
1

A Dynamic Group Model : Real Time Synchronization Protocol
and Buffers Management

Abderrahim. Benslimane and Abdelhafid Abouaissa
LaRI Sévenans –Université de Technologie de Belfort-Montbéliard
90010 Belfort cedex France
Email : {abder.benslimane, abdelhafid.abouaissa }@utbm.fr

Abstract
This paper proposes a hierarchical architecture of k-local groups, where k represents the number of local
groups composing the distributed system G. Each local group is defined as a finite set of processes. The
proposed architecture is defined by applying a dynamic grouping algorithm. Moreover, the paper presents a
synchronization protocol using a ∆ -causal ordering allowing real time delivery. We evaluate the performance
of the architecture through simulation and compare it with that of a complete graph. The result shows that the
hierarchical architecture reduces the buffer size significantly without decreasing the processing power of servers
and delay penalty. The proposed architecture allows us to solve the local clocks drift by synchronizing the local
clocks. The clocks synchronization is resolved by according to a time reference noted VMT (Virtual Master
Time).

Keyword : Synchronization protocol, Hierarchical architecture, grouping management , performance
evaluation, buffer management.

1. Introduction

The advance of distributed multimedia systems and the progress of communication networks technologies are
largely contributed to the emergence of different types of data traffics, demanding different bandwidth [6, 9] and
Quality of Services (QoS) [7, 12, 14], in the same real-time multimedia applications, such as : teleconferencing,
tele-teaching, etc.. These systems require that the temporal relationships between media units composing the
multimedia applications must be maintained in order to guarantee, in real-time, a continuous data transfer.
However, the major problem of multimedia applications is the asynchronous transmission, that tends to disrupt
the temporal relationships among the media unit in the network such as ATM.
Several papers have been presented in the multimedia synchronization domain [4, 5, 8, 10, 13, 15, 16, 18, 19],
these protocols differ mainly by the assumptions they make on the communication patterns, the topological
structure of the underlying network, and how fast the protocol is in sending and delivering media to be played
back. However, many of these protocols do not take into account the total buffer size, mainly in a group
communication system, where users need a large bandwidth, and consume a huge size of buffers. Thus, due to the
total number of connections to users, delay jitter and the variation of the communication delay, the total buffer
size increases. So, if the connection among users is not managed carefully, the multimedia applications will
become more and more hard to handle.
In general, the total buffer size depends on the delay jitter, the synchronization mechanism, the number of
connections in the group communication system, and the variation of the communication delay.
In this paper, we propose a new hierarchical architecture for the group communication system to reduce the
buffer size at each user level. Our solution is based on a hierarchical structure of k-groups, where k represents the
number of local groups that compose the distributed system. Within each local group, there is only one single
server that plays the role of the local root of that group. The set of local servers forms a distributed virtual group,
where one of them will play even the role of the Master server who manages eventually the clocks
synchronization by sending periodically his virtual clock value. For synchronizing local clocks, we apply the
synchronization procedure presented in [1] to compensate of local clock drift. This architecture can be applied to
1-n applications or to n-n application such as videoconference.

Several paper have been presented to solve the problem of the total buffer size. [17] proposes a hierarchical
communication architecture and a mixing synchronization algorithm. However, it dose not take into account the
use of buffers. So, when applied in wide-area network (WAN) environments, the additional delay added to the
end-to-end (due to the mixing algorithm) might disturb the time-critical applications. [5] proposes a network
architecture, VuNet. In VuNet, multimedia devices are taken out of workstation and are treated as general

2

peripherals. Workstations access the devices through the network. However, no explanation is given of how to
solve the synchronization problems or how to assess the buffer size.
This paper proposes a hierarchical architecture of k-local groups, where k represents the number of local
groups composing the distributed system G. Each local group is defined as a finite set of processes. The
proposed architecture is defined by applying a dynamic grouping algorithm. Moreover, the paper presents a
synchronization protocol using a ∆ -causal ordering allowing real time delivery. We evaluate the performance
of the architecture through simulation and compare it with that of a complete graph. The result shows that the
hierarchical architecture reduces the buffer size significantly without decreasing the processing power of servers
and delay penalty. The proposed architecture allows us to solve the local clocks drift by synchronizing the local
clocks. The clocks synchronization is resolved by according to a time reference noted VMT (Virtual Master
Time).
The rest of paper is structured as follows. In section 2, we propose a communication group model based on
grouping several users in the same local group in order to reduce the buffer size, and to resolve the delay jitter
effect. The section 3 presents the proposed synchronisation protocol that uses the real time ∆ -causal ordering
concept. In section 4, we compute users’ and local servers’ buffer sizes composed the system. We study in the
section 5, architecture management in the case of where a user wants to join or leave a local group. In section 6,
we evaluate the performance with simulations of the proposed protocol. Finally, concluding remarks are given in
section 7.

