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Abstract

Internet packet loss and delay exhibits temporal depen-
dency. If packet n is lost, packet n + 1 is also likely to
be lost. It leads to bursty network losses and late losses
in real-time multimedia services such as Voice over IP
(VoIP). This may degrade perceptual quality and the ef-
fectiveness of Forward Error Correction (FEC). To char-
acterize this burstiness, we �rst discuss the modeling of
packet loss and delay. We propose the joint use of the ex-
tended Gilbert model and the inter-loss distance (ILD)
metric to characterize temporal loss dependency. For de-
lay, we introduce a metric called the conditional cumula-
tive distribution function. We have applied these models
to some Internet packet traces to validate the necessity
and e�ectiveness of these models. We then evaluate the
e�ect of these dependencies on VoIP by investigating
the �nal loss pattern (FLP) after applying playout de-
lay adjustment and FEC. Our results through a set of
simulations con�rmed that the FLP is still bursty.

1 Introduction

Example of real-time multimedia applications include
Voice over IP (VoIP), Internet radio stations, and video
conferencing. The sender digitizes/encodes the media
content and transmit it via the network as packets at
regular intervals. The receiver gets the media packets
and schedules an appropriate playout time in order to
produce a smooth output media stream. It compensates
for the delay variation (jitter) using a playout delay ad-
justment algorithm [7, 16, 14, 3, 2]. Simple algorithms
use a �xed playout delay, either static or determined at
the start of a session. More advanced VoIP applications
compute a di�erent playout delay for each talk-spurt [4]
adaptively according to the current network condition.

The quality of multimedia applications is primarily
determined by packet loss and delay. First, if a packet is
lost, the media quality degrades unless there is a recov-
ery mechanism such as Forward Error Correction (FEC)

[15] [18] or retransmission. Second, if a packet delay
is too high and misses the playout deadline, it leads
to a late loss. Figure 1 illustrates how media encod-
ing/decoding, FEC coding/recovery and playout delay
adjustment work together in a typical VoIP application.

Undoubtedly, two-way metrics such as Round Trip
Time (RTT) are important. In VoIP, a large RTT (>
600ms) will degrade the application's interactivity [5].
But as far as the receiver is concerned, the perceptual
quality of what he/she received only underwent a one-
way trip in the network. So we focus our analysis on one-
way loss and delay. The distinction between one-way
and two-way metrics blurs when the path characteristic
between two ends are symmetric.

1.1 Why Burstiness A�ects Quality

Packet loss and delay can exhibit temporal dependency
or burstiness. For instance, if packet n has a large delay,
packet n + 1 is also likely to do so. This translates
to burstiness in network losses and late losses, which
may worsen the perceptual quality compared to random
losses at the same average loss rate. In particular:

� It a�ects performance of FEC, e.g., percentage of
packets that cannot be recovered. It is because
FEC can recover a packet only if other necessary
packets belonging to the same block are received.

� The loss pattern, whether the original one or the
�nal losses after FEC, a�ects audio/video quality
and e�ectiveness of loss concealment [9].

� To the end user, burstiness in late losses has no
di�erence from network losses.

� Finally, as reported by Moon et al. [13] there
is inter-dependency between delay and loss. It
means late losses and network losses may merge
into longer �nal loss bursts. This e�ect is shown
later in this paper,
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Figure 1: Loss recovery and concealment in packet audio

Simple metrics such as average loss and delay do
not capture burstiness. Therefore our goal is to estab-
lish feasible metrics that can suÆciently characterize the
packet loss and delay processes and reliably predict per-
ceived quality. We propose a joint use of the extended
Gilbert model [19] (2-state being a special case) and
inter-loss distance (ILD) metric [12] to characterize tem-
poral dependency in loss. The extended Gilbert model
is suitable for describing loss run distributions, and the
ILD metric is useful in capturing the burstiness between
loss runs. To model temporal correlation of delay, we in-
troduce a metric called conditional CDF. We analyzed
some Internet packet traces and con�rmed the existence
of loss burstiness and delay correlation in these traces.

Past literature has focused on network loss patterns.
In a real VoIP application, however, the perceptual qual-
ity is determined by the �nal loss patterns (FLPs) after
playout delay control and optionally FEC. FEC can sig-
ni�cantly change the loss rate and its distribution. The
FLP could be even burstier due to the inter-dependency
between delay and loss, that is, a packet loss is often
preceded by high delays [13]. Finally, FEC coupled with
playout delay adjustment complicates the FLP even fur-
ther because a recovery time longer than the playout de-
lay is equivalent to a late loss. We run a set of playout
control simulations based on our Internet packet traces.
The FLP is indeed bursty and also �ts with the extended
Gilbert model. The same is true when FEC is used.

