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Abstract—
Determining the perceived quality of packet audio under packet

loss usually requires human-based Mean Opinion Score (MOS) lis-
tening tests. We propose a new MOS estimation method based on
machine speech recognition. Its automated, machine-based nature
facilitates real-time monitoring of transmission quality without the
need to conduct time-consuming listening tests. Our evaluation of
this new method shows that it can use the word recognition ratio
metric to reliably predict perceived quality.

In particular, we find that although the absolute word recog-
nition ratio of a speech recognizer may vary depending on the
speaker, the relative word recognition ratio, obtained by dividing
the absolute word recognition ratio with its own value at 0% loss,
is speaker-independent. Therefore the relative word recognition
ratio is well suited as a universal, speaker-independent MOS pre-
dictor.

Finally we have also conducted human-based word recognition
tests and examined its relationship with machine-based recogni-
tion results. Our analysis shows that they are correlated although
not very linearly. Also we find that human-based word recogni-
tion ratio does not degrade significantly once packet loss is large
(� 10%).

Keywords: perceived quality; speech recognition; packet
audio; Internet telephony; subjective listening test; speech in-
telligibility; quality of service

I. INTRODUCTION

Voice over IP (VoIP) based on packet audio is becoming a
popular service due to the cost savings and new services it can
provide. However, due to the best-effort nature of the public In-
ternet, packet audio sent over the Internet is subject to loss and
delay jitter. This affects the audio quality as perceived by the
end user. Determining the resulting quality generally requires
human-based, subjective listening tests.

The most common type of listening tests are the Mean Opin-
ion Score (MOS) tests [10]. In a MOS test, each listener rates
an audio clip with a value called an opinion score. It can take on
one of the following values: 5 (Excellent), 4 (Good), 3 (Fair),
2 (Poor) and 1 (Bad). The resulting average across listeners is
called the mean opinion score (MOS).

MOS is the most widely used metric for perceived quality.
However, MOS tests require human subjects and are time con-
suming. For network service providers such as voice over IP

carriers, it is important to monitor in real-time the service qual-
ity as perceived by end users. So it is desirable to be able to
predict perceived quality in an automatic and timely fashion.

Therefore we propose a new method of estimating perceived
quality based on speech recognition performance. We have
evaluated this scheme on the IBM ViaVoice [6] speech engine
and found that speech recognition performance based on word
recognition ratio (denoted as R) can be reliably mapped to
speech quality (MOS). R is defined as the percentage of words
that are recognized correctly, as shown in Equation (1). It is
also termed the absolute word recognition ratio (Rabs) in this
paper.

Rabs =
number of correctly recognized words

total number of spoken words
(1)

When the network has a packet loss probability p, the recog-
nition ratio is denoted as Rabs(p). By measuring a curve for
Rabs(p) and another curve for MOS(p), we can combine them
to produce a new mapping from Rabs to MOS, i.e., the mapping
function MOS(Rabs). We have conducted MOS listening tests
and machine-based recognition tests to confirm the feasibility
of MOS(Rabs) mapping.

Usually a speech recognizer’s performance depends signifi-
cantly on the speaker, due to accent, talk speed and other fac-
tors. Therefore a mapping function from Rabs to MOS cali-
brated for one speaker may not work well for another speaker.
To tackle this problem, we use the relative word recognition
ratio, denoted as Rrel. It is obtained by dividing the absolute
word recognition ratio with its own value under zero loss con-
dition, as shown in Equation (2), where p is the packet loss
probability:

Rrel(p) =
Rabs(p)

Rabs(0%)
(2)

Thus, the relative word recognition ratio always has a value
of 100% under 0% loss. Our evaluation shows that the curve of
Rrel(p) is speaker-independent. Therefore, it is well suited as
a universal and unbiased MOS predictor.

To apply speech recognition to real-time quality monitoring,
the sender simply transmits a pre-recorded speech clip over
the network. The receiver looks up the speaker identity, finds



the speaker’s pre-calibrated Rrel(0%) value, performs speech
recognition and compares the result to the stored original text.
Then the receiver maps the measured recognition ratio to MOS,
in real-time.