2. Communication group architecture

2.1. Group concept

We consider a group communication system G, as a complete graph composing of n processes p1, .., pn that
communicate by exchanging messages through FIFO channels, and message transfer delay is arbitrary but finite.
There is neither common shared memory nor global clock. The communication is made without degradation and
without duplication or loss of messages. In other words the underlying network is reliable and asynchronous.
Cooperation between processes is structured with the group concept. Each process has a distinguish identity. The
information of identity will be used for electing local servers, master server, and also synchronizing local clocks
in the system.
The group communication system is built upon a hierarchical architecture of k-local groups, where k represents
the number of groups in the system G. Each group is defined as a set of processes, that forms a tree structure
where the root is a member of that group, and is called the local server. We assume that the group communication
system can detect process failures, and report them to the local server. Processes belonging to different local
groups can exchange their messages only via their local servers. For that a virtual group is created as a collection
of local servers in order to ensure the communication between all groups in the distributed system. Therefore, to
guarantee the communication in the hierarchical structure, all data traffic must travel among local servers to be
multicasted to all members of the group or be forwarded to the virtual group.

Definition 1. A group gi is defined as a set of ni processes {p1, .., pni } which possess distinct identities.

Definition 2. A group communication system G is a set of k-local groups noted : G
i

k
g
i

= ∪
=1

.

Definition 3. We define a virtual group gv as a collection of local servers psi,(where psi ∈ ∩()g gi v , gv:

g
v i

k
P
s

= ∪
=1

Definition 4. gi and gv (represent respectively a local and a virtual group) are called overlapped groups if there
exists a process ps (playing the role of local server), that belongs to both groups : gx ∩gv={Ps}.

2.2. Distributed election algorithm

3

We consider a network with n processes which want to communicate with one other. In direct connection
architecture, each process builds connections with other processes in the network, i.e., all processes are fully
connected. Since the total number of virtual connections and the architecture given in figure 2.1 can be reduced
by appropriately grouping processes. We divide the n processes into k-local groups, such that each process is a
member of only one local group, as illustrated in figure 2.2. Our grouping concept puts processes within the same
neighbor set called local group to allow local server, of each local group, to buffer less media units without
degradation of the QoS. In this way the continuous of data transfer will not be perturbed, and the delay jitter can
be compensated.
Once, the local group is known, only one process is chosen by the distributed election algorithm as local server
for that group, in order to ensure real-time traffic. All local servers are also members of another group called
virtual group (figure 2.2), and one of them is selected as the Master server to be the global root of the group
communication system.

To define the so-called « neighborhood » we use some tests [11] in the first phase of distributed election
algorithm. Those tests take place during the channel establishment.

i) deterministic test: this test consists of verifying that enough processing power is available in the
process to accommodate the additional channel without impairing the guarantees given by others.
Since the packet processing time in each process is a constant parameter, the service time is the same
for all channels connecting to that process. The service time is independent of the packet size
because it is expressed in terms of packets.
Let :

• tp (sec) represents the packet processing time of the process p, and
• x jmin, (sec) is the minimum inter-arrival time of packets to process p, and is computed on

the maximum rate packet Xmax,j (packet/sec) supported by the channel j, and is defined as
follows :

x
Xj

j
min,

max,
= 1

Thus, if the condition in the Equation (1) is satisfied, then the channel establishment proceeds.
Otherwise, a rejection message is sent to the sender :

1
min,

<

∑

ptoconnectingchannelsallinj j

p

x
t

ii) Delay bound test is tested at every process of the channel. The delay bound is tested to ensure
that no scheduler is saturated after a new channel is established. This test is performed by each
process with their immediate neighbors to form its own group. Since the service time for each
channel is the same as the packet processing time of the process, the delay-bound test at process p
should satisfy the condition (2). If the condition is not satisfied, the channel is rejected.

pipp tmt ,* δ<+ (2)

Figure 2.1. Direct connection (complete graph)

Distributed System

process

pi

pj

4

where :
δ i p, : is the delay bound of the channel i to the process p,

m : is the total number of channels already connected to p.

In order to ensure real-time data traffic, we synchronize users’ local clocks. This synchronization allow us to
compensate for local clock drift. We assume that each group has a local server. When each one receives a
message from other groups, it broadcasts it to all processes of its group as soon as possible. Our scheme
synchronizes the clocks of all users in the groups according to a time reference [8]. This value is used by all
processes in the distributed system as their own local clock value. Note that each process adds a synchronization
delay to the VMT value in order to have the same clock value, at a given time, with its Master server. The value
of time is the value of master server clocks selected by distributed election algorithm. Our algorithm is divided in
two phases :

• In the first phase, all processes in the distributed system know the identities of their immediate neighbours set,
and these identities are recorded in their lists in ascending order. In the first phase, each process performs the
first and the second test to define its own group called the transit group (figure 2.3).