There are four main contributions in our work: �rst,
the joint use of the extended Gilbert model and the ILD
metric. It is simpler than the nth-order Markov model
(2n states), yet depicts the burstiness both within and
between loss runs. Second, we evaluate the errors intro-
duced by the Bernoulli model, the 2-state Gilbert model
and the extended Gilbert model when a�ected by small
ILDs. The errors are computed over real Internet packet
traces. Third, we introduce conditional CDF as a met-
ric to capture temporal delay dependency. Finally, we
have investigated the FLP after applying both playout
control and optionally FEC. Our �ndings con�rmed the
FLP is still bursty.

Section 2 and 3 discuss the analytical modeling of
loss and delay. Section 4 examines the �nal loss patterns
for some packet traces after playout control and FEC.

2 Loss Modeling

It is generally agreed that of closely-spaced packets, packet
losses are not approximated well by a Bernoulli model
[19, 21, 2]. Since a packet loss in the Internet indicates
congestion, the next packet may also be lost with a high
probability, leading to the temporal loss dependency.

2.1 List of Network Packet Traces

Table 1 lists the Internet packet traces we used in this
paper. To create the traces, two Unix workstations act
as a sender and a receiver, respectively. The sender pe-
riodically transmit UDP packets of a �xed size. The
software running on the workstations is not a VoIP ap-
plication, but since its traÆc is periodic, the trace can
be used as if it were created by a real VoIP applica-
tion. Many VoIP applications use silence suppression
and introduces talk-spurts and gaps, we can mimic such
behavior by randomly generating talk-spurts and gaps,
and then omitting part of the trace where it maps to a
gap. This is described in Section 4.1.

The UDP packet contains a sender timestamp and a
sequence number. If the packet arrives, the receiver will
record the arriving timestamp and write the two times-
tamps and sequence number into the trace �le. Later
during an o�-line analysis, we calculate the one-way de-
lays by subtracting the send/receive timestamps, fol-
lowed by clock drift removal and initial clock di�erence
correction. For simplicity, the initial clock di�erence
is inferred assuming the network has symmetric delays.
This assumption is not essential in our analysis since
we are only interested in how delay variation (jitter)
translates to late losses, and jitter is a relative measure
instead of an absolute one. A packet loss is detected by
a missing sequence number in the trace �le.

In Table 1, each trace lists their average delay, jitter
and loss rate. The average jitter is the arithmetic mean
of the RTP jitter [20] (sec 6.3.1) for all arrived packets.
It also gives a conditional loss rate to give a �rst glance
of how bursty the losses are in a trace. The packet size
listed in Table 1 is the UDP data portion in bytes. Spac-
ing is the sender's inter-packet interval. Apparently, the
smaller the spacing is, the stronger the temporal corre-



trace sender receiver date time packets delay jitter loss clp spacing size
1 CU GMD 9/19/1997 2:44pm 10039 57.6ms 2.5ms 0.47% 14.9% 30ms 36 B
2 CU UMass 9/19/1997 6pm 10978 62.9ms 16.9ms 9% 33% 30ms 36 B
3 UCSC CU 9/22/1997 1:30pm 10601 55.8ms 5ms 5.67% 10.6% 30ms 36 B
4 UCSC UMass 9/23/1997 8:12am 10290 56.8ms 11ms 2.82% 44.1% 30ms 36 B
5 CU UCSC 5/25/1999 5pm 12000 44.5ms 1.9ms 0.63% 14.7% 30ms 36 B
6 CU HP 6/1/2000 11:20am 50000 47.6ms 1.8ms 0.096% 31.3% 10ms 36 B

Table 1: List of Internet packet traces being used

lation becomes. Most traces here use 30ms, because it is
the same as a frame duration in G.723.1 [10]. The frame
size of G.723.1 at 6.3kb/s is 24 bytes, which makes 36
bytes in a RTP/UDP packet. That is why most traces
here also use 36 byte packet size.

Finally, all starting times in Table 1 are either East-
ern Standard or Daylight savings Time (EST or EDT),
whichever appropriate for the speci�ed date.

2.2 The Gilbert Model

Sanneck et al. [19], Yajnik et al. [21] and Bolot et

al. [2] recommend use of a Markov model to capture
temporal loss dependency. All of them analyzed the 2-
state Markov model, also known as the Gilbert model
(Figure 2). It is simple to understand and to implement
in monitoring applications.
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Figure 2: The Gilbert Model

In Figure 2, p is the probability that the next packet
is lost, provided the previous one has arrived. q is the
opposite. 1� q is the conditional loss probability (clp).
Normally p + q < 1. If p + q = 1, the Gilbert model
reduces to a Bernoulli model.

From the de�nition, we can compute �0 and �1, the
state probability for state 0 and 1, respectively.

