
Peer assisted VoD for set-top box based IP network

Vaishnav Janardhan
Department of Computer Science

Columbia University
vj2135@columbia.edu

Henning Schulzrinne
Department of Computer Science

Columbia University
hgs@cs.columbia.edu

Abstract - IP-enabled set-top boxes are becoming key
devices in home entertainment networks. In addition to
providing TV signals, STBs have been providing pay-
per view service for a long time. But this service suf-
fers from bandwidth requirements at the source server
and has scaling problems. We propose a new design for
providing a peer-assisted VoD service where peers co-
operate in delivering the content to other peers. This
design uses a Bittorrent like protocol for information ex-
change and peer-to-peer topology management with low
startup time, provision for VCR operation and admission
control to guarantee QoS for subscribers. It utilizes the
large storage of STBs for better viewing experience with
reduced jitter and the underlying network architecture
to do a location aware content fetching and reduce the
expensive cross AS traffic over the Internet.

1. INTRODUCTION
IP-enabled set-top boxex (STBs) have become key de-

vices for home networks, supporting voice, video and data.
Cable operators (MSOs) have been providing a limited menu
of video-on-demand (VoD) choices on STBs for a while, and
are now transitioning to IP-based delivery and set-top boxes
that contain large disk drives. For examlple, the most recent
model of the Tivo DVR contains a 250 GB drive, enough
to store 300 hours of standard-quality MPEG2 or 32 hours
of high-definition video. Streaming VoD from centralized
servers is expensive, both in terms of bandwidth and server
capacity. For example, YouTube is streaming 40 million
videos and 200 TB of data each day, paying 1 million dol-
lars each month for transmission. The cost would be con-
siderably higher for high-definition, movie-length content.
In 2002, Netflix was said to distribute about 1,500 TB of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
P2P-TV’07, August 31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-789-6/07/0008 ...$5.00.

DVDs each day 1. Given these scaling problems, we propose
a peer-assisted VoD architecture that uses localized p2p sys-
tems to stream video to STBs from other STBs in the same
local network. Our approach offers low startup delay, re-
duced dealy during VCR operations, locality-aware content
fetching and distributed admission control. The rest of the
paper is structured as follows: Section 2 presents other re-
lated work in providing P2P VoD service. Section 3 gives an
overview of the system; Section 4 gives the new proposed
architecture for providing VoD service. Section 5 gives the
system design by describing the specifications and interac-
tion between modules. Section 6 gives the scheduling poli-
cies for data exchange and geographical aware node selec-
tion for low cost data exchange. Section 7 lists the parame-
ters to evaluate the performance of the VoD service and ad-
mission control of new incoming nodes.

2. RELATED WORK
There has been a significant amount of work done on pro-

viding video streaming using p2p networks in both the in-
dustry and academia, see [[1], [6], [9],[10],[7] and [3]]. Most
of them have either proposed an application level multicast
tree based approach or mesh based push or pull approach
for distributing the content. In MediaGrid [6], they have de-
signed the VoD service for STBs, but they do not use the
large storage of STBs for pre-fetching and do not support
VCR operations. Most of these papers [[9], [6]], do not sup-
port VCR operations, load balancing or admission control,
guaranteed QoS to the subscriber is very important in pay-
per view service. In this paper we propose a system which
has a low startup time, provides better user experience with
reduced jitter by pre-fetching the contents and very low seek
delay during VCR operations by prioritizing the download.
This architecture combines and extends the ideas and con-
cepts from a number of other papers.