The following rules are necessary for the validity of the transit group :

- ip∀ : |gtri | �����HDFK�WUDQVLW�JURXS�PXVW�EH�FRQVWLWXWHG�RI�DW�ODVW�WZR�SURFHVVHV

- ji pp ∀∀ , : trij gp ∈ ⇒ trji gp ∈

Figure 2.2 .Connection model for k- local groups

Local group

Virtual group

pi

pj

process

figure 2.3. transit group for each node presented in the complete graph

Transit groups

pi

pj

5

Once the transit groups have been defined, a mechanism must breaks the unnecessary connections to create the
local group. Now, all processes have their own lists that are composed of their immediate neighborhoods set,
however, many processes can belong to many transit groups. To solve this problem, we proceed as follows, each
process pi sends a Req_set(gtri) message to inform the participants in its transit group of the contents of its own set
gtri. After recording all received sets, each process selects the maximum of processes existing simultaneously in
all received sets. In the case of overlapping group, the process will belong to the group which has the lowest
identity or the successor has the lowest identity if the lowest belongs to the overlapping group. So in this way a
local group is specified by breaking the unnecessary links. Thus, the communication group system will be
represented by k-local groups, where each process is belonging only to one local group. Once, the local group
has been defined, the process generating the lowest identity is selected as local server. Once the local server ps

has been elected, it sends a «Establish(gs)» message to confirm the connection and to build its hierarchical group
model (figure 2.4). The main goal of breaking those unnecessary links is to ensure, efficiently, that the new
successor of the local server belongs only to an one local group.

• In the second phase, when the local servers of the local groups have been selected, they constitute a virtual

group. We suppose that the virtual group is a complete graph allowing distributed communication between
the local servers. Let gv this virtual group, then the process having the lowest identity is elected as the master
server pmast as illustrated in figure 2.5. Once the Master server has been elected, it sends a «Connect(VMT)»
message to all local servers belonging to gv, where VMT represents the Virtual Master Time value, of the
master server pmaster, that will be used by all server for synchronizing their local clocks. Therefore, the
processes in all local groups takes the VMT value via their local servers as their own local clocks. Thus, all
participants in groups have the same time value at a given time.
The role of pmast is to broadcast periodically his virtual local clock VMT to all members of gv allowing then
the local clocks synchronization.

 Figure 2.4. Hierarchical architecture in a local group

 process

 process process

 local server

 !Establish(ni)
 !Establish(ni)

 !Establish(ni)

 Data link

 Control link
 process

 ! send Establish message

Virtual group

local group
local server

Control link

Data link

Figure 2.5. Hierarchical architecture in a distributed system

6

Algorithm of process pi :
begin

let Gg
itr ∈ a transit group of process pi such as, constructed by performing tests 1) and 2),

Let ni =|gtri | ,

itrj gp ∈∀ Å send Req_set(gtri) to pj ;

gi= Ø;
Repeat
When receiving Req_set(g) from pj

gi = gi �J;
ni:= ni -1 ;

Until n i - 1 = 0 ;
If pi = min(gi) then ij gp ∈∀ Å send Establish(gi) to pj /* ij pp ≠ */ ;

VP(); /* call of the VP procedure by the local server */

/* The process which has the lowest identity value in each g is selected as local server for that local group */

When receiving Establish(g) from pj

Mark pj as my local server and g as my local group;
end.

The correction and the verification of the proposed algorithm have been studied in our paper [2].

Having a virtual hierarchical structure, the links of the network are divided into two types (figure 2.4 and 2.5) :
(i) data links are a part of the hierarchical structure, their role is to transfer multimedia traffic to their

destinations ;
(ii) control links are all the rest, their role is to inform the other processes in groups in the case of a

process or a link failure by transporting control information like the Master server’s group content.

NB.
- The data transmission is accomplished in distributed manner between the servers of the virtual group. However,
it is in hierarchical manner in the local group.
 - For maintaining this synchronization the Master server broadcasts periodically its VMT to inform all
participants in the group communication system of the current time taking by itself. By this manner, we solve the
local clock drift problem.

VP- procedure :
 Once a local server is elected, it visits each nodes in its group members set and assigns a VP number at its
incoming port (figure 2.6). The main role of the VP numbers is to maintain the hierarchical structure in life in
case of a node or a server failure. The objective is to obtain disjoint sub-tree for the connect nodes to ensure
continuous communication among them. For assuring its successor, the local server closes every node failure by
deleting its VP numbers from its set.

If a process wants to leave the group it is removed from the group members set by all other processes. If a
process wants to join the group it is added to this set by all processes.
Termination procedure is guaranteed since eventually all the processes in the group are labelled. Correctness
follows since each VP of each process is labelled exactly once, and the number VP is incremented by one to
create a unique VP identifier in the local group.

 local server

 node

 node

 Figure 2.6. VP-procedure in a local group

 VP : Virtual
P VP1

 VP2

 VP3

 VP4

7

Text of the VP Procedure :
begin

Let sn be the local server (root) of the group

starting from sn ;

let DF be the Depth-First order ;
let VP the virtual port number ;
VP Ä 0 ;
traverse of the group hierarchical structure
For each unlabelled input in visited by DF

Do
VP = VP +1 ;
Assign VP to in ;

Mark in as labelled in LISTs.

EndDo
end.