�0 =
q

p+ q
; �1 =

p

p+ q
(1)

In the Gilbert model they also represent the mean
arrival and loss probability, respectively.

pk, the probability distribution of loss runs with re-
spect to loss length k, has a geometric distribution:
pk = (1� q)k�1 � q

To calculate p and q from a packet trace, one can
use the loss length distribution statistics [19]. Let mi,
i = 1; 2; :::; n�1 denote the number of loss bursts having

length i, where n � 1 is the length of the longest loss
bursts. Let m0 denote the number of delivered packets.

p = (
n�1X
i=1

mi)=m0; q = 1� (
n�1X
i=2

mi � (i� 1))=(
n�1X
i=1

mi � i)

As an example, take trace 1 in Table 1. It has the
following loss burst distribution:

burst length 0 1 2 3
count 9992 34 5 1

�1 = (34 � 1 + 5 � 2 + 1 � 3)=10039 = 0:0047,
p = (34 + 5 + 1)=9992 = 0:004, q = 0:851
In this trace, the ulp is equal to �1 = 0:47%, whereas

the clp is 1� q = 14:9%, signi�cantly higher than �1.

2.3 Approximation Error of the Bernoulli
Model on a Gilbert Process

The Bernoulli model has only one parameter: the mean
loss probability, p̂. When used to approximate a Gilbert
process, it would predict loss run distribution as: p̂k =
p̂k�1 � (1� p̂).

To illustrate, we compare trace 1 again. Here p̂ =
�1 = 0:0047. In Table 2, n̂k; nk are the expected num-
ber of loss runs with length k under the Bernoulli and
Gilbert model, respectively.

loss length k p̂k n̂k pk nk
1 0.9953 39.8 0.851 34.0
2 0.00466 0.19 0.127 5.1
3 0.0000218 0.0009 0.019 0.76

Table 2: Estimation error caused by the Bernoulli model

For this trace it is evident that the Bernoulli model
over-estimates single loss probability but under-estimates
probability of longer loss bursts. Under the Bernoulli
model, even double losses are highly unlikely for this
trace, with an expected incident of 0.19, whereas the
trace has 5 double losses.



2.4 General Markov Model

An nth-order Markov chain model is a more general
model for capturing dependencies among events. The
next event is assumed to be dependent on the last n
events, so it needs 2n states. Let Xi denote the bi-
nary event for ith packet, 1 for loss, 0 for non-loss. The
parameters to be determined in an nth order Markov
model are: P [XijXi�1; Xi�2; :::; Xi�n], for all combina-
tions of Xi; Xi�1; Xi�2; :::; Xi�n.

Yajnik et al. [21] show that their packet traces typ-
ically have n 6 6, and some require n to be 20 to 40.
They did not quantify how much precision is gained by
using an nth-order Markov model gains as compared to
other simple models such as the 2-state Gilbert model.

2.5 Extended Gilbert Model

Sanneck et al. [19] proposes a di�erent model that leads
to fewer states. One only needs n + 1 states to remem-
ber n events. It is called the extended Gilbert model.
Their key distinction is that a general Markov model
assumes all past n events can a�ect the future; whereas
in an extended Gilbert model only the past (up to) n
consecutive loss events will a�ect the future. Therefore,
it does not capture the burstiness or clustering between
loss runs. However, we can use the inter-loss distance
metric [12] for this purpose.

Figure 3 illustrates how the extended Gilbert model
works. The system keeps a counter l, which is the num-
ber of consecutively lost packets, but it is reset when-
ever the next packet is delivered. The parameter to
determine in an extended Gilbert model is P [XijXi�1

to Xi�l all lost], where Xi has the same de�nition as in
the Markov model.
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Figure 3: The extended Gilbert model

Therefore its corresponding transition matrix is:

P =

2
66664

p00 p10 p20 ::: p(n�2)0 p(n�1)0
p01 0 0 ::: 0 0
0 p12 0 ::: 0 0
::: ::: ::: ::: ::: :::
0 0 0 ::: p(n�2)(n�1) p(n�1)(n�1)

3
77775

Therefore, its steady probability (�0; �1; :::�(n�1)) can
be calculated as follows:

P �

2
664

�0
�1
:::

�(n�1)

3
775 =

2
664

�0
�1
:::

�(n�1)

3
775 ;

n�1X
i=0

�i = 1

It is now clear that the Gilbert model is a special
case of the extended Gilbert model when n = 2.