3. SYSTEM OVERVIEW
For our architecture, we make a number of assumptions

that motivate our design. We assume that STBs have ample
storage; STBs can peer-to-peer stream either movies that the

1New York Times, September 23, 2002

owner of the STB has watched himself or those that some
coordination function downloads to the STB in anticipation
of demand by other viewers. The details of this anticipa-
tory caching of content are left for further study. STBs are
generally assumed to be available continuously, even if the
owner is not watching a movie. If that it not the case, the
number of available servers is reduced, but should still be
proportional to the number of active viewers. STBs could be
centrally controlled by the content provider for the storing
of any data, for any length of time on any node. We also
consider that all the nodes have similar upstream and down-
stream bandwidth capacities, which will be more than the
video encoding/streaming rate. All STBs within a geograph-
ical area connects to a common aggregation router forming
a subnet and these subnets would in turn connect to the na-
tional IP backbone network. All STBs within the subnet will
have the same IP address prefix, which helps the STB to
identify the location of a peer. All these STBs from different
subnets will form an unstructured p2p network. As in Bit-
Torrent [5], movies are split into chunks that can be retrieved
individually. The chunk size is of secondary importance,
but due to the nature of DVD-style navigation, it may make
sense to divide movies into DVD chapters, as users are more
likely to navigate by chapter than randomly. In modern res-
idential and campus broadband networks, the downstream
and upstream bandwidth is generally sufficient to stream at
least one movie, i.e., at least 1 Mb/s for TV-quality view-
ing. If the upstream bandwidth is insufficient to stream one
movie, prefetching will still work, but a single viewer will
occupy the upstream bandwidth of several peer STBs, thus
limiting the maximum number of concurrent viewers during
the busy hour. Since the peer-assisted mechanism is oper-
ated either by or in cooperation with the STB provider or
DVR vendor, we are less concerned about providing incen-
tives to cooperation. However, some form of quid-pro-quo
mechanism could easily be added if desired. We assume
that the cost of bandwidth is significantly lower within the
provider’s network compared to long-distance distribution.
A local network could be a single subnet or an autonomous
system and would typically be roughly the size of the service
area of a cable headend. We were unable to find statistics for
the sizes of such service areas, but the number of counties in
the United States, around 3,000, probably give a good indi-
cation of the order of magnitude.

4. ARCHITECTURE FOR P2P VOD

4.1 Overview
The system consists of four modular pieces that can evolve

independently: a directory, a chunk map, a retrieval protocol
and a video client. The directory maps names of movies to
internal identifiers, using a global DHT. For each movie, a
chunk map indicates who holds a copy of a chunk within
the local network. The chunk map is stored in an unstruc-
tured peer-to-peer network since there will likely be many

Figure 1: New video-on-demand service architecture

copies of the same chunk. The chunk map is updated as
STBs download content. As in [10], we assume that con-
tent providers seed a sufficient number of STBs with con-
tent, based on estimates of its future popularity. (To deal
with flash crowds, content can be pushed to peers ahead of
the release date, just like DVDs are shipped to stores today
a few days ahead of the official release date. Time-restricted
DRM or the later delivery of crucial components, such as
parts of MPEG I frames, prevents viewing ahead of the offi-
cial date.)The retrieval protocol downloads chunks from the
peer STBs, as fast as server and network capacity allow. In
Section 6.2, we discuss the prioritization of which chunks
to download first. Each STB acts as a video server, and re-
sponds to standard stream control protocols such as RTSP
[8]. The video client itself could well be the same that is
used for traditional streaming today, probably drawing on
the local STB. (This also allows multiple viewers within the
same home.)

The proposed architecture is as shown in the Figure 1. The
client running at every node will have a sliding window and
pre-fetching module. Both will be simultaneously will be
downloading the content based on their priority.

4.2 Sliding-window module
The sliding-window module will be maintaining a sliding

window over the video file buffer and will be feeding the
chunks needed by the video player. Once the chunks are
consumed by the video player, the sliding window moves
forward over the video file to fetch new chunks. The chunks
that are needed by the sliding window are of high prior-
ity and will have to be immediately fetched if not already
buffered. The fetching of the chunks would be sequential.

