









Provisioning Differentiated Services using Programming Interfaces for Networks
Masilamany Raguparan, Emarson Victoria, Jit Biswas

Kent Ridge Digital Labs, Singapore.
Wang Weiguo
, Alcatel Singapore.
1 Abstract

IETF Differentiated Service (DiffServ) effort aims to create a scaleable framework for realizing traffic differentiation in IP networks.  At present, the framework has laid the ground for architecting routers that provide basic functionalities to support traffic differentiation.  How these DiffServ-enabled routers can be put together to form a service network is not mandated by the framework. The open signaling approach, originally proposed for ATM networks defines programming interfaces for switches and routers. End to end services can be created by programming the routers via the standard interfaces using simple signaling mechanisms. This leads to flexible service creation and co-operative behavior of multiple routers in a network.  In this paper, we present a behavioral abstraction called virtual link for IP packet forwarding engines. The virtual link abstraction and open signaling are used for provisioning Differentiated Services. The work described herein has been submitted in part as a contribution to the IEEE P1520 working group for standardizing programming interfaces for networks. Implementation experience of the proposed interfaces is presented.
Keywords: Differentiated Services, open signaling, resource provisioning, resource control, Internet routers, traffic engineering, programmable interfaces for networks
2 Introduction

3 
Current resource provisioning frameworks in the Internet, such as Common Open Policy Service (COPS) [1], Resource reSerVation Protocol (RSVP) [2] or Simple Network Management Protocol (SNMP) [3]have no unified resource model of IP routers. Therefore, it is difficult to create new network services across networks of different routers using these service specific signaling protocols. Moreover, the implementation of the above protocols is woven into the network operating systems. In contrast, IEEE P1520 framework [4, 5] provides a uniform abstraction of the router resources and standard programming interfaces for manipulating the resources. 

Open signaling provides a new architectural foundation for signaling and control of telecommunication networks [6]. It is based on the consensus of a set of open programming interfaces to be used for service creation, control and resource allocation. While conceptualized and engineered initially for ATM networks, the paradigm of open signaling is becoming increasingly attractive to the field of IP routing and forwarding [7]. 

The IEEE P1520 standardization project [5] is defining standard programming interfaces for networks. The objective is to provide Application Programming Interfaces (APIs) for network elements to be programmable in a distributed object oriented fashion, so as to permit end-to-end functions such as call set up and management, to be handled by third parties with limited and controlled access to the state of network elements.

The main difference between the Internet community’s approach and the P1520 approach is that the latter attempts to standardize programming interfaces rather than specific algorithms or protocol semantics. It is the objective of P1520 to specify a set of minimal specifications of interfaces using an Interface Definition Language (IDL), and thereby capture the basic programmability requirements of routers from the perspective of network generic services and algorithms. The P1520 guiding principle is to dissociate the maintenance of local device state information from the algorithms that manipulate these states in a network for achieving global functions, such as “call setup”. The same guiding principle has been applied in determining appropriate programming interfaces for IP routers in the P1520 IP sub working group.

4 The P1520 Reference Model for IP Routers and Switches

Figure 1Figure  depicts the P1520 reference model as applied to IP routers and switches. Programming interfaces are available at U, L+ and L- levels. 

The U interface is a programming interface that exposes functionality of the network generic services for the creation of value added services. This interface is based on a global view of distributed network resources. Section 7 provides an illustration of how service requests at U level use appropriate network generic services, which in turn trigger appropriate requests at L level.

The L+ and L- interfaces provide local programming interfaces from different perspectives. The L+ interface has the perspective of service specificity. Thus it may present the same set of router resources as different programming interfaces for different services, such as DiffServ, VPN services, etc. The L- interface presents a generic interface to a router's resources such as classifiers, buffer managers and schedulers. While L+ interfaces could be added from time to time, based upon what service abstractions are needed, L- interfaces would conceivably be fixed for a given type of router. Vendors may choose to expose interfaces at both L+ and L- levels or only at the L+ level. 

One such proposal [8] to expose router resources proposes L+ level interfaces using the concept of Virtual Link (VL) as the means of abstracting the forwarding behavior of routers that support DiffServ. 