[19] gives the formula to calculate the parameters for
the extended Gilbert model, as follows:

p01 = (
n�1X
i=1

mi)=m0 p(k�1)(k) = (
n�1X
i=k

mi)=(
n�1X

i=k�1

mi)

(2)
where k = 2; 3; :::n� 1, mi is same as in section 2.2.
As an example, the parameters calculated fromTrace

1 (CU-GMD) are: p01 = 0:004 p12 = 0:15 p23 = 0:167
Given a loss length distribution (length 6 n � 1),

an n-state extended Gilbert model completely retains
the information of the distribution. It is because the
transition matrix P has n unknowns and there are n
equations in Formula 2 to determine the n unknowns.

As a comparison, below is the original loss length
distribution for trace 2 (CU-UMass). The following ta-
ble also lists what an equivalent 2-state Gilbert model
produces on average. For this trace the Gilbert model
predicts single and double losses quite closely, but the
results become visibly di�erent for k > 2. Generally
we need to use the n-state extended Gilbert model to
capture the original loss length distribution.

burst length k 0 1 2 3 4 5
trace count 9992 469 144 24 7 5

Gilbert model 9992 446 146 47.7 15.6 5.1

burst length k 6 7 8 9 10 11 12
trace count 8 2 0 1 1 1 1

Gilbert model 1.7 0.6 0.2 0.06 0 0 0

2.6 Inter-loss Distance Metric

The IPPM working group has proposed an inter-loss dis-
tance (ILD) metric [12] to describe the distance between
packet losses in terms of sequence numbers.

The ILD metric is useful in two respects. First,
the extended Gilbert model is able to model loss run
distributions, but it does not model distances between
loss runs. If many of the loss runs are close to each
in sequence numbers, that is, they have small ILDs, it
may also worsen the �nal perceptual quality. However,
we need further subjective listening study to determine
quantitatively how it relates to perceptual quality.

Second, small ILDs may also degrade the perfor-
mance of FEC. Figure 4 shows the pmf of ILD for trace
4 from Table 1. In trace 4, about (5.5% + 5% + 6%)
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trace original gilbert extended gilbert
4 44% 35% 40%

Table 3: Percentage of lost packets unrecoverable by
FEC: e�ect of small ILDs on FEC

= 16.5% of the loss runs have an ILD < 5. However,
if we generate a random loss trace using the extended
Gilbert model, the probability of two loss runs having
an ILD < 5 is less than 4% as inferred from Figure 4.
Small ILDs has a direct e�ect on FEC performance, as
illustrated in Table 3. Using a (5,3) Reed-Solomon FEC
code [15], we compared the percentage of the lost pack-
ets that are unrecoverable by FEC. For example, 44%
of the lost packets in trace 4 could not be recovered by
FEC, but with an equivalent trace generated from the
extended Gilbert model, the same ratio is 40%. Since
the extended Gilbert model is the most detailed model
for capturing loss run distributions, the only reason for
this deviation is due to small ILDs in the original trace.

In section 4.4, we will examine the e�ect of ILDs on
FEC for all the listed traces.

2.7 Other Loss Models and Metrics

IPPM working group has also de�ned a noticeable loss
rate (NLR) metric [12]. Given a threshold distance d,
one can compute the number of noticeable losses, that is,
losses having an inter-loss distance � d. The noticeable
loss rate is simply obtained by dividing the number of
noticeable losses with the total number of packets.

NLR is useful in giving an estimate on how well FEC
and loss concealment performs. But it does not capture
burstiness within loss runs. For example, for NLR, a
single loss run of 10 is equivalent to 5 double losses.
The NLR is not exactly equivalent to the mechanism of
FEC, since it does not have a notion of blocks. We have

not yet examined the quantitative relationship between
NLR and FEC performance.

3 Delay Models

3.1 Conditional CDF

One way to measure temporal delay dependency is by
auto-correlation analysis. Let di denote the delay of ith
packet, n the total number of packets measured, d the
delay random variable, and �d the average delay, l the
correlation lag, the auto-correlation function (ACF) is:

�(d; l) =

Pn�l

i=1 (di �
�d)(di+l � �d)Pn

i=1(di �
�d)2

(3)

The ACF is a good indicator of dependency, but it
is diÆcult to calculate for example, the burst length
distribution of late losses using this metric. Therefore,
we introduce a new metric for this purpose: conditional

complementary CDF, or just conditional CDF in short,
de�ned as:

f(t) = P [di > tjdi�l > t]; l = 1; 2; 3; :::; (4)

where l is the lag, t is the the x-axis in Figure 5. The
formula means that if packet i� 1 has a delay > t, then
with probability f(t) packet i will also have a delay > t.

We have found the conditional CDF (4) to be a sim-
ple and yet useful metric. This is because in real-time
multimedia applications, any packet with a delay higher
than the playout delay is e�ectively lost. By inspect-
ing the unconditional CDF at a given playout delay Dp,
the percentage of late (lost) packets is 1� cdf(Dp). By
inspecting the conditional CDF at Dp, we can estimate
the burstiness of late losses. If the playout delay is con-
stant throughout a session, the conditional CDF can be
applied directly to estimate the burstiness of late losses.
If an adaptive playout delay is used, we cannot directly
relate the conditional CDF to late loss burstiness.

