions and fluid limits, which provided us with a simple means of

analysis in the rest of the dissertation. The survey was primarily restricted to IQ and CIOQ

switches, which form the starting point of our BCS taxonomy.

Taxonomy and Functional Equivalence We formally introduced a new taxonomy of three-stage

multi-module packet switches, composed of atomic building blocks, called Buffered Clos

Switches. We suggested a formal notation to specify a switch design, and enumerated

the feasible items that make up the class. We then provided three basic transformations,

namely, aggregation, pipelining and parallelization, in order to generate complex items

from a basic design. In addition to the taxonomy, a new performance framework was intro-

duced, based on proving functional equivalence with a well-known ideal switch, without

restrictions on specific arrival patterns. Existing algorithms from the above survey were

then placed into this framework. While the taxonomy and performance framework are



276 Chapter 8

novel, note that many of the existing switches already map into items in this class. The rest

of the dissertation was a methodical analysis of each item in the taxonomy.

Combined Input-Output Queueing Switches We furthered the art in CIOQ switching, already

well-researched, by presenting and analyzing matching algorithms for stronger perfor-

mance than is currently established. We first analytically showed that maximal matching

in CIOQ is analogous to circuit fitting in a Clos network, using which we proved that a

simple rate-shaping method combined with maximal matching is sufficient for bandwidth

and delay guarantees. Next, we established a fundamental result, using fluid limits, prov-

ing that a critical matching suffices for 100% throughput to admissible arrivals, without

speedup. This has long been conjectured due to a similar result for bounded traffic, but

never established so far, the best comparable algorithm being the far more complex max-

imum weight matching. We then exposed the fact that a simple sub-maximal matching

suffices for arrivals that have uniformly distributed destinations, explaining some of the

simulations-based observations in the literature.

We next addressed stricter functional equivalence with an OQ switch by proving that a

maximal matching behaves well even in the presence of inadmissible traffic, and suffices

to isolate instability to oversubscribed ports. Lastly, we proposed a specific instance of

maximal matching, called shortest output-queue first, which does the same on an input-

output pair basis, thus establishing per-flow stability in the presence of inadmissible traffic.

The last two contributions are unprecedented in that the comparable existing results are

mainly restricted to admissible traffic. We concluded by putting the QoS and throughput

results together in a two-step method called switched fair-airport matching.

CIOQ with Aggregation and Pipelining We showed how the transformations of aggregation

and pipelining may be beneficially applied to CIOQ switches, in order to generate more

scalable designs. Some work already exists in the literature for such switches, but these are

mainly in isolation, with purpose-built algorithms and analyses, primarily based on simu-

lations. We showed analytically that the well-established CIOQ results may be extended to

these transformations, thereby inheriting its performance.



Conclusions 277

Specifically, we proved that a shadow-and-decompose method, in switches with aggrega-

tion, may be used to exactly emulate a CIOQ switch. For lower complexity, the same

matching algorithms as in CIOQ may be applied using a different queueing structure, but

at the cost of some throughput performance. Similarly, we showed that shadowing a CIOQ

switch, followed by sequential dispatch, suffices in a switch with pipelining. To lower

complexity, we applied simple striping and equal dispatch methods on well-known CIOQ

matching algorithms, without performance degradation. We also presented a few con-

current dispatch algorithms, for switches with pipelining, specifically a three-dimensional

maximal matching, which was shown to be sufficient for relative stability with an ideal

switch. The results on aggregation and pipelining were then combined in order to char-

acterize the performance of general memory-space-memory switches. Finally, we briefly

presented and analyzed a recursively constructed BCS for further scalability.

Parallel Packet Switches We introduced a new parallel packet switch (PPS) architecture, a multi-

path BCS, as a means to pool the capacity of small memory elements, and balancing the

offered load among them. We classified such designs into flow-based and cell-based PPS.

For flow-based PPS, we showed that a static dispatch method suffices for fitting admissible

offered loads, across the available paths, though with a high speedup for severely unbal-

anced traffic. The speedup may be reduced by splitting a few flows among multiple paths,

at the cost of implementing sequence control. While we established the applicability of

a flow-based PPS for QoS guarantees, it relies on a prior knowledge of offered loads, in

order to optimize throughput, possibly an impractical assumption.

A cell-based PPS was presented as an alternative, so as to provide better throughput per-

formance. Similar to a switch with pipelining, we proposed envelope striping for load

balancing, and proved that this suffices for relative stability with an ideal switch, without

the need for sequence control. Furthermore, this method allows us to employ zero or very

small buffers in the high-speed portions of the switch. Next, we presented equal and frac-

tional dispatch methods, and proved the same throughput result. The latter exhibits better

latency than striping, but at the cost of implementing sequence control. We concluded by

exposing the problems associated with open-loop sequence control in such switches, an



278 Chapter 8

issue that might eventually hamper their deployment.