Finally, in addition to MOS listening tests, we have con-
ducted human-based speech intelligibility tests. We ask the
listeners to both rate a test audio clip (which is averaged to
produce MOS) and transcribe it (which is used to measure hu-
man word recognition performance). Although there have been
studies on specialized speech intelligibility tests, such as DRT
(diagnostic rhyme test) [13], we are not aware of any study in-
volving transcription of normal English sentences.

Our test results confirm that there is a mapping between ma-
chine and human word recognition ratio as well, although the
mapping is not very linear. The detailed results are in sec-
tion IV-E.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Section III describes the test
setup we use to evaluate speech recognition performance. Sec-
tion IV presents the evaluation results and discusses the results.
Section V shows how to use speech recognition for quality
monitoring. Section VI concludes the paper.

II. RELATED WORK

The E-model [12] provides an analytical model for estimat-
ing perceived quality based on network performance. A trans-
mission impairment such as packet loss is mapped to an impair-
ment score and then to MOS. The ITU recommendation G.108
[12] provides a few standard mappings between packet loss and
MOS for several commonly used voice codecs, as shown in Fig-
ure 1.
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Fig. 1. E-model mapping from loss to MOS based on G.108 data

One problem with the E-model is that the loss-to-MOS map-
ping depends on both the voice codec and loss pattern. For
example, the G.711 [11], [5] codec is more resilient to loss than
other codecs, therefore its random loss MOS curve is higher
than the random loss MOS curve for G.729 [9], as illustrated in

Figure 1. Loss pattern affects quality as well. A burstier loss
pattern [19], [2] usually implies lower quality, as seen in Fig-
ure 1 on G.711 between random and bursty loss 1. To accurately
estimate perceived quality, we need to calibrate a loss-to-MOS
mapping for every combination of codecs and loss patterns that
we may want to measure. The calibration requires human-based
MOS listening tests, a time-consuming effort.

Chernick et al [4], [3] have evaluated the performance of a
speech recognizer with the DoD-CELP [15] codec. Our study
differs from theirs in four aspects. First, they focus on how
bit error rate affects speech quality. We evaluate the effect of
packet loss rate instead, because in the Internet, bit error is ex-
tremely rare except in wireless access networks. Second, their
MOS tests have only two listeners per audio clip, whereas our
tests involve 22 listeners, as detailed in section III-B. Therefore
our MOS results are much more accurate. Thirdly, we use the
word recognition ratio as our performance metric, whereas they
use phoneme recognition ratio. This is detailed in section III-A.
Finally, our evaluation also includes human recognition perfor-
mance, whereas Chernick et al [4], [3] studies machine recog-
nition performance only.

III. SPEECH RECOGNITION PERFORMANCE EVALUATION

SETUP

A. Speech Recognition Engine Setup

We choose to evaluate the IBM ViaVoice [6] engine because
it is a well known speech recognition product and it has a well
documented SDK. We use the ViaVoice runtime engine and
SDK on Linux to program the software required for speech
recognition test.

First, we train the speech engine to adapt to a particular user’s
voice. To do so, we ask two native English speakers (A and
B) to record their voice by reading two pre-defined training
scripts (1 and 2) in ViaVoice. Script 1 is used for voice training,
whereas script 2 is used for speech recognition testing.

We choose to evaluate the quality of G.729 [9] codec un-
der packet loss because G.729 is a commonly-used codec and
is representative of the CELP [1] family codec. The low bit-
rate nature of G.729 (8 kb/s compared to G.711 at 64 kb/s)
makes it well suited for voice over IP due to reduced network
load and increased bandwidth efficiency. Notice that we eval-
uate only G.729 performance without forward error correction
(FEC) [17]. We have performed MOS listening tests with FEC
in [14].

When training the ViaVoice engine, the training audio is first
processed with the G.729 voice codec. Then during testing, the
test audio is processed with G.729 along with a simulation of
packet losses. The engine then performs speech recognition on
the test audio and outputs the result to a log file.

By comparing the dictated text with the original script, we
obtain Rabs, the absolute word recognition ratio, the percentage

1The G.108 recommendation, however, does not define what burstiness
means or specify the degree of burstiness



of words that are correctly dictated by the speech engine. The
text comparison is automated using the “wordscore” tool from
U.C. Berkeley [18]. “wordscore” reads a reference text string
and a modified string, then outputs the number of word inser-
tions, deletions, and substitutions. These numbers all count to-
ward calculation of the word recognition ratio. Rabs, along with
the relative word recognition ratio Rrel, is the performance
metric we will use to predict perceived quality (in MOS).

