Experimental QoS Performances of Multimedia Applications-

Phil Y onghui Wang, Yechiam Yemini, Danilo Floriss
{yhwang, yemini, df }@cs.columbia.edu
Computer Science Dept
Columbia University, New Y ork, NY 10027
Tel: (212) 939-7000 Fax: (212) 939-7181

Abstract -Several QoS provisioning mechanisms such as
Differentiated Services (Diffserv) and Integrated Services
(Intserv) have been recently devised and applied to bring
Quality of Service (QoS) to the Internet. This paper studies
end-end QoS performances of two QoS-demanding
applications using different transport protocols. Both
applications are tested in a real network environment, with
end-end QoS provisioning by Intserv. They use QoSockets, a
new extenson of QoS gpecification and management to the
Berkeley sockets. Their performancesin terms of throughput,
delay, jitter, and loss are measured under a number of test
cases combining several factors: (1) single or multiple flows,
with or without resource reservations, (2) normal, heavy, or
overloaded scenarios; (3) uni- or bi-directional streams, and
(4) TCP or UDP protocals. The experimental results show that
the performances of two applications with the Intserv resource
reservations are significantly improved, but not always
guaranteed. It is also shown that UDP applications are able to
get the requested QoS while TCP applications may not because
of the nature of its bi-directional traffic flow. The paper
provides detailed interpretation of the results and provides
generic conclusions on application QoS.

. INTRODUCTION

Two major mechanismsto support delivery of Quality of
Services (QoS) have been proposed by the IETF:
Differentiated Services (Diffserv) [7] and Integrated
Services (Intserv) [3]. Diffserv is a packet-based priority
service that provides several types of premium or assured
services to meet differentiated needs of network

Patricia Floriss
patricia@smarts.com
SMARTS
14 Mamaroneck Avenue
White Plains, NY 10601

John Zinky
jzinky@bbn.com
BBN Technologies
10 Moulton Street
Cambridge, MA 02138

provisioning and management of end-end QoS. A QoS
demanding application can use QoSockets to request end-
end service with specified QoS guarantees. The QoS
specifications are used to negotiate and allocate network
resources, as possible -- in a manner that shelters the
application from the underlying resource allocation
mechanisms, and to generate real-time instrumentation to
monitor the actual QoS ddlivered by the network. This QoS-
management insrumentation enables QoS managers using
SNMP (Simple Network Management Protocol) [13] to
access the automatically generated QoS MIBs (Management
Information Bases) [14]. In particular, an application using
QoSockets can monitor the actual performance and adapt
then to changing network conditions dynamically.

This paper describes experiments in applying QoSockets
for QoS provisioning to two applications. The first is
NetVideo [10], a UDP-based real-time video tool; and the
other is DIRM [6], a TCP-based resource management
middleware for socket-based and CORBA[4]-based
applications. Both applications were originaly developed
using sockets and have been easily modified to use
QoSockets and take advantage of its powerful infrastructure.

Each application is tested under three traffic conditions
with varied flow demands and reservation scenarios. Each
has its own testbed, consisting of two sub-networks with
heterogeneous system environments bridged by a

“bottleneck” link between two /P-aware routers. Intserv
is used to provide end-end resource reservations in the

network.

The experimental results show that these applications

demanding QoS gain significant performance improvements
through the use of QoSockets. NetVideo runs fairly steadily,

but DIRM has a very complex behavior because its traffic is

bi-directional and of large and varied-size messages, and its
reservations do not cover the entire traffic route.

In addition to the guaranteed data flow, a typical TCP
communication such as DIRM requires a guaranteed
acknowledgement (ACK) flow. QoS provisioning services
are usually unidirectional and present difficulties for the
allocation of the reverse ACK traffic. In general, this fact
makes QoS guarantees for TCP applications more
challenging.

applications. Intserv is a flow-based resource reservation
service, which employs guaranteed and controlled load
services to support end-end mission-critical services such as
rea-time service. Intsarv uses RSVP (ReSerVation
Protocol), the resource reservation signaling protocol [2].
This paper dealswith the end-end QoS ddlivery from the
perspective of an application. An application must not only
reserve its required QoS, but aso monitor and respond to
the actual QoS delivered because some intermediate
networks may not strictly guarantee the QoS requested.
QoSockets (Quality of Service Sockets) [1] is an
extension of the Berkeley socket mechanisms to support

“Thiswork is sponsored by the US DARPA under Contract No. F30602-96-C-0315.

This paper is organized as follows. QoSockets is
introduced in Section 2 with its architecture, QoS
characterization model, QoS provisioning, and QoS
management. Section 3 describes two multimedia
applications, NetVideo and DIRM, with ther QoS
requirements and experimental environments (testbeds). The
experimental data (throughput, delay, jitter, and loss) are
detailed and discussed in Section 4. Finally, Section 5
presents conclusions on QoS- demanding applications and
QoS provisioning services.

1. QoSockets

Berkedley sockets are widely used in network
programming, but by themselves do not bring QoS
provisioning to applications. QoSockets [1] extends
Berkeley sockets to enable applications to specify and
manage QoS. QoSockets provides mechanisms to provision
QoS by allocating network resources to applications, and by
monitoring QoS delivery performancein real-time.