3. A New delivery condition for the group

The lifetime, ∆ , of a message is the time duration during which such a message can be used by its destination
process. For a message m the instant sending time of m + ∆ is actually the new time duration value after which
the QoS of that message is degraded, and the message is useless for the destination process.
A message that arrives, to destination, to early is delayed until its delivery condition becomes true. This allows
reordering of messages since the execution of this message would have invalidate the rest of messages that would
have made the deadline had the other message not arrived so early.
In multimedia applications, the lifetime of a message is the maximum transmission delay that an application can
tolerate before delivering a message before the quality of its service degrades. This delay is strictly connected to
the nature of the multimedia applications. For example, in teleconferencing systems, the maximum lifetime for
audio and video messages is 250 msec. [22] (an acceptable one is 100 msec. [23]). Thus, to ensure a real-time
causal order in a group communication system the time duration of a message must be less or equal ∆ .
In all multimedia systems, the lifetime of messages composing the applications do not indicate their delivery time
periods at which all destinations start to playback simultaneously the same message in a synchronous fashion. To
fulfill the synchronization requirement in the multicast configuration, we must solve the following problems :
local clock drift, and the delay jitter.

3.1. Local clock drift

In order to enforce the real-time delivery constraints, processes must synchronize their local clocks. Without loss
of generality, we use the synchronization mechanism proposed in [1], where the time reference is a virtual clock
noted VMT (Virtual Master Time) maintained by a initiator in the group communication system. Thus each
process use this VMT time value to synchronize its own local clock by adding a synchronization delay to it.
Consequently, at a given time all processes will have the same time value.
Once all local clocks have been synchronized, we must keep this synchronization among the communication
exchange to insure the real-time relationships. If that constraint is relaxed, the clocks are no more than ε time
units out of synchronization with each other. To solve that local clock drift without changing to the algorithm, it
is suitable to update only the definition of ∆ . For that, the initiator sends periodically its time value VMT
(Virtual Master Time) to all members in the group system, in order to keep clocks synchronized within 5-10
milliseconds [20, 21].
If ε = Hnew-Hold, (Where Hnew = VMT+ τi is the time value of a local clock according to the initiator clock

(VMT) and τ i is the synchronization delay of the local clock), is non-zero, then ∆ is defined to be the time data

in a message with the maximum clock drift : ∆ ∆new old= + ε
This change does not have an influence upon the functionality and the validity of the protocol, because ∆ defines
only the lifetime of a message.

3.2. Delay jitter

the delay jitter problem between a sender process pi and a receiver process pj can be solved by prefetched
buffering with buffer size Bj. This is the amount of time required for process pj to buffer the media units from pi

8

after pi starts to collect them. In this way, the delay jitter effect can be compensated. Given by the following

formula [16], the buffer size can be defined as : B
J

j
i j

j
=

,

µ
(1)

where Ji,j is the delay jitter between pi and pj and is computed by : Ji,j = Di,j - di,j . (2)
With Di,j is the maximum end-to-end delay between pi and pj; di,j is the minimum end-to-end delay between pi

and pj, including the propagation delay, minimum collection delay and minimum delivery delay (figure 3.1). We
note that di,j, can obtained by taking the minimum value over several end-to-end delay measurements. Further, the
collection delay is the time needed for the process sender to collect media units and prepare them for
transmission. The delivery delay is the time needed for the receiver process to process the received media units
and prepare them for playback; µ j is the playback period of a medium at receiver process pj, and x is the

smallest integer greater than x.
Note that Bj is measured in terms of media units. The size of media units may be constant or various depending
on the characteristics of the medium and the encoding scheme. By this way we can prevent the asynchrony
caused by delay jitter. If Ji,j can be kept small, then the required buffer size Bj will decrease as can be seen in
equation 1. Since the values of Di,j, di,j and µ j can be determined in the connection phase for multimedia

communication between processes, the delay jitter effect can be solved by selecting an appropriate size of pre-
fetched buffer at the receiver process as given in equation1.

3.3. Global delivery time for the group

Once the local clock drift problem and delay jitter effect have been solved, we show now the derivation of the
global delivery time ϕg , that allows destination processes to deliver the same media unit simultaneously.

Without loss of generality, we assume that the sending time of media units from sender process pi to all other
processes is the same as specified in [4]. This time is equivalent to the collection time at which a process sends its
media units to the destination process (it is the send event).

One approach to maintain synchronization is to timestamp messages as it leaves the sources and, in parallel, to
calculate the maximum delay it will take for message to travel from source to destination. Once this maximum
delay is agreed upon by the destinations, they delay the message they receive until a time equal to the timestamp
of the massage plus this maximum delay. In this manner, the destinations will consume the message
simultaneously to be played back in the same time. Our approach is based on the model of data delay in figure
3.2. It shows four components : a sending time that represents the event of sent message, it is the time delay at
which the message is prepared to be sent ; a transmission delay to reach the protocol peer across the network; a
pre-fetched time to buffer a message within its deadline until its delivery condition becomes true; and a delivery
delay from the moment the protocol releases the message to the moment this message is presented to the
application. By assuming the maximum and minimum end-to-end delay, we can calculate the pre-fetched buffer
sizes Bj(m) for any medium of destination process pj using equations (1) and (2). For connections between pi and

pj, the time that pj could deliver the message is : { }γ δi j
m

j i jm D m, ,max () ()= + (3)

where, δ j m() is the time spent by a media unit in the buffer after which it is available to deliver it, and is

expressed as follows : δ σj j im B m m() () ()= (4)

 where Bj is the pre-fetched buffer size and σi m() is the value of the inter-collection time between media units at
destination pj. This can be defined as: σ ψ ψi mm sending time k k() _ () ()= + + −1 (5)

 where the delaystamp ψ()k is the sum of all times spent by the media unit k in the nodes (switches) of the

network plus the collection delay at pi and the delivery delay at pj. If this time is constant, so the second term of
the equation (5) will equal to zero, and Di,j(m) is the maximum end-to-end delay between pi and pj.

