
A SIP-based Conference Control Framework

Petri Koskelainen
Nokia Research Center

Visiokatu 1
33720 Tampere, Finland

petri.koskelainen@nokia.com

Henning Schulzrinne and Xiaotao Wu
Dept. of Computer Science

Columbia University
New York, NY 10027, USA

hgs@cs.columbia.edu,xiaotaow@cs.columbia.edu

ABSTRACT
Conference control has been an area of intensive research
over the years but widely accepted robust and scalable so-
lutions and standards are still lacking. The main confer-
ence control components are conference management and
floor (resource) control. We identify the requirements for
conference control and propose a component-based scalable
conference control framework employing the Session Initia-
tion Protocol (SIP) and the Simple Object Access Protocol
(SOAP). The framework assumes a single control point, but
our architecture can scale to large groups by distributing
media via a tree-shaped hierarchy of conference servers.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Computer con-
ferencing, teleconferencing, and video conferencing

General Terms
Design, Management

Keywords
Conference control; floor control; multimedia conferencing;
packet audio; packet video; SIP; SOAP

1. INTRODUCTION
Conference control is one of the core building blocks of

the Internet multimedia conferencing architecture. It is re-
quired not just by traditional voice and video conferencing,
but also for multiparty network gaming. There is currently
no application-independent conference control mechanism,
so that each application is forced to re-invent solutions to
subsets of the problem. Below, we attempt to take a first
step towards defining a common, interoperable framework
for creating and controlling multi-user centralized confer-
ences. The paper is organized as follows. Section 2 de-
scribes related work. Section 3 gives a problem statement.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’02 May 12-14, 2002, Miami Beach, Florida, USA.
Copyright 2002 ACM 1-58113-512-2/02/0005 ...$5.00.

In Section 4, we present requirements for conference control.
Section 5 describes the framework and abstract operations
needed for the framework. In section 6, we finally present a
mapping from the requirements onto real protocols and mes-
sage formats. Section 7 gives brief examples. In section 8,
we will describe how the framework can be utilized for other
services, such as presence authorization and allow/block lists
now being discussed in the IETF.

2. RELATED WORK
Problems related to conference control have been stud-

ied extensively over the years [1, 35, 7, 23, 43, 36, 4, 14,
27, 3, 29, 5, 42, 30, 24, 6, 13, 21, 33, 41]. However, most
of the earlier work discusses only the floor control aspects
of conference control. Furthermore, some papers focus on
multicast conferences [25, 40, 37]; in the absence of a widely
available Internet multicast service, we will focus on the cur-
rently more common centralized conferencing architecture.

Standardization efforts have met with limited success. ITU-
T developed conference control protocols as a part of the
H.323 series of recommendations [16] but they had several
problems. For example, they have limited scalability due
to the inefficient T.124 [17] database replication protocol
and they lack some key features. Data and audiovisual con-
ferences use different concepts, adding complexity [41]. In
addition, they are based on binary ASN.1 formats instead
of the more Internet-friendly text protocols used in current
Internet protocols such as SIP and HTTP. Hence, deployed
H.323 systems rarely use the protocol’s conference control
features.

The IETF’s Multi-Party Multimedia (MMUSIC) working
group has also considered this topic [1]. However, its main
target was lightweight conference management for multicast
instead of tightly controlled models. In the year 2000, IETF
MMUSIC WG gave up and removed conference control from
the WG charter. Work on enumerating conference architec-
tures that can be established via the Session Initiation Pro-
tocol (SIP) has begun [33]. The draft defines several confer-
encing scenarios such as end-system based conferences, dial-
in, dial-out and large-scale multicast scenarios. Of these,
the dial-in and dial-out scenarios are the most interesting.
SIP mechanisms can initiate such conferences, allow users
to join and leave conferences and make it possible for a par-
ticipant to ask a third party to join. However, SIP by itself
does not offer configurable conference policies, participant
access lists, floor control, or user privilege levels. Despite
the problems, the dial-in and the dial-out models are suf-
ficient for some scenarios, easy to implement and do not

require any protocol changes. Hence, they can be used for
simple conferencing scenarios.

3. PROBLEM STATEMENT
We define conference as a set of members that exchange

one or more media streams or share some other state, such
as an application. Conferencing includes two main compo-
nents. First, participants must be able to join and leave a
conference. Signaling protocols can generally support these
operations if conferences are addressed like regular endpoints.
The second component, conference control, can be consid-
ered as consisting of three parts: creating, modifying and
deleting conferences as a whole, user management (adding
and deleting conference participants and modifying their
conference privileges), and resource contention management,
also known as floor control. Many different kinds of confer-
ence control scenarios are in use. The simplest one is an
open voice conference without any control. The member
identities or group size are not known to the participants
and anyone can speak or join at any time. Controlling the
right to speak is the most typical example of floor control.
In general, floor control provides a conflict-free access to
shared resources. In a controlled voice conference with one
member acting as a chairperson, requests to speak are sent
to the chairperson who grants or denies the request. Par-
ticipants may differ in their claim on the shared resource,
based on a policy. In a panel session, for example, the panel
members may have the right to speak at any time, while
the audience members can listen unless called upon by the
moderator. Access rights and user groups are part of user
management.

