
QoS Evaluation of VoIP End-points
Wenyu Jiang

Department of Computer Science
Columbia University

Email: wenyu@cs.columbia.edu

Kazuumi Koguchi
Information Technology R&D Center

Mitsubishi Electric Corporation
Email: koguchi@isl.melco.co.jp

Henning Schulzrinne
Department of Computer Science

Columbia University
Email: hgs@cs.columbia.edu

Abstract— We evaluate the QoS of a number of VoIP end-
points, in terms of mouth-to-ear (M2E) delay, clock skew, silence
suppression behavior and robustness to packet loss. Our results
show that the M2E delay depends mainly on the receiving end-
point. Hardware IP phones, when acting as receivers, usually
achieve a low average M2E delay (45-90 ms) under low jitter
conditions. Software clients achieve an average M2E delay from
65 ms to over 400 ms, depending on the actual implementation.
All tested end-points can compensate for clock skew, although
some suffer from occasional playout buffer underflow. Only a few
of the tested end-points support silence suppression. We find that
their silence detectors have a fairly long hangover time (> 1 sec),
and they may falsely detect music as silence. All the hardware IP
phones we tested support some form of packet loss concealment
better than silence substitution. The concealment generally works
well for two to three consecutive losses at 20 ms packet intervals,
but voice will quickly deteriorate beyond that.

I. I NTRODUCTION

Voice over IP (VoIP) is a service that requires synergy
between the underlying network for transport and the end-
points responsible for voice processing. Although there is an
extensive literature on network quality of service (QoS) [13],
little has been done on studying the QoS of VoIP end-points.
Here, we evaluate several well-known brands of IP phones
and a few popular software VoIP clients. Our evaluation has
revealed quite a few interesting results. For example, Microsoft
Messenger achieves the lowest mouth-to-ear (M2E) delay1

(65-120ms on average) among the software VoIP clients, while
its predecessor NetMeeting is among the worst (> 400 ms).
Even more surprisingly, while Messenger XP has been touted
as the best Messenger implementation, our experiments show
that Messenger on Windows 2000 consistently achieves a
lower M2E delay, with exactly the same hardware. Only a
few of our end-points support silence suppression, but luckily
all end-points are able to adjust playout delay adaptively even
when the sender transmits continuously. However, the silence
detectors they use may falsely treat music as silence, creating
unwanted gaps in the output audio.

The remainder of this paper is organized as follows. Sec-
tion II lists related work. Section III describes the setup of our
experiments. Section IV presents the measurement results, and
Section V concludes the paper and lists future work.

II. RELATED WORK

Most QoS technologies aim to reduce network delay,
whether through bandwidth reservation in IntServ, prioritized

1Whenever we refer to an end-point’s M2E delay, we imply that it is acting
as a receiver. Unless otherwise noted, we assume a LAN test environment

forwarding in DiffServ and MPLS, or congestion avoidance in
constraint based routing, all of which are well summarized in
[13]. However, few papers have addressed end-to-end (M2E)
delay in real applications. We came across one related project
by Calyam [2] and Schopis [10] that studies the M2E delay
on H.323 videoconferencing systems. They use a metronome
(pulses) as an input source and use an oscilloscope to view
the phase offset between input and output pulses and derive
the M2E delay. Their delay measurement technique is similar
to ours, but we use real speech instead of a metronome,
and we derive the delay automatically through software-
based estimation. The delay of video conferencing systems
is expected to be higher than IP phones (voice only) due to
potentially long look-ahead delay such as from B-frame (bi-
directional) prediction in video coding. Our study evaluates
more VoIP products and addresses other metrics including
clock skew and silence detector behavior.

Sage Instrument has a few products such as 935AT for
measuring round-trip delay and detecting packet loss. The
935AT allows one-way delay measurement however, only for
analog 2-wire circuits, and not for 4-wire circuits or IP phones.