8.2 Topics for Further Research

In a journey through phantom buckets, imaginary queues and three-dimensional Sudoku-like

matchings, we encountered a few ancillary questions, which were not addressed to satisfaction,

as they landed outside the immediate scope of this work. Some of these provide interesting chal-

lenges for future research. An exciting sequel could be a study of more sophisticated and scalable

designs based on a similar treatment on other multi-stage circuit-switching interconnection net-

works. For example, a buffered Cantor network seems like an interesting candidate for research.

Similarly, we brushed upon the possibility of recursively constructing multi-stage architectures.

We introduced a recursive G-MSM, but did not pursue it in detail. Such a switch might be able to

retain all the desirable properties of a G-MSM, while employing even smaller elements. Another

candidate for recursion is the PPS. We question whether it is possible to build a switch with ar-

bitrarily slow memories by recursively replacing each core element of a PPS with a smaller PPS.

These designs need further analysis before they become serious candidates for implementation.

In the context of CIOQ matching algorithms, we introduced the Batch-Continuous hy-

pothesis, which, if proven, may end up as one of the most useful results to aid in analysis. We

conjectured that a matching algorithm that ensures bounded delay to bounded arrivals will also

ensure stable queues for unbounded arrivals. If this is shown to be true, we may be able to avoid

a cumbersome probabilistic analysis for each new matching policy under consideration. Instead,

the combinatorial properties of the policy may be used to directly infer its performance under

stochastic traffic. Another topic for future research is the exploration of statistical multiplexing

results for popular matching algorithms. We also touched on the employment of backpressure

from the output to the input elements, in order to approximate the SOQF policy, for per-flow

stability, in the presence of inadmissible traffic. While we provided the intuition behind such a

choice, the throughput properties for such backpressure is not known.

For switches with pipelining, we noted that several well-known matching policies do not

lend themselves to concurrent dispatch. In fact, the only ones that we came up with were con-

current versions of the orderly EREW maximal and SPS matchings. Therefore, we indicated a



Conclusions 279

preference for balanced matchings such as striping and equal dispatch, each associated with some

penalties. It might be beneficial to explore the application of more sophisticated parallel algo-

rithms, to gain better performance, with low speedup, using concurrent matching. We also noted

the possibility of using the low-complexity dispatch methods, of a switch with spatial pipelining,

towards a temporal pipeline in a CIOQ. We may thereby decrease its matching complexity, with-

out the penalties associated with envelope-based schemes in the literature. As it may allow the

practical implementation of complex matchings, this is a promising area to explore.

The interaction of a practical sequence-control scheme with the load balancing policy, in

a multi-path switch, has not been addressed satisfactorily. Specifically, for a PPS with a CIOQ

central-stage, an architecture that truly exposes all the benefits of parallelization, the differential

delay between two paths may be inestimable. This is one of the main reasons that has halted

the commercial deployment of PPS, except for the arguably low-performance clustered model.

Another issue is the combined provision of QoS and throughput in a PPS, without the need for

large buffers in the high-speed portions. For the policies we considered, the demultiplexors and

multiplexors of such a PPS would require O(F ) amount of buffering, which may be impractical

to implement on-chip, not to mention per-flow sequencing. Finally, a more thorough analysis is

required for a PPS with CIOQ central stages. We mainly concentrated on memory elements in the

second stage, and made subjective arguments for the above combination. In practice, however, it

is indeed such a combination that is attractive for deployment.

The performance of the resident algorithms for multicast traffic, for each item in the

taxonomy, is another rich topic for future research.

New Directions

There are some interesting open challenges in switching, which the research community has re-

cently begun to address, all related to the quality of stability and finiteness of memory. Most of

the throughput analysis in switching, including our own in this work, is based on establishing sta-

bility in an infinite-memory system. The rationale is that the tail of the queue-length distributions

determines the losses we may expect in a finite-memory equivalent. This rationale, however,

opens up several challenging questions.



280 Chapter 8

On−chip Buffers

OQ Switch Buffered Crossbar Switch

In
pu

ts

In
pu

ts

O
ut

pu
ts

Outputs

?

Memory
Elements

Figure 8.1: Is a buffered crossbar functionally equivalent to an OQ switch?

The first is an accurate characterization of the distributions, for meaningful arrival pro-

cesses. Two algorithms that provide stability to infinite-sized queues may result in widely varying

distributions. For example, a maximum weight matching and a critical matching show preference

for large queues, while a maximal matching is insensitive to the size of the backlogs. The initial

work by Leonardi et al. [71] and, Shah and Kopikare [98] need to be extended to other policies

and more general arrivals. A second issue is that a finite memory, with an active buffer manage-

ment scheme, might change the outcome of matching policies with respect to an infinite-queue

system. In this case, even a characterization of queue-length distributions is rendered useless.

The problem then is to understand the interaction of buffer management with scheduling. This is

a complicated problem even for link schedulers, which we addressed in [66], let alone for two-

dimensional switch schedulers. Some initial work on this has been done by Sarkar in [96]. The

third issue is the very nature of stability. Most of such results are based on long-term averages,

and are rendered utterly meaningless for real traffic. A short-term calculus needs to be devised

that is best-suited for real traffic. In its absence, several researchers use simulation studies to

determine loss ratios in a finite buffer for specific arrival patterns. However, it is often difficult to

ascertain whether an observed behavior is an outcome of the policy under consideration, or due



Conclusions 281

to the nature of the chosen patterns.