While conference control is typically associated with audio
and video conferences, shared network games have similar
requirements: access to the game needs to be controlled and
there are usually a number of resources that can only be used
by a limited number of players at the same time.

Conference control is a broad topic with no agreed-upon
definition [1, 13]. For example, Borman et al. [1] describe
an abstract SCCP (Simple Conference Control Protocol)
framework that defines the necessary SCCP tasks: con-
ference management, application session management, and
floor control. In this paper, we will implement the same
functionality and follow the same definition with minor ex-
ceptions. We do not consider operations such as joining a
conference or joining an application session inside a con-
ference part of conference control since they are often in-
distinguishable from regular one-to-one calls. We are also
omitting joining and splitting conferences. The effect of
these operations can be approximated by creating confer-
ences and then transferring members from one to the other
or having members leave one and join another. Also, we do
not preclude that a conference can itself be part of another
conference.

4. REQUIREMENTS

4.1 General Requirements
We define a conference control framework as the set of

protocols that implement conference control and the archi-
tecture of network elements that implement them. A con-
ference control framework needs to balance being powerful
enough for most practical scenarios, yet avoid being too com-

plex to be widely accepted and implemented on devices with
limited computational resources and user interfaces.

Like any distributed system, a conference control frame-
work should be scalable, easy to extend, generic, reliable and
secure. The scalability requirement means that the confer-
ence control framework must support reasonably large, pos-
sibly geographically distributed, conferences. Moreover, it
should be modular so that new components can be easily
added or existing components can be changed. For exam-
ple, it must be possible to use different floor control proto-
cols within this framework. Modularity also allows clients
to implement only relevant parts of the framework so that
they can make use of basic conference control services with-
out implementing all components. The conference control
framework must also be generic so that it is not tied to
any particular application. Unlike the loose conference con-
trol model [11], most messages need to be delivered reliably.
(Some event notifications may be considered less critical.)
Since moderators may be disconnected unexpectedly, the
conference needs to be able to recover from moderator fail-
ures.

Since conference control manages shared resources, re-
quests need to be authenticated and protected against re-
play attacks. In some scenarios, privacy of membership in-
formation and conference behavior may be important. Au-
thorization of actions should be possible either manually or
via a suitable automated policy language. Automating pol-
icy also makes it less likely that an attacker will overwhelm
the moderator with repeated join attempts that have to be
rejected individually.

Conference control can potentially serve as a means of a
denial-of-service attack. For example, if all join attempts
generate notifications to all participants, an attacker could
easily amplify a single message into a large number of event
notifications.

While the conference control protocols are likely to con-
sume significantly less bandwidth than the media streams,
some care needs to be taken for large conferences. Also,
some conference participants may be behind low-bandwidth
access links, such as a wireless network. Since the conference
description and policy information can be large, incremen-
tal updates are preferred over having to re-send the whole
description after each change. Similarly, changes in the par-
ticipant list should be distributed as additions and removals.
Also, not all participants care about the same level of detail;
for example, some may only be interested when new mem-
bers join or leave, but not when a participant adds herself
to the floor queue. In some cases, network-layer multicast
would be useful for distributing events, but it is not likely
to be widely available particularly in mobile environments
such as 3G networks. Thus, the protocol cannot depend on
IP multicast. (RTCP [38] can be used to announce mem-
bership changes for multicast groups, but since the protocol
is not reliable, notifications may take a while.)

We want to support hybrid conferences, where confer-
ence participants receive media via audio bridge or circuit-
switched conferences (e.g., H.320 [19] or H.324 [18]), while
conference notifications and requests are delivered via IP
networks.

4.2 Conference Management Requirements
Conference management includes features such as confer-

ence creation, modification and termination. Conference

properties, such as conference model, policy and user rights
lists, are typically established during iconference creation.

Different conferencing models, such as dial-in and dial-
out, must be supported. In a dial-in conference, users join
the conference themselves, while the conference server calls
up participants in a dial-out conference. For dial-out, the
initiator can provide the server with a list of invitees, rather
than having to complete signaling exchanges with each par-
ticipant individually. The latter consumes far more time
and scarce end system bandwidth. (We generally assume
that the conference server is located on a high-speed access
link, at least relative to the participants.)

The user rights list governs the privileges of potential par-
ticipants. The user rights lists might include information
about who can authorize the admission and expelling of par-
ticipants and who can act on floor control requests. These
functions are often combined into the role of the moder-
ator, but a flexible system should allow these to be dis-
tributed among a set of participants. The policy may de-
scribe which users are pre-authorized to join, are explicitly
forbidden from joining or may join, but in listen-only mode.
Since Internet-based signaling protocols offer a variety of au-
thentication mechanisms, a policy is also likely to define at
what strength the participant has to authenticate. Unau-
thenticated users may be rejected or relegated to audience
status.

Not all policy decisions can be made in advance. Decision
makers need to be notified of events such as join requests,
so that they can approve or deny them.

Conference management must also support the initializa-
tion of a floor control component. For example, the confer-
ence server must have the knowledge of who can create a
floor prior to executing the floor creation commands.

It must also be possible to find out the conference status
and member identities. The framework should support both
occasional notifications to the clients and specific status in-
quiries from the clients.