III. E XPERIMENT SETUP

A. Measurement Approach
We measure mouth-to-ear delay by recording both the

original and output audio in a two-channel (stereo) mode,
as illustrated in Figure 1. The couplers in Figure 1 are
special audio feeding/receiving devices that connect between
the handset and base of a telephone such as an IP phone.

ethernet

IP phonecoupler

In
Out

notebook
original
audio

PC
signal
stereo

LAN

speaker

ethernet

coupler IP phone
In
Out

line in

(mouth)

(ear)

output
audio

Fig. 1. Measuring mouth-to-ear (M2E) delay

To automate delay estimation, we use theadelay software
(http://www.cs.columbia.edu/IRT/software/adelay/) developed
in our lab. It reads a stereo audio file and calculates a
most likely delay offset based on auto-correlation in the time
domain. We have tested its correctness by inserting a known
delay offset with a special audio effects unit. The precision of
adelay is always within 1 ms in these tests.

We used the digital recording of an audio book tape cassette
as the audio source in our experiments.



B. End-point Devices and Configurations
We evaluate IP phones from three major vendors: Cisco,

3Com and Pingtel, plus a 1-line PSTN/IP gateway made by
Mediatrix. The software clients include Microsoft Messenger
and NetMeeting (both running on a Athlon/K7 900 MHz PC
with Windows 2000/XP dual-boot, and a Pentium-3 800 MHz
notebook with Windows XP),sipc [5] using rat from UCL
(http://www-mice.cs.ucl.ac.uk/multimedia/software/rat/) as the
media client, and Net2Phone. Table I lists all tested end-points
and whether silence suppression is used.

End-point platform/model or firmware version silence
& client version suppression

Cisco phone 7960, AppLoad P0S30201 Y
3Com phone NBX 1.0.1.26.1 N
Pingtel phone Xpressa 1.2.7.4 N

Mediatrix gateway APA III 1FXS 1.0.6.12 N
rat 4.2.20 Solaris, Ultra-10 360 MHz N

Messenger 4.6 Win 2000/XP, K7-900 & P3-800 Y
NetMeeting 3.0 Win 2000/XP, K7-900 & P3-800 Y

Net2Phone Win NT P2-450 & Win 98 P3-1G Y
1.1 & 1.5 & Win 2000 K7-900

GSM phone GSM 1900 US n/a

TABLE I

L IST OF TESTED END-POINTS, FIRST FIVE ARESIP [9] BASED

Table II shows some of the configuration parameters. Most
end-points implement the G.711µ-law [4] codec, but not many
other codecs are supported. Due to interoperability limitations,
we cannot test all pairwise combinations of end-points. For
example, Net2Phone only talks to other Net2Phone clients.

parameter case value
codec default G.711µ-law (64 kb/s)

Cisco phone G.729 (8 kb/s)
NetMeeting G.723.1 (6.3 kb/s)
Net2Phone G.723.1 ?

packet interval default 20 ms
Mediatrix GW 30 ms
NetMeeting 30 ms
Net2Phone 60 ms

TABLE II

COMMON PARAMETERS IN THE EXPERIMENTS

IV. M EASUREMENTRESULTS

A. Mouth-to-ear (M2E) Delay without Jitter
Figure 2(a) shows how M2E delay evolves over time. The

notation “experiment 1-2” means part 2 of call 1. Between part
1 and part 2 is a short pause when we save part 1’s audio to
disk. In experiment 1-1, the M2E delay from 3Com to Cisco
peaks at about 59 ms at the time of 254 seconds, then drops to
49 ms immediately. The highly linear trend shows the effect
of clock skew. A similar linear trend and drop in M2E delay
(also by 10 ms) are observed in experiment 1-2.

In Figure 2(a) we also draw the long silence gaps (> 1 sec),
with height representing relative gap length. There is a clear
correspondence in Figure 2(a) between gaps and time-points
of delay adjustment. This concurs with the convention that
playout delay should only be adjusted at the beginning of a
new talk-spurt [7], an event represented by an RTP [11] packet
with the marker (M) bit set to 1. However, the 3Com phone
does not use silence suppression. Hence, its RTP packets never

have the M-bit set. But the Cisco phone is still able to adjust
the playout delay irrespective of the M-bit, and the adjustment
still occurs during a silence gap.