The Connection Control and Management (CCM) interface shown in Figure 1Figure  was introduced as a programming abstraction by the ATM sub working group of P1520. It facilitates the underlying protocol, which is a master/slave protocol that separates the hardware specifics from software abstractions. In the field of IP there is no consensus as to what should be the preferred protocol or programming interface at this level. 
5 
6 
7 Introduction to Differentiated Services 
The Differentiated Services framework (DiffServ) is a scalable service-provisioning framework that is being developed by the IETF. DiffServ operations can be classified into traffic separation operations and differentiated forwarding operations. Traffic separation means separating incoming traffic into different classes and tagging the packets belonging to a particular class with a particular DiffServ code point (DSCP). Packets marked with different DSCPs are given different forwarding treatment within a particular router. The observable forwarding behavior of a router on a stream of IP packets with a particular DSCP is called Per Hop Behavior (PHB) [9]. The DiffServ working group has defined Expedited Forwarding (EF) and Assured Forwarding (AF) PHBs. There could also be non-standard PHBs used to provide custom services. Concatenating similar PHBs along a path delivers an end to end service. 


In the DiffServ model, both customer and provider of the service have a common understanding of the offered service by means of a Service Level Specification (SLS). Part of the SLS spells out the traffic profile adhered, called the Traffic Conditioning Specification (TCS).

The ingress router classifies customer traffic either using Behavior Aggregate (BA) filters, based only on DSCP, or Multi Field (MF) filters, based on a number of IP header fields. Classified packets are metered and marked or remarked with appropriate DSCP values according to the TCS. Non conforming traffic may be shaped or dropped. Shaping or dropping operations change the temporal characteristics of incoming traffic to conform to the TCS. The capacity of the provider network should be sufficient and managed so that the conditioned incoming traffic with different constraints can be transported successfully.

In order to establish a service between an ingress and an egress router of the provider network, it is necessary to configure the traffic separation components and the differentiated forwarding components. The signaling mechanisms used for configuration are discussed in the next section. 

8 Signaling DiffServ routers

The creation of a service across a DiffServ network may be performed in two stages. The first stage determines a route between the ingress and egress routers with a set of routers that are capable of offering a particular PHB with the requested traffic profile.  The second stage configures the forwarding table and the forwarding engine of all the routers determined in the first stage. The forwarding table may be indexed by both destination prefix and the DSCP. The forwarding engine configuration includes configuration of packet classifier, traffic conditioner, packet scheduler and buffer manager. Therefore, creation of a service within a provider network requires configuration of traffic conditioning components at ingress routers, packet classifier, packet schedulers and buffer managers in all the routers and optional configuration of the traffic conditioners at the egress routers. 

DiffServ service creation requires knowledge of the following.

· Current and future state of the network in terms of configured traffic.
· Limitations of each of the routers (e.g. maximum high priority traffic that can be handled).
· Realization details of particular service on a particular router (e.g. Class Based Queuing (CBQ) and Random Early Discard (RED) parameters in order to realize AF11 PHB).

In order to provision dynamic services (e.g. negotiated traffic profiles, time of day based SLS) over large networks with features such as load balancing, one needs a flexible and powerful signaling infrastructure. Service requirements derived from an SLS have to be signaled to both edge and inner routers. 

A process known as “constraint based routing” determines the routers that will participate in packet forwarding, for a particular service. This routing process should return a set of routers that is likely to satisfy the service constraints. Balancing the network load could also be considered during the route computation. Note that a flexible signaling infrastructure enables, within practical limits, constraint based routing in large networks.
9 Router Abstractions

10 
Packet forwarding in routers refers to moving a packet from an input port to an output port. Selection of which output port to forward a given packet, from a set of possible output ports, is the routing problem and is not addressed in this document. While moving the packets from the input port to the output port, the DiffServ operations of traffic separation and differentiated forwarding are performed. A behavioral abstraction technique is used in identifying sufficient resource abstractions of differentiated forwarding components in a DiffServ capable router.
10.1 Introduction to virtual links 
10.2 