We have found little known literature on the topic
of conditional delay dependency. Bolot [1] analyzed the
conditional property of round-trip delays of consecutive
packets. Their conclusion is that such delays have a
random variation in lightly loaded conditions, and when
background traÆc load is high, consecutive delays often
exhibit \spikes." A delay spike is a sequence of delays
that starts with a high delay and then decreases almost
linearly thereafter.

An example of conditional CDF is shown in Figure 5.
It uses trace 1 in Table 1. The lag is 30ms.

If the packet delays in our trace do not have signi�-
cant temporal dependency, the conditional CDF at any
lag l should look similar to the unconditional CDF. This
is true in Figure 5 for low delays only. Beyond a certain
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Figure 5: Conditional CDF for Trace 1 (CU - GMD)

threshold, the conditional CDF increases signi�cantly.
As lag l increases, the conditional CDF drops quickly,
which is also con�rmed by the ACF. But the ACF can-
not tell us that only high delays have a strong temporal
dependency.

The reason for the conditional CDF's increasing trend
in Figure 5 can be explained intuitively as follows: a high
delay for packet n indicates a non-empty router bu�er.
Since router operates at a limited speed, it takes some
time for the bu�er to drain. If the sender's inter-packet
gap is small (e.g., 30 ms), the bu�er depth may not have
changed much, then the next packet will also likely ex-
perience a high delay. We also compute the queueing
delay distribution in some approximated queueing mod-
els. Figure 6 shows the conditional CDF for an M=D=1
system with di�erent lags [11].
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The temporal dependency of delay has a strong im-
plication on the quality of real-time multimedia services.
When a packet's delay exceeds a certain value (say the
playout delay), the same will likely happen to the next
packet. The result is burstier late-losses, which may de-
grade the performance of FEC [15] and could degrade
the performance of loss concealment [9].

4 E�ect of Delay and Loss on VoIP

Our ultimate goal is to predict end-user's perceived qual-
ity when using a real-timemultimediaapplication, based
on network performance. FromFigure 1, we can see that
the �nal quality perceived by an end-user depends on
the �nal loss pattern (FLP) of the multimedia stream
and the performance of loss concealment. Since the per-
formance of loss concealment directly depends on the
�nal loss pattern, we will investigate the FLP only. We
assume loss recovery is done by FEC, but the analysis
should be similar for a retransmission-based technique.
The FEC we refer to is the traditional FEC, rather than
a low bit-rate redundancy FEC as mentioned in [9]. A
low bit-rate redundancy FEC would serve as a type of
loss concealment in Figure 1.

4.1 Simulation Setup of Spurt/Gap Pat-
tern, FEC, and Playout Control

VoIP applications often use silence suppressions to trans-
mit only talk-spurts. Study of Brady [4] and Daigle [6]
have found the spurt/gap distributions to be approxi-
mately exponential. We use an exponential distribution
(1.5 sec average) plus a bottom threshold (240ms) to
describe the length distribution of both talk-spurts and
silence gaps. The randomly generated spurts and gaps
are then applied to an existing packet trace for playout
control simulation. A packet is considered in the simula-
tion only if its sequence number falls inside a talk-spurt.
If that packet is lost in the original trace, then it is also
considered lost in the simulation. It also means that on
average half of the packet losses in the raw trace will not
be considered because they don't fall inside a talk-spurt.

Our software simulates the (5,3) Reed-Solomon FEC
code [15]. It uses a block size of 5 data units (i.e., pack-
ets). Among the 5 packets, 3 are original payload, 2
represent redundant information. As long as any 3 out
of 5 packets are received, the payload can be fully recon-
structed. It is the same FEC code that is used in [18].
When applying FEC to a VoIP packet stream, there
is a choice of where to put the redundant information.
Most applications piggy-back the redundant data onto a
subsequent payload packet to reduce network load and
packet header overhead. Furthermore, one needs to de-
cide which \subsequent" packet to piggy-back on. We
choose the settings as shown in Figure 7, because it is
considered optimal in terms of correction ability [2].

We examine several playout control algorithms, the
�rst is Exp-Avg, the exponential average algorithm in
[16]. Its playout time pi is calculated as follows:

pi = ti + d̂i + � � v̂i
where i is the sequence number of the �rst packet in
the current talk-spurt, ti is the generation time of that
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packet, and � = 4. d̂i and v̂i are the running averages
of the delay and jitter, de�ned as:

v̂i = � � ^vi�1 + (1� �)jd̂i � nij

d̂i = � � ^di�1 + (1� �)ni.
where � = 0:998002.