Figure 2(b) shows how the presence of M-bits (Cisco to
3Com) serves as good hints for delay adjustment in the
receiver. In contrast, delay adjustment occurs much less often
and the M2E delay exhibits a cleaner linear trend when no
M-bits are sent, such as in the Pingtel to 3Com case.

We notice that certain senders can introduce delay spikes.
Figure 2(c) shows many small spikes, plus two high spikes (>
200 ms) that causes distortions in speech. Given our test LAN
is lightly loaded with virtually no jitter, and the spikes occur
only when Mediatrix is the sender, the Mediatrix gateway
has to be the source of the problem. We conjecture that it
has a poor real-time scheduler, which would also explain our
observation of similar spikes even when it is the receiver.

receiver
sender 3Com Cisco Mediatrix Pingtel rat
3Com 51.4 ms 47.1 ms 55.1 ms 223 ms
(range) (2.5 ms) (3.1 ms) (2.9 ms) (8.7 ms)
Cisco 63.0 ms 75.8 ms 78.1 ms 74.0 ms 206 ms

(3.8 ms) (8.4 ms) (8.6 ms) (12.3 ms)
w. G.729 98.7 ms
Mediatrix 85.8 ms 77.6 ms 72.5 ms

(16.3 ms) (4.0 ms) (10.7 ms)
Pingtel 46.6 ms 63.0 ms 57.6 ms 230 ms

(4.1 ms) (8 ms) (1.8 ms) (63.4 ms)
rat 52.4 ms 59.8 ms 64.2 ms

(3.1 ms) (0.9 ms) (16.4 ms)

TABLE III

AVERAGE M2E DELAYS FOR IP PHONES ANDrat

Instead of showing all test pairs’ delay plots, Table III
summarizes them with the average M2E delay. Its first column
represents the sender, and its first row denotes the receiver.
The numbers in parentheses are the difference (range) between
the highest and lowest average M2E delay among all calls
for the same pair of end-points. A low range indicates high
repeatability, which is confirmed by Table III in most cases.
All IP phones (including the Mediatrix gateway) achieve a
delay below 90 ms, and in most cases below 65 ms. Pingtel to
3Com has the lowest average delay of 46.6 ms. Between two
Cisco phones, delay using G.729 [3] is 98.7 ms, nearly 15 ms
higher than for G.711 (75.8 ms), clearly due to additional
compression and look-ahead delay for G.729.

Between the IP phones, due to the low delay, it is not very
clear whether the sender or the receiver plays a more dominant
role in M2E delay. However, the role becomes evident when
rat is the receiver. Its M2E delay is consistently above 200 ms
irrespective of the sender.

The dominant role of the receiver is more evident in
Table IV. For example, Messenger XP (notebook) to XP (pc)
achieves an average delay of 120 ms. However, when the
receiver switches to Messenger 2000 (same PC), the delay
consistently drops to 68.5 ms, indicated by the small range in
Table IV. This again confirms that the receiver dominates the
M2E delay. It is also surprising because Messenger XP has
always been claimed as the best Messenger implementation,



35

40

45

50

55

60

0 50 100 150 200 250 300
1

1.5

2

2.5

3

3.5

4
M

2E
 d

el
ay

 (
m

s)

ga
p 

le
ng

th
 (

se
c)

time (sec)

experiment 1-1
experiment 1-2

silence gaps

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

M
2E

 d
el

ay
 (

m
s)

time (sec)

Cisco to 3Com 1-1
Pingtel to 3Com 2-1

new talkspurt (M-bit=1)

50

100

150

200

250

300

0 50 100 150 200 250 300 350

M
2E

 d
el

ay
 (

m
s)

time (sec)

Mediatrix to 3Com 3-1
Mediatrix to Cisco 1-1

Mediatrix to Pingtel 1-1

(a) 3Com to Cisco; gapsnot drawn to scale (b) Effect of M-bits on delay adjustment (c) Presence of delay spikes for Mediatrix
Fig. 2. Mouth-to-ear (M2E) delay plots

while we find that Messenger 2000 actually has lower delay,
with exactly the same hardware.