Disillusioned by the complexity of high-performance matching algorithms in CIOQ, re-

searchers have recently renewed their focus on output queueing. Specifically, the new focus is

on buffered crossbars, which allow distributed scheduling at each output, much as an OQ switch.

The basis of the current exploration is shown in Fig. 8.1. We know that a N × N OQ switch

may be implemented using N2 large memories. If those memories are placed at the crosspoints

of a space element, with restricted sizes and backpressure, we obtain a buffered crossbar1. Now,

there are only N large memories, which, however, cannot be work-conserving. The QoS prop-

erties of such an architecture has been adequately addressed by Stephens and Zhang in [103], by

Chiussi and Francini in [13, 35, 14], and by us in [16]. The current emphasis is on throughput in

comparison to an ideal switch.

1The memory elements of the Atlanta/π chipsets were in fact buffered crossbars. It was not fashionable then to call
them as such.



282

Bibliography

[1] T. Anderson, S. Owicki, J. Saxe, C. Thacker, “High speed Switch Scheduling for Local

Area Networks,” ACM Trans. Computer Systems, Nov 1993.

[2] J. Bennett and C. Partridge, “Packet reordering is not pathological network behavior,”

IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 789–798, 1999.

[3] J. C. R. Bennett and H. Zhang, “WF2Q: Worst-Case Fair Weighted Fair Queueing,” in

Proc. IEEE Infocom ‘96, pp. 120–128, San Francisco, Mar 1996.

[4] J. C. R. Bennett and H. Zhang, “Hierarchical Packet Fair Queueing Algorithms,” in Proc.

ACM Sigcomm ‘96, pp. 143–156, Stanford, CA, Aug 1996.

[5] J. Cao, W. S. Cleveland, D. Lin, D. X. Sun, “On the Non-stationarity of Internet Traffic,”

in Proc. ACM Sigmetrics ‘01, pp. 102–112, Cambridge, MA, Jun 2001.

[6] Z. Cao, Z. Wang, E. Zegura, “Performance of Hashing-based Schemes for Internet Load

Balancing,” in Proc. IEEE Infocom ‘00, Tel Aviv, pp. 332–341, Mar 2000.

[7] C. S. Chang, J. W. Chen, H. Y. Huang, “On Service Guarantees for Input-Buffered crossbar

switches: A capacity decomposition approach by Birkhoff and Von-Neumann,” in Proc.

IEEE Intl. Workshop on QoS, pp. 79–86, London 1999.

[8] C. S. Chang, J. W. Chen, H. Y. Huang, “Birkhoff-Von Neumann Input-Buffered Crossbar

Switches,” in Proc. IEEE Infocom ‘00, Tel Aviv, pp. 1614–1623, Mar 2000.

[9] C. S. Chang, D. S. Lee, Y. S. Jou, “Load Balanced Birkhoff-Von Neumann Switches, Part

I: One-stage Buffering,” Computer Communications, vol. 25, pp. 611–622, 2002.



283

[10] C. S. Chang, D. S. Lee, C. M. Lien, “Load Balanced Birkhoff-Von Neumann Switches,

Part II: Multi-stage Buffering,” Computer Communications, vol. 25, pp. 623–634, 2002.

[11] H. J. Chao, “Saturn: A Terabit Packet Switch using Dual Round-Robin,” IEEE Communi-

cations Magazine, vol. 38, pp. 78–84, Dec 2000.

[12] F. M. Chiussi, “Design, Performance and Implementation of a Three-Stage Banyan-based

Architecture with Input and Output buffers for Large Fast Packet Switches,” Ph.D. Disser-

tation, Stanford University, Jul 1993.

[13] F. M. Chiussi and A. Francini, “Scalable Electronic Packet Switches,” IEEE Journal on

Sel. Areas of Comm., vol. 21, no. 4, pp. 486–500, May 2003.

[14] F. M. Chiussi and A. Francini, “A Distributed Scheduling Architecture for Scalable Packet

Switches,” IEEE Journal on Sel. Areas of Comm., vol. 18, no. 12, pp. 2665–2683, Dec

2000.

[15] F. M. Chiussi, A. Francini, G. Galante, E. Leonardi, “A Novel Highly-Scalable Matching

Policy for Input-Queued Switches with Multiclass Traffic,” in Proc. IEEE Globecom ‘02,

Taipei, Taiwan, Nov 2002.

[16] F. M. Chiussi, A. Francini, D. A. Khotimsky, S. Krishnan, “Feedback Control in a Dis-

tributed Scheduling Architecture,” in Proc. IEEE Globecom 2000, San Francisco, Oct

2000.

[17] F. M. Chiussi, D. A. Khotimsky, S. Krishnan, “Generalized Inverse Multiplexing of

Switched ATM Connections,” in Proc. IEEE Globecom ‘98, vol. 5, pp. 3134–3140, Syd-

ney, Nov 1998.