The second algorithm is the virtualized delay version
of Exp-Avg with FEC, as mentioned in [18]. When FEC
is used, if the playout algorithm is not aware of how long
it needs to wait for FEC data to perform in-time recov-
ery, the recovered data are often too late for playout. On
the other hand, it is too conservative to always postpone
playout for the whole FEC block to arrive when loss rate
is very low. Rosenberg et al. [18] shows that any playout
algorithm can be \virtualized" by taking the minimum
of a normal packet's network delay and the delay when
necessary FEC data arrive. The resulting minimum is
called the virtual delay (n̂i), de�ned as:

n̂i = min(ai; ri)� si = min(ai � si; ri � si)
= min(ni; ri � si)

where ai is the arrival time of packet i (or in�nity if lost),
si is its sending time, ri is the earliest time that packet
i can be fully recovered. For example, if packet 1 is the
�rst unit in a (5,3) Reed-Solomon FEC block, and if it
is lost, its earliest recovery time is when packet 4 arrives
(assuming 2,3,4 are not lost and arrives in order).

To virtualize the Exp-Avg algorithm, all we need to
do is replace ni with n̂i when updating v̂i and d̂i. If the
loss rate is high, the value of the virtual delay will be
dominated by FEC recovery time. The \virtual" jitter
will also increase because FEC recovery time is usually
much higher than the average network delay. So the
algorithm will increase the playout delay to allow most
FEC recoveries to complete in time.

The third playout algorithm is Prev-Opt from [18],
which is more adaptive than Exp-Avg. It calculates at
the end of each talk-spurt, an optimal playout delay,
Dopt. Then, it keeps track of a playout estimator Dw :

Dw = � �Dw�1 + (1� �) �Dopt

where � = 0:25, and w is the spurt sequence number.
The actual playout delay for the next spurt is:

Dact = Dw + � � v̂w
where v̂w is de�ned as:

v̂w = �vw�1 + (1� �)jDw �Doptj
In Prev-Opt, Dopt is de�ned as the optimal (i.e.,

miminum) playout delay that achieves (i.e., do not ex-
ceed) a user-speci�ed application loss rate. For simplic-
ity in analysis and implementation, we choose an appli-
cation loss rate of 0%. In this special case, Dopt is simply
the largest virtual delay of the last talk-spurt. This set-
ting also reduces the number of late losses, because the
Dopt is usually relatively large.

The fourth algorithm is the virtualized version of
Prev-Opt when FEC is used.

4.2 FLPs after FEC and Playout Con-
trol

No FEC (a) Exp-Avg (c) Prev-Opt
burst length 1 2 3 4 5 1 2 3 4
late-loss only 51 8 3 0 1 1 0 0 1

unrecovered loss 17 3 0 0 0 17 3 0 0
total loss 68 11 3 0 1 18 3 0 1

merged bursts 56 9 7 1 1 18 3 0 1

With FEC (c) Exp-Avg (d) Prev-Opt
burst length 1 2 3 4 5 1 2 3
late-loss only 50 8 7 0 1 8 1 1

unrecovered loss 1 0 0 0 0 1 0 0
total loss 51 8 7 0 1 9 1 1

merged bursts 51 8 7 0 1 9 1 1

Table 4: E�ect of playout control on �nal loss burstiness,
CU-GMD trace, (5,3) Reed-Solomon FEC code

Table 4 is a brief summary of loss bursts for the
CU-GMD Sep 1997 trace. The \unrecovered loss" is
simply network packet losses if FEC is not used. If FEC
is used, it is the number of loss-bursts that could not
be recovered by FEC. The \merged bursts" column is
the number of loss-bursts after merging late losses and
unrecovered losses. For example, if a single late loss
occurs at packet 37, and an unrecovered loss occurs at
packet 38, then they form one loss burst of length 2,
assuming no other packets are lost before or after them.

Due to the randomnature of the generated spurt/gap
patterns, the results listed in Table 4 is reproduceable
only if the same implementation and random seed is
used. But in most cases, the trends are similar indepen-
dent of the random seeds. That is, the FLPs are bursty
and we need the extended Gilbert model to describe
such patterns.