Application session management must support the config-
uration of the conference-wide media settings. For example,
it must be possible to add a video channel into the confer-
ence. After that, each user can decide whether he or she
wants to participate in the session.

4.3 Floor Control Requirements
Conference applications often have shared resources such

as the right to talk, access to a limited-bandwidth video
channel, a pointer or input focus in a shared application,
access to shared files or game rooms. Floor control enables
applications or users to gain safe and mutually exclusive or
non-exclusive access to the shared object or resource.

Floor control should support different floor control policies
such as moderator-controlled or first-come-first-served. A
moderator-controlled policy is relatively easy to implement,
but needs to deal with the disconnection of the moderator.
Automated queueing policies may cause starvation if one
user holds the floor indefinitely. Time limits and renewable
soft-stare solutions to prevent indefinite blocking.

For automated policies, many of the same algorithms used
for packet scheduling apply. For example, some users may
have higher priority than others, with access to the resource
on a round-robin basis within each priority class. More de-
tailed floor control requirements can be found in [6]. The
framework presented here requires support of a basic first-in,

first-out and moderated policy, but can support any number
of more sophisticated allocation mechanisms.

5. FRAMEWORK FOR CONFERENCE CON-
TROL

Below, we describe an abstract framework based on the
requirements and how these can be mapped onto real pro-
tocols.

5.1 Components of Conference Control
The conference control framework includes two principal

components, conference management and floor control. The
conference management component defines basic conference
parameters such as name, type, subject and authentication
information. It may include optional sub-components such
as user management or distribution. The distribution sub-
component defines how the conference can be distributed
across conference servers. The application session manage-
ment component defines conference wide media configura-
tion. Figure 1 clarifies the components. In addition to
conference control components, conferencing requires also
standard participant operations such as joining and leaving
a conference. Current Internet session control protocols al-
ready provide most of the services needed for participant
operations. For example, SIP can be used to initiate, mod-
ify and terminate sessions or transfer members. The Session
Description Protocol (SDP) [12, 34] allows participants to
negotiate media parameters; SDPng [22] adds additional ca-
pabilities. Standard SIP mechanism such as digest authen-
tication enforce user authentication.

Floor Control

Conference Management

User Management
 Distribution

 Application Session Management

Figure 1: Conference control components

In this paper, we will assume that SIP is used for par-
ticipant operations since it is the de facto session control
protocol in the Internet.

The SIP architecture for conference control is straightfor-
ward. The conference server is a SIP entity that provides
conference control services. One conference server usually
supports several conferences, which are identified by a SIP
URL such as sip:conf34@server.com. Depending on local pol-
icy, a server may allow a SIP INVITE with a currently unused
SIP URL to create an ad-hoc conference. Each conference
at a server may have different conference policy. One or
more members of the conference may act as moderators for
the conference. The conference server may also create sub-
conferences elsewhere for scalability reasons.

5.2 Conference Management
In a conference, the conference manager controls the con-

ferencing server. The conference manager may be a human
being or an application instance that may or may not be
co-located at the server. The conferencing server offers the
conferencing services to the members. A conference server
may be split into a control (signaling) and a media com-
ponent, but we simply assume that the control component
has the necessary mechanism to influence which member can
send and receive media.

For large conferences, it may be necessary to split the con-
ference members across multiple conference servers, orga-
nized as a tree. Conference servers can be selected based on
the geographic distribution of the members, approximating
a network-layer multicast tree. Conference control is simpli-
fied if all media streams and conference control commands
reach the root of the conference distribution tree, similar to
single-source multicast. If that assumption is made, confer-
ence servers in the tree can be treated like regular partici-
pants.

We assume that the conference is created by a conference
creator who designates the initial set of moderators. Moder-
ators can then designate others. More complicated election
protocols are possible, but not pursued here.

The conference management messages can be roughly cat-
egorized as either commands or notifications. The com-
mands are instructions or requests sent to the conference
server, while notifications are informative announcements,
typically sent by the server to the members. The following
abstract commands for conference management are defined:

Create: create a conference and sets the initial conference
parameters, such as the moderation style, join policy
and maximum conference size;

Terminate: terminate an existing conference;

Modify: modify conference parameters.

These commands are sent from the conference creator or,
if authorized, participant to the conference server. This sup-
ports basic clients since only the server is required to sup-
port the commands. A basic client can still participate to
the conference as a regular participant.

In addition to commands, there are notifications. For ex-
ample, a notification is used to inform the conference mem-
bers about changes in membership, conference policy or me-
dia configuration.

5.3 Application Session Management
SIP can control application sessions only between one user

and the conference server. It cannot change the conference
state or the conference media settings at the server. For
example, deleting media from a conference is difficult: if
a participant removes the corresponding media line from
the session description and sends a re-INVITE to the con-
ference server, it is not clear whether that means that the
participant would like to personally not receive that media
session or would like to request that the server stop repli-
cating that particularly media session for all participants.
Similarly, when changing media sessions, it is impossible to
distinguish whether the participant wants to restrict media
codec choices, for example, for itself or the whole conference.
Adding media is less problematic, except that the conference

server may well have transcoding capabilities that make it
unwise to restrict the media stream capability to that of the
initiator. Thus, a separate control mechanism that explicitly
adds, deletes and modifies conference server media sessions
is desirable.