10.3 
The abstraction of packet scheduler and the buffer manager of an IP router may be thought of as multiple virtual links within the same physical link. The virtual links on a particular port are mutually dependent. In order to partition the available resources on a physical link the router should be able to quantify the resources and divide the link into multiple virtual links with different forwarding behavior. The characteristics of a virtual link can be mapped to a particular customer PHB. The virtual links of same PHB may be implemented as a single aggregate. Such an aggregated bit pipe should have bandwidth b = f(b1,  b2, ..bn) where bI is the bandwidth constraint of customer i. the function f being implementation specific. For example, the function f may be expressed as Q*( b1 +  b2,+ ..bn), where Q < 1 for statistical gained services, Q >= 1 for premium service
.
The creation of a new virtual link will require adequate residual bandwidth, buffer space and CPU capacity to forward packets and to control the virtual link. An individual virtual link and the relative precedence of the virtual links within the same physical link are controlled via simple virtual link control functions exposed as programming interfaces.
10.4 Virtual link Control Functions

In order to construct an end to end service it is sufficient that IP routers expose the virtual link interface. High-level control entities can program the routers via the virtual link interface and construct end to end services. Virtual link creation on a router is performed by means of a two-phase commit protocol.

Following are a minimal set of virtual link control methods that are necessary to construct end to end DiffServ services.

admit_vl() : Verifies the ability of the router to admit a new VL while meeting the existing VLs constraints. In addition to the traffic profile, a router may consider overall load on that router for VL admission decision. A soft resource reservation is made at this phase. The usage of this method follows :
vl_id admit_vl (interface, phb, traffic_profile)

Where vl_id is the virtual link identifier, unique within a router port. The parameter interface is the IP number or the alphabetical name of the port, phb is the DSCP value that corresponds to the service type and traffic_profile is a structure, which depicts the temporal characteristics of the traffic.
commit_vl() : Is used to confirm the resource reservation on a router. The soft reservation created using admit_vl is converted into a hard reservation. I.e. only at his phase the forwarding engine is re-programmed. The usage of this method follows :
status commit_vl (vl_id)

remove_vl () : Is used to remove virtual links and free up associated resources. The usage of this method follows :
status remove_vl (vl_id)

The above virtual link control functions are provided for minimal provisioning of router resource for DiffServ. The routers in a DiffServ domain have a common understanding of the same PHB and the mapping between a particular PHB and corresponding DSCP value need to be conveyed to the routers prior to the virtual link creation phase.
10.5 Example implementation of virtual links

Using the proposed virtual link abstraction, the resources of routers / switches in a network are reserved in a two-phase commit fashion. The first phase triggers the admission control functions and makes a soft booking of resources on routers so that the resources are not over committed during the time between the admit_vl() and commit_vl() calls. The implementation of the two-phase resource reservation system is explained in the following sections.

Phase I: Admission control and soft booking

The routers need to maintain the reserved resources for each of the admit_vl() requests from the controller(s). The resource states maintained, for example, would appear as in Table 1

.
Note that the computation of the CPU and memory required to support a virtual link request is platform dependent, and is managed by the routers’ operating systems. Moreover, the states maintained as shown in Table 1

 would be used to make local admission control decisions for future virtual link requests.

During the admission control computation it is necessary to consider the bandwidth availability on a particular link for a particular class of traffic, CPU load, memory usage, buffer usage and other constraints of the platform. The admission control algorithm may be proprietary to the platform. Upon admission a temporary entry in Table 2 Table 2 

, a soft state, is created. The admission control functions and the state entry are atomic operations.

The states created due to admit_vl(192.168.30.2, “EF_PHB”, {300, 128}) call are shown in Table 2 Table 

. The values for M3, B3 and C3 are determined by the router’s operating system and used for local admission control. The parameter x is a unique number within an interface or sub-interface so that the combination of interface id and x would uniquely identify the virtual link within the router. 

Phase II: Resource configuration in the router

The second step in configuring a service is to effect the resource requests in the routers. Upon receiving the commit_vl(192.168.30.2:x) query, the service control client in the router configures its  forwarding engine using the parameters specified in Table 1

 and Table 2 Table 2 

.

Referring to the P1520 reference model, the virtual link (L+) abstractions may be mapped to appropriate L- abstractions or directly to the hardware. An implementation of virtual links on a commercial router using the Command Line Interface (CLI) is explained in this section. 