The sender does in some cases play a minor role in M2E
delay. When Messenger XP (notebook) acts as the receiver, the
average delay is 109 ms with Messenger XP (pc) as sender,
but drops to 96.8 ms when sender is Messenger 2000. This
could come from a reduction of the processing time required
by Messenger before sending out every packet.

end-point A end-point B A → B B ← A
MgrXP (pc) 109 ms 120 ms

(range) MgrXP (notebook) (0.8 ms) (44.6 ms)
Mgr2K (pc) (Mgr: Messenger) 96.8 ms 68.5 ms

(5 ms) (10.1 ms)
NM2K (pc) NMXP (notebook) 401 ms 421 ms

(NM: NetMeeting) (46.9 ms) (6.8 ms)
Net2Phone 292 ms 372 ms

v1.1, NT P-2 (77.3 ms) (11.1 ms)
Net2Phone PSTN 201 ms 373 ms

v1.5, NT P-2 (local number) (2.7 ms) (9.2 ms)
Net2Phone 196 ms 401 ms

v1.5, W2K K7 (9.8 ms) (2.1 ms)
Net2Phone Net2Phone 525 ms 350 ms

v1.5, W2K K7 v1.5, W98 P-3 (2.7 ms) (8 ms)
Mobile (GSM) PSTN 115 ms 109 ms

(local number) (4.8 ms) (5.1 ms)

TABLE IV

AVERAGE M2E DELAYS FOR PC CLIENTS AND MOBILE PHONE

The predecessor of Messenger is NetMeeting, and its M2E
delay is a very high 400 ms, using the same PC and notebook.
This is quantitative evidence that NetMeeting is not well
designed for real-time interactive conversations, and the delay
bottleneck is the application rather than the OS in use.

The last VoIP end-point we test is the Net2Phone Comm-
Center, a popular IP telephony application. Its M2E delay is
unfortunately also quite high, near or above 300 ms with v1.1.
The round-trip time between the NT PC and its PSTN gateway
is usually between 5-30 ms. Therefore the 300 ms M2E delay
is not caused by the network, but by the client or the gateway,
and most likely at the receiving end.

Later we upgraded the Net2Phone software on the NT
machine to v1.5. The only main difference is the average
delay from Net2Phone to PSTN dropped from 292 ms to
201 ms. It indicates the sender (Net2Phone) also introduces
some noticeable delay. The results on the Windows 2000 PC
(same one used for Messenger) are similar to that of NT, even
though the hardware is quite different. The delay between
a PC-to-PC call is, however, much higher in the Win2000

to Win98 case (525 ms) than Win2000 to PSTN (196 ms),
suggesting the Win98 notebook introduces a lot of delay. This
again shows the receiver plays a more important role.

With a black-box measurement approach, we cannot know
the exact bottleneck for high delays. However, we can name
the likely candidates. This includes the playout delay, sound
API, sound card driver, OS, and the sound card itself.

Finally, it motivates to compare VoIP with mobile phones,
here Messenger is comparable to GSM in delay (≈110 ms).

B. Clock Skew

According to Mills’ notation, we define clock skew as the
frequency difference [6]. In our experiments, all the end-
points adjust the playout delay to deal with clock skew, such
as in Figure 2(a). The 3Com and Pingtel phone appear to
occasionally suffer from playout buffer underflow even when
there is no packet loss or delay jitter. Figure 3 shows the input
(top) and output (bottom) waveforms, and highlights when a
waveform drop occurs (3:57.759≈ 238 sec). It correlates well
with Figure 2(b), Cisco to 3Com 1-1 case, exactly when the
delay is being adjusted downward then upward. It is therefore
most likely a side effect (or bug) of the playout algorithm.

Fig. 3. Playout buffer underflow, Cisco to 3Com 1-1; dropped waveform

Next we analyze the rate of clock skew. If the skew rate
from A to B is r, then a positiver means the M2E delay has
an increasing trend, thus A’s clock is faster than B’s. Ideally
clock skew is symmetric, that is, the skew rate from B to A
should be -r. This can be seen in Table V.