5.4 User Management
The user management sub-component governs user-related

properties such as user access right groups and policies. For
example, it may define that the conference has two user right
groups, panel members and audience. The access control
list (ACL) includes allow and deny definitions for incoming
join attempts. Wildcards may be used in the definitions.
User management also supports real-time decisions during
the conference. Unresolved join attempts are kept in a table
until the moderator, notified by the system, sends a request
making a decision.

User management also supports a mass-invitation feature,
in which a user may ask the conference server to invite sev-
eral users at once into the conference. This saves bandwidth
for low-bandwidth users since they do not have to issue sep-
arate invitations for each user.

Conference policy can be arbitrarily complex, expressible
only in a full programming language. However, we claim
that the majority of cases can be handled by defining a few
simple operations that are directly tied to conference and
floor management and giving users rights to those. Opera-
tions include the ability to terminate the conference, invite
users, change user groups, expel users, and act as modera-
tor. Since conferences are often divided into roles, we adopt
the standard notion of user groups with privileges and assign
members to groups.

We restrict policies to be stateless, i.e., we do not limit
the number of operations of a given type that a member or
group of members can perform. We also do not condition
the operation on the identity of the member affected. For
example, it is not possible to grant senior members the right
to only expel five members during a conference, or that they
cannot expel users from the domain example.com. We have
considered, but not pursued, the notion of privilege levels,
so that each level can only perform actions on members be-
longing to a lower level.

One motivation for limiting the complexity of policies is
that devices with limited interfaces, such as mobile phones,
should be able to control conferences.

The conference server may also have a default policy for
all new conferences and may restrict the operations that new
conferences can support.

Individual aspects of the conference description are man-
aged by individual commands, rather than maintaining a
single conference description. This allows clients to only
concern themselves with components that they want to ma-
nipulate.

5.5 Floor Control
Floor control manages access to shared conference resources,

generally by restricting the number of concurrent users that
can modify a particular resource. Several resources can be
managed by one floor. For example, sending sounds to the
audio channel and a shared pointer may be managed by the
same floor. A conference may have any number of floors,
possibly created and deleted during the conference. Each
floor has an associated queue. The queue can be managed

either automatically, with a pre-defined queueing policy, or
via manual intervention by one or more moderators. Each
floor may have a different moderator. The moderator can
re-order requests in the queue, add and remove entries. A
single conference participant can have multiple entries in the
queue.

Detailed examples of floor control primitives can be found
in [1, 6, 44], among others. We will follow earlier definitions
with only minor modifications. We define the following floor
control primitives: create floor, remove floor, claim floor,
release floor, grant floor, revoke floor, remove floor claim,
reorder claims and change floor settings. These primitives
are exchanged between the conference participant, the con-
ference server and the moderator. Initial floor rights are
typically defined in the conference description when the con-
ference is created.

As for conference management, there are commands and
event notifications. Floor control commands such as “claim
floor” are commands, and announcements such as “floor
granted” are notifications. All messages either terminate
or originate on the conference server and are distributed re-
liably.

5.6 Scaling to Large Conferences
Multicast-based conferences scale well to large group sizes,

but multicast support is spotty, particularly in next-generation
wireless networks and in residential networks (e.g., DSL us-
ing PPPoE). Most existing PSTN-based teleconferences also
tend to be small, with an average of around five members, so
that the replication efficiency has to be weighed against the
substantial amount of state that the network has to main-
tain. Also, since only source-specific multicast [15] seems
to have a chance to be deployed, users will have to send
data to the root of the tree, making the delay the same as a
central-server solution. In some cases, a central server may
even be more efficient. For example, if audio streams are
mixed at the server and multiple sources are talking simul-
taneously, a single server reduces the overall bandwidth and
makes bandwidth reservation easier. (There is no need to
allocate bandwidth for the occasional multiple talker case.)

We do envision that for large conferences, hybrid solutions
will be attractive. Here, a central conference server acts as
the root of the SSM tree. The conference server mixes media
streams and sends out replicas to participants that do not
have multicast connectivity.

Single-server conferences scale to about 100 members us-
ing modest computing resources [39]. For larger or geo-
graphically distributed conferences where multicast is un-
available, we propose a tree architecture, essentially approx-
imating a multicast distribution mechanism at the applica-
tion layer. Such trees can grow dynamically as members
join. When the group size exceeds a pre-defined limit, or
there are clusters of members in certain geographic areas,
the conference server may decide to create a server tree for
the conference. First, the conference server creates one or
more subconferences at the remote servers. After that, a
number of existing or new members are transferred to the
other servers in order to decrease the load at the original
server and to improve reliability and response times in the
subconferences. Each subconference may create new sub-
conferences. Thus, a distributed server tree (DST) has been
created. Each sub-conference may have local communica-
tion such as a local voice channel or other local resources.

However, it also has access to the global conference resources
such as the right to talk to the conference-wide voice chan-
nel.

The DST can be configured, via the session description,
to have members send media to the local server or to the
root server. Floor grant commands propagate down the tree,
while floor claims are sent up the tree or enter the tree at
the root. In either case, each tree node knows the current
floor holder and can block other media streams.