[18] F. M. Chiussi, D. A. Khotimsky, S. Krishnan, “Advanced Frame Recovery in Switched

Connections Inverse Multiplexing for ATM,” in Proc. Intl. Conf. on ATM, Colmar, France,

Jun 1999.



284

[19] F. M. Chiussi, J. G. Kneuer, V. P. Kumar, “Low-cost Scalable switching solutions for

Broadband Networking: the ATLANTA architecture and chipset,” IEEE Communications

Magazine, vol. 35, no. 12, pp. 44–53, Dec 1997.

[20] F. M. Chiussi, Y. Xia, V. P. Kumar, “Backpressure in Shared-Memory-based ATM

Switches under Multiplexed Bursty Sources,” in Proc. Infocom ‘96, pp. 830–843, San

Francisco, Mar 1996.

[21] F. M. Chiussi, et al., “A Chipset for Scalable QoS-Preserving Protocol-Independent Packet

Switch Fabrics,” in Proc. Intl. Solid-State Circuits Conf. 2001, San Francisco, Feb 2001.

[22] F. M. Chiussi, et al., “A Family of ASIC devices for Next Generation Distributed Packet

Switches with QoS support for IP and ATM,” in Proc. Hot Interconnects 9, pg. 145–149,

Stanford, CA, Aug 2001.

[23] A. K. Choudhury and E. L. Hahne, “Dynamic Queue Length Thresholds in a Shared Mem-

ory ATM Switch,” in Proc. IEEE Infocom ‘96, pp. 679–687, San Francisco, Mar 1996.

[24] S-T. Chuang, A. Goel, N. McKeown, B. Prabhakar, “Matching Output Queueing with a

Combined Input Output Queued Switch,” IEEE J. Selected Areas of Communications, vol.

17, no. 6, pp. 1030–1039, Dec 1999.

[25] C. Clos, “A Study of Non-blocking Switching Networks,” Bell System Technical Journal,

vol. 32, Mar 1953.

[26] R. Cole, “Parallel Merge Sort,” SIAM Journal of Computing, vol. 17, no. 4, pp. 770–785,

1988.

[27] T. H. Corman, C. E. Leiserson, R. L. Rivest, “Introduction to Algorithms,” MIT Press,

1990.

[28] R. L. Cruz, “A Calculus for Network Delay, Part I: Network Elements in Isolation,” IEEE

Trans. Information Theory, vol. 37, no. 1, pp. 114–131, Jan 1991.

[29] J. G. Dai and B. Prabhakar, “The Throughput of Data Switches with and without Speedup,”

in Proc. IEEE Infocom 2000, pp. 556–564, Tel Aviv, Mar 2000.



285

[30] A. Demers, S. Keshav, S. Shenker, “Analysis and Simulation of a Fair Queueing Algo-

rithm,” in Proc. ACM Sigcomm ‘89, pp. 1–12, Austin, TX, Sep 1989.

[31] M. Devault, J. Cochennec, M. Servel, “The Prelude ATD Experiment: Assessments and

Future Prospects,” IEEE J. Selected Areas in Comm., vol. 6, no. 9, pp. 1528–1537, Dec

1988.

[32] M. Fayyazi, D. Kaeli, W. Meleis, “Parallel Maximum Weight Bipartite Matching Algo-

rithms for Scheduling in Input-Queued Switches,” in Proc. IEEE Intl. Parallel and Dis-

tributed Proc. Symposium ‘04, pp. 26–30, Santa Fe, New Mexico, Apr 2004.

[33] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,”

IEEE Transactions on Networking, pp. 397–413, Aug 1993.

[34] G. J. Foschini and B. Gopinath, “Sharing Memory Optimally,” IEEE Transactions on Com-

munications, vol. 3, pp. 352–360, Mar 1983.

[35] A. Francini and F. M. Chiussi, “Providing QoS Guarantees to Unicast and Multicast Flows

in Multi-stage Packet Switches,” IEEE Journal on Sel. Areas of Comm., vol. 20, no. 8, pp.

1589–1601, Oct 2002.

[36] Y. Ganjali, A. Keshavarzian, D. Shah, “Input-Queued Switches: Cell Switching vs. Packet

Switching,” in Proc. IEEE Infocom ‘03, San Francisco, Apr 2003.

[37] L. Georgiadis, I. Cidon, R. Geurin, A. Khamisy, “Optimal Buffer Sharing,” IEEE J. Se-

lected Areas of Communications, vol. 13, pp. 1229–1240, Sep 1995.

[38] P. Giaccone, E. Leonardi, B. Prabhakar, D. Shah, “Delay Bounds for Combined Input-

Output Switches with Low Speedup,” Performance Evaluation, vol. 55, no. 1, pp. 113–

128, Jan 2004.

[39] S. J. Golestani, “A Self-Clocked Fair Queueing scheme for Broadband Applications,” in

Proc. IEEE Infocom ‘94, pp. 636–646, Toronto, Jun 1994.

[40] P. Goyal and H. M. Vin, “Fair Airport Scheduling Algorithms,” in Proc. NOSSDAV ‘97,

pp. 272-283, St. Louis, Missouri, May 1997.



