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Abstract— Internet signaling protocols establish, maintain and
remove state along the data path. Next-generation signaling
protocols design must meet the scaling requirements imposed
by the various tasks of the Internet signaling applications, such
as resource reservation and middlebox configuration, and to
meet the demand for general functionality in signaling protocols,
including strong security, reliability, congestion control, support
for various signaling purposes and message sizes, and efficient
support for mobility. This paper presents a generic signaling
architecture, the Cross-Application Signaling Protocol (CASP)
and describes how it supports efficient and secure signaling in IP
mobility scenarios. In this approach, the signaling functionality
is splitted into two layers: a generic messaging layer which
provides the generic functionality for message delivery, and a
client layer consisting of a next-hop discovery client and any
number of client protocols which perform the actual signaling
tasks. The essential mechanisms required to support mobility
are: (1) a session identifier uniquely selected by the initiator and
effective discovery of the cross-over node; (2) a branch identifier
incrementally assigned for the new branch and efficient release of
state in the abandoned branch; (3) ensuring discovery messages
are delivered exactly following the path that mobile IP packets
are encapsulated; (4) effective hop-by-hop authentication and re-
authorization provided by the messaging layer, non hop-by-hop
security for signaling clients and denial-of-service protection in
the discovery client.

I. INTRODUCTION

Internet signaling protocols establish, modify and remove
state along the data path and thus form the foundation for a
number of diverse network tasks, such as reserving resources,
configuring middleboxes such as NATs and firewalls, diag-
nosing network behavior and depositing active network code
in routers. The path of the signaling message can traverse a
subset of the routers seen by the data packets, or can be more
loosely aligned with the data flow.

The Resource ReSerVation Protocol (RSVP) [1], [2], [3]
has been designed to support QoS resource reservation. It
introduced a number of features for Internet signaling, such
as soft-state, two-pass signaling message exchange, separating
signaling from underlying routing protocols, and modularity
through the use of opaque objects. RSVP tightly couples
application semantics such as resource reservation to the deliv-
ery of signaling messages. Since it was optimized for multi-
cast resource reservation as part of the IntServ framework,
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including receiver diversity, its implementation complexity
is significant. RSVP was also designed when IP mobility
was in its infancy and network address translations (NATSs)
were uncommon. Initially, RSVP only supported reliability by
retransmission of messages after each timeout interval; later,
a simple retransmission mechanism was added [3].

Particularly, since RSVP identifies signaling sessions by IP
addresses, it becomes difficult to address host mobility in IP
networks [4], [5]. When hosts move, the state established along
the previous route remains until it times out after multiples of
the soft-state interval, typically after more than a minute. With
even modest mobility, large amounts of “abandoned” states
may cause inefficient resource utilization. In addition, IP-in-
IP encapsulation (tunnel) in mobile IP causes RSVP messages
sent to a mobile host also encapsulated as messages with a new
protocol number and a new (source or destination) address in
its outer header, thus concealed to the RSVP nodes along the
path and unable to perform expected signal tasks.

Furthermore, signaling protocols offer opportunities for
attackers to perform replay attacks, denial of service attacks,
eavesdropping or traffic analysis. Thus, authentication and
authorization are particularly important. Here, RSVP offers
only rudimentary services that largely rely on shared secrets.

A number of efforts on mobility in Internet signaling (e.g.,
[6], [7]) have been made recently. However, most of them were
only meant for QoS signaling, and few were designed to be
able to meet other requirements for next-generation signaling
protocols.

To address these challenges, we present a new generic sig-
naling architecture, the Cross-Application Signaling Protocol
(CASP) [8]. Following the two-level RSVP model proposed
by Braden and Lindell [9], which provides extensibility for
signaling client protocols by separating them from the generic
signaling protocol, the CASP architecture further addresses
issues of mobility support, security and congestion-controlled
delivery. Under our design, we extend the RSVP model by
allowing reliable transport mechanisms (such as TCP and
SCTP), separating discovery from signaling message delivery,
and supporting host mobility intrinsically, without introducing
RSVP-in-RSVP tunnels [10].

The rest of the paper is organized as follows. The CASP



architecture is presented in Section II. Mobility support in the
CASP architecture is described in Section III. Related security
considerations are presented in Section IV.