Figure 2 shows a server tree in which the main server has
created two subconferences, S2 and S3, at different servers.
There are four members in the conference (A, B, C, and D).

S3

S1

S2

A
 B
 C

D

Figure 2: Distributed server tree

Server failures and tree-balancing operations complicate
the model slightly. For example, if server S2 dies suddenly,
users A and B must be transferred elsewhere immediately.
A relatively efficient solution is that clients always know the
root server address S1 and can re-join there. The root server
may then redirect users elsewhere, if necessary.

SIP already has the means for redirecting and transfer-
ring users. A prospective conference participant can be sent
to a different server using the “302 Moved Temporarily” re-
sponse; a participant already in a conference is sent a SIP
REFER request and then moves to another conference server.
(Alternatively, the new server can contact the user on behest
of the original one.)

We assume that the conference server has a local policy
that decides when to graft another server into the DST, as
described above. Once a decision has been made to en-
large the DST, the appropriate conference server has to find
a suitable server, that is, a server willing to host the sub-
conference that has sufficient resources. Clearly, this is an
instance of the wide-area service location problem [32, 2] or
application-layer routing problem [8], but simpler solutions
may be sufficient. For example, if the domain of the new
candidate server is known, we can use directed service loca-
tion [45] (Fig. 3). There, the conference server queries the
DNS SRV [9] record for a service entry for the Service Loca-
tion Protocol (SLP) [10]. The conference server then sends
an SLP query to the SLP directory agent (DA), obtaining
a list of suitable servers. The DA may also keep track of
the current server load, or the requesting server can query
servers. The SLP information also contains the SOAP con-
ference management address.

Since the search process may take several seconds, a server
in the DST that needs to shed load should start the process
well before it becomes overloaded.

SLP reply

sip:c
onf.remote.com,

http://conf.remote.com

INVITEs

REFER

Refer

-

To: sip:conf.remote.com

createConference

SLP query

"SIP conf server in

remote.com?"

DNS SRV reply

"slp.remote.com"

DNS SRV query

"SLP server in

remote.com?"

Starts the search process

Root
-

ser
ver

A
 B
 Remote

SLP server

SIP conf

server

DNS
-
server

Figure 3: Conferencing server search process

6. IMPLEMENTING THE FRAMEWORK

6.1 Commands and Notifications
Earlier in this paper, we stated that all abstract confer-

ence control messages are either commands or notifications.
The latter is easy to implement with SIP since the SIP events
framework [28] fits perfectly for this purpose. Members use
the SUBSCRIBE method to ask for event notifications, which
are delivered via NOTIFY requests. The event mechanism
makes it easy to separate the implementation of the con-
ference media client from the control client. Also, several
entities representing a single participant can subscribe to
events.

Separate event names are used for different modules. For
example, floor control and conference management have sep-
arate event names. Beyond subscribing to certain events,
the subscription may indicate the level of detail that the sub-
scriber desires to receive in notifications. For large groups,
limiting the number of different notifications that have to
be sent is desirable, so that we prefer finer-grained event

names, rather than an unbounded number of XML pattern
matches. The first NOTIFY request in the subscription in-
cludes a full state while later NOTIFY requests include only
the changes.

Commands can be implemented in several ways. The sim-
ple solution is to use HTTP to carry an XML document
to the server, as implemented by schemes such as SOAP
(Simple Object Access Protocol) [26]. We selected SOAP
to implement commands because it provides a mechanism
for carrying remote procedure calls and it is already widely
used for web services. Typically, the SOAP request is car-
ried in a HTTP POST request but it is possible to use other
transports as well, such as a SIP or SMTP. Compared to
HTTP, SIP would offer the possibility to use UDP for trans-
port and location-independent addressing, but the benefit is
small; the payload size may exceed the typical unfragmented
UDP message size and commands are always addressed to a
single server, rather than potentially moving destinations.

HTTP and SIP can readily co-exist in the same system.
They can share the same authentication mechanism and
keys. Both can use TLS (Transport Layer Security) strong
hop-by-hop encryption.

Each conference control (sub-)component such as confer-
ence management, user management, and floor control has
its own namespace for SOAP commands. This keeps them
independent and allows the usage of different components.
For example, a new floor control module can be invoked by
referencing a new SOAP namespace.

The SOAP commands are generally executed asynchronously.
That is, the result returned by the SOAP request simply in-
dicates that the request was parsed correctly, not that it was
executed successfully. This approach is taken since many
operations may take a long time and succeed incrementally.
Consider, as an example, a group invitation, where individ-
ual invitations are likely answered by humans, on timescales
of tens of seconds. The issuer of the SOAP request will re-
ceive SIP notifications indicating the progress of the request.

One-time decisions are also implemented using SOAP and
SIP events. As an example, consider the case where sev-
eral non-members are trying to join the conference approx-
imately at the same time. The server sends out an event
notification to the designated set of conference managers.
To save bandwidth, it may delay notification until a suffi-
cient number of requests have accumulated, bundling them
into one message. The conference manager then uses SOAP
requests to approve or reject pending requests. The request
might look something like this:

<join_requests>

<accept>

<user>sip:user1@domain.com</user>

</accept>

<deny>

<user>sip:user@spam.com</user>

<user>sip:user1@example.com</user>

</deny>

<join_requests>

The floor control component is currently being imple-
mented for Columbia University’s CINEMA server and the
sipc client [20]. Messaging details have been submitted [44]
to the IETF for standardization.