The skew rate depends on the crystal oscillator used to drive
the voice circuitry, but its magnitude often falls within 25 ppm



[12] and rarely exceeds 100 ppm. Between the IP phones, the
magnitude of the combined skew is within 60 ppm. Between
two Cisco phones, the skew is almost zero, probably because
they use the same type of oscillators. However, forrat it is
always higher than 300 ppm, far beyond 100 ppm. We have
measured other workstations and PCs, and found many have
skew rates of 200-300ppm.

receiver
sender 3Com Cisco Mediatrix Pingtel rat
3Com 55.4 43.3 41.2 -333
Cisco -55.2 -0.4 -11.8 -12.1 -381

Mediatrix -43.1 11.7 -0.8
Pingtel -40.9 12.7 2.8 -380

rat 343 403 376
Cisco G.729 -0.4

TABLE V

AVERAGE CLOCK SKEW RATES(IN PPM) FOR IP PHONES ANDrat

Table VI summarizes the skew rates for PC clients. Surpris-
ingly, Messenger has a positive skew rate in either direction,
but interestingly, the skew in A→ B direction is about twice
that of B←A. NetMeeting exhibits highly oscillative delays, as
a result its values are not reliable. The skew rates of Net2Phone
on the NT machine are very symmetric, and relatively high,
nearly 300 ppm and quite close to that ofrat. The skew rates
of Net2Phone on the Win2K PC are very close to that of
Messenger on the same Win2K PC, and they are both positive.
Such a high level of correspondence indicate these results are
unusual but real. One logical explanation is that the sound card
may have two circuit-driving oscillators. Finally, the mobile
phone exhibits no sign of skew, because it is known that the
mobile phone network and the PSTN share a common, global
stratum-1 clock.

end-point A end-point B A → B B ← A
MgrXP (pc) MgrXP (notebook) 172 87.7
Mgr2K (pc) 165 85.6
NM2K (pc) NMXP (notebook) ? -33?

Net2Phone NT 290 -287
Net2Phone W2K PSTN 166 82
Mobile (GSM) 0 0

TABLE VI

AVERAGE SKEW RATES(IN PPM) FOR PCCLIENTS AND MOBILE PHONE

C. Behavior under Packet Loss

Packet loss concealment (PLC) [8] ranges from silence
substitution (worst quality), packet repetition, to extrapolation
and interpolation. We evaluated PLC behavior on the Cisco,
3Com and Pingtel phones, by inserting deterministic bursty
losses. In our experiments, 5/100, for example, means 5 con-
secutive losses every 100 packets. We find that first, all phones
implement a PLC better than silence substitution. Second, their
PLCs work for up to two (three for Cisco) consecutive losses
at a 20 ms interval, then the voice quickly fades to silence.
This is acceptable because repairing beyond three consecutive
losses becomes difficult and it may cause side effects like
buzzing sound. Thirdly, PLC does not affirmatively increase
the M2E delay.

By examining the output waveform, we find that the Pingtel
phone repeats the waveform, but it smoothes any discontinuity
between frames. Both Cisco and 3Com phones use at least
extrapolation. Interpolation works if the loss gap is shorter
than the playout delay, but we cannot know whether the Cisco
and 3Com phone opt to do so just by examining the waveform.
Instead we estimate the PLC methods indirectly by comparing
their relative audio quality, as shown in Table VII. The quality
rating is subjective, but the difference between the three levels
(almost inaudible, audible and very audible) are clear-cut. The
Cisco phone is the most robust. In particular, for loss pattern
1/20 (effectively 5% loss), it still has good quality, while
the other phones perform noticeably worse. In a 1/20 loss
pattern, the loss gap (20 ms) is very likely to be less than the
playout delay, which would allow interpolation. However, the
fact that the 3Com phone has a much worse quality suggests
it is not doing interpolation even for the 1/20 case. Therefore,
in Table VII we tentatively mark it as extrapolation only.
The Pingtel phone performs about the same as 3Com, except
that its packet repetition occasionally introduces repetitive or
buzzing sound. Finally, when the loss pattern is 1/100, there
is no audible distortion for any of these IP phones.