II. CASP — A GENERIC INTERNET SIGNALING
ARCHITECTURE

A. Overview

As shown in Fig. 1, the CASP architecture consists of a
generic messaging layer, which transports signaling messages
between the initiator of the signaling session and the responder
and a client layer, which consists of a next-hop discovery client
and any number of specific signaling client protocols. The
client protocols perform the actual signaling operations, such
as QoS resource reservation, NAT/firewall configuration, or
network diagnosis, where client data are carried in opaque
objects. Typically, the initiator is the data sender and the
responder is the data receiver, but CASP supports both sender-
initiated actions, such as reserving resources, as well as
receiver-initiated ones.
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Fig. 1. CASP - a generic Internet signaling architecture
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Fig. 2. CASP signaling example

While delivering generic messaging layer signaling mes-
sages, the messaging layer establishes, refreshes or releases
states for signaling sessions; it also remembers the path
traversed by installing state at individual routers (stateful
approach) or records a route (stateless approach). A session
is identified by the initiator with a cryptographically random
session identifier. Additionally, a flow identifier describes the
data flow the signaling message pertains to.

Fig. 2 illustrates an example of CASP signaling where TCP
is used as the underlying transport mechanism. A signaling
client (“foo) requests the CASP messaging layer for delivery

its service from the initiator along the path to the responder,
whereas it is possible that some intermediate CASP nodes (in
this example, R1) does not support the requested client layer.
Then the following operations take place in order:

1) The initiator creates a messaging layer session identifier,
and determines that the next CASP node is R1 and there
is an existing TCP connection between the initiator and
R1. It then generates a CASP message with supplied
signaling client payload and delivers it to RI.

2) Upon receipt of the CASP message sent by the initiator,
R1 determines whether it supports the requested client
type, then simply performs the similar procedure as in
the initiator; additionally, it also remembers the previous
hop. R2 differs from R1 in that it passes its client
payload on to the correspondent client protocol. After
that, it establishes a TCP connection between R2 and
the responder, as there is no previous TCP connection.

3) In the responder, after receiving the client data, the client
layer may decide to send a response message to the
initiator, following the reverse chain of CASP nodes.

B. Signaling Message Delivery

The CASP messaging layer is built on existing reliable or
unreliable transport protocols, such as TCP, SCTP or UDP,
depending on the needs of the application. Small, “one-shot”
signaling messages can be embedded into the UDP or raw-
IP discovery message for efficiency, while larger messages
and reliable responses then make use of a chain of reliable
transport connections (TCP, SCTP). Naturally, the end-to-end
transport behavior may be determined by the weakest link. In
many cases, signaling peer nodes will communicate with each
other repeatedly and thus maintain long-lasting connections,
avoiding the connection set up latency. As a result, messaging
layer session setup latency is, on average, low.

Modern reliable transport protocol offer flow control, con-
gestion control, message fragmentation and fast loss recovery,
which are important characteristics for a generic signaling
protocol. For example, public-key-based session setup mes-
sages or active network code may well be large. Such large
messages may need fragmentation and congestion control
which are their functionalities of TCP and SCTP, but not of
unreliable transport protocols like UDP. The use of a reliable
transport also makes it possible to use TLS [11] for channel
confidentiality and integrity.

A CASP messaging layer session is established between
an initiator and a responder, along a chain of CASP nodes,
with a session identifier chosen by the initiator. At each node,
the CASP messaging layer remembers its previous next CASP
node, if not being the initiator; it also determines the next node
along the data path, checks if there is an existing transport
connection to that node, or establishes one if not, and then
forwards the message downstream. The node then remembers
the upstream node and associates it with the session identifier,
a state refresh timer and a state expiration timer. This ensures
all messages for a session traverse the same set of CASP
nodes, in both directions.



CASP messages can be generated in any intermediate node,
either due to client state refreshes or a route change notification
made to the messaging layer. In either case, they may traverse
the remainder of the CASP nodes, until their TTL reaches zero
or the signaling reaches the intended target address.

Multiple next and previous hops may be maintained for a
single CASP messaging state, differentiated using next-hop
branch identifiers (see Section III for more details).

C. Next-hop Discovery

In RSVP, a PATH message (using UDP or raw IP with a
router alert option) allows any RSVP nodes along the path
towards its destination to intercept and process the message.
In the CASP architecture, to allow extensibility of protocols,
next-hop discovery is separated from signaling protocols.
Scout protocol, a common discovery mechanism using RSVP
PATH-like message with Router Alert option, is introduced
to actively determine next CASP hop along the path without
bothering application functionalities. However, each node can
choose its own next-node discovery mechanism, relying on
manual configuration, router advertisements, link state routing
protocols, scout, or, for loosely-path-coupled operation, server
discovery solutions such as DNS or SLP.

D. Signaling Client Protocols

Client protocols perform actual signaling tasks. In the QoS
resource reservation client [12], we define five message types:
reserve, commit, reserve, query, response and release. Reserve
and commit messages can create a reserve state and a commit
state, identified by their client session identifiers, respectively.
Both types of QoS client states are soft-state; to maintain the
client session they need to be refreshed by sending reserve
and commit messages before the corresponding state expires.
QoS resources being reserved will not be able to used until
being committed; a release message release associated reserve
and commit states.