7. EXAMPLES
Figure 5 gives a signaling diagram for a fictional confer-

ence. First, a conference is created using the SOAP com-
mand createConference, using HTTP POST as the under-
lying transport mechanism. The SOAP command includes
a conference description specifying conference type, policy,
and other relevant information. In this example the confer-
ence type was dial-out and the names of the invited users
(A and moderator) were given. The conference server estab-
lishes a session with user A and the moderator by inviting
them into the conference. Standard SIP authentication may
be used. All invited clients may subscribe to the conference
events and specify the level of details they are willing to re-
ceive. Occasional SIP notifications are sent to the conference
members.

Next, a non-member B tries to join the conference by
sending a SIP INVITE request to the conference server. Since
B was not in the ACL, the conference server asks the mod-
erator to make a decision whether B can be accepted. The
moderator makes the decision and sends a SOAP command
UpdateJoinTable to the server. The server can now continue
with the on-going SIP transaction with B by sending the
“200 OK” response to confirm admission. Next, B makes a
floor control request using the SOAP command floorClaim.
The floor control moderator is then notified about the re-
quest and a decision is made using the floorGrant SOAP
command.

The following example (Fig. 4) is a createConference com-
mand that includes several sub-components. Each compo-
nent defines the SOAP namespace in use. This allows differ-
ent components to be used within the framework. Separate
SOAP commands are used to define each component. For
example, the setModerator command is used inside UserMan-

agement namespace to define the conference moderator. The
SDPng format is used to describe the session media details.

8. USE WITH OTHER SERVICES
In addition to the conferencing services, the conference

control framework may be used as an example for other ap-
plications as well. For example, Rosenberg [31] describes
some of the requirements for presence and instant messaging
applications. The requirements include buddy list manage-
ment, block and allow list management, buddy list subscrip-
tion, presence status management, and real-time authoriza-
tion. Buddy list subscription assumes that the group list can
somehow be created and modified. These requirements are
almost identical to the conference control requirements. In
both cases the client must be able to manage the resources
in a server. As for conferencing, buddy list management can
be divided into commands and notifications. For user autho-
rization, it may make sense to define a unified approach that
identifies the request to be allowed or issued (SUBSCRIBE

for presence, INVITE for conferences).

9. CONCLUSION
We have described a component-based framework for SIP

conference control. It was shown that conference control
can be implemented with two kinds of operations, com-
mands and notifications. SOAP is used for commands, while
the SIP event framework delivers notifications. In addition
to conference control, standard participant operations are
needed for conferencing. Currently, SIP is the de-facto ses-

<cc:createConference xmlns:cc="http://schemas.cc.org/cc/cc">

<contact>sip:meeting12@cs.columbia.edu</contact>

<subject>IRT group meeting</subject>

<type>moderated</type>

<info>

<webpage>http://www.cs.columbia.edu/IRT</webpage>

<email>mailto:irt@cs.columbia.edu</email>

</info>

<authentication>

<method>digest</method>

<password encode=base64>d3h0Ond4dA==</password>

</authentication>

<UserManagement>

<commands>

<um:setModerator xmlns:um="http://schemas.cc.org/cc/um">

<moderator>sip:hgs@cs.columbia.edu</moderator>

</um:setModerator>

<um:accessControl xmlns:um="http://schemas.cc.org/cc/um">

<ACL>

<block>

<user>anonymous@*</user>

</block>

<allow>

<user password=no>*@cs.columbia.com</user>

<user password=yes>*@nokia.com</user>

</allow>

</ACL>

</um:accessControl>

<um:createGroups xmlns:um="http://schemas.cc.org/cc/um">

<groups>

<group name="senior-member" priority=1>

<user>hgs@cs.columbia.edu</user>

<user>nieh@cs.columbia.edu</user>

</group>

<group name="irt-people" priority=2>

<user>lennox@cs.columbia.edu</user>

<user>wenyu@cs.columbia.edu</user>

</group>

</groups>

</um:createGroups>

<um:invite xmlns:um="http://schemas.cc.org/cc/um">

<users>

<user>Bob</user>

<user>Tom</user>

<user>Alice</user>

</users>

<group name="irt-people" />

</um:invite>

</commands>

</UserManagement>

<Media type=application/sdpng>

<def>

<audio:codec name="audio-basic" encoding="PCMU"

sampling="8000" channels="1"/>

<rtp:pt name="rtp-avp-0" pt="0" format="audio-basic"/>

</def>

<cfg>

<component name="interactive-audio" media="audio">

<alt name="AVP-audio-0">

<rtp:session format="rtp-avp-0">

<rtp:udp role="receive" endpoint="A" addr="192.168.1.1"

rtp-port="7800"/>

</rtp:session>

</alt>

</component>

</cfg>

</Media>

<FloorControl>.........</Floorcontrol>

.........

</m:createConference>

Figure 4: SOAP syntax example

sion control protocol and can be used for participant opera-
tions between the server and the client. Conference control
includes two main components. First, a floor control com-
ponent is used to provide a conflict-free access to shared re-
sources such as the right to talk to the speech channel. Sec-
ond, a conference management component defines the con-
ference parameters and provides real-time authorizations, if
necessary. Moreover, it includes optional sub-components
such as user management, application session management
and distribution.