Collection delay Delivery delayTransmission delay

end-to-end delay

Figure 3.1.End-to-end delay model

Figure 3.2. End-to-end delay model for a multicast configuration

Pre-fetched delayCollection delay Delivery delayTransmission delay

end-to-end delay

9

Thus, based on the equation (3), we see that if the receiver pj starts the deliver media units before γ i j, , then

discontinuity may occur due to the delay jitter and insufficient pre-fetched buffer size. On other hand, if pj starts
to deliver media units from pi after the time γ i j, , then pj must buffer more media than it needs, a wastes of

network resources. However if we want to synchronize the delivery time for each process in the system denoted
the global delivery time ϕg , we must select a large delivery time γ i j, of media units from one process at all

other in the system, and this time must be the largest one among all processes in this system. So, we can select the

global delivery time of the processes as : ()ϕ γg m
i j

i jsending time= +

_ max max , (6)

where ϕg represents the maximum delivery time γ i j, among the connections associated with a process pi, that is

the largest one among the processes in the system. Thus, each process can select this time value as its own
delivery time by using the equation (6).

3.4. ∆ -causal delivery for group configuration

the ∆ -causal protocol for multicast configuration can be implemented over the original underlying system. Due
to the new delivery constraints imposed by ∆ -causality ordering in group communication system, a received
message within its deadline can be delayed until the delivery condition for group becomes true. Thus, this new
abstraction is associated with each multicast message m in such a way that m is delivered to all group members as
soon as possible, i.e., when all multicast messages that causally precede m have either been delivered or have
been lost or they are still in transit when their deadlines expire. Basing on the clock synchronization, described in
section 3.1, each process has the current_time value that is continuously updated by the local clock. Even, each
one of them manages a vector sent, where senti[j] that represents the knowledge of process pi about sending time
of the last message sent by pi to pj and a vector del, where deli[j] represents the sending time of the last message
sent by pj and delivered to pi. Each message m piggybacks the following control information : VTm is a copy of
the vector sent of the sending process at m’s sending time. Note that from the definition of the vector sent, there
is a difference between the send_timem value and VTm. The first one is defined as the send event, and the second
one represents the timestamp of the sending time of message. Thus the following relation must be hold :

[]iVTtimesendGp mmi >∈∀ _: (rule 1)

Also, to achieve the delivery condition for group configuration, the lifetime, ∆ , that represents the duration of
message must be larger or equal to the global delivery time value ϕg , otherwise no process in the distributed

system does not playback its media units. Thus, the QoS of media will be degraded. So, to synchronize the
delivery event of all processes the following relation must be respected :

gmtimesendm ϕ≥+∆∀ _: (rule 2)

A message m, sent by a process pi to pj is discarded if (send_timem+ ∆ >current_time)or(VTm[i]>delj[i]). By
definition, all messages arriving at their destination within their deadline must be delivered when their condition
becomes true. More formally, the delivery condition of a message m sent to pj is expressed as DC(m):

)_()_][(: ∆≤≤∧∆−<∀ timecurrenttimecurrentiVTi gm ϕ Thus, by this way all synchronization

requirements are solved and all group members can playback simultaneously their media units in a
synchronization fashion.

Algorithm for each process :

We suppose that there is neither process nor link failure during the communication, the maximum end-to-end
delay is known, and the channels are reliable and FIFO.
begin
send_timem := current_time ;

Sp j ∈∀ :

VTm := sentP;
send(m,VTm, send_timem) to pj ;
senti [i] := send_timem ;

upon receiving (m,es, st) by Pj
if (st+ ∆ < current_time) or (es> delj[i])
then discard(m) ;

else wait)_()_(∆≤≤∧∆−< timecurrenttimecurrentes gϕ
deli [j] := st ;

10

deliver(m) ;
end.

To prove the ∆ -causal protocol for multicast configuration, we show that all messages arrived within their
deadlines will be delivered in the same time to all processes within their deadlines (liveness property). In other
hand, we prove that all delivery events respect the causal order. For more details concerning the proof, the reader
can consult our article[24]. One can find also a performance evaluation with Coloured Petri Nets.

 4. Buffer sizes

 In reality the machine buffer size is not fully used for supporting a real-time multimedia application. The buffer
size required to run such application, at each user, is based on the delay jitter, the nature of the application, etc…
For example, in a teleconference application, the buffer is used to compensate of delay jitter caused by the
asynchrony of the communication channels and their propagation delays.
 As data is stored and processed on computers in discrete values (bits and bytes), continuous data streams like
audio, and video have to be digitized and quantized. So, we can represent a multimedia application as a set of
streams, where each one of them is defined as a set of media units (MUs). One media unit contains the atomic
information of a media stream that can be displayed. This is ,e.g, an audio sample or a video frame. The duration
of one MU in data streams is media dependent and can vary a lot. In this work, we assume that the MUs are
independent from each other and can be processed independently.