In Table 4 (a) there are 17 single network losses and
51 single late losses. In Table 4 (b), only 1 out of 17
single network losses could not be recovered by FEC.
That means the FEC does a good job of loss recovery,
but since the loss rate is already low, and the jitter of
this trace is also low, most of the recovered packets are
not played back in time and become late losses.

burst length 1 2 3 4 5 6 7 11
late-loss only 7 4 0 0 0 0 0 0

unrecovered loss 223 62 10 4 2 3 2 1
total loss 230 66 10 4 2 3 2 1

merged bursts 227 66 10 4 1 2 4 1
(a) Without FEC, using Exp-Avg playout

burst length 1 2 3 4 5 6 7 10
late-loss only 25 8 0 0 0 0 0 0

unrecovered loss 22 10 5 5 2 4 0 1
total loss 47 18 5 5 2 4 0 1

merged bursts 48 18 6 5 2 3 1 1
(b) With FEC, using (5,3) Reed-Solomon code and
virtualized Exp-Avg

burst length 1 2 3 4 5 6 7 11
late-loss only 0 0 0 0 0 0 0 0

unrecovered loss 223 62 10 4 2 3 2 1
total loss 223 62 10 4 2 3 2 1

merged bursts 223 62 10 4 2 3 2 1
(c) Without FEC, using Prev-Opt

burst length 1 2 3 4 5 6 10
late-loss only 0 0 0 0 0 0 0

unrecovered loss 22 10 5 5 2 4 1
total loss 22 10 5 5 2 4 1

merged bursts 22 10 5 5 2 4 1
(d) With FEC, using (5,3) Reed-Solomon code and
virtualized Prev-Opt

Table 5: E�ect of playout control on �nal loss burstiness,
CU-UMass Sep 1997 trace

Also, if the late losses and network losses are adjacent
in sequence numbers, they merge into bigger loss bursts.
This is evident in the last column of Table 4 (a), where
number of triple losses increased from 3 to 7. This e�ect
is much less visible in Table 4 (b), because there are not
many unrecovered losses to begin with.

We have performed the same experiment on other
network traces we obtained. Table 5 is the result for
trace #2 (CU-UMass). The results are in general sim-
ilar: the FLPs are still best described by an n-state
extended Gilbert model, and usually n > 2. But the
e�ects of merging between unrecoverd and late losses
are less evident. This is because the other traces have
a much larger jitter, and hence a more conservative
(larger) playout delay. The end result is there are far
fewer late losses in these traces.

The conclusion we draw here is: after applying play-
out control and possibly FEC, the FLP is still best de-
scribed an n-state extended Gilbert model. Our results
indicate that usually n > 2. FEC generally does a good
job of recovering network losses, but whether recovery is
timely depends on the playout delay algorithm. There
is also a merging e�ect between late losses and unre-
covered losses. This e�ect, however, is minimized when
both delay jitter is high and FEC is employed, which
leads to a more conservative (higher) playout delay and
recovery of most lost packets.

4.3 Comparisons of Delays Introduced
by FEC

Table 6 compares the average playout delay between dif-
ferent playout algorithms. It also lists the clp in the FLP
to give a �rst glance of its burstiness.

The delays are in ms. The �rst value before the '/'
is the actual playout delay, the value after the '/' is the
optimal (minimum) delay achievable at the same loss
rate. The unconditional loss probability (ulp) and its
conditional loss probability (clp) are listed as a '/' pair
in the table. We can see that all traces exhibit a high clp
in the FLP, which indicates a high degree of burstiness.

In Table 6, The FEC (i.e., virtualized) version of
Exp-Avg does not add signi�cant playout delay com-
pared to the plain Exp-Avg. However, the gain of FEC
is also relatively small because the unconditional loss
probability is reduced signi�cantly. Prev-Opt with FEC
performs much better in terms of losses, but it also adds
a large overhead the average playout delay. And we can
see that Prev-Opt with FEC produces relatively conser-
vative (i.e., large) playout delay compared to its optimal
value. This is likely due to the choice of 0% application
loss rate in our Prev-Opt implementation.

4.4 Error of Gilbert Model in Predicting
FEC Performance

We have also investigated the error introduced by the
Gilbert model when it is used to predict FEC perfor-
mance. We �rst compute the two parameters needed
in Gilbert model: p and q, which can be derived from
ulp and clp. Then a program generates a packet trace
with a Gilbert loss pattern. Next, we run the same
FEC/playout simulation programon the generated trace.
The program records two numbers: the number of orig-
inal packet losses and the number of packet losses unre-
coverable by FEC. Then we compare the percentage of
unrecoverable packets for both traces. To minimize the
error and variance due to random sampling, we run the
simulations many times to obtain an average. The re-
sults have a large standard deviation (not shown here),



trace FEC,Exp-Avg no FEC,Exp-Avg FEC,Prev-Opt no FEC,Prev-Opt
delay/opt ulp/clp delay/opt ulp/clp delay/opt ulp/clp delay/opt ulp/clp