Emvirorment Application Application

SNMP

Agent T

z

Solaris, SUNOS TCP
Linwt, NT

QoSockets

QoS MIB

UNIX
Local

Ermiranment

RSVP{ ST-Il | AAL

ubpP

Figure 1: QoSockets Architecture

A. Architecture & Operations

The overall architecture of QoSockets is depicted in
Figure 1. An application provides specifications of its
desired QoS. QoSockets compiles the specifications into
respective trangport protocols and mechanisms, when
possible. Protocols supported by QoSockets include TCP,
UDP, RSVP, ST-11, and ATM [5]. QoSockets also generates
instrumentation to monitor the QoS ddlivered to the
application and constructs appropriate QoS Management
Information Bases (MIBs) to access this instrumentation.

QoSockets supports the following functions:

* Connection Establishment: initidlize and establish
connections and reserve the application QoS
requirements specified.

* Section of Protocols: sdect a specific transport
protocol and bind a socket address to a QoSockets
connection endpoint.

* Monitoring QoSdelivery: monitor the QoS performance
of applications communications, and store the sampled
performance statisticsinto QoS MIBs.

* QoS MIB Access. access values of QoS MIBs using
SNM P-based interfaces.

Figure 2 shows how QoSockets operates above an
underlying RSVP service. QoSockets shelters applications
from the complexity of the interface details of the specific
QoS provisioning mechanism. One could use the same
QoSockets specification for RSVP and ATM.

Somaer Focerar
App App
@uﬁucketg Euﬁucketg
0 PatffResy PathiResy B
L DRala

m————7m ————— 7m

Figure 2: QoSockets and Intserv/RSVP

Figure 3 shows how QoSockets works with QoS MIBs.
When an application establishes a QoSockets connection,
QoSockets starts collecting the status and performance data
related to the connection and its traffic, including QoS
specifications, connection duration, transmission rates,
delays, etc. It also detects QoS violation by analyzing the
QoS requirements and redl collected performance statistics.

[_App_| [App]

uﬁuckets uﬁuckets

.\\ /
SNMF' o e SNMF‘
Agent 7 ™1 Agent

SHMP Manager

Figure 3: QoSockets and MIB

The data stored in the QoS MIBs are accessed inside the
application or from SNMP agents using remote SNMP
network managers. Thus, QoSockets allows applications to
control and adapt to QoS performance by using application
exception handling procedures (locally) or by requiring
assistance from network managers (remotely).

B. QoS Characterization

The main types of QoS attributes in QoSockets are
throughput, delay (and jitter), and reliability. In addition,
QoSockets introduces the coerced flag, to coerce compatible
QoS requirements of the sender and the receiver of a traffic
stream.

1) Throughput

QoSockets defines four parameters to represent the

network throughpuit.

* min_rate: Lower bound of transmission rate;

* max_rate: Upper bound of transmission rate;

* peak_rate: Upper bound of transmission peak rate;
* size: Maximal size of transmitted messages.

Each rate is number of messages conveyed per second.
The throughput is the product of the rate (min_rate,
max_rate, or peak rate) multiplied by the message size
(bytes). For theith traffic stream, its throughput is computed
as (in bytes/s):

Minimal: ty, = min_rate x sizé (1a)
Maximal: t'y =max_rate x sizé (1b)
Peak: t,, = peak_raté x size (1c)

2) Delay & Jitter
QoSockets defines four parameters related to the
transmission delay and jitter.
* min_dday: Lower bound of transmission delay;
* max_delay: Upper bound of transmission delay;
* int_delay: Maximal time eapsing between two received
messages,
o Jitter:
messages
These parameters are metered in milliseconds.

Maximal delay variance of two consecutive

3) Reliability
QoSockets defines the reliability using three major
parameters.
* loss: Percentage of messages logt;
* rec time Maxima time elapsed for recovering a
disrupted connection;
* permt: Permutable flag indicating if messages can be
delivered out of order.
QoSockets also provides other parameters (eg.,
connection failures) used for monitoring network
reliability.

4) Coerced flags

QoSockets allows both the sender and the receiver of a
stream to define their own QoS parameters. Sometimes, the
QoS parameters at each end conflict with each other and
need to be coerced (downgraded) to a commonly accepted
level. Coerced flags are therefore used to indicate which
parameters should be coerced. If no coercion is requested,
both sender and receiver use their own parameters to request
QoS, which may cause resource allocation failure in case of
incompatibility.

For example, suppose two ends of a traffic stream want
to coerce their peak rates (by setting coerce peak rate =
True), and therates of the sender and the receiver are 64 and
60 KBps (kilobytes per second) respectively. QoSockets
coerces them to the minimal common rate of 60 KBps, and
notifies the new rate to both sender and receiver. The sender
effectively downgrades its peak rate to 60 KBps as aresult.

C. QoSProvisioning

QoSockets provides application QoS by reguesting
resource allocations of the underlying service providers such
as Intserv, Diffserv, and ATM. The current implementation
includes ATM and RSVP. RSVP, also known as “soft
mode”, is a reservation protocol of Intserv and available for
TCP and UDP traffic (referred here BSTCP and R-UDP
respectively).