The following configuration is intended for an DiffServ inner router that classifies and forwards packets based only on IP type of service (TOS) byte within an interface. Multiple virtual links of the same PHB are implemented as an aggregated bitpipe with cumulative bandwidth of individual virtual links. It is assumed that the mapping between the PHB for a particular service type and the corresponding DSCP value, for e.g. GOLD_TOS and SILVER_TOS, is propagated to the routers statically, or in slow time scales. 

A Cisco 7500 router, as an example platform, with a VIP2-50 module and operating system version IOS release 11.1(20)CC [10] installed is considered for this example implementation of virtual links. The set of commands shown in Figure 2Figure  affect the behavior of forwarding engine by configuring the Committed Access Rate (CAR) policy action and Cisco’s class based Weighted Fair Queue (WFQ).
Access group numbers A and B are randomly chosen between 100 and 199 or between 2000 and 2699. The chosen access group number for a particular service type must be unique within a router.
Packet burst size X and Y are derived from X = (24+128) * average_packet_size_GOLD and Y = 64 * avearage_packet_size_SILVER. Note that the simple addition of the burst size is to handle the worst case situation. While simple addition of burst sizes would allow misbehaving flows to take advantage of the other flows in the same class, flow based policing at the ingress routers is assumed to shape misbehaving flows. 

Weights of WFQ - WA and WB are the percentage of the link capacity for GOLD and SILVER services respectively. For e.g. WA  = (500 Kbps/45 Mbps) * 100 * 1.2 and WB = (1000 Kbps/45 Mbps) * 100. Note that the service provider has over-provisioned the GOLD bandwidth by 20% in order to reduce the delay for GOLD class traffic. 

For the buffer size, a simple sum of the derived buffer requirement may be replaced with the statistically computed buffer requirement for the flows of the same service class sharing the buffer.

The router’s response to the shown commands need to be processed and returned as the status to the service controller though commit_vl().

Alternate implementations

The implementation of the virtual link may look different on a different routing platform or on a different service deployment scenario. For example, EF virtual links may be implemented as separate bit pipes while virtual links of other PHBs are implemented as aggregated bit pipes. In this case it is necessary to signal both PHB and incoming interface during the admit_vl() phase. Another implementation may choose to use a different packet scheduling algorithm.
Note that the implementation of the same set of virtual links may vary from router to router depending on the features that are native to each router. The virtual link is used to realize a particular PHB, independent of a particular router’s implementation. 
Advantages of virtual link abstraction of forwarding engine and buffer manager include uniform programming interface across different implementations of packet schedulers and buffer management schemes. Moreover, virtual link abstraction hides the complexity of the schedulers and buffer managers from third party programmers.
11 End to end service creation using virtual links
12 
This section illustrates end to end service creation by means of P1520 interfaces that use the virtual link abstractions for DiffServ provisioning. Referring to  REF _Ref457114878 \h 
 \* MERGEFORMAT Figure 3


,  REF _Ref457213075  \* MERGEFORMAT the routers A, B, C and D are capable of exposing virtual link abstraction of packet schedulers and buffer managers by means of the functions admit_vl(), commit_vl() and remove_vl() as explained in section 6.

The Service Level Agreement (SLA) is a legal document that spells out the details of the service to be offered. The SLS and TCS (Figure 4


 shows the GUI for specifying the TCS) are the technical specifications that are part of the SLA. In this scenario, assume that there exists a static SLA and the service requests are signaled to the Service Manager (SM). The SM is responsible for provisioning the provider network in order to deliver the agreed services.

The SM requests the policy server in order to verify the compliance of the service request with the agreement (Figure 5Figure 5


 REF _Ref457287121 \h 
 \* MERGEFORMAT ). Upon being given access by the policy server, the SM issues a route resolution request to the route controller. The route controller returns a set of routers that are capable of handling the service request. Following the route resolution, the SM issues a provisioning requests to the differentiated services controller (DSC). Thereafter, the DSC takes control of the DiffServ network provisioning as explained in following section.