4.3 Pre-fetching module
As the download bandwidth available is more than the

video encoding/streaming rate, the pre-fetching module will
download the entire file with lower priority, while the slid-
ing window will be downloading the immediately needed
chunks with higher priority. The sliding-window and pre-
fetching modules are independent of each other and will be
buffering the chunks based on their priority. The process of

fetching of chunks has been split up into two different mod-
ules for efficient methods of fetching and buffering the entire
video file. Both the modules will be buffering the content
to the same pool of chunk buffer. When the sliding win-
dow module has to feed the video player with the chunks, it
first checks if the chunks are available in the local cache. If
not available, it will fetch the contents from the set of peer
nodes. The fetching of the chunks for the sliding window
is done with higher priority. First it will try to retrieve the
next sequential chunk from its peers and if it is not available
and the chunk is fast approaching the chunk deadline, it will
go to the source node and fetch the chunk. The sourcing
of the chunk from source is done only when it fails to find
the chunk among its peers and the chunk deadline is fast ap-
proaching. The chunk deadline is a parameter that is based
on a function that compares the expected playback time of
the chunk and the minimum time needed to download it. Ev-
ery chunk in the sliding window will have a different chunk
deadline and it gets re-computed for all chunks when the
sliding window slides ahead.

This model of two modules downloading, ensures the timely
delivery of the needed data and the pre-fetching helps in the
efficient usage of network resources and brings in more ro-
bustness to the p2p network by distributing the content at a
faster rate when compared to others models, which do either
a sequential fetch of the content or stream it from multiple
peers. Due to active pre-fetching by a separate module, the
entire video will be buffered in the system during the initial
few minutes of the movie, giving the user considerable lee-
way in doing a random seek without any jitter. Due to active
pre-fetching we not only bring in more robustness to the net-
work but also better user experience. Simulations for good-
put (index of better user experience, [7]) done in [7] show
that during the switching of nodes, from where the data is
streamed leads to considerable jitter during switchover and
pre-buffering in local nodes will avoid this jitter. Another
important requirement of the VoD service is the provision
for VCR operations. Consider the scenario when the user is
watching the video at the 10th minute of the movie and the
sliding window will buffer the immediately needed video
chunks. But the user suddenly wants to jump over to the
40th minute of the movie. Now the sliding window module
immediately jumps over to the 40th minute of the movie and
tries to retrieve the video chunks corresponding to the sliding
window’s position for the 40th minute of the video. Experi-
ments done on users in [4] show that the number of forward
seeks or VCR operation increases with the progress of the
session. Active pre-fetching of the entire content would help
in serving the increased forward seeks better without any jit-
ter, with the progress of the session.

4.4 Stream Prioritization
As described above, we would like to maximize the amount

of data that a viewer can download, as this minimizes the
probability of glitches during regular playback and during

VCR fast-forward and skip-ahead operations. However, there
is the danger of self-interference, i.e., that a lower-priority
stream for the same household reduces the throughput of a
higher-priority stream if they share the same bottleneck link.
We propose three mechanisms to minimize this problem,
namely DiffServ, probing and using multiple streams. Us-
ing DiffServ, we mark higher lower-priority packets accord-
ingly, so that routers can give packets appropriate schedul-
ing and dropping priority. Many home routers support Diff-
Serv and some 802.11 access points also use DiffServ mark-
ings for prioritization, using 802.11e. However, it is un-
likely that a current DSL or cable access network will sup-
port prioritization, so we propose to use probing to establish
whether lower-priority streams are interfering with higher-
priority ones. If the stream for the chunk that is being viewed
is receiving insufficient bandwidth, the client can suspend
the lower-priority streams and observe if that significantly
increases the bandwidth of the high-priority stream. If so,
this indicates that these streams are competing for the same
bottleneck bandwidth and it is counterproductive to use mul-
tiple streams. The third approach is the creation of multiple
TCP connections and retrieving the different chunks from
different peer nodes. (Protocols such as RTSP allow ran-
dom access within a file, so that random access is easily sup-
ported.) It should be noted that web browsers routinely cre-
ate up to four simultaneous TCP connections to fetch both
HTML and image content for a page, so that this behavior
falls within standard Internet application practice.

5. SYSTEM DESIGN
For the architecture proposed in the previous section, this

section gives the design considerations for providing the VCR
operations with low seek latency, low startup time, good
viewing experience by maintaining a minimum download
rate and smart peer group selection for the nodes.