In the soft mode, QoSockets maps the application QoS
requirements to the Intserv QoS, and requests the
reservation to the RSVP daemons at the end hosts of senders
and receivers. The daemons propagate the QoS request to
the resources (hosts and routers) along the flow route. If a
resource reservation &eeds, the apphtion network
communication associated with the reservation may meet its
QoS demands. When a resource reservation fails, QoSockets
returns a message to the application. Combining this
message with the QoS MIB contents, an application can
change its QoS requirement to adapt its reservation to
available resources.

Experience with QoSockets shows that, even when the
reservation succeeds, the end-end effective QoS may drift
from the original negotiated Qo0S. There are several reasons
for this. (1) Not every intermediate equipment involved
support reservations. For example, it is common that a
workstation requesting an RSVP resdion is in fact
connected to a shared best-effort Ethernet hub and the hub
connected to an RSVP router. (2) Not all applications
comply with their reservations. The application may
actually send more packets than the reservation it requested
and incur possibly large packet delays and losses. (3)
Equipment may fail. Applications have to see disruptions of
QoS and need to choose alternative routes.

[11. QoS APPLICATIONS AND TESTBEDS

This section introduces two multimedia applications: the
real-time video tool NetVideo [10] and the resource
management system DIRM [6]. Their core programs are
respectively NV and IIOPGW (IIOP GateWay, the resource
manager of DIRM), in which the socket application program
interface (API) has been replaced for the QoSockets API.

To investigate issues facing provisioning protocols in
providing QoS, each applications uses a different transport
protocol. NetVideo uses UDP, and DIRM uses TCP.
Moreover, the authors developed the traffic generation
program TG (Traffic Generator) to generate the reference
traffic of TCP or UDP for the tests.

The testbeds of NetVideo and DIRM are similar in
network layout, but very different in how they are used.

A. Smilarities of the Two Testbeds 5) QoS Performance Monitoring
The NV and [IOPGW applations are monitored by the
The two testbeds are shown respectively in Figure 4 QoSockets instrumentation in real time. All of the
(NetVideo) and Figure 5 (DIRM). Each testbed is not performance parameters (including throughput, delay, jitter,
isolated butrather constructed to be a part of the Columbia and loss) are sampled at the receiver end of a flow, while the

University Computer Science Department network. throughput is sampled at the sender end. Throughput and
loss are computed from total numbers of messages sent and
1) Network Layout received, which are sampled and reset every 0.5 second. The

Each testbed consists of two local sub-networks: delay and jitter are sampled per message transmitted.
128.59.10.0/24 (Subnet 10) and 128.59.11.0/24 (Subnet 11).
Two routers are connected using a serial line (using another B. NetVideo Testbed
sub-network 192.168.1.0/24) which has a “bottleneck”

bandwidth (1.5M) between Subnets 10 and 11. NetVideo [10] is a multimedia tool for the Internet that
captures, transfers, and receives real-time video pictures
2) Hostsand Routers using UDP. The proposed version employs the QoSockets

Two hubs connect the hosts, and constituting twa@\PI and requests QoS for UDP transp&4.[DP).
separate sub-networks. The two workstation hosts are a Sun The two NV programs (sender and receiver) run on two
SPARC#ation 20 (s0) and a Sun SPAR@gion 5 (wl), workstationswsO andwsl (see fig 4).Wsl acts as a video
equipped with the Class Based Queuing (CBQ) patch teender, is equipped with a video camera, and captures real-
boost their Solaris 2.5.1 kernels with traffic control supporttime pictures at 30 frames per second, wh#8 acts as a
The Sun RSVP packag8olarisRSVP 0.5.0 [8] is also video receiver and displays those pictures received from
installed. The two PC hosts are used only in the DIRMvsl on the screen. Theain traffic flow of NetVideo, is
testbed: pcO, which is an IBM Thinkpad 760 (Pentium depicted in Figure 4 along the route marked &P
166MHz), andpcl, which is a DELL Dimension XPS R400 Traffic”.
(Pentium Il 400MHz). Both PCs are equipped with Linux Because the NetVideo sender can use bandwidth up to
2.0.36 and the Linux port of the RSVP r4.2a3 package [9]L024 kilobits per second (kbps), its transmitting rate can be
(Although these hosts are not the latest devices, they are fas
enough to manage the traffic and to congest the routers Subnet 11 . Subnet 10
connected by the low bandwidth serial line). NetVideo
Two Cisco 2514 routers are equipped with Cisco 10S TG
11.2 and provide RSVP support by Weighted Fair Queuing UDP Trafic

WrQ. — alaald D110 9100 hoanna

3) Traffic Flows Ethemet (10M) Serial Cannection (1.5M) Ethernet (10M)
arelg eiae“;gt:(;(Ft))it[l/Teeenr:,tr:vevﬁvxllgnsdusbr?;tfsu?oiblintwrsgrlicsglr?;N S{agtger than 30 frames/s (each frame is roughly 1280 bytes).
main traffic flow is generated by the pair of NV o IOPGW In“this test, it sends up to 80 frames/s when its bandwidth is

programs while theeferencetraffic flow is generated by the set 10 640 kbpSI.:igure 4: NetVideo testbed
pair of TG programs. '

The main traffic flow may be reserved (with QoS) or The two TGs run on the same hosts as the NV sender

unr_eserved (without Q.OS) ar_ld use UDP or TCP ”a_”spo%d receiver, and create a Ub#Perence traffic flow in the
while thereference traffic flow is always unreserved (either same direction as theain traffic flow. The TG sender

UDP or TCP). sends a 1024-byte message at an approximate rate of
530kbps, but theeceiving rate of the TG receiver may vary
4) Test Cases nder different traffic condition.