 Referring to Figure 1, the signaling messages from the DSC in terms of layer 3 forwarding engine behavior could be mapped to multiple layer 2 transport technologies such as IP over ATM or IP over SONET.
12.1 Flow of signaling messages

We demonstrate the flexibility of this model by walking through a simple example of service setup (Figure 6Figure 


) in the above context.  REF _Ref457114919 \h 
 \* MERGEFORMAT The CMS requests DSC (message 1) for a bit pipe between a pair of ingress and egress routers with a particular QoS. Assume that the route that was passed to the DSC along with the service request is Router A - Router B - Router C. As mentioned, admission control has been left to each router so that a confirmation for each request needs to be acknowledged by the routers. This makes the model more dynamic and enables the domain to be configured with different policies for different routers. This also allows the possibility of multiple services over the same physical infrastructure. The DSC queries each router in the path if the requested QoS could be guaranteed. This query is made with the admit_vl() call on each router (messages 2, 4 and 6). This function takes the parameters associated with QoS within DiffServ context. Routers then perform the local admission control functions based on their available resources and local policy. The results are then conveyed back to the Differentiated Service Controller. Successful acknowledgement (messages 3, 5 and 7) from the routers along the path confirms the availability of the capacity within the domain. The DSC then commits the service request at the routers using the commit_vl() call (messages 8, 9 & 10), so that each router can allocate necessary resources for providing the service. Then the Differentiated Service Controller signals the CMS about the success of the service creation process. 
It is observed from the example that request to and confirmation from these routers are independent of each other. Therefore, from the implementation perspective this task could be performed in parallel thereby improving the performance of the system. The key point here, is that the distributed algorithms that are implemented are not tied to the horizontal interfaces provided. Thus using these interfaces different algorithms could be devised as needed.

Concern at this point, is what would happen if one or more of the routers declined the request. This implies that the DSC needs to determine an alternate path and redo the entire process of request and confirmation. A range of innovative algorithms could be crafted and optimized depending on the performance and/or reliability requirements.

The virtual link is a very powerful concept. It provides a convenient vehicle by which services can be easily mapped onto router resources. For example, one of the currently hotly discussed topics in Internet is Virtual Private Network (VPN). In the simplest terms VPN is a single flow of network traffic from a site to another site (in most cases under same administrative control). VPNs are sought after mostly by corporations for either secure or faster transmission. In the case of faster transmission, the VPN traffic can be easily mapped to EF PHB. Thus creating a VPN service to satisfy fast transmission may be achieved by creating bi-directional bit pipes between the sites with appropriate traffic parameters. What needs to be iterated here is that using the concept of virtual link and the paradigm of open programmability, Internet services may be mapped with careful construction of parameters.

The framework demonstrated through our P1520-based DiffServ testbed is a very powerful programming environment that allows various network/sub-network wide end-to-end services to be created without having to standardize the “protocols”. Several specific application or service concepts can be readily realized over this platform. 
Firstly, Virtual Private Networks as elaborated earlier can be enabled with diversified features and characteristics that can be tailored to specific customer needs. For example, bandwidth provisioning can be fully automated and dynamic according to customer traffic patterns. 

Secondly, the framework can be used to provide protected tunnels for IPv6 traffic over IPv4 cloud. IPv6 comes with QoS differentiation and security features built-in. However, during the phase-in stage, tunneling through IPv4 will be needed. But, when tunneled through v4 networks, many high level service semantics will be lost if the underlying v4 networks perform only best effort forwarding. Using the demonstrated platform, we can easily create v6 tunnels that are mapped to flows/routes with desired forwarding behaviors. Finally, in the context of Voice Over IP, we can create special VPNs inter-connecting voice gateways to ensure desired behavior for voice traffic among the gateways across a P1520 enabled network. 

13 Conclusion

Virtual links have been implemented and demonstrated at the Telecom 99 trade show in Geneva [11], under the P1520 pavilion. After initial testing of the prototype implementation in a laboratory LAN environment, the testbed is now being tested in a WAN Intranet / Internet setting, across the Asia Pacific Advanced Network (APAN) between Singapore and Korea, in a joint study between KRDL Singapore and ETRI, a research institute at Korea. 
The virtual link abstraction of forwarding resources of an IP router is simple and powerful means of providing a uniform resource model. While hiding the implementation details of the router, the virtual link abstraction enables a flexible service creation platform. In the IETF differentiated services context, service provisioning requires a simple signaling framework. Through the implementation experience reported in this paper it was found that virtual link interfaces combined with IEEE P1520 framework are a good candidate for DiffServ provisioning for flexible and rapid creation of services across the Internet. 
[image: image2.wmf]
Figure 1. The P1520 Reference Model applied to the virtual link abstraction