5.1 Minimum threshold downloading rate
All the nodes would be uploading to more than one node,

so the uploading bandwidth would be split across multiple
nodes. The sliding window will initially open a single con-
nection and maintain a minimum downloading rate, which
will be slightly more than video encoding/playback rate in
order to prevent the video player from running into an empty
buffer. When the downloading rate drop below the min-
imum threshold, the sliding window would open multiple
connections and download the needed chunks, or else the
pre-fetching module will open multiple connections and down-
load chunks. The minimum downloading rate is very impor-
tant to maintain a good viewing experience.

5.2 Anchor points
When the user does a VCR operation, and if the chunks

for that location of the video have not been fetched, the
user would experience a delay while the chunks are being
fetched. So certain key/popular frames forming the 5 con-

tinuous seconds of video at regular intervals of 1 minute
of video would form the anchor points [3], which would
be downloaded during startup. Most of the user’s forward
seeks would also be to these key frames like the previous
users, which could be served immediately using the chunks
buffered in anchor points. If the user’s seek is not to the exact
anchor point, the sliding window would be adjusted to the
nearest anchor point. Thus, the random seek is immediately
satisfied without any delay and the 5 seconds of the playback
time would be used to download the rest of the sliding win-
dow. These anchor points also helps in supporting the movie
sampling by user when they scan through the video, much
like the ”intro-sampling” mode supported by portable CD-
players. Results from experiments on user-behavior show
that the most popular video content have smaller session
lengths [12], where most of the users would have seen the
most popular video before, either through another medium
(theater or DVD) or in a prior VOD session. In most of these
smaller sessions, the user’s tend to just scan through the en-
tire video, [12]. Downloading of anchors(key-frames) and
most popular chunks, based on user behaviour would help
in serving the chunks at a faster rate, when the user scans
through the entire video file.

5.3 Size of sliding window
Size of sliding window is an important configuration pa-

rameter for maintaining of the minimum downloading rate,
as the sliding window will be sliding forward at the rate of
video encoding/playback. Based on experiments done in [4],
80% of the user’s forward seeks are within the next 300 sec-
onds of the video. So it would be ideal to have the sliding
window size to buffer chunks of 300 seconds of the video.
The sliding window will have to buffer all the chunks within
the sliding window in the order of preference. Preference
would be given for chunks approaching the chunk deadline
the earliest. When the window is full, it will move one chunk
forward every time a chunk of the video is consumed by the
video player. When more than 90% of the window is empty,
multiple connections would have to be opened and the min-
imum downloading rate should be maintained. This buffer
underflow will usually happen when the user does a VCR
operation to an unbuffered location.

Even when minimum downloading rate of the sliding win-
dow helps in real-time viewing, simulations in [6] show that
due to pre-fetching and increasing the TTL (content buffer-
ing time, as defined in [6]) of a 90 minute movie file to 1000
minutes from 200 minutes, enabled the system to serve a
certain number of nodes in the system at an uploading band-
width rate of 1Mb/s. Earlier the same number of nodes could
only be served with 4Mb/s of uploading rate with a TTL of
200mins. The pre-fetching module by buffering the content
for a longer time helps to reduce the uploading bandwidth
to one fourth the previous rate; this is a significant saving
of the uploading bandwidth for content providers. The large
storage capacities of the STBs help us in managing the large

crowds by just increasing the buffering time i.e. TTL, for a
constant uploading rate. This kind of cost savings on band-
width usage and ease of load balancing cannot be achieved
in content distribution network models.

6. SCHEDULING POLICIES
Scheduling policies define how to discover the available

chunks, what chunks to download and where to download
the chunks from. These policies will affect the overall per-
formance of the entire VoD system as they define the amount
of control messages being passed around the system and they
also decide the efficiency and the timely delivery of the data
received by the nodes. Section 6.1 describes how the global
chunk index DHT of the movie, chunk map is setup and how
the nodes query for the required content; Section 6.2 will
identify which chunk should be given more priority while
downloading and Section 6.3 will explain the locality-aware
content fetching and its advantages.