IP PLC used loss tol- distortion vs. loss pattern
phone erance 3/100 1/20
Cisco extrapolation

or interpolation
3 pack-
ets

almost
inaudible

almost
inaudible

3Com extrapolation
only?

2 pack-
ets

audible very
audible

Pingtel packet repeti-
tion+smoothing

2 pack-
ets

audible very
audible

TABLE VII

PLC BEHAVIORS OFIP PHONES, G.711µ-LAW, 20MS INTERVAL

In terms of latency, we find that PLC does not introduce
any consistent and extra delay in any of the three phones, so
for brevity we do not show any more delay plots.

D. Silence Suppression Behavior

1) Hangover Time:It is defined as the duration by which
a silence detector delays its final decision. Its main purpose is
to avoid clipping the end of a speech segment. When fixed, a
value of 200 ms is usually sufficient [1].

Sender Hangover time Comfort noise packets?
Cisco 2.3-2.36 sec Y
Messenger 1.06-1.08 sec N
NetMeeting 0.56-0.58 sec N

TABLE VIII

SILENCE DETECTOR PROPERTIES

Because the end-points’ hangover times were not available
to us, we measured their values using waveforms consisting
of several on (sine wave) and off (silence) periods. Table VIII
summarizes our results. The Cisco phone has a fairly long
hangover time. NetMeeting’s is the shortest, but still longer
than the 200 ms used in [1]. The Cisco phone generates
comfort noise packets as well. There is nothing quite wrong
with a long hangover time. It is safer and prevents end-clipping
of speech, but it does use slightly more bandwidth.



2) Robustness for Non-speech Signals (Music):We find
that none of the three silence detectors in Table VIII work
perfectly for music input. They may falsely predict music
as silence, leading to annoying, unnatural gaps in the output
audio. The Cisco phone is relatively more robust in dealing
with music, but it can still fail when the input level is low.

sender input level no. of gaps total gap length
Cisco -23.1 dB 1 1 sec
phone -25.3 dB 1 2 sec

-31.4 dB 1 3 sec
-36.7 dB 2 5 sec
-41.4 dB 14 10 sec
-43.5 dB 18 25 sec

Messenger -19.5 dB 2 5.5 sec
2000 -23.9 dB 13 12 sec

-24.5 dB 19 14.5 sec
-25.4 dB 29 18 sec

TABLE IX

SILENCE DETECTOR PERFORMANCE FOR MUSIC(2.5 MINUTES LONG)

Table IX shows the total number and duration of unnatural
gaps created by the Cisco phone and Messenger 2000, at
various audio input levels. The input level here is defined as the
average volume of the entire music track. Rather than relying
on analog measurement, which depends on both electrical
current and impedance, we measure the input level in its
digital form as observed by the client, by LAN-sniffing the
transmitted RTP [11] payload. Messenger clearly uses a higher
detection threshold than the Cisco phone. Generally, a silence
detector should work for speech level from -36 dB to -26 dB or
higher. In fact, we also tried the input level close to -43.5 dB
on the Cisco phone for speech, and we did not notice any
unnatural gaps. This indicates that even if the silence detector
works well for speech, it may not for music.

E. M2E Delay under Network Jitter

90

100

110

120

130

140

150

160

170

180

0 20 40 60 80 100 120 140 160 180

m
ou

th
-t

o-
ea

r 
de

la
y 

(m
s)

time (sec)

High jitter (uplink)
Low jitter (downlink)

Fig. 4. Impact of jitter on M2E delay,rat to Cisco, cable modem trace

Finally, we performed an initial test on how jitter affects the
M2E delay. We used a typical packet trace collected between
a university machine and a PC with cable modem. It is well
known that cable modem uplink exhibits high jitter. The 99%
network delay is 43.8 ms for the downlink trace we used, and
93.6 ms for the uplink trace, nearly 50 ms higher. Figure 4
illustrates the experiment results with the Cisco phone as the
receiver. The average delay is 38.4 ms higher in the uplink
case. This increase is slightly less than the 50 ms difference
in the 99% delay between the two traces. In addition, we do

not notice any distortion in the output audio. Therefore, the
Cisco phone does a good job of playout buffering and suffers
no audible late loss.