Figure 22 Commands that effect the virtual link request on a Cisco 7500 router
[image: image3.wmf]Policy Server

CMS

L-Interface

U-Interface

DSC

IP Router

Frame Relay

Sonet

ATM



[image: image4.wmf]
Figure 33. DiffServ Domain with Programmable Routers

[image: image5.wmf]   SONET

Fig ?.  Supporting the same packet forwarding 

behaviour over multiple transports

ServiceAgent

   ATM

L Interface

PolicyServer

CMS

   IP router

Frame relay

U Interface


Figure 44. GUI for Customer Management Service

[image: image6.wmf]
Figure 55. Provisioning DiffServ Network

[image: image7.wmf]Policy Server

CMS

L-Interface

U-Interface

DSC

IP Router

Frame Relay

Sonet

ATM


Figure 66. Event Trace Diagram

VL Identifier
Booking State

(Soft/Hard)
PHB
Bandwidth

(kbps)
Average Burst Size

(packets)
Memory

(normalized)
Buffer

(x512 kb)
CPU (%)



Requested Resources
Derived Resources

192.168.30.2:2
Hard
EF_PHB
200
24
M1
B1
C1

192.168.30.2:10
Hard
AF11_PHB
1000
64
M2
B2
C2

Table 1 Resource states maintained in the router

VL Identifier
Booking State

(Soft/Hard)
PHB
Bandwidth

(kbps)
Average Burst Size

(packets)
Memory

(normalized)
Buffer

(x512 kb)
CPU (%)



Requested Resources
Derived Resources

192.168.30.2:x
Soft
EF_PHB
300
128
M3
B3
C3

Table 22 
State entry created by the admit_vl(192.168.30.2, “EF_PHB”, {300, 128}) call from the service controller to an IP router
References
[1] Jim Boyle, Ron Cohen, David Durham, Shai Herzog, Raju Rajan, Arun Sastry, “The COPS (Common Open Policy Service) Protocol” Internet-Draft draft-ietf-rap-cops-06.txt; also available at http://search.ietf.org/internet-drafts/draft-ietf-rap-cops-06.txt, February 1999.
[2] Herzog, S. "RSVP Extensions for Policy Control", Internet-Draft draft-ietf-rap-rsvp-ext-02.txt, Also available at http://search.ietf.org/internet-drafts/draft-ietf-rap-rsvp-ext-06.txt, Jan. 1999.
[3] Fred Baker, “Management Information Base for the Differentiated Services Architecture”, Internet-Draft draft-baker-DiffServ-mib-00.txt, Also available at http://search.ietf.org/internet-drafts/draft-baker-DiffServ-mib-00.txt, June 1999.
[4] Biswas J., Lazar, A. A., Huard J.-F., Lim, K., Mahjoub S., Pau L.-F., Suzuki, M., Torstensson S., Wang W. and Weinstein S., "The IEEE P1520 Standards Initiative for Programmable Network Interfaces", IEEE Communications Magazine, October 98 pages 64-70
[5] IEEE P1520 web page, http://www.ieee-pin.org
[6] Lazar A. A., "Programming Telecommunications Networks", IEEE Network Magazine,  September/October 1997, pages 8-18

[7] Denazis S., Mike K. Vicente .J. and Campbell A., "Designing Interfaces for Open Programmable Routers", Proceedings of the IWAN99, International Workshop on Active Networks, 30 June - 2 July 1999, Berlin

[8] Raguparan M., Biswas J., Weiguo W., “P1520-L interface requirements for a IP router that Supports differentiated services”, Proposal to IEEE P1520 standard group, http://www.ieee-pin.org/draft-ip-docs.html, May 1999.
[9] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An Architecture for Differentiated Services”, RFC 2475, December 1998.