A typical test case of an experiment is composed of: (1
reserved and/or unreserveshin traffic flows; (2) normal, 1) QoSRequirements
heavy, or overloaded traffic condition; (3) single or multiple .
flows; and (4) bi-directional TCP or unidirectional UDP, S reduirements _

. . - L Rates: 60~80 frames/s Delay: 0~100 ms

(Table 1 in next section lists all the test combinations.) Jitter: <50 ms Loss <5%

The Control-Load (CL) service of Intserv is used t0 \ax framelength: 1280 Byte Recovery time: 5000 ms
provide applications with QoS (resource reservation)y apped QoSockets parameters
Otherwise, applications tested without QoS provisioning use Throughput
the Best-Effort (BE) service. min_rate= 60 max_rate=80 peak_rate=100 size=1280

Delay

min_delay=0 max_deday=100 int_deay=50
Reliability

rec_time=5000 loss=5 permt=False
Coerced flags

All coerced flags are set to TRUE.
2) Traffic Profiles

NV
Protocol: UDP Network Service: CL or BE
Rate (kbps): 614.4 Peak (kbps): 1024
M essage size (B): 1280
TG
Protocol: UDP Network Service: BE

Rate (kbps): 540 Message size (B): 1024

C. DIRM Testbed

DIRM [6] develops a high-level API that allows stream-
based (socket) and object-based (CORBA [4]) applications
to acquire QoS. Per application request, DIRM allocates and
manages network resources (e.g., bandwidth) dynamically
using the 1HIOPGW resource manager. IIOPGW uses the
QoSockets over TCP (R-TCP) to request the resource
allocation for its stream traffic.

Figure5isatypical scenario of DIRM, where Slideshow
is a client-server sample Java application using CORBA.
The Sideshow server, a CORBA object service
implementation on pcl, manages a repository of images.
The Slideshow client, a CORBA client application on pcO,
requests the images through its ORB (Object Request
Broker) and then displays them on the screen. Two I1OPGW
programs on wsO and wsl run as IIOP gateways and
establish a “bridge” between the ORBspod andpcl. The

bridge provides QoS guarantee to the traffic betweeq s

Slideshow server and client.

Submet 11 Submet 10
Slideshow Server Slideshiow Client
IOPGW
pe ws 1 16 ‘ wa 0 ‘ ‘ el ‘

T E T T T

TCR Tiafid | | TCP Trafic - | TCP Tsfic
858110 1926840 12859100

Router >—+— Router)

Serial Connection {1.54)

Ethernet (10M) Ethermet (10M)

Figure 5: DIRM testbed

When starting, thecO clientmakes an object request for

main traffic flow between two IIOPGWs is thus protected in
the center of the path transferring images fpmh (the data
sender) tgcO (the data receiver). The whole path is labeled
with “TCP Traffic” in Fig. 5 and passes two-way traffic.

Two TG programs also run awsl andws0, and create a
competing TCP stream along the same route asnéne
traffic flow. This is thereference traffic flow, without
reservation.

One thing to be mentioned here is that HIOPGW
transmits a whole image each time, from 18 to 58 kilobytes
(KB), and resulting in big bursting rates for tmain traffic
flow. Its message size is consequently much bigger than that
of NV (1280 bytes) and TG (1024 bytes).

1) QoSRequirements
User requirements
Slides: 1~3images/'s Delay: 100~500 ms
Jitter: <250 ms Loss: 0
M ax message size: 60000 bytes Recovery time: 5000 ms

Mapped QoS parameters
Throughput

min_rate= 1 max_rate=1 peak_rate=3 size= 60KB
Delay

min_delay=100 max_delay=500 int_dday=250
Reliability

rec_time=5000 loss=0 permt=False
Coerced flags

All coerced flags are set to TRUE.

2) Traffic Profiles

I1OPGW
Protocol: TCP Network Service: CL or BE
Rate (kbps): 480 Peak (kbps): 1440
M essage size (B): 60000

Protocol: TCP
Rate (kbps): 540

Network Service: BE
Messagesize (B): 1024

IV. RESULTSAND ANALYSIS

The test performance is monitored in real-time inside
applications, using the QoSockets MIB management of NV
and IIOPGW and the TG monitoring module. The main
parameters studied atbroughput, delay, jitter, andloss.
Throughput andloss are computed over time (t), adday
andjitter are computed per message (m). These measures
are defined in Equations (2)-(5).

e Throughput
T =2P (1) /% &)

the image service to its local ORB, which forwards the Where Tis the throughput (bits/s or bps) during ttre
request to thevsD (local) IIOPGW atws0. WSO processes sampling interval,YP(t) is the total bits of all received
and transfers it to thesl (remote) IOPGWWSL processes messages within thigh interval, and;tis the time duration
and transfers it to thgcl server. Pcl processes this request of theith interval.
and then requested imagepeD along the reserve path of « | gss
the client request. C(t) = * (1-SR.