6.1 Chunk Map
For every movie published by the VoD service, there will

be one global DHT formed by all the nodes in the over-
lay that buffer the movie content. This is know as chunk
map. Initially the entire movie would be stored in the source
servers and all the chunks would have to be sourced from the
source server. As the STBs download the chunks, they will
update their position in the DHT with all the chunks avail-
able in them and remove the node from the DHT when the
node leaves the network. One node in the overlay will be
responsible for a specified range of chunk IDs of the video
file in the DHT. This node will maintain a list of all the other
nodes that have buffered the chunks of the IDs falling within
its ID space. When every a STB want’s to download a cer-
tain chunk, it will search through the DHT and get a list of
all the nodes in the overlay which have buffered the required
chunks.

6.2 Chunk selection policy
We can distinguish three types of chunks that a viewer

can retrieve while watching a movie. The first chunk is the
one currently being watched, which clearly has to have the
highest priority to avoid disruptions in playback. This re-
trieval needs to proceed at least as fast as the consumption
rate for the current chunk; if the download speed is larger,
the content is buffered to compensate for any future glitches
in delivery. The other types of retrievals make it more likely
that VCR operations suffer minimum delay. The first type
of prefetching obtains key frames for the whole movie, al-
lowing smooth fast forward operation. For MPEG-encoded
movies, this would typically be 1/15 of the frames of the
movie, albeit a larger fraction of the byte volume. The low-
est priority is given to prefetching chunks ahead of the cur-
rent one. This can either be done sequentially, or the system
can sample viewing histories to determine if a certain DVD
chapter, for example, is far more popular than others. In-

stead of downloading a single segment (set of continuous
chunks, forming a few minutes of the video) as a whole,
we make use of the fact that viewers jump to the beginning
of a chapter or scene. Thus, as in [3], we first download
the first few chunks of each segment, enough to allow the
system to stream the now-current segment without disrup-
tion. We repeat this striping for each of the segments. Since
the three types of downloads are likely to come from differ-
ent sources and download bandwidth is likely to be higher
than upload bandwidth, the total available bandwidth for the
viewer will be larger compared to pulling data from a sin-
gle source. This policy also address the user observation [4]
that users are more likely to skip ahead during later parts of
a movie. At that time, more of the movie will be pre-cached
at the viewer’s STB. Once the nodes decide on the chunks
to download, it will query the chunk-map or the global DHT
for STBs that buffer these required chunks. The chunk-map
returns a set of STBs buffering these chunks. The STB of-
fering more uploading bandwidth among all the peers within
the same subnet or AS (Autonomous System) would be se-
lected for downloading of the chunks.

6.3 Locality-aware content fetching
In our architecture, the local DHT maps movie names

to peer content identifiers as well as the server-based URL,
should there be no available local (peer) copy or if all local
STB holding copies are otherwise busy. Since each chunk is
likely to be held by multiple STBs, a receiver needs to de-
cide which STB to contact. In general, the selection process
should avoid hot spots and favor short transmission distance
between serving and downloading peer. Once the chunk
comes over to a node within the subnet it will be exchanged
locally, reducing the expensive cross AS traffic.

6.3.1 Content fetching by sliding window and pre-
fetching modules

Sliding window would try to get the chunks needed by the
sliding window. It will try to get the chunks sequentially be-
fore their chunk deadline expires. Sliding window module
first searches for the required chunk from peers within the
subnet, by searching through the DHT. If it is not available,
then it will search for the chunk in other subnets by search-
ing through the DHT. If the sliding window is not able to
get the video chunk from within the overlay network, it will
get the chunk from the source server. In order to maintain a
fan out limit for each server and prevent excessive crowding
at the source, there is a limitation that has been imposed on
the maximum number of peers that can simultaneously try
to fetch a chunk from a single node. The priority would be
given to the sliding window connection, if it requests for a
chunk over a pre-fetching connection. If the fan-out limit
has reached for a particular node and a sliding window re-
quests for a chunk, then application could preempt one of
the pre-fetching connections and allow the sliding window
connection to fetch the required chunk. The differentiation

of the sliding-window and pre-fetching connections could
be done based on the source port numbers. The pre-fetching
client joins the same DHT as the sliding-window, and would
get the same nodes for downloading of the chunks and both
will download the chunk from the peer providing more up-
load bandwidth than the others.