 4.1. Buffer sizes for clients belonging to a local group

 Once a local group is defined, the local server pi of a local group gi sends media units of a multimedia application

to its group member pj (j=1..ni) with a maximum peak rate)(max mijτ and a maximum delay jitter Ji,j(m) of the

connection carrying medium m. As known, the one way to compensate for the effect of delay jitter is to estimate
the amount of time Ti,j required for user pj to buffer and to start playback the media unit sent by the local server
pi. So, to insure that all group members play out simultaneously the same media unit, we must estimate the time
required for each user j to buffer media unit after the moment the local server starts to collect it :

{ })()(max ,,, mJmDT jiji
m

ji += (8)

 where :
- Di,j(m) is the end-to-end maximum delay supported by the medium m carried by the channel connecting

the user pj to its local server pi,
- Ji,j(m) is the maximum delay jitter supported by the medium m from pi to pj, and is expressed as

follows :)()()(,,, mdmDmJ jijiji −= , where di,j is the minimum end-to-end delay including the

minimum collection delay, propagation delay and the minimum delivery delay, and is computed as
follows :

iji pptmmd +=)()(, δ (9)

 where)(mδ is the minimum end-to-end delay including the minimum collection delay, and minimum delivery

delay; and ppti is the packet-processing time of each local server. The buffer is to ensure that each user can
buffer the first media unite MU0, and is given by the following formula.

)(

)(
)(

,
, m

mJ
m

ji
ji ω

β = (10)

 where)(mω is the presentation period of that media unit in the medium m.

The relation (8) allows to guarantee that each receiver can buffer the first media unit MU0, because the
presentation time of this media unit is unknown.

 Until now, the group members in the local group gi can not playback in the same time the same media unit. For
that, each user pj must still wait until all users in the local group complete buffering the media. Thus the time
required at which all participants start playback the same media units from the local server pi is :

 { }ji

n

j
i TT

i

,
1

max
=

= (11)

11

 If we take into account this constraint, then the group members must keep buffering the media units from local
server of the local group i until the time Ti is reached. Thus, the buffer size Bjj at each user pj belonging to the

same local group is : ()∑ −=
m

jiiij mmdTB)()(max, τ (12)

 where)(max mτ is the maximum peak rate supported by the medium m, and is expressed as follows :

 ∑ ∑
=

=

−

=
+=

inj

j

k

l
liij mmm

1

1

1

maxmaxmax)()()(τττ (13)

 where :

 -)(max mijτ is the maximal peak rate of each medium m between process pj and its local server pi,

 -)(max mliτ is the maximum peak rate of medium m from two local servers pl and pi in the virtual group,

- ni is the number of users in the local group gi, and
- k is the number of local servers composing the virtual group.

 4.2. Buffer sizes for local servers

 Once all users synchronize their local clocks, each local server pi can receive and buffer the temporally related
media units before sending them to its local and/or virtual groups members. After transmission, the temporally
media unit must stay in the local server until that the playback time is reached. To do that, the local server of the
group gi must send media units from its own local group synchronously. However, since the end-to-end delay is
different over each medium, the local servers will not send the media units in a synchronous fashion. To ensure a
synchronous transmission, we provide a mechanism that makes possible to buffer temporally the media units.
 Let :
 - iS a time needed for a local server pi to synchronize between its local group members in order to allow them to

present their media units in the same time.

 { }{ })()(maxmax ,,
1

mJmDS ijij
m

n

j
i

i

+=
=

(14)

 Also, at time iS , the local server starts to transmit the media units into the virtual group, and

- { }{ })()(maxmax ,,
1

mJmDS isis
m

k

i
s +=

=
 is the necessary time needed to a local server to buffer a media unit sent

from the others servers in the virtual group.

Then, the buffer space required for the local server of a local group pi is :

 { } (){ }∑∑ ∑∑
=

−

=
−+−=

in

j m

k

s m
liissjiijii mmdSmmdSB

1

1

1

max,max,)(.)()()).((ττ (15)

 The first term on right-hand side of Equation 15 refers to the buffer size required to store the media units from
users in the same local group and the second term is the buffer size required to store media units received from
the others servers.

5. Model management

Once the hierarchical architecture is built, a mechanism must be provided to handle the entering and leaving of
users and local servers. We introduce a reconfiguration algorithm that solves the problem of users entering and
leaving the architecture. If a user belonging to a local group wants to leave the group, it is removed from the list
by all other processes in that local group via their local server. However, if a user Pnew wants to join the group
communication model, it multicasts a message request to its immediat neihgboors pj, requiring the server address
and the group belonging to of each one of them. Since the election algorithm is distributed, each user has full
knowledge of the grouping information. Thus, user pj can give the addresse of its local server to the new user
Pnew. The new user Pnew, after getting the addresses of the local servers, sends a connecting message to the local
servers. When the local server receives this message, it performs the first, and the second tests, to ensure that the
local server has enough processing power. If this new user Pnew is accepted by the local server, it receives a
acknowledgement. In the case of it receives more than one acknowledgement the new user Pnew makes connection

12

withe local server which has the lowest identity. During this phase the new user negotiates the maximum end-to-
end delays with each local server separately. Once, the connection with the local server is established all group
membrs adds the new user to its group members set. If the maximum end-to-end delay Dnew between the new user

and its local server pi is higher than { }ij

n

j
D

i

1
max

=
 then all group members update their buffer sizes Equation (12).