286

[41] M. Guo and R. Chang, “Multicast ATM Switches: Survey and Performance Evaluation,”

Computer Communication Review, vol. 28, no. 2, pp. 98–131, Apr 1998.

[42] S. Gupta and A. Aziz, “Multicast Scheduling for Switches with Multiple Input-queues,” in

Proc. Hot Interconnects 10, Stanford, CA, Aug 2002.

[43] M. Hall, Jr., “Combinatorial Theory,” John Wiley and Sons, 2nd Edition, New York, 1986.

[44] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum matching in bipartite

graphs,” SIAM Journal of Computation, vol. 2, no. 4, pp. 225–231, 1973.

[45] J. Y. Hui, “Switching and Traffic Theory for Integrated Broadband Networks,” Kluwer

Academic Press, 1990.

[46] A. Hung, G. Kesidis, N. McKeown, “ATM Input-Buffered switches with Guaranteed Rate

property,” in Proc. IEEE ISCC, pp. 331–335, Athens, Greece, 1998.

[47] M. I. Irland, “Buffer Management in a Packet Switch,” IEEE Trans. Communications, vol.

26, pp. 328–337, Mar 1978.

[48] A. Israeli and Y. Shiloach, “An Improved Algorithm for Maximal Matching,” Information

Processing Letters, vol. 22, no. 2, pp. 57–60, Jan 1986.

[49] S. Iyer, A. Awadallah, N. McKeown, “Analysis of a Packet Switch with Memories running

slower than line rate,” in Proc. IEEE Infocom 2000, pp. 529–537, Tel Aviv, Mar 2000.

[50] S. Iyer and N. McKeown, “Making Parallel Packet Switches practical,” in Proc. IEEE

Infocom ‘01, pp. 1680–1687, Anchorage, Alaska, Apr 2001.

[51] S. Iyer and N. McKeown, “Analysis of the Parallel Packet Switch Architecture,”

IEEE/ACM Transactions on Networking, vol. 11, no. 2, pp. 314–324, Apr 2003.

[52] S. Iyer and N. McKeown, “Maximum Size Matching and Input Queued Switches,” in Proc.

of the 40th Allerton Conf. on Communications, Control and Computing, Urbana, Illinois,

Oct 2002.



287

[53] J. Y. Jo, Y. Kim, H. J. Chao, F. L. Merat, “Internet Traffic Load-balancing using Dynamic

Hashing with Flow Volume,” in Proc. SPIE ITCom 2002, Boston, MA, Jul 2002.

[54] K. Kar, T. V. Lakshman, D. Stiliadis, L. Tassiulas, “Reduced Complexity Input-Buffered

Switches,” in Proc. Hot Interconnects 8, Palo Alto, Aug 2000.

[55] M. Karol, M. Hluchyj, S. Morgan, “Input versus Output queueing on a Space Division

Switch,” IEEE Trans. Communications, vol. 35, no. 12, pp. 1347–1356, Dec 1987.

[56] M. Katevenis, S. Sidoropoulus, C. Courcoubetis, “Weighted Round Robin Cell Multiplex-

ing in a General Purpose ATM Switch chip,” IEEE Journal on Sel. Areas in Comm., vol.

9, pp. 1265–1279, Oct 1991.

[57] I. Keslassy, “The Load-Balanced Router,” Ph.D. Dissertation, Stanford University, June

2004.

[58] I. Keslassy, M. Kodialam, T. V. Lakshman, D. Stiliadis, “On Guaranteed Smooth Schedul-

ing for Input-Queued Switches,” in Proc. IEEE Infocom ‘03, San Francisco, Apr 2003.

[59] I. Keslassy and N. McKeown, “Maintaining Packet Order in Two-stage Switches,” in Proc.

IEEE Infocom ‘02, New York, Jun 2002.

[60] I. Keslassy, R. Zhang-Shen, N. McKeown, “Maximum Size Matching is Unstable for any

Packet Switch,” IEEE Communication Letters, vol. 10, no. 7, 496–498, Oct 2003.

[61] D. Khotimsky, “A Packet Re-sequencing Protocol for Fault-Tolerant Multi-path Transmis-

sion with Non-uniform Traffic Splitting,” in Proc. IEEE Globecom ‘99, Rio de Janeiro,

Brazil, Dec 1999.

[62] D. A. Khotimsky and S. Krishnan, “Towards the Recognition of Parallel Packet Switches,”

Gigabit Networking Workshop at IEEE Infocom ‘01, Anchorage, Alaska, Apr 2001.

[63] D. A. Khotimsky and S. Krishnan, “Stability Analysis of a Parallel Packet Switch with

Bufferless input Demultiplexors,” in Proc. ICC ‘01, pp. 100–111, Helsinki, Jun 2001.



288

[64] D. A. Khotimsky and S. Krishnan, “Evaluation of Open-loop Sequence Control schemes

for Multi-path Switches,” in Proc. Intl. Conf. Communications ICC ‘02, New York, Apr

2002.

[65] P. Krishna, N. S. Patel, A. Charny, R. Simcoe, “On the speedup required for work-

conserving crossbar switches,” in Proc. 6th Intl. Workshop on QoS, pp. 225–234, Napa,

CA, May 1998.