[10] Cisco Systems, “Release Note for Cisco IOS Release 11.1 CC and Feature Modules”, http://www.cisco.com/univercd/cc/td/doc/product/software/ios111/cc111/index.htm
[11] "COMSOC's P1520 Standards Working Group Sponsors Pavilion at Telecom '99", IEEE Communications Magazine, Global Communications Newsletter (to appear, February 2000)
14 

14.1 

14.2 











14.3 








































































Router ADiffServDiffServ


Controller





� EMBED MS_ClipArt_Gallery  ���





� EMBED MS_ClipArt_Gallery  ���





11 success





10 commit_vl()





� EMBED Word.Picture.8  ���





9 commit_vl()





DiffServ Controller





8 commit_vl()





7 success





Route Controller





Policy Server





VPN Service Provider





5 success





3 success





ATM





6 admit_vl()





Sonet





4 admit_vl()





2 admit_vl()





Packet Scheduling Hardware





1 ServiceProvisioning()CreateService()





Differentiated


Services 


CController





Service RequesterService Manager 





� EMBED MS_ClipArt_Gallery  ���





� EMBED Word.Picture.8  ���





Network Operating System





Forwarding Table





CPU





Packet Buffer





Generic resource abstractions





Differentiated Services Controller





Policy Server





Route  Controller





Service oriented abstractions ( e.g. Virtual links)





Frame Relay





Router C





� EMBED MS_ClipArt_Gallery  ���





BE VL





� EMBED Word.Picture.8  ���





IP Router





� EMBED MS_ClipArt_Gallery  ���





AF12 VL





AF11 VL





Router D





Router A





Router B





Router C





� EMBED MS_ClipArt_Gallery  ���





U Interface





Olympic Service Provider (Gold,  Silver, Bronze)





Router B





L+ Interface





Service Manager





� EMBED Word.Picture.8  ���





Router A





Service Manager





Service Manager





EF VL





P2





P2





� EMBED MS_ClipArt_Gallery  ���





� EMBED MS_ClipArt_Gallery  ���





Router D





Router A





Router B





Router C





P1





� EMBED MS_ClipArt_Gallery  ���





� EMBED MS_ClipArt_Gallery  ���





P1





CBQ





P3





Port A





Example queuing arrangement for Port A. Both AF and BE queues are attached with RED buffer manager





Router ADiffServDiffServ


Controller





Router ACORBA BUS





Port B











Router A





Router B





Router C





Service RequesterCMS 





Differentiated


Services 


CController





1 ServiceProvisioning()CreateService()





2 admit_vl()





4 admit_vl()





6 admit_vl()





3 success





5 success





7 success





8 commit_vl()





9 commit_vl()





10 commit_vl()





11 success





L- Interface





U Interface





Data





L+ Interface





Internet Telephone Provider





Router ACORBA BUS





CCM ProtocolInterface





Router#confgiure terminal





Router#access-list A permit ip any any tos GOLD_TOS


Router#access-list B permit ip any any tos SILVER_TOS





Router#interface Hssi0/0/0


Router#ip address 192.168.30.2 255.255.255.0


Router#rate-limit output access-group A rate-limit 500000 X X conform-action transmit exceed-action drop


Router#rate-limit output access-group B rate-limit 1000000 Y Y conform-action transmit exceed-action drop





#end


!


#configure terminal


#access-list A permit tos GOLD_TOS


#access-list B permit tos SILVER_TOS


#end


!


#interface Hssi0/0/0


Router#fair-queue qos-group


Router#fair-queue qos-group A weight WA


Router#fair-queue qos-group A limit B1+B3


Router#fair-queue qos-group B weight WB


Router#fair-queue qos-group B limit B2





Router#end











� Authors may be contacted via e-mail at {ragu, victoria, biswas}@krdl.org.sg


� This work was carried out during Dr. Wang’s affiliation with Kent Ridge Digital Labs.eiguo is currently at Alcatel Singapore and may be  Dr. Wang may be contacted via e-mail at weiguo.wang@alcatel.com.sgwwang@alcatel.com


� Differentiated Services refers to Internet Engineering Task Force (IETF) differentiated services framework.





[�] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An Architecture for Differentiated Services”, RFC 2475, December 1998.