The IIOPGWs atws0 and wsl make two bandwidth L (0 =1007 (12RO 725 () ®)
reservations for the IIOP connections between them. The

Where L; is the loss rate (%) during theith interval, and ~ unreserved main UDP flow generated by NV (without
SRi(t) and YS(t) are respectively the total numbers of Qo0S),B2a is the reserved one (with QoS), while b&hb

received and sent messages within theith interval. and B2b are the reference UDP flows generated by TG
* Delay (without Qo0S).
Di(m) = r;(m)- s(m) 4 The measurements of the two experiments are presented

Where D; is the delay (millisecond) of the ith message in this section, followed by analysis and discussions. The
arived, and r; and § are the arrival and sending timestamps ~ figures in this section depict the average experimental data

of theith message. sampled by NV, IOPGW and TG. In the throughput figures
o Jitter (Figures 6 and 9), the light gray column represents an
J(m) = |Di(m) — D.4(m)|, whilei>0 (5) average value of the flow sender whilst the dark gray

Where Jis the jitter (absolute value in millisecond) of column represents the one of the flow receiver. Two
the ith message, Dand D, are the delays of two columnsdrawn together, one light and the other dark, reflect

consecutive messages computed from Equation (4). the throughput rate difference of a flow in one test. In other

figures (of loss, delay and jitter), only dark columns are
Each testbed executes three experiments with differefirawn (from the measurements at the receivers).

traffic conditions, and is also subject to the background

traffic within the departmental network. (ANormal, A. NetVideo

involving a single flow of NV, IOPGW or TG, with total In this experiment (for NV and TG) at least 100

traffic close to 50% of the bottleneck bandwidth (1.5Mbps)samples of throughput and loss are computed, while

(B) Heawy, involving two flows: one NV or IIOPGW and 2000-4000 samples of delay and jitter (per message) are

one TG, with total traffic close to 80% of the bottleneck. (C)computed (varying for each test).

Overloaded, involving three flows: one NV or IIOPGW and

two TG, with total traffic beyond the bottleneck. 1) Throughput
Figure 6 shows the average throughput rates (sending
Test| NetVideo(NV) | DIRM(I1OPGW) and receiving) for all tested flows. Looking at these rate
A. One-flow: Normal columns, the following characteristics about throughput are
Al [NV w/o QoS: UDP IOPGW w/o QoS: TCP concluded.
A2 [NV w/ QoS: R-UDP IIOPGW w/ QoS: R-TCP * Forreserved NV flows (A2, B2a and C2a), the sending

and receiving rates match. For unreserved flows of both
NV (Al, Bla and Cla) and TG, their rates do not match
and do show considerable disparity particularly under

A3 |TG:UDP TG: TCP
B. Two-flow: Heavy

Bl |NVw/o QoS and TG IIOPGW w/o QoS and TG overloaded traffic.

Bla [NV w/oQoS: UDP IIOPGW w/o QoS: TCP » For NV flows, the rates of reserved flows (A2 and B2a)
Blb |TG:UDP TG: TCP under normal and heavy traffic conditions are a bit less
B2 |NVw/QoSand TG IIOPGW w/ QoS and TG than those of unreserved flows (A1 and Bla), due to a
B2a NV w/ QoS: R-UDP lIOPGW w/ QoS:R-TCP tiny overhead by the Solaris traffic-control kernel
B2b |TG:UDP TG: TCP scheduling reserved flows. As expected, under
C Three-flow- Overloaded overloaded traffic condition, the receiving rate of

reserved flow (C2a, 520kbps) is twice that of the

C1 NV w/o QoS and 2TG |IIOPGW w/o QoS and 2TG
unreserved one (Cla, 250kbps).

giz :‘; \f_/zggs' uoP :pr\;vcvgo QoS TCP » As the traffic condition varies from normal (A), heavy

' ' (B) and overloaded (C), reserved NV flows have steady
Clc |TG 2 UDP TG 2:TCcP throughput rates close to 530kbps, whereas unreserved
C2 |NVw/QoSand2TG IIOPGW w/ QoS and 2 TG NV and TG flows reduce their receiving rates from 570
C2a |NV w/QoS: R-UDP IIOPGW w/ QoS:R-TCP (A1) to 250 kbps (C1a).
C2b |TG 1: UDP TG 1: TCP * Under the overloaded traffic condition, the reserved
C2c |TG 2:uDP TG 2: TCP C2a flow has similar sending and receiving rates

(520kbps), while the unreserved Cla and TG flows
(C1b and Clc, C2b and C2c) do experience significant
disparity between sending and receiving rates.
Moreover, TG flows C2b and C2c become worse and
even experience -200kbps disparity when compared to
flows C1b and Clc, which experience only -120kbps
disparity.

Table 1 Test cases of NetVideo and IIOPGW experiments

For each traffic condition, each experiment performs 2—
3 tests, as listed in Table 1. For example, two t&itand
B2, studyheavy traffic condition. BothB1 andB2 have two
flows (e.g., Bla and Blb). For NetVideo, Bla is the

NetVideo Throughputs

2
13
3

Rate (kbps)
N © s @
5 8 8 g
8 8 8 8

»—\
1
8

AL A2
NV w/o QoS NV W QoS 6

(A)

Single flow tests (normal), each column group (gray and dark)
represents the sending and receiving rates of one tested flow.