[66] S. Krishnan, A. K. Choudhury, F. M. Chiussi, “Dynamic Partitioning: A Mechanism for

Shared-Memory Management,” in Proc. IEEE Infocom ‘99, pp. 144–152, New York, NY,

Mar 1999.

[67] S. Krishnan and H. G. Schulzrinne, “On Buffered Clos Switches,” Technical Report,

CUCS-023-02, Columbia University, Nov 2002.

[68] P. R. Kumar and S. P. Meyn, “Stability of queueing networks and scheduling policies,”

IEEE Transactions on Automatic Control, vol. 40, no. 2, Feb 1995.

[69] V. P. Kumar, T. V. Lakshman, D. Stiliadis, “Beyond Best-effort: Router Architectures

for the Differentiated Services of Tomorrow’s Internet,” IEEE Communications Magazine,

vol. 36, no. 5, May 1998.

[70] E. Leonardi, M. Mellia, F. Neri, M. A. Marsan, “On the Stability of Input-Queued switches

with Speed-up,” IEEE/ACM Trans. Networking, vol. 19, no. 1, pp. 104–118, Feb 2001.

[71] E. Leonardi, M. Mellia, F. Neri, M. A. Marsan, “Bounds on Average Delays and Queue

Size Averages and Variances in Input-Queued Cell-based Switches,” in Proc. IEEE Info-

com ‘01, vol. 3, pp. 1095–1103, Anchorage, AK, Apr 2001.

[72] S. Li and N. Ansari, “Input-queued Switching with QoS Guarantees,” in Proc. IEEE Info-

com ‘99, pp. 1152–1159, New York, NY, Mar 1999.

[73] X. Li and M. Hamdi, “On Scheduling Optical Packet Switches with Reconfiguration De-

lay,” IEEE Journal on Sel. Areas of Comm., vol. 21, no. 7, pp. 1156–1164, Sep 2003.



289

[74] X. Li, Z. Zhou, M. Hamdi, “Space-Memory-Memory Architecture for Clos-Network

Packet Switches,” in Proc. IEEE ICC ‘05, Seoul, S. Korea, May 2005.

[75] Z. Liu and R. Righter, “Scheduling Multicast Input-queued Switches,” Journal of Schedul-

ing, John Wiley and Sons, vol, 2, no. 3, pp. 99–114, May 1999.

[76] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, F. Neri, “On the Throughput of Input-

queued Cell-based Switches with Multicast Traffic,” in Proc. IEEE Infocom ‘01, pp. 1664–

1672, Anchorage, Apr 2001.

[77] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, F. Neri, “Packet-Mode Scheduling

in Input-Queued Cell-Based Switches,” IEEE/ACM Trans. Networking, vol. 10, no. 5, pp.

666–678, Oct 2002.

[78] N. McKeown, “The iSLIP Scheduling Algorithm for Input-Queued Switch,” IEEE/ACM

Transactions on Networking, vol. 7, no. 2, pp. 188–201, Apr 1999.

[79] N. McKeown, A. Mekkittikul, “A Practical Scheduling Algorithm to achieve 100%

throughput in Input-Queued Switches,” in Proc. IEEE Infocom ‘98, pp. 792–799, San

Francisco, CA, Apr 1998.

[80] N. McKeown, A. Mekkittikul, V. Anantharam, J. Walrand, “Achieving 100% Throughput

in an Input-Queued Switch,” IEEE Trans. Communications, vol. 47, no. 8, pp. 1260–1272,

Aug 1999.

[81] S. Melen and J. Tuner, “Non-blocking Multi-rate Networks,” SIAM Journal of Computing,

vol. 18, no. 2, pp. 301–313, Apr 1989.

[82] S. P. Meyn and R. Tweedie, “Markov Chains and Stochastic Stability,” Springer, London,

1993.

[83] M. Mitzenmacher and E. Upfal, “Probability and Computing: Randomized Algorithms

and Probabilistic Analysis,” Cambridge University Press, Jan 2005.

[84] K. Mulmuley, U. Vazirani, V. Vazirani, “Matching is as easy as matrix inversion,” Combi-

natorica, vol. 7, no. 1, pp. 105–113, 1987.



290

[85] E. Oki, Z. Jing, R. Rojas-Cessa, H. J. Chao, “Concurrent Round-Robin-based Dispatching

Schemes for Clos-Network Switches,” IEEE/ATM Trans. Networking, vol. 10, no. 6, pp.

830–844, Dec 2002.

[86] C. H. Papadimitrious and K. Steiglitz, “Combinatorial Optimization: Algorithms and

Complexity,” Prentice-Hall, 1982.

[87] A. K. Parekh and R. G. Gallagher, “A Generalized Processor Sharing approach to Flow

Control in Integrated Service Networks– The Single Node Case,” IEEE/ACM Transactions

on Networking, vol. 1, no. 3, pp. 344–357, Jun 1993.