In the extreme case, if the new user is not accepted by any local group, so the new user becomes a local server
and communicates with others directly.
However, if a local server wants to leave the communication, then it informs all local group members, and the
virtual group members. As each member of that local group has the same group members set contents, each one
of them makes a connection with the local server’s successor who have the lowest identity. After the connections
are established, processes can get messages through the old local server, or the new local server, but they send
their messages to the new local server. In other hand, the new local server informs the users that they can receive
its messages at a time stamp T, this time is the time at which the old local server sends all messages stored in its
buffer.

6. Performance evaluation and simulation

In this section, we investigate the performance of the hierarchical architecture. Our simulation model consists of
n users (i.e. processes). Each user wants to communicate with other users by sending and receiving two media
stream, video and audio. The playback period ω for video is 40 ms and for voice, it is 15 ms. The maximum
peak rate of each media is approximately 2Mb/s and voice 64Kb/s. The maximum delay jitter of a connection is
between 20% to 65% of the minimum end-to-end delay of the connection. The simulation results given in Table
1-2.
We divide the group communication model into several local groups and calculate the buffer size for each user,
each local server, and the master server with Equations 12 and 15.

Figure 6.1. Model of repartition of processes in distributed systems

Communication channels

process

Transit groups

13

The results of simulation are presented in the figures 6.2, 6.3, 6.4. We used the dynamic algorithm of grouping to
obtain local groups from the transit groups as shows it figure 1. the number of process composing the distributed
system varies between 5 and 50. In addition, we built the hierarchical structure in each local group.

Figure 6.2. Buffer sizes in the hierarchical architecture
Moreover, we determined buffer sizes of processes and local servers composing this hierarchical
architecture.

Process management

0

10

20

30

40

50

60

70

5 10 21 30 50

Number of processes

B
u

ff
er

 s
iz

e
(M

b
/s

)

hierarchical architecture Direct graph Average of groups

Figure 6.3. Comparison of buffer size between direct graph and hierarchical structure

In figure 6.2, we show the buffer size of each process belonging to the group structure. Moreover, we present in
figure 6.3, a comparison of the buffers size in the case of a direct graph and the presented hierarchical
architecture. We note that with the increase in the number of participants in the distributed system, the buffers
size of the processes increases proportionally in the related graph. However, in the hierarchical structure the
processes consume less memory in the presence of a great number of processes. This phenomenon can be
explained by the number of local groups constituting the hierarchical architecture.
Moreover, the buffers size on local servers are larger than those of processes in local groups (figure 6.4). That
means that processes stock only the necessary information units to ensure the playback phase of audio and video
each process of distributed systems.
The fact that the local servers need enough memory capacities, that proves that the processes of the local groups
can share these spaces and reduce their own buffers thereafter.

 Hierarchical architecture management

0

10

20

30

40

50

60

70

5 10 21 30 50

Processes

 b
u

ff
er

 s
iz

es

process local server process in direct graph

14

Servers management

0

10

20

30

40

50

60

5 10 21 30 50

Processes

B
u

ff
er

s
 s

iz
e

(M
b

/s
)

Average of groups local servers

Figure 6.4. Relationships between the groups number and Buffers

In addition, according to figure 6.4, we note that when the number of processes increases, the total number of the
local groups existing in the hierarchical structure does not increase significantly. Indeed, the local groups size
depend initially on the variation of the initial grouping model, i.e. according to the existing number of
connections between the immediate neighbors and the processes of the distributed system. Thus, the average size
of these servers is always in relation to the grouping model.
Consequently, the average buffers size varies. Moreover, this variation becomes also valid if a local group plays
the role of a transmitter. In this case, this group must store more messages to await the site the most remote
sender in the system of groups, in order to synchronize the playback phase. However, the average size of the
buffers of the processes remain very small, compared to the number of participants in the distributed system.

7. Conclusion

In this paper, we were interested in new mechanism of management of the buffers having for vocation to ensure
on the one hand, the continuous transfer of the data and on the other hand, the playback phase at each process
level. The dynamic management suggested in this paper, is based on a hierarchical architecture made up of k-
groups. This management makes it possible to reduce the buffers size of the destination without deteriorating or
adding penalties during the transmission or the playback phase.
In addition, the buffers sizes of the local servers composing the architecture have almost the same sizes which
can have the processes on a direct graph. In other terms, this mechanism of buffers management does not
introduce other memories sizes. Thus, the buffers management model in the communication systems makes it
possible to ensure the delivery of the media units in same time to guarantee the playback phase without the users
not absorbing very large buffers sizes

References

[1] A. Abouaissa, A. Benslimane, M. Naimi, ”A Group Communication Model for Distributed Real-time Causal
Delivery”, the 7th IEEE ICCCN’98, 12-15 October 1998, Lafayette, Louisiana, 1998.