Netvideo Throughputs

500 +—f

400 ——

300 +—

Rate (kbps)

200 +—

Bla Blb B2a B2b
NV wo QoS TG NV w QoS TG

(B) Two-flow tests (heavy), the left 2 column groups represent one NV
and one TG flow rates when NV istested without QoS whilst the

right 2 groups represent their rates when NV iswith QoS.

O Sending

Netvideo Throughputs

500 +—| j “]

400 +—1

bps)

= 300 +—

Rate

200 1—

100 +—

o4

cib

cla cic cab cac
NV wo QoS TG1 TG 2

c2a
NV w QoS TG1 76 2

©

Three-flow tests (overloaded), the | eft 3 column groups represent one
NV and two TG flow rates when NV istested without QoS whilst the
right 3 groups represent their rates when NV iswith QoS

Figure 6: Throughput rates of NetVideo flows

2) Loss
Message loss is very dependent on the throughput, and
increases as the gap between sending and receiving rates of

a flow increases. Figure 7 shows the average loss rates for

all tested flows, as sampled at the receiving ends.

e Under normal and heavy traffic conditions, both
reserved and unreserved flows (except A1) do not lose
messages.

e Under the overloaded traffic condition, the reserved
C2aflow has zero loss, while the unreserved Cla gets a
big loss rate (47%) and TG flows have loss rates 25%
(C1b and C1c) and 40% (C2b and C2c).

NetVideo Loss

(%)

A1 A2 3 Bla B1b B2a B2p cla o cie ca o cx
ests

Figure 7: Message loss rates of NetVideo

3) Delay

Figure 8 shows the average delay values for al flows, as

sampled per message at thereceiving ends. From this figure,
one concludes the following.

4)

NetVideo Delay
800

700

@
=1
s

@
=3
S

Time(ms)
N
3
8

w
=3
S

N
=3
s

=
1=
s

o

AL A2 A3 Bla Bl B2a Cla Cilb Clc C2a C2b C2c

B2b
Tests

Figure 8: Message delays of NetVideo

As the traffic condition varies from normal (A) to
heavy (B) and overloaded (C), reserved NV flows have
steady delays (<30ms), whereas unreserved NV and TG
flows increase sharply their delays.

Under the overloaded traffic condition, the reserved

C2a has still a low delay (25ms), but the unreserved
Claand TG (C1b and Clc, C2b and C2c) flows have
delays 10-30 times higher. TG flows C2b and C2c have
delays up to 720 ms, larger than flows C1lb and Clc do
(600ms).

Jitter
Figure 9 shows the average jitter values for all tested

flows, as computed from message delays at the receiving
ends. Similar to delay, one concludes the following about
jitter.

As the traffic condition varies from normal (A) to
heavy (B) and overloaded (C), reserved NV flows have
bound jitter (<10ms), whereas unreserved NV and TG
flows increase largely their jitter (e.g., Cla and Clc).
Under the overloaded traffic condition, similar to the
delay, the reserved C2a has jitter smaller than the
unreserved Cla has. Moreover, different from what
happens for the delay, TG flows (C2b, C2c) have also

lower jitter for the reserved NV (C2a), when compared
to the flows Clb and Clc. The reserved flow (C2a) HoPeW Througputs
jitter (5ms) is much smaller than that of the unreserved
Cla(115ms), indicating that traffic control for the main T
traffic may help in jitter reduction even for the a0l —]
reference traffic.

kbps)

Rate

NetVideo Jitter

200 ——

AL A2 A3
HHOPGW wlo QoS HOPGW w/ QoS G

(A) Single flow tests (normal), each column group (gray and dark)
represents the sending and receiving rates of one tested flow.

o Sending ‘

IIOPGW Throughputs m Receiving

AL A2 A3 Bla Blb B2a B2b Cla Clb Clc C2a C2b C2 500

Figure 9: Message jitters of NetVideo g

B. DIRM

DIRM tests are similar to NetVideo. At least 200
samples of throughput and loss are computed for [1OPGW rorou™h ous o rorow Sons 5
and TG whlle_ 1000-10000 samples are gompute_d for del Twio-flow tests (heavy), the left 2 columin groups represent one
and jitter. It is noted that no message is lost in all testS’ |i0pPGW and one TG flow rates when 11OPGW is without QoS whilst
because all flows here are TCP-based. theright 2 groupsrepresent their rates when [HOPGW iswith QoS.

Blb B2b

O Sending

1) Throughput foPew Throuanputs | aremny
The average throughput rates of DIRM tested flows are
shown in Figure 10, and each flow has similar sending and | **
receiving rates due to TCP control.
* For the reserved IIOPGW flows (A2, B2a and C2a), the
sending and receiving ratematch. For unreserved
IIOPGW (Al, Bla and Cla) and TG flows, their rates
do not match completely without QoS provisioning.
* Under normal traffic condition, there is no obvious
difference of throughput rate between the reserved (A2) o
and unreserved (A1) IIOPGW flows. But, under heavy JoPWwagos 7ot re? orcwwaes et o
and overloaded traffic conditions, the reserved B2a angt) Three-flow tests (overloaded), the left 3 column groups represent one
C2a flows have rates higher (20%) than those of the IIOPGW and two TG flow rate‘SWhenIIOPGWiSWithOut_QOSWhiISt
unreserved Bla and C1a. therlght?,groupsrepremt their rates when [IOPGW iswith QoS.
¢ As the traffic condition varies from normal (A) to Figure 10: Throughput rates of DIRM flows
heavy (B) and overloaded (C), all of reserved I1IOPGW
unreserved IIOPGW and TG flows reduce somewhaf) D&
their throughput rates. Figure 11 shows the average delay values sampled from