1 82.6/68.4 1.6%/34% 80.2/66.5 2%/25% 156.6/85.0 0.32%/42% 140.4/79.5 0.56%/30%
2 248.1/168.4 3.9%/47% 236.9/134.1 9.3%/33% 542.9/186.5 2.7%/58% 415.2/146.4 9%/32%
3 108.4/90.4 4.2%/21% 92.1/70.5 6.2%/14% 387.1/149.7 0.48%/43% 148.0/77.4 6.1%/18%
4 134.9/108.4 2.8%/52% 128.0/101.0 3.8%/41% 402.1/157.2 1.6%/73% 318.2/121.6 2.9%/48%
5 62.3/51.8 1.3%/16% 60.4/49.8 2.0%/16% 105.6/60.6 0.37%/45% 88.1/53.8 0.73%/23%
6 59.1/53.8 2.3%/46% 58.9/53.7 2.4%/45% 81.8/55.2 0.28%/54% 81.7/55.2 0.28%/58%

Table 6: Average playout delays and conditional loss probability between di�erent algorithms

trace original gilbert extended gilbert
1 9.1% 8.4% 8.6%
2 28% 26% 25%
3 9.2% 7.8% 8.7%
4 44% 35% 40%
5 15% 7.5% 14%
6 43% 18% 16%

Table 7: Percentage of lost packets unrecoverable by
FEC: e�ect of small ILDs on FEC, all traces

which we believe it is due to the small number of packet
losses and relatively short length of our traces. The
average still shows a consistent performance di�erence
between di�erent loss models.

Table 7 lists the FEC performance results for all the
traces in Table 1. It also lists the results for the ex-
tended Gilbert model. In that case, a similar random
trace is generated, except using the extended Gilbert
loss pattern. Since the extended Gilbert model is the
most detailed model for describing loss run distribu-
tions, its performance di�erence with the original trace
is an indication of small ILDs (inter-loss distances) as
explained in Section 2.6.

According to Table 7, trace 1 has similar results for
all three columns, with the percentage for the original
trace being a bit higher. The same is true for trace 2 and
3. Trace 4 shows a higher deviation between the simple
and extended Gilbert model (35% vs. 40%), meaning
that the Gilbert model is less accurate for this trace.
There is also a large di�erence between the extended
Gilbert model and the original trace (44%), which has
to do with the small ILDs in trace 4. Recall from section
2.6 that in trace 4 about 16.5% loss runs has an ILD
< 5. In trace 6, 36% of the loss runs have an ILD
6 3 (ILD distribution not shown here), therefore the
e�ect of small ILDs is even stronger. Finally, trace 5
has a large di�erence between the two Gilbert models,
but there is almost no di�erence between the extended
Gilbert model and the original trace.

4.5 Further Study: E�ect of FLP on VoIP
Subjective Quality

To summarize, the �nal loss pattern after playout ad-
justment is burstier than one would have expected. How
this a�ects end-user perceptual quality requires further
study. Rosenberg [17] has reported that the built-in
loss concealment mechanism of G.729 codec can usu-
ally repair a single loss well, but does not work well on
longer bursts. Therefore, with the same loss probability,
a burstier loss pattern could degrade a voice signal to a
greater degree than random losses, but there might well
be exceptions. For example, when audio packet dura-
tion is very short (e.g., 5ms) and average loss rate is
high, random losses translate into a frequent annoying
clicking sound (assuming no loss concealment). If the
losses were bursty, it may translate into a less frequent
clicking sound and become less annoying. A di�erent
example is for video streams. A video frame often con-
sists of several network packets, and losing one packet
renders the whole frame useless. In such case bursty
losses may actually be preferable to random losses [8].

5 Conclusion

We discussed factors a�ecting real-timemultimediaQoS.
The �rst is the modeling of network delay and loss. We
propose the joint use of the n-state extended Gilbert
model and inter-loss loss distance (ILD) to character-
ize loss burstiness. This is con�rmed by comparing the
errors in estimating FEC performance between the sim-
ple and extended Gilbert model, and the original packet
trace. We introduce the conditional CDF to capture the
temporal dependency in network delays, that is, when
previous delays are high, the next delay is also likely
to be high. applying playout delay adjustment and op-
tionally FEC, we have found that the �nal loss pattern
(FLP) is still burstier than random losses and needs to
be described by the extended Gilbert model. Particu-
larly if FEC is not employed and jitter is low, late losses
and network losses often merge into longer loss bursts.
It is due to the observed inter-dependency between loss



and delay, e.g., a loss is often preceded by high delays.

6 Future Work
We plan to perform subjective listener tests to examine
how loss burstiness relates to perceptual quality. So far
we have assumed the FLP is what determines percep-
tual quality. However, an algorithm such as Prev-Opt
can produce swiftly changing playout delays, the result-
ing talk-spurts could be arti�cially squeezed or pulled,
which may make the audio less comprehensible to the
end user. So we also plan to investigate the e�ect of
�nal playout jitter on perceptual quality.
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