6.3.2 Biased Neighbor selection advantages
According to [2], the main conclusion is that biased neigh-

bor selections, in which a peer chooses the majority, but
not all, of its neighbors from peers within the same subnet,
can reduce expensive cross-subnet or cross AS traffic signifi-
cantly. First, we want to encourage local retrival. We gener-
ally assume that there a broad equivalence classes of nodes,
sharing the same switching equipment and possibly physical
link. Based on existing DSL and cable architectures, it is
likely that there will be three ”rings” or proximitly, namely
a single household, a subnet sharing the same router and an
AS. In our design, nodes in the same subnet are identified
easily using the common prefix of the IP addresses. When
the location aware peer selection is adopted by the STBs,
the chunk has to come over to the subnet only once, and
then it will be duplicated within the subnet. Clearly, always
choosing the first most-local peer from the list is likely to
lead to admission control failures, so the STB could choose
a random peer, excluding those that it is already using for
retrieving other chunks.

It is not clear whether a more global optimization is nec-
essary or helpful. For example, if chunks within the same
movie differ dramatically in popularity, it could be advan-
tageous to download those first, as it would increase the
number of available copies. This, however, matters only for
movies that have a very high number of simultaneous view-
ers, e.g., during their initial VOD release. During the first
viewing, most viewers are likely to watch the whole movie,
rather than select chunks. Yu et al. [12] have investigated
user behavior, but not specifically distinguished between be-
havior for new movies and those that have been in circulation
for a while.

Another global optimization would attempt to minimize
the chance that a node holding rare content is busy serving
content that is easily available from other, non-busy peers.
Such differentiation is likely to matter only if the number
of upstream sessions is very small, say, one or two, as oth-
erwise the popularity of stream content stored on a node is
likely to average out. Since this case should be rare and
since a global optimization is infeasible, we propose instead
to allow displacement. If a node has failed to gain admis-
sion to any peer with the desired chunk and if the chunk
is the currently playing one, a peer sets a “last resort” flag
and retries the candidate peers. Peers serving non-current
chunks then remove one or more peers that are using that
peer to prefetch chunks; these peers can retry elsewhere. The
slidind-window connection connection would preempt other
connections. Since 80% of the viewing is concentrated on

23% of the content [12], it is likely that the displaced peer is
watching a popular movie and can readily find another!

7. PARAMETERS TO EVALUATE THE VOD
SERVICE AND ADMISSION CONTROL

Startup latency is the time taken for the application to start
playing of the video, once the user requests it. It includes the
time to download first sliding window and all anchor points.
Seek latency is the time taken to buffer the contents in a slid-
ing window and start to playback, when the user does a VCR
operation. These two are the parameters to evaluate the per-
formance of the VoD system.

7.1 Admission control
Admission of any new incoming peer should be verified,

so that the admission of the new peer will not lead to pefor-
mance degradation or 1001st stream problem: the admission
of one stream results in a large number of subscribers expe-
riencing degradation of the video signals, [11]. One way of
avoiding a widespread perceived outage is through the use
of integrated admission control. If a video session cannot be
supported due to oversubscription anywhere in the network
or service, this integrated control would deliver a ”could not
be serviced at that time” signal to the requesting set-top box.
We support a distributed admission control in our model,
where the admission of new node will depend on the extent
to which the entire video content is distributed in the network
and the number of source nodes available. When a new node
requests for a movie, the client software will buffer the ini-
tial segments corresponding to the size of sliding window
and the anchor points during the initial startup. If it is not
able to meet the required minimum threshold downloading
rate and the startup delay is exceeding the maximum permit-
ted threshold duration, the p2p overlay is said to be crowded
and the admission or new nodes should be avoided. This ar-
chitecture has the provision of adding new source nodes at
run time by updating the global DHT for the movie with new
source nodes, when the content provider detects the degra-
dation of the video signal to the existing users with addition
of new subscribers to the movie.