[2] A. Abouaissa and A. Benslimane, “Dynamical Grouping Model for Distributed Real Time Causal Ordering”,
Internal report, LaRIS, Technical University of Belfort, December 1999.

[3] J. F. Adam, et al., “A network architecture for distributed multimedia systems”, Proceeding of ICMCS’94, Boston,
May 1994.

[4] I. F. Akyildiz, W. Yen, “Multimedia group synchronization Protocols for Integrated Services Networks”, IEEE
Journal Selected Areas Comm. Vol. 14(1), 1995.

[5] D. P. Anderson, G. Homsy, “A Continuous Media I/O Server and its Synchronization Mechanism”, IEEE Computer,
October 1991.

[6] J. Burgin, “Dynamic capacity management in the BISDN”, Int. Journal Digital Analog comm. Sytesm 3, 1990.
[7] A. Campell et al., “Integrated Quality of Service for Multimedia Communication,” Proc. Of the INFOCOM `93

Conference, pp. 732-740, Apr. 1993.
[8] J. Escobar, et al., “Flow Synchronization Protocol,” IEEE Global Communications Conference, pp. 1381-1387,

Dec. 1992.

15

[9] M. Gerla et al., “Topology design and Bandwidth allocation in ATM nets”, IEEE Journal Selected Areas Comm.,
October 1983.

[10] S. J. Golestani, “A Framing Strategy for Congestion Management,” IEEE Journal on Selected Area in Comm., Vol.
9, No. 7, pp. 1067-1077, Sep. 1991.

[11] S. Kadur, F. Golshani, and B. Millard, “Dealy-jitter in multimedia applications”, Multimedia Systems vol. 4. N° 1 :
30-39 1996.

[12] R. Kawamura et al., “Fast VP-Bandwidth management with distributed control in ATM Networks”, IEICE Trans.
Comm., E77-B (1) 1994.

[13] L. Lamont and D. Georganas, “Synchronization Architecture and Protocols for a Multimedia New Service
Application,” Proc.of ICMCS `94, Boston, May 1994.

[14] A. A. Lazar et al., “Control of resources in broadband networks with quality of service guarantees”, IEEE comm.
Mag., October 1991.

[15] T. D. C. Little and A. Ghafoor, “Synchronization and Storage Models for Multimedia Objects,” IEEE Journal on
Selected Areas in Comm., vol. 8, No. 3, pp. 427-430 Apr.

[16] S. Ramanathan and P.V. Rangan, “Adaptive Feedback Techniques for Synchronized Multimedia Retrieval over
Integrated Networks,” IEEE/ACM Transactions on Networking, vol. 1, No2, pp. 246-260, Apr. 1993.

[17] P. V. Rangan, H. M. Vin and S. Ramanthan, “Communication Architectures and Algorithms for Mixing in
Multimedia Conferences,” IEEE/ACM Transactions on Networking, vol. 1, No. 1, pp. 20-30, Feb. 1993.

[18] J. Won Choi et al.,“ A Synchronization Model for User Interactive Control Using the Script Language,” E-mail :
jwchoi@ipl.chungnam.ac.kr

[19] W. Yen, I. F. Akyildiz, “The Hierarchical architecture for buffer management in integrated srvices networks”,
Multimedia Systems Vol. 4(3) : 131-139, 1996

[20] R. Gusella, S. Zatti,’The Accuracy of the Clock Synchronization Achieved by TEMPO in Berkley UNIX
4-3 BSD’, IEEE Trans. on Software Engineering, 15(7) :847-853, july 1989.

[21] D. Mills,”Internet Time Synchronization : The Network Time Protocol”, IEEE Trans. on Comm. 39(10) :1482-1493, October

1991.
[22] K. Jeffay D.L. Stone and F.D. Smith, ”Transport and display mechanisms for multimedia conferencing

across packet switched networks”, Computer Networks, vol.26, pp : 1281-1304, 1994.

[23] K. Ravindran an V. Bansal, “Delay Compensation Protocols for Synchronization of Multimedia Data
Streams”, IEEE Trans. On Knowledge and Data Engineering, vol.5, No . 4 pp :574-589, 1993.

[24] A. Benslimane and A. Abouaissa, “A Synchronization Protocol for Group Communication Systems”,
Proc. of the IEEE Seventh International Symposium on Modeling, Analysis and Simulation
MASCOT’99, College Park , Maryland USA, IEEE Computer Society Press, October 24-28, 1999,
ISBN 0-7695-0381-0, pp. 322-329.

Authors’ biographies :

Abderrahim BENSLIMANE is Associate Professor of computer science and Engineering at the Technical
University of Belfort, France. He received his PhD in Computer Science from the Franche-Comte University of
Besançon in 1993.
His research and teaching interests are in Specification and Verification of Communication Protocols, Computer
and High speed Networks as ATM, Distributed Multimedia and languages Programming.

Abdelhafid ABOUAISSA received his B.S. degree from Technical university of Wroclaw,
Poland, in 1995, and M.S. degree from Franche-Comte University of Besançon, France, in 1996.
He is currently a Ph.D Student at Technical University of Belfort, France, where his interests
include Multimedia Synchronization, group communication systems, ATM, QoS management.