We first ask speaker A to read script 2. His reading is
recorded and then split into 25 audio clips. These clips are
processed using the G.729 codec under five different simulated
loss conditions with 0%, 2%, 5%, 10% and 15% loss. This
produces five audio clips per loss condition and reduces mea-
surement noise due to any peculiarity of a particular audio clip.
Later we also replicate the same test for speaker B based on the
same text script and create another 25 audio clips. When testing
audio clips of speaker B, we instruct the ViaVoice engine to use
speaker B’s voice model instead of speaker A’s.

An alternative performance metric for speech recognition is
the phoneme recognition ratio [4]. However, it has two draw-
backs. First, it is less obvious to human users. Second, a speech
recognition engine may use grammars and language rules to
make a best guess of the input speech. After the engine applies
grammar correction and language heuristics, the resulting sen-
tence may no longer have the same phonemes as the original
ones. Therefore we do not use the phoneme recognition ratio in
our test.

B. MOS Listening Test Setup

Since our goal is to examine whether speech recognition per-
formance can reliably predict perceived quality, we have per-
formed MOS listening test as well. We use the same 25 audio
clips for both the ViaVoice recognition test and the MOS listen-
ing test. A total of 22 listeners have participated in the MOS
test. The MOS for each audio clip is then also averaged, with
five clips per loss condition, in the same way the recognition
ratio is averaged. The standard deviation of the MOS values is
about 0.7 MOS on average. The corresponding 90% confidence
interval is 0.11 MOS on average, which is reasonably accurate.

In addition to MOS testing, we also ask the listeners to tran-
scribe the text for all test audio clips. Then we analyze the cor-
responding human absolute word recognition ratio with respect
to packet loss.

IV. SPEECH RECOGNITION EVALUATION RESULTS

A. Absolute Recognition Ratio vs. MOS

The first curve we obtain is from the MOS listening test, as
in Figure 2. Not surprisingly, G.729’s MOS decreases mono-
tonically with respect to packet loss probability.

Figure 3 describes the result from the machine recognition
test on ViaVoice. The absolute word recognition ratio Rabs is
calculated according to Equation (1). Apparently, the recogni-
tion ratio also decreases monotonically with respect to loss.
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Fig. 2. Impact of packet loss on audio quality
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Since both MOS and recognition (Rabs) curves are mono-
tonic with respect to packet loss probability p, it indicates a 1-
to-1 mapping between MOS and Rabs. This is indeed the case
after we eliminate the middle variable p and combine the two
curves into one, as in Figure 4.

The resulting MOS(Rabs) curve is still monotonic. There-
fore, speech recognition performance can be used to reliably
predict perceived quality in terms of MOS.

B. Importance of Input Audio Coding during Voice Training
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Fig. 5. Importance of voice training using the same codec as test audio clips:
irregular results come up if training is by PCM linear-16 instead of G.729

The curves in Figure 3 and 4 are obtained by training the
ViaVoice speech engine with G.729 processed audio. We have
also experimented with training the ViaVoice engine with PCM
linear-16 (direct audio) instead. We find the corresponding loss-
recognition ratio curve to be irregular and non-monotonic, as
shown in Figure 5(a). If we attempt to eliminate the middle
variable p, the resulting MOS(Rabs) curve will not be a 1-to-
1 function. This makes mapping recognition performance to

MOS infeasible, as illustrated in Figure 5(b). Therefore, to re-
liably use speech recognition ratio to predict MOS, the training
audio should be processed in the same audio codec as the test
audio clips (in our case G.729).

C. Accuracy of Speech Recognition based MOS Predictor

In Figure 4, the rightmost linear segment has a high slope.
This segment corresponds to the loss range of 0-2%. The high
slope means that even if there is a small change in recognition
performance, MOS will change significantly. This is proba-
bly because the ViaVoice engine is relatively robust under low
loss rates. It also suggests that we should avoid using the ab-
solute word recognition ratio Rabs as a MOS predictor if loss
is very low, since a small measurement noise in Rabs would
result in a significantly different predicted MOS. The remain-
ing segments in Figure 4 all have small slopes, therefore MOS
prediction within those ranges is much more accurate.