Here one notes that the throughput decreases as tﬁléteSted flows n the DIRM expef'me”‘-
traffic condition varies from normal to heavy and’ As the ftraffic condition varies from normal (A) to
overloaded. It is natural that, because of no reservation, TG h€avy (B) and overloaded (C), reserved IIOPGW,
flows reduce their throughputs as the network trafic ~ unreserved IIOPGW, and TG flows increase their
increases. delays. _ N

But, why do the reserved IOPGW flows (B2a and C2a} Under heavy and overloaded traffic conditions, the

have their throughput reduced as well? The reason is a bit reserved lOPGW (C2a) flow has after delay than the
complicated, and deferred until the next section unreserved IIOPGW (Cla). The TG flows have similar

“Discussion”. delays (B1b vs. B2b, C1b vs. C2b and Clc vs. C2c).

300

Rate (kbps)

100

IIOPGW Delay

Time

AL A2 A3 Bla Bl B2a B2 Cla Clb Clc Cza C2b C2c
Tests

Figure 11: Message delays of DIRM

It is reasonable that both unreserved 11OPGW and TG
increase their delays, as the traffic condition becomes heavy
or overloaded. Why do the reserved 110PGW flows (B2a
and C2a) have big delays? The reason is that the average
size of IOPGW messages is 38 KB, much bigger than the
TG message size of 1 KB. One can verify this statement by
noting that, under norma condition, the delays of both
unreserved (A1) and reserved (A2) 1IOPGW flows are far
bigger than that of the TG flow (A3). With areservation the
C2aflow (IlOPGW) hasa smaller delay than TG flows C2b
and C2c as expected. Also as expected, TG flows increase
sharply their delays from B2b to C2b and C2c.

IIOPGW Jitter

AL A2 A3 Bla Blb B2a B2b Cla Clb Clc cza c2b c2c
Tests

Figure 12: Message jitters of DIRM

3) Jitter
Figure 12 shows the average jitter values for all tested

flows.

» Asthe traffic condition varies from normal (A), heavy
(B) to overloaded (C), reserved 110OPGW, unreserved
[TOPGW, and TG flows increase their jitter.

* Under heavy and overloaded traffic conditions, the
reserved C2a has smaller jitter than the unreserved Cla
But, unreserved TG flows has similar and small jitter.

Both reserved and unreserved IIOPGW flows have
bigger jitter than TG flows. While TG flow has a fixed
message size (1 KB), an IIOPGW flow message size is not
only bigger (38 KB at average) but also varies from 18 to
58 KB. As a conseguence, the transmitting time of an
[TOPGW message is variable and longer than TG, resulting

in alarger jitter. Thejitter under normal load shows this fact
because both unreserved (A1) and reserved (A2) 11OPGW
flows have much bigger jitter than TG (A3).

C. Discussions

1) NetVideo

The NetVideo experiments show that the reserved NV
flows have obtained their requested QoS. Even when the
traffic condition shifts from normal to overloaded, the
reserved flows behave steady throughput, with low delay
and jitter, and without messageloss. In contrast, the receiver
of the unreserved NV flow Cla receives only 50% of the
sending rate, resulting in 47% message | 0ss.

2) DIRM

The DIRM experiments show a different set of results.
The Intserv reservations improve but do not guarantee the
[TOPGW performances. All traffic flows (reserved or
unreserved [IOPGW and TG) do not experience any
message loss, but their TCP segments may be internally
dropped (and re-transmitted). The drops are used to adjust
the congestion window to reduce the flow throughput as the
traffic load increases.

It is very important to notice, however, that a reserved
DIRM/IIOPGW flow experiences higher throughput and
lower delay and jitter than an unreserved flow, as observed
previoudly.

DIRM has severa aspects that contribute to its worse
QoS performance. (1) DIRM generates bi-directional TCP
traffic whereas NetVideo has only unidirectional UDP. (2)
DIRM/IIOPGW transmits large and variable-size messages
(from 18 to 58 KB) (may cause big burst rate and heavy IP
packet fragmentation), whereas NetVideo transmits similar-
Size messages (roughly 1280 bytes). (3) DIRM reservations
cover only the main traffic flow portion and not the entire
traffic route, while NetVideo reservations are all end-end.

Finaly, DIRM is a bit more complex than NetVideo.
DIRM integrates a group of programs running on different
platforms. IIOPGW and TG (C/C++) programs on Solaris,
and Slideshow (Java) programs on Linux, while NetVideo
has NV and TG (C/C++) on Solaris.

3) TCP, UDP and QoSProvisioning

There are important reasons why TCP and UDP
protocols affect the QoS of their flows differently. UDP
creates a unidirectiona data flow, while TCP creates a bi-
directional flow, one direction for data (originated from the
sender) and the other for ACKs (originated from the
receiver). In fact, the TCP slow-start and congestion
avoidance mechanism [15-17] at the sender end monitors
ACK packets for traffic congestion control, and use this
information to decide the data transmission rate.