We claim that combinations of network-layer source-specific
multicast and a server tree can scale Internet conferences to
arbitrary sizes, even for the common case of limited deploy-
ment of multicast. Requests and notifications have a much
lower volume than media streams, but a distributed server
tree can also ensure that they scale to large groups.

SOAP

floorClaim

"claim floor2"

NOTIFY

Event: confctl

"B joined"

200 ok

SOAP

UpdateJoinTable

"<allow>B</allow>"

NOTIFY

"B try to join"

INVITE

SUBSCRIBE

Event: confctl

INVITE
INVITE

SOAP

creat
eConf

NOTIFY

Event: floorctl

"floor claim.."

SOAP

Floor Grant

NOTIFY

"B has floor2"

server
moderator
 A
 B

183 session progress

Figure 5: An example of conference control signaling

The similarities and differences between managing confer-
ences and buddy lists remain to be explored in detail.

10. REFERENCES
[1] Bormann, C., Kutscher, D., Ott, J., and

Trossen, D. Simple conference control protocol
service specification. Internet Draft, Internet
Engineering Task Force, Mar. 2001. Work in progress.

[2] Castro, P., Greenstein, B., Muntz, R.,

Kermani, P., Bisdikian, C., and Papadopouli, M.

Locating application data across service discovery
domains. In ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom)
(Rome, Italy, July 2001), pp. 28–42.

[3] Chen, M.-S., Barzilai, T., and Vin, H. M.

Software architecture of DiCE: a distributed
collaboration environment. ACM Computer
Communication Review 22, 3 (Mar. 1992), 51–52.

[4] Crowley, T., Milazzo, P., Baker, E., Forsdick,

H., and Tomlinson, R. MMConf: an infrastructure

for building shared multimedia applications. In CSCW
90 Proceedings (Oct. 1990), ACM, pp. 329–342.

[5] Depaoli, F., and Tisato, F. Coordinator: a basic
building block for multimedia conferencing systems. In
Proceedings of the IEEE Conference on Global
Communications (GLOBECOM) (Phoenix, Arizona,
Dec. 1991), IEEE, pp. 2049–2053 (58.1).

[6] Dommel, H.-P., and Garcia-Luna-Aceves, J.

Floor control for activity coordination in networked
multimedia applications. In Proc. of 2nd Asian-Pacific
Conference on Communications (APCC) (Osaka,
Japan, June 1995).

[7] Forgie, J. W. Voice conferencing in packet networks.
In Conference Record of the International Conference
on Communications (ICC) (Seatle, Washington, June
1980), IEEE, pp. 21.3.1–21.3.4.

[8] Ghosh, A., Fry, M., and Crowcroft, J. An
architecture for application layer routing. In Proc. of
International Working Conference on Active Networks
(IWAN) (Philadelphia, Pennsylvania,
September/October 2001).

[9] Gulbrandsen, A., Vixie, P., and Esibov, L. A
DNS RR for specifying the location of services (DNS
SRV). Request for Comments 2782, Internet
Engineering Task Force, Feb. 2000.

[10] Guttman, E., Perkins, C., Veizades, J., and

Day, M. Service location protocol, version 2. Request
for Comments 2608, Internet Engineering Task Force,
June 1999.

[11] Handley, M., Crowcroft, J., Bormann, C., and

Ott, J. Very large conferences on the internet: the
internet multimedia conferencing architecture.
Computer Networks 31 (1999).

[12] Handley, M., and Jacobson, V. SDP: session
description protocol. Request for Comments 2327,
Internet Engineering Task Force, Apr. 1998.

[13] Handley, M., Wakefield, I., and Crowcroft, J.

CCCP: confrerence control channel protocol-a scalable
base for building conference control applications.
ACM Computer Communication Review 25, 4 (Oct.
1995), 275–287.

[14] Hebrard, P., Karmouch, A., and Georganas,

N. D. Management in multimedia cooperative
applications. In Proceedings of the IEEE Conference
on Global Communications (GLOBECOM) (Phoenix,
Arizona, Dec. 1991), IEEE, pp. 2054–2058 (58.2).

[15] Holbrook, H., and Cain, B. Source-specific
multicast for IP. Internet Draft, Internet Engineering
Task Force, Feb. 2002. Work in progress.

[16] International Telecommunication Union. Data
protocols for multimedia conferencing.
Recommendation T.120, Telecommunication
Standardization Sector of ITU, Geneva, Switzerland,
July 1996.

[17] International Telecommunication Union.
Generic conference control. Recommendation T.124,
Telecommunication Standardization Sector of ITU,
Geneva, Switzerland, Feb. 1998.

[18] International Telecommunication Union.
Terminal for low bit-rate multimedia communication.
Recommendation H.324, Telecommunication
Standardization Sector of ITU, Geneva, Switzerland,

Feb. 1998.

[19] International Telecommunication Union.
Narrow-band visual telephone systems and terminal
equipment. Recommendation H.320,
Telecommunication Standardization Sector of ITU,
Geneva, Switzerland, May 1999.