D. Universality of Relative Word Recognition Ratio as MOS
Predictor
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The ViaVoice SDK user guide [7, p.49] cites a 90% accu-
racy for the average speaker without a heavy accent, when the
speech is sampled at 22KHz. In comparison, the absolute word
recognition ratio in Figure 3 (which is based on speaker A) even
at zero loss is quite low, only about 42%. It can be caused
by many factors. First, in our test the speech sampling rate
is 8KHz instead of 22KHz, because most codecs in VoIP are
8KHz telephone-band codecs. Second, speaker accent can af-
fect recognition performance greatly, and it turns out speaker
A talks very fast. The low recognition ratio, however, does not
necessarily interfere with MOS prediction at all, as long as the
mapping curve between recognition ratio and MOS is mono-
tonic and smooth.

Because the performance of a speech recognizer may differ
significantly between speakers, the curve in Figure 3, which is
based on speaker A, would be of only limited value if it can
only predict quality reliably for a fixed speaker. To examine
the dependency of MOS-recognition curve on the speaker, we
have replicated the same set of test on speaker B, the second
speaker in our evaluation test. The resulting curve is shown
in Figure 6(a). The absolute word recognition ratio Rabs for
speaker B at zero loss is much higher, about 70%. Therefore it
is not possible to construct a universal MOS-recognition curve
that applies to all speakers based on Rabs.

However, both curves in Figure 6(a) have similar trends.
Therefore, if we divide each curve by its own recognition ratio
at zero loss, that is, Rabs(0%), we obtain two relative recogni-
tion ratio (Rrel) curves both starting at 100% for zero loss, and
we would expect the two relative ratio curves to look similar.
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Fig. 7. Universal, speaker-independent MOS prediction based on relative word
recognition ratio Rrel

Figure 6(b) confirms that this is indeed true. Both Rrel

curves are very close to each other. Even though speaker de-
pendency affects the absolute word recognition ratio greatly,
the relative word recognition ratio Rrel is much more univer-
sal as a MOS prediction metric. This is illustrated in Figure 7,
where the Rrel to MOS mapping curves for both speaker A and
B are almost identical. Therefore we can use Rrel as a univer-

sal, speaker-independent MOS predictor.
In a real monitoring application, it is not mandatory to use

pre-recorded speech from more than one speaker, because the
mapping in Figure 7 is speaker-independent. However, the
fact that the relative word recognition ratio Rrel is speaker-
independent could not have been predicted or inferred without
performing the experiments in this paper. That is why we have
examined two different speakers in our paper.

The two speakers we use in our test have completely differ-
ent accents. In particular, speaker A talks very fast, whereas
speaker B talks slowly and with a heavier accent. One would
therefore expect their recognition performance curves to be
completely independent. Yet their relative performance curves
are very similar, as shown in Figure 7. Consequently, we can be
quite confident about the universal nature of the relative word
recognition ratio.

E. Human Recognition Performance
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Fig. 8. Test results of human-based recognition performance

We have also conducted human-based recognition test by
asking listeners to transcribe the text for each audio clip. The



analysis of the human recognition results leads to the curve in
Figure 8.

The curve in Figure 8(a) is not as smooth and linear as the
MOS curve in Figure 2. It can be caused by many factors.
First, speech intelligibility is not entirely the same as speech
quality. Being able to recognize a word does not always im-
ply good quality. Second, a human’s ability to recognize words
depends highly on his/her familiarity with the context of the
speech. Therefore the inherent difference between listeners in
cultural/educational background may introduce some variance.

Figure 8(a) shows two segments that are relatively flat. The
first one occurs between 2% and 5% loss. It suggests that hu-
man’s recognition ability remains roughly the same when there
is some loss but if the loss is not high. The second flat segment
is between 10% and 15% loss. This is probably because the
speech at 10% loss is already too hard to recognize, therefore
a 15% loss may not be much worse. A mapping from human
word recognition ratio to MOS is also plotted, in Figure 8(b).
The mapping shows that speech intelligibility is not the same as
speech quality.
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Finally, by combining both human and machine recognition
results, we can establish a new mapping between machine and
human word recognition ratio. This is done by eliminating the
middle variable p on both Figure 3 and 8(a), and the new map-
ping is shown in Figure 9. The result indicates that it is possible
to predict human speech intelligibility based on machine recog-
nition ratio. The mapping is not close to linear, because human
recognition performance is not very linear with respect to loss.
In addition, care should be taken for segments with high slopes
in Figure 9, because they introduce more prediction errors for
the same amount of measurement noise in machine recognition
ratio.