Current QoS provisioning services, such as Diffserv and
Intserv/iRSVP, protect unidirectional streams. That is the

main reason why UDP applications like NetVideo get better

QoS. For a TCP application, this one-way resource

provisioning guarantees only the data packets, while the

ACKs are not guaranteed and thus may be delayed or even

lost.

Once ACKs do not arrive in time, the sender slows or
stops transmitting data packets, and even restarts the slow-
start mechanism if delays are larger than the timeout. The
net result is the reduction of the TCP throughput, as
observed in the IOPGW flow.

V. CONCLUSIONS

This paper describes two sets of experiments in which
two different applications have been extended to support
QoS using QoSockets and tested in a read network
environment. Their performances provide us an indght of
current Internet QoS behavior and challenges.

* Both UDP and TCP applications benefit from QoS
(e.g., resource reservations) and experience significant
improvement in their performances. Non-QoS flows
may get better performance during light traffic, because
there are no traffic control overheads, but suffer much
worse behavior under heavy or overloaded traffic.

* QoSocketsis able to map the generic QoS requirements
of applications, very effectively, onto specific QoS
provisioning mechanismsin a manner transparent to the
applications. In addition, QoSockets generates QoS-
monitoring instrumentation of real-time network
performances, which is very valuable for QoS
assurance, adaptation and management.

* TCP applications demanding QoS need more attention
of both end users and QoS provisioning mechanisms,
because these mechanisms do not guarantee bi-
directional traffic flows. The ACK dream needs
guarantee as the data stream does, otherwise, in case of
ACK deay or loss, the application QoS degrades.

* The DIRM experiment shows that the QoS of an
application is dependent not only on a particular service
but also on its own architecture. If the application
creates bi-directiona traffic flows, transmits big size
messages, or includes complex software and hardware
components, the interactions with the QoS provisioning
mechanics have to be carefully designed. Otherwise,
they may impact the overall QoS performance.

Intserv and Diffserv are presently developed as central
QoS provisioning services in current networks. In order for
these mechanisms to become available for network
applications, it is necessary to create appropriate
middleware that can bridge the needs of applications with
network QoS services. QoSockets provides this function
by keeping processing overheads to a minimum (under 1%)
and enabling simple incorporation of access to QoS delivery
within applications, through minimal extensons of common
socket API.

10

ACKNOWLEDGEMENTS

The authors would like to thank Frank Bronzo at
GTE/BBN Technologies for his contribution in the 1OPGW
impl ementation.

REFERENCES

[1]
(2]

Florissi, P., “QUAL: Quality Assurance Language”, Ph.D.

Thesis, Columbia University, 1996

Zhang, L., Berson, S., Herzog, S. and Jamin, S., “Resource

ReSerVation Protocol (RSVP) Version 1 Function

Specification”, Internet RFC-2205, 1997

Braden, R., Clark, D. and Shenker, S., “Integrated Services in

the Internet Architecture: Overview”, Internet RFC 1633,

June 1994

Object Management Group, “The Common Object Request

Broker: Architecture and Specification”, Rev. 2.2, Feb. 1998

ATM Forum, “ATM User-Network Interface Specification”,

Version 3.1, 1994

Zinky, J., Bakken, D. and Schantz R., “Architectural Support

for Quality of Service for CORBA Objects”, Theory and

Practice of Object Systems, January 1997.

Blake, S., Black D., Carlson, M. Davies, E., Wang, Z. and

Weiss, W., “An Architecture for Differentiated Services”,

Internet RFC-2475, Dec. 1998

Sun, Solaris RSVP/CBQ, ftp://playground.sun.com

/pub/rsvp/SolarisRSVP.0.5.0.tar.Z, Mar. 1998

Wang, P.Y,, Linux Port Of RSVP

http://www.cs.columbia.edu/~yhwang/ftp/qos/rsvp,

1998

[10] Xerox Corporation, NetVideo, Version 3.3, 1994

[11] Demers,A., Keshav, S. and Shenker, S., “Analysis and

simulation of a fair queuing algorithm”, Proc. Of ACM

SIGCOMM, Austin, Texas, September 1989

Floyd, S. and Jacobson, V., “Link-sharing and Resource

Management Models for Packet Networks”, Transaction on

Networking, V.3, N.4, August 1995

[13] SNMPv2 Working Group, “Protocol Operations for Versions
2 of the Simple Network Management Protocol (SNMPv2)”,
Internet RFC-1905, January 1990

[14] SNMPv2 Working Group, “Management Information Base
for Versions 2 of the Simple Network Management Protocol
(SNMPV2)”, Internet RFC-1907, January 1990

[15] Stevens, W., “TCP slow start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms”, Internet RFC
2001, January 1997

[16] Nagle, John, “Congestion Control in IP/TCP Internetworks”,
Internet RFC 896, Januray 1984

[17] Allman, M., Paxson, V. and Stevens, W., “TCP Congestion

Control’, Internet RFC 2581, April 1999

(3]

[4]
5]
[6]

[7]

(8]

[9] R4.2a3,

Aug.

[12]