[88] A. Pattavina, “Switching Theory: Architecture and Performance in Broadband ATM Net-

works,” John Wiley, W. Sussex, UK, 1998.

[89] V. Paxson and S. Floyd, “Wide-Area Traffic: The failure of Poisson Modeling,” in Proc.

ACM Sigcomm ‘94, pp. 257–268, London, UK, Aug 1994.

[90] B. Prabhakar, N. McKeown, R. Ahuja, “Multicast Scheduling for Input-Queued Switches,”

IEEE Journal on Sel. Areas of Comm., vol. 15, no. 5, pp. 855–866, 1997.

[91] A. Prakash, S. Sharif, A. Aziz, “An O(log2 N) parallel algorithm for output queueing,” in

Proc. IEEE Infocom ‘02, New York, Jun 2002.

[92] K. Pun and M. Hamdi, “Dispatching Schemes for Clos-Network Switches,” Computer

Networks, vol. 44, no. 5, pp. 667–679, Apr 2004.

[93] R. Rojas-Cessa, E. Oki, H. J. Chao, “Maximum Weight Matching Dispatching Scheme in

Buffered Clos-Network Packet Switches,” in Proc. IEEE ICC ‘04, Paris, France, Jun 2004.

[94] E. Rosen, A. Viswanathan, R. Callon, “Multiprotocol Label Switching Architecture,” In-

ternet Engg. Task Force RFC 3031, Jan 2001.

[95] K. W. Ross, “Multi-service Loss Models for Broadband Telecommunication Networks,”

Springer-Verlag, London, 1995.



291

[96] S. Sarkar, “Optimum Scheduling and Memory Management in Input-queued Switches with

Finite Buffer Space,” IEEE Trans. Information Theory, vol. 50, no. 12, pp. 3197–3220, Dec

2004.

[97] D. Shah, “Maximal Matching Scheduling is good enough,” in Proc. IEEE Globecom ‘03,

San Francisco, CA, Dec 2003.

[98] D. Shah and M. Kopikare, “Delay Bounds for Approximate Maximum Weight Matching

Algorithms for Input Queued Switches,” in Proc. IEEE Infocom ‘02, vol. 21, no. 1, pp.

1024–1031, New York, Jun 2002.

[99] M. Shreedhar and G. Varghese, “Efficient Fair Queueing using Deficit Round Robin,” in

Proc. ACM Sigcomm ‘95, pp. 231–242, Cambridge, MA, Sep 1995.

[100] A. Smiljanic, “Flexible Bandwidth Allocation in High-capacity Packet Switches,”

IEEE/ACM Trans. Networking, vol. 10, no. 2, pp. 287–293, Apr 2002.

[101] A. Smiljanic, “Performance of Load Balancing Algorithms in Clos Packet Switches,” in

Proc. Workshop on High Performance Switching and Routing 2004, Phoenix, AZ, Apr

2004.

[102] S. Stanley, “Switch-Fabric Chipsets,” Light Reading survey, Document 47959, Mar 2004.

[103] D. C. Stephens and H. Zhang, “Implementing Distributed Packet Fair Queueing in a Scal-

able Switch Architecture,” in Proc. IEEE Infocom ‘98, San Francisco, Mar 1998.

[104] D. Stiliadis and A. Varma, “Latency-Rate Servers: A General Model for Analysis of Traffic

Scheduling Algorithms,” IEEE/ACM Trans. Networking, vol. 6, no. 5, pp. 611–624, Oct

1998.

[105] D. Stiliadis and A. Varma, “A General Methodology for Designing Efficient Traffic

Scheduling and Shaping Algorithms,” in Proc. IEEE Infocom ‘97, pp. 326–335, Kobe,

Japan, Apr 1997.



292

[106] D. Stiliadis and A. Varma, “Design and Analysis of Frame-based Fair Queueing: A new

traffic scheduling algorithm for packet switched networks,” in Proc. ACM Sigmetrics ‘96,

pp. 104–115, Philadelphia, PA, May 1996.

[107] I. Stoica and H. Zhang, “Exact emulation of an Output Queueing switch by a Combined

Input Output queueing switch,” in Proc. 6th Intl. Workshop on QoS, pp. 218–224, Napa,

CA, May 1998.

[108] B. Suter, T. V. Lakshman, D. Stiliadis, A. K. Choudhury, “Design Considerations for sup-

porting TCP with Per-flow Queueing,” in Proc. IEEE Infocom ‘98, San Francisco, CA,

Mar 1998.

[109] Y. Tamir and G. Frazier, “High Performance multi-queue buffers for VLSI communication

switches,” in Proc. 15th Annual Symp. on Computer Arch., pp. 343–354, Jun 1988.

[110] F. A. Tobagi, “Fast Packet Switch Architectures for Broadband Integrated Services Digital

Networks,” in Proc. of IEEE, vol. 78, no. 1, pp. 133–167, Jan 1990.

[111] B. Towles and W. J. Dally, “Guaranteed Scheduling for Switches with Configuration Over-

head,” in Proc. IEEE Infocom ‘02, New York, Jun 2002.