V. APPLICATION SCENARIOS

To use speech recognition for real-time quality monitoring,
the sender should transmit a pre-recorded speech clip by some

speaker. As long as the receiver end knows the original speech
text and has calibrated Rabs(0%) for this speaker beforehand,
it will be able to compute the current Rabs and thereby obtain
Rrel using Equation (2). In fact, it does not even need to know
the current packet loss probability, since the calculation of Rabs

depends only on the result of speech recognition and the orig-
inal text. This property makes it suitable for end-to-end black-
box measurements. For instance, if using an IP telephony ser-
vice with a phone-to-phone interface (e.g., an IP calling card),
the two ends (analog phones) would not know the packet loss
rate, but they can still perform speech recognition and compare
to the stored original text.

Then, applying the universal mapping in Figure 7, the re-
ceiver will be able to tell how good is the current speech quality.

With this approach, the receiving end need not store the orig-
inal speech clip itself, but only the original speech text. This is
much more scalable when storing many clips, since the speech
clips can take up a significant amount of disk space. In fact,
even if the receiver stores the original speech clip, the text is
still needed because speech recognition is not going to be 100%
accurate even with no packet loss.

The approach we take is active measurement, where the
sender explicitly generates pre-recorded traffic, controls who
the speaker is and what material he/she speaks. Our method is
less applicable to passive measurement, firstly because it is dif-
ficult to know the identity of the speaker. Even if the speaker is
known and his/her Rabs(0%) value already calibrated, the orig-
inal speech text of an ad-hoc conversation cannot be known in
advance. Therefore, the receiver will not be able to estimate the
recognition ratio.

VI. CONCLUSIONS AND FUTURE WORK

We present a new method of estimating perceived quality
based on speech recognition performance. We have evaluated
its effectiveness on the IBM ViaVoice speech engine over a
wide range of packet loss rates, and found that the word recog-
nition ratio can serve as a reliable predictor for the Mean Opin-
ion Score (MOS), the most commonly used perceived quality
metric.

For this method to be reliable, we find that a speech en-
gine should be trained using audio processed by the same audio
codec that we intend to test quality on. Based on our findings,
the absolute word recognition ratio (Rabs) to MOS predictor is
more accurate over higher loss rates (2-15%), but less so for low
loss rates (0-2%). This behavior is likely due to the robustness
of the speech engine under low packet loss rates.

To examine this MOS predictor’s dependency on speakers,
we replicated the same set of test on a different speaker. Al-
though the absolute word recognition ratio Rabs is much dif-
ferent from the first speaker, the relative word recognition ratio
Rrel, obtained by dividing the absolute ratio with its ideal maxi-
mum value (i.e., the Rabs at 0% loss), remains almost the same
for different speakers. Therefore, the relative word recogni-



tion ratio Rrel is well suited as a universal, speaker-independent
MOS predictor.

Finally we have also investigated the trend of human word
recognition ratio over different network conditions. The results
indicate that human recognition performance (speech intelligi-
bility) is related to perceived quality (MOS), although the trend
is not close to linear. We find two loss regions where human
recognition performance remains relatively flat. The first is
when there is some but not very high loss (2-5%). The second is
when the loss is too high (10-15%), presumably because recog-
nition is already too difficult with 10% loss. Because humans
are good at guessing, speech intelligibility is not necessarily the
same as speech understanding, although the latter task should
be easier. However, defining speech understanding is a much
more complex task than defining say, the word recognition ra-
tio.

Our analysis on the relationship between human and machine
word recognition ratio shows that it is possible for a speech
recognizer to serve not only as a MOS predictor, but also as a
speech intelligibility predictor, although care should be taken
for regions where the prediction error may be large.

In this paper we have evaluated speech recognition perfor-
mance using the G.729 codec. We plan to examine other
codecs, such as G.726 ADPCM [8] and GSM [16], and ver-
ify whether the universal MOS predictor can be used for these
codecs as well.

Finally, another possible extension of this work is to perform
quality monitoring in a real world setting, using commercial
VoIP products and services.
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