[20] Jiang, W., Lennox, J., Schulzrinne, H., and

Singh, K. Towards junking the PBX: deploying IP
telephony. In Proc. International Workshop on
Network and Operating System Support for Digital
Audio and Video (NOSSDAV) (Port Jefferson, New
York, June 2001).

[21] Kausar, N., and Crowcroft, J. An architecture of
conference control functions. In Proc. of Photonics
East (Boston, Massachusetts, Sept. 1999), SPIE.

[22] Kutscher, D., Ott, J., and Bormann, C. Session
description and capability negotiation. Internet Draft,
Internet Engineering Task Force, Mar. 2002. Work in
progress.

[23] Lauwers, J. C., and Lantz, K. A. Collaboration
awareness in support of collaboration transparency:
requirements for the next generation of shared window
systems. In Proceedings of CHI’90 (Apr. 1990), ACM,
pp. 303–311.

[24] Malone, T. W., and Crowston, K. The
interdisciplinary study of coordination. ACM
Computing Surveys 26, 1 (Nov. 1993), 87–119.

[25] Malpani, R., and Rowe, L. A. Floor control for
large-scale Mbone seminars. In Proc. of ACM
Multimedia (Seattle, Washington, Nov. 1997).

[26] Mitra, N. Soap version 1.2 part 0: Primer. W3C
working draft, World Wide Web Consortium (W3C),
Dec. 2001.

[27] Newman-Wolfe, R., Ramirez, C. L.,

Pelimuhandiram, H. Montes, M., Webb, M., and

Wilson, D. A brief overview of the dcs distributed
conferencing system. In Proc. of Usenix Summer
Conference (Nashville, TN, June 1991), Usenix,
pp. 437–452.

[28] Roach, A. Sip-specific event notification. Request for
Comments 3265, Internet Engineering Task Force,
May 2002.

[29] Roseman, M., and Greenberg, S. GroupKit: a
groupware toolkit for building real-time conferencing
applications. In Proceedings of the Conference on
Computer Supported Cooperative Work (CSCW)
(Toronto, Canada, Nov. 1992), ACM, pp. 43–50.

[30] Roseman, M., and Greenberg, S. Building flexible
groupware through open protocols. In Proceedings
COSC’93 (1993), ACM, pp. –.

[31] Rosenberg, J. A component model for SIMPLE.
Internet Draft, Internet Engineering Task Force, Feb.
2002. Work in progress.

[32] Rosenberg, J., and Schulzrinne, H. Internet
telephony gateway location. In Proceedings of the
Conference on Computer Communications (IEEE
Infocom) (San Francisco, California, March/April
1998), pp. 488–496.

[33] Rosenberg, J., and Schulzrinne, H. Models for
multi party conferencing in SIP. Internet Draft,
Internet Engineering Task Force, Nov. 2001. Work in
progress.

[34] Rosenberg, J., and Schulzrinne, H. An
offer-answer model with SDP. Request for Comments
3264, Internet Engineering Task Force, May 2002.

[35] Rubin, D., Craighill, E., and Raphael, R. Topics
in the design of a natural teleconferencing system. In
Conference record of the IEEE National
Telecommunications Conference (Birmingham,
Alabama, Dec. 1978), vol. 1, IEEE, pp. 12.4.1 – 12.4.5.

[36] Sakata, S. Development and evaluation of an
in-house multimedia desktop conference system. IEEE
Journal on Selected Areas in Communications 8, 3
(Apr. 1990), 340–347.

[37] Schubert, I., Sisalem, D., and Schulzrinne, H. A
session floor control scheme. In Proc. of International
Conference on Telecommunications (Chalkidiki,
Greece, June 1998).

[38] Schulzrinne, H., Casner, S., Frederick, R., and

Jacobson, V. RTP: a transport protocol for real-time
applications. Request for Comments 1889, Internet
Engineering Task Force, Jan. 1996.

[39] Singh, K., Nair, G., and Schulzrinne, H.

Centralized conferencing using SIP. In Internet
Telephony Workshop 2001 (New York, Apr. 2001).

[40] Sisalem, D., and Schulzrinne, H. The multimedia
internet terminal (MInT). Telecommunications
Systems 9, 3-4 (Sept. 1998), 423–444.

[41] Trossen, D. Scalable Group Communications in
Tightly Coupled Environments. PhD thesis, University
of Technology, Aachen, Germany, Sept. 2000.

[42] Watabe, K., Sakata, S., Maeno, K., Fukuoka,

H., and Ohmori, T. Distributed desktop
conferencing system with multiuser multimedia
interface. IEEE Journal on Selected Areas in
Communications 9, 4 (May 1991), 531–539.

[43] Watabe, K., Sakata, S., Maeno, K., Fukuoko,

H., and Ohmori, T. Distributed multiparty desktop
conferencing system: MERMAID. In CSCW 90
Proceedings (Oct. 1990), ACM, pp. 27–38.

[44] Wu, X., Koskelainen P., Schulzrinne H., Chen

C. Use SIP and SOAP for conference floor control.
Internet Draft, Internet Engineering Task Force, Feb.
2002. Work in progress.

[45] Zhao, W., et al. The SLP service and remote
discovery in SLP. Internet Draft, Internet Engineering
Task Force, Mar. 2002. Work in progress.