[112] J. Turner, “An Optimal Nonblocking Multicast Virtual Circuit Switch,” in Proc. IEEE In-

focom ‘94, pp. 298–305, Toronto, Canada, Jun 1994.

[113] W. Wang, L. Dong, W. Wolf, “A Distributed Switch Architecture with Dynamic Load-

balancing and Parallel Input-Queued Crossbars for Terabit Switch Fabrics,” in Proc. IEEE

Infocom ‘02, New York, Jun 2002.

[114] T. Weller and B. Hajek, “Scheduling Nonuniform Traffic in a Packet-Switching System

with Small Propagation Delay,” IEEE/ACM Trans. Networking, vol. 5, no. 6, pp. 813–823,

Dec 1997.

[115] G. Wilfong, B. Mikkelsen, C. Doerr, M. Zirngibl, “WDM Cross-connect Architectures

with reduced complexity,” J. Lightwave Technology, pp. 1732–1741, Oct 1999.



293

[116] Y. S. Yeh, M. G. Hluchyj, A. S. Acampora, “The Knockout Switch: A simple modular

architecture for High-performance Packet Switching,” IEEE J. Selected Areas in Comm.,

vol. 5, no. 5, pp. 1273–1283, Oct 1987.

[117] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for Packet Switching,” ACM

Transactions on Computer Systems, vol. 9, no. 2, pp. 101–124, May 1991.


	Abstract
	Contents
	List of Figures
	List of Tables
	Preface
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.2.1 Applicability and Scope

	1.3 Organization

	Chapter 2 Switching Model
	2.1 Switching Basics: Overview
	2.1.1 Circuits: Blocking
	2.1.2 Packets: QoS and Throughput

	2.2 Notions of Optimal Performance
	2.3 Forwarding Models
	2.4 Building Blocks
	2.5 Common Existing Switches

	Chapter 3 Formal Methods in Switching
	3.1 Clos Network
	3.2 Matching Algorithms for Input-Queued Switches
	3.2.1 Switch Control Loop
	3.2.2 General Matching Techniques
	3.2.3 Deterministic Properties
	3.2.4 Stochastic Stability
	3.2.5 Work Conservation and Exact Emulation
	3.2.6 Low-complexity Matchings

	3.3 Throughput and QoS in Packet Switching
	3.3.1 Integrated Matchings
	3.3.2 Hierarchical Switch Scheduling
	3.3.3 Memory Element QoS

	3.4 Summary

	Chapter 4 Buffered Clos Switches: A Framework
	4.1 BCS Taxonomy
	4.1.1 Multi-module Architecture
	4.1.2 Feasible Implementations

	4.2 Functional Equivalence
	4.2.1 Levels of Emulation
	4.2.2 Meaning of Equivalence
	4.2.3 Existing Results

	4.3 Summary

	Chapter 5 Combined Input-Output Queueing
	5.1 Maximal Matching: Application to QoS
	5.1.1 Clos Networks: Space-Time Duality
	5.1.2 Packet-switching Equivalent
	5.1.3 Bandwidth and Delay Guarantees

	5.2 Critical Matching Algorithms
	5.2.1 Deterministic Properties
	5.2.2 Stability without Speedup

	5.3 Uniform Traffic: Sub-maximal Perfect Sequence
	5.3.1 SPS Matching
	5.3.2 Online Variants

	5.4 Maximal Matching for Inadmissible Traffic
	5.4.1 Bounded Arrivals and Statistical Multiplexing
	5.4.2 Matching on Pruned Requests
	5.4.3 Stochastic Stability

	5.5 Strict Relative Stability
	5.5.1 Shortest Output-Queue First
	5.5.2 Alternative Approaches

	5.6 Putting it Together: Switched Fair-Airport Policies
	5.6.1 Multi-phase Combination
	5.6.2 Exclusive Combination

	5.7 Extensions to Multicast Traffic
	5.8 Summary

	Chapter 6 CIOQ: Aggregation and Pipelining
	6.1 Aggregation
	6.1.1 Queueing Strategies
	6.1.2 Shadowing a CIOQ
	6.1.3 Low-complexity Matchings

	6.2 Spatial Pipelining
	6.2.1 Shadowing a CIOQ
	6.2.2 Concurrent Dispatch
	6.2.3 Balanced Matchings

	6.3 General MSM Switches
	6.3.1 Shadowing Approaches
	6.3.2 Matching on Virtual Element Queues
	6.3.3 Recursive G-MSM

	6.4 Summary and Discussion
	6.4.1 Related Work


	Chapter 7 Parallel Packet Switches
	7.1 Switch Architecture
	7.1.1 Benefits
	7.1.2 Queueing Strategies

	7.2 Flow-based PPS
	7.3 Cell-based PPS
	7.3.1 Envelope Striping
	7.3.2 Equal Dispatch
	7.3.3 Fractional Dispatch
	7.3.4 Related Work

	7.4 Sequence Control
	7.4.1 Simulation Results

	7.5 Summary and Discussion
	7.5.1 Alternative Multi-path Architectures


	Chapter 8 Conclusions
	8.1 Summary of Contributions
	8.2 Topics for Further Research

	Bibliography