 


[�]Proposal to IEEE P1520 standard group, .  Proposal for L-Intterface





[�] Biswas J., Lazar, A. A., Huard J.-F., Lim, K., Mahjoub S., Pau L.-F., Suzuki, M., Torstensson S., Wang W. and Weinstein S., "The IEEE P1520 Standards Initiative for Programmable Network Interfaces", IEEE Communications Magazine, October 98 pages 64-70





[�] Lazar A. A., "Programming Telecommunications Networks", IEEE Network Magazine, September/October 1997, pages 8-18





[�] Denazis S., Mike K. Vicente .J. and Campbell A., "Designing Interfaces for Open Programmable Routers", Proceedings of the IWAN99, International Workshop on Active Networks, 30 June - 2 July 1999, Berlin





[�] IEEE P1520 web page, �HYPERLINK "http://www.ieee-pin.org/"��http://www.ieee-pin.org�  








[�] Jim Boyle, Ron Cohen, David Durham, Shai Herzog, Raju Rajan, Arun Sastry, “ Common Open Policy Service usage for differentiated services provisioning The COPS (Common Open Policy Service) Protocol” Internet-Draft draft-ietf-rap-cops-06.txt; also available at � HYPERLINK http://search.ietf.org/internet-drafts/draft-ietf-rap-cops-06.txt ��http://search.ietf.org/internet-drafts/draft-ietf-rap-cops-06.txt�, February 1999.





[�] Herzog, S. "RSVP Extensions for Policy Control", Internet-Draft draft-ietf-rap-rsvp-ext-02.txt, Also available at � HYPERLINK http://search.ietf.org/internet-drafts/draft-ietf-rap-rsvp-ext-06.txt ��http://search.ietf.org/internet-drafts/draft-ietf-rap-rsvp-ext-06.txt�, Jan. 1999. Resource Reservation protocol (RSVP) 








[�] Fred Baker, “Management Information Base for the Differentiated Services Architecture”, Internet-Draft draft-baker-DiffServ-mib-00.txt, Also available at � HYPERLINK http://search.ietf.org/internet-drafts/draft-baker-diffserv-mib-00.txt ��http://search.ietf.org/internet-drafts/draft-baker-DiffServ-mib-00.txt� , June 1999.


 [�] DS framework draft 





9
21

[image: image15.wmf][image: image16.wmf]   SONET

Fig ?.  Supporting the same packet forwarding 

behaviour over multiple transports

ServiceAgent

   ATM

L Interface

PolicyServer

CMS

   IP router

Frame relay

U Interface

[image: image17.png]TCS List

192.168.40.1 192,168.40.0 0x04 1000 EF DROP. ‘

source [19216800 ] Remove

Destination [lsz188300 ]

Dsce 0x02 ~ [owe |

Bandwidth (kbps) [1500

| TS aF1 ~
Action REDUCE_PRIORITY ~

[TCs |

il
et | Lo | cear |

Reso
Maki
router77 Accepted

New




[image: image18.wmf]Policy Server

CMS

L-Interface

U-Interface

DSC

IP Router

Frame Relay

Sonet

ATM

[image: image19.wmf]Policy Server

CMS

L-Interface

U-Interface

DSC

IP Router

Frame Relay

Sonet

ATM

[image: image20.jpg]TCS List

192.168.40.1 192,168.40.0 0x04 1000 EF DROP.

Source
Destination
pscp

Bandwidth (kbps)
PHE

Action

router77 Accepted

192.168.60.1

New

192.168.30.0

cancel

REDUCE_PRIORITY

Reset.




[image: image21.wmf]_993995109.doc


CMS







L-Interface







DSC







Policy Server







Sonet











Frame Relay







U-Interface







IP Router















ATM
















_994093303.doc


CMS







L-Interface







DSC







Policy Server







Sonet











Frame Relay







U-Interface







IP Router















ATM
















_995040565.doc
[image: image1.png]TCS List

192.168.40.1 192,168.40.0 0x04 1000 EF DROP. ‘

source [19216800 ] Remove

Destination [lsz188300 ]

Dsce 0x02 ~ [owe |

Bandwidth (kbps) [1500

| TS aF1 ~
Action REDUCE_PRIORITY ~

[TCs |

il
et | Lo | cear |

Reso
Maki
router77 Accepted

New








_993906772.doc


CMS







L Interface







ServiceAgent







Fig ?.  Supporting the same packet forwarding behaviour over multiple transports 







   SONET







PolicyServer







   ATM







U Interface







   IP router















Frame relay
















_993992903

_993638686