V. CONCLUSIONS ANDFUTURE WORK

We performed a large number of measurements on various
VoIP end-points. All the hardware IP phones achieve a low
M2E delay and have acceptable packet loss concealment per-
formance, with the Cisco phone being the most robust. Among
software-based clients, Messenger 2000 has the lowest average
M2E delay (68.5 ms), even better than Messenger XP (97-
120 ms).rat achieves 200-230ms in comparison. NetMeeting
performs almost the worst, with over 400 ms on average. The
delay of Net2Phone range from 200 ms to 525 ms, depending
on the software version, the direction, and OS.

The magnitude of clock skew is within 60 ppm between IP
phones, but can be quite high (> 280 ppm) forrat (running
on a workstation) and Net2Phone (running on a PC).

Silence detectors used by the Cisco phone, Messenger and
NetMeeting have long hangover times, ranging from 0.56 sec
(NetMeeting) to 2.36 sec (Cisco). However, they do not work
well for music input, leading to unwanted gaps in output audio.

Finally, a preliminary test on jitter shows that the Cisco
phone is able to tolerate typical cable modem uplink jitter at a
moderate increase in M2E delay and with no audible distortion
due to late loss. We plan to conduct similar experiments on
other end-points and with more jitter conditions, and we will
examine other important metrics such as echo cancellation.

REFERENCES

[1] Paul T. Brady. A statistical analysis of on-off patterns in 16 conversa-
tions. Bell System Technical Journal, 47(1):73–91, January 1968.

[2] Anjaneya Prasad Calyam. Performance measurement and analysis of
H.323 videoconference traffic. Master’s thesis, Department of Electrical
Engineering, Ohio State University, June 2002.

[3] International Telecommunication Union. Coding of speech at 8 kbit/s
using conjugate-structure algebraic-code-excited linear-prediction. Rec-
ommendation G.729, Telecommunication Standardization Sector of ITU,
Geneva, Switzerland, March 1996.

[4] International Telecommunication Union. Pulse code modulation (PCM)
of voice frequencies. Recommendation G.711, Telecommunication
Standardization Sector of ITU, Geneva, Switzerland, November 1998.

[5] IRT Lab, Columbia University. sipc home page.
http://www.cs.columbia.edu/IRT/software/sipc.

[6] D. L. Mills. Network time protocol (version 3) specification, implemen-
tation. RFC 1305, Internet Engineering Task Force, March 1992.

[7] Sue B. Moon, James F. Kurose, and Donald F. Towsley. Packet audio
playout delay adjustment algorithms: performance bounds and algo-
rithms. Research report, Department of Computer Science, University
of Massachusetts at Amherst, Amherst, Massachusetts, August 1995.

[8] C. E. Perkins, O. Hodson, and V. J. Hardman. A survey of packet loss
recovery techniques for streaming audio.IEEE Network, 12(5):40–48,
September 1998.

[9] J. Rosenberg, Henning Schulzrinne, G. Camarillo, A. R. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP: session
initiation protocol. RFC 3261, Internet Engineering Task Force, June
2002.

[10] Paul Schopis. Summary test H.323 bounds test report. Technical report,
Internet2 Technology Evaluation Center, Ohio, August 2001.

[11] Henning Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP:
a transport protocol for real-time applications. RFC 1889, Internet
Engineering Task Force, January 1996.

[12] Dallas Semiconductor. DS1553: 64k NV Y2KC Timekeeping RAM
Manual. Technical report, Dallas Semiconductor, 1999.

[13] Xiaojun Xiao and L. M. Ni. Internet qos: A big picture.IEEE Network,
13(2):8–18, March/April 1999.