8. CONCLUSION
Peer assisted VoD service delivery model is the key for

streaming high definition video content, which has high band-
width requirements. We have proposed a new design for pro-
viding VoD service using a peer-to-peer overlay network,
which provides good viewing experience by maintaining a
minimum downloading rate, at the same time doing a loca-
tion aware content fetching and active pre-fetching of the
popular chunks for better utilization of idle resources. This
model also supports VCR operation better through anchors
and also guarantees the QoS for the prescribed subscribers
by controlling the admission of new nodes into the over-
lay. This model solves many problems, but it dosen’t com-
pletely solve the problem of serving the non-popular content

in overlay, without overloading the source servers. Future
work could include the understanding of user behaviour, ar-
rival pattern, fully integrated admission control and adapt to
the preferences of the user, which would help in distributing
the content in the overlay closer to the nodes, when there is
low network traffic.

9. REFERENCES
[1] S. Annapureddy, C. Gkantsidis, and P. Rodriguez.

”Providing video-on-demand using peer-to-peer
networks”. In Internet Protocol TeleVision (IPTV)
Workshop, WWW 06, Edinburgh, Scotland, May 2006.

[2] R. Bindal, P. Cao, W. Chan, J. Medval, G. Suwala,
T. Bates, and A. Zhang. Improving traffic locality in
bittorrent via biased neighbor selection,. In 26th IEEE
International Conference on Distributed Computing
Systems (ICDCS 2006), Lisbon, Portugal.

[3] B. Cheng, H. Jin, and X. Liao. ”RINDY: A Ring
Based Overlay Network for Peer-to-Peer Streaming”.
In 3th IEEE Conference on Ubiquitous Intelligence
and Computing (UIC06), Wuhan, China, Sep 2006.

[4] B. Cheng, X. Liu, and H. J. Zheng Zhang. ”A
Measurement Study of a Peer-to-Peer
Video-on-Demand System”. In IPTPS, Bellevue,
Washington, USA, Feb 2007.

[5] B. Cohen. Incentives build robustness in bittorrent. In
First Workshop on Economics of Peer-to-Peer
Systems, Berkeley, CA, June 2003.

[6] Y. Huang, Y.-F. Chen, R. Jana, H. Jiang,
M. Rabinovich, B. Wei, and Z. Xiao. Capacity
analysis of mediagrid: a p2p iptv platform for fiber to
the node (fttn) networks. In IEEE Journal on Selected
Areas in Communication (JSAC), Peer-to-Peer
Communications and Applications, Jan 2007.

[7] S.Annapureddy, S. Guha, C. Gkantsidis,
D. Gunawardena, and P. Rodriguez. ”Exploring vod in
p2p swarming systems”. In IEEE Infocom, Anchorage
, Alaska , USA, 2007.

[8] H. Schulzrinne, A. Rao, and R. Lanphier. ”Real Time
Streaming Protocol (RTSP) ”. In RFC - 2326.

[9] P. Shah and J.-F. Pris. ”Peer-to-Peer Multimedia
Streaming Using BitTorrent”. In IPCCC 2007, New
Orleans, USA, April 2007.

[10] K. Suh, C. Diotz, J. Kurose, L. Massoulie,
C. Neumann, D. Towsley, and M. Varvello.
”PushtoPeer VideoonDemand system: design and
evaluation”. In UMass Computer Science Techincal
Report 200659, Amherst, MA, USA, November 2006.

[11] C. systems. ”Optimizing Video Transport in Your IP
Triple Play Network”. In white paper from Cisco
systems, 2006.

[12] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng.
”Understanding User Behavior in Large-Scale
Video-on-Demand System”. In EuroSys, Leuven,
Belgium, 2006.