The signaling client protocols are independent from each
other. In addition to QoS resource reservation client, the
CASP architecture can also support any other signaling client
protocols. Multiple clients may be supported simultaneously
and possibly grouped within a messaging layer session (when
sharing a same flow identifier), however, the messaging layer
only delivers a single client message at one time, to meet
different timing requirements of delivering different client
messages.

III. MOBILITY SUPPORT IN THE CASP ARCHITECTURE

In addition to direct routing between a mobile node (MN)
and the corresponding node (CN), Mobile IP (MIP) also may
introduce one or more IP-in-IP encapsulation tunnel(s) as part
of or the full route between the home agent (HA) and the
corresponding node (CN). In the following subsections, first
we describe our approach for the direct routing (i.e., no tunnel)
case, then extend it to the mobile IP tunnel case.

A. Basic Approach

When trying to support direct routing in MIP for CASP
signaling, three problems arise. First, it becomes a problem if
state information stored at routers are indexed with the Care
of Address (CoA), as the CoA is subject to change due to
handoffs. Second, a same state should not be established twice
along the path (in case of QoS resource reservation, this is
referred as “double reservations” problem). Third, the existing
state on the “abandoned” path (i.e. the path between the cross-
over node and the old access router) should be released after
a handoff.

Through the session identifier uniquely selected by the
initiator, and the flow identifier reflecting the sender and
receiver information, the first two problems are resolved.
When the MN moves, the CASP messaging layer only changes
the flow identifier of the session, without changing the session
identifier, where it detects the introduction or release of MIP
tunnels (see Section III-B for details) or simply a route change
in the MN or the CN. Then it triggers the next-hop discovery
client to determine the new next signaling node and updates
its information in the messaging-layer state according to the
unique session identifier.

Releasing of existing state in the old path, by default, can
be done by the state timer expiration. However, as the state
timer is relatively long, keeping state in these nodes may be
inefficient. Alternatively, we can use local explicit teardown
messages. A reasonable place for initiating such a teardown
message is the cross-over node.

We introduce a next-hop branch identifier to help the release
of the abandoned states and determine the behavior of the
cross-over node, e.g., the node where the old and new paths
merge after a route has changed. Once a new next signaling
node is determined, the messaging layer state in the current
associates it with a new next-hop branch identifier (to represent
the new branch). Then a refresh message is sent through the
new branch to establish the necessary states, until the cross-
over node with a same session state is reached. After that a
teardown message assigned with the old branch identifier can
be sent resersely towards another end point and terminated by
finding a different branch identifier for the same session state.
We call this procedure “local repair” and it is also applicable
for normal route change cases other than mobile IP.

In the example in Fig. 3, an MN acting as signaling initiator
communicates with a CN. When it changes its AR to that of
a new network, it is associated with a new CoA (nCoA) and
the flow identifier in the signaling message is changed. The
session identifier, however, remains intact so that only a single
state is held in the CASP nodes along the path from the cross-
over node to the CN. After the cross-over node is determined,
it can issue a teardown message to release states towards the
MN along the reverse path that former signaling messages
traverse.

There are two issues with local repair. First, local repair may
result in session states to be unnecessarily released in nodes;
this has been resolved by comparing the branch identifier



in the release message with the session state. Second, local
repair in fast movement may cause errors. For example, if the
MN continues to move after it sends a refresh message to
the discovered new branch, it might happen that this refresh
message may arrive at the cross-over node later than the latest-
sent refresh message. This will cause an error in signaling
(see steps 1-8 in Fig. 4, where steps 7 and 8 are handled
incorrectly due to the last-come refresh from branch 2), as
states in the latest path will be released upon the recept of the
last refresh message in the cross-over node, but the MN might
be not connected to the previous branch any more. Another
instance of the same problem is ping-pong, where an MN
moves between the same two ARs rapidly. To overcome this,
we assign the branch identifiers in an incremental way and
define only signaling messages with a branch identifier larger
than the branch identifier of the same session can update or
initiate the release of session states.

Note the refresh messages arriving at the cross-over node
should be forwarded on towards the signaling target, to re-
fresh existing states to reflect the change in flow identifier.
Additionally, creation, update or removal of messaging-layer
state also triggers associated local signaling client(s) to create,
update or release related client state accordingly.

B. Operation over Mobile IP Tunnels

CASP enables the delivery of signaling messages in MIP
tunnels by hop-by-hop addressing for signaling messages and
separating next-hop discovery from message delivery. How-
ever, there are still a few issues with mobile IP tunnels. First,
if signaling into tunnels is necessary, the tunnel end points
should support CASP. As mobile IP tunnels can be long —
possibly even crossing the core — even though the two tunnel
end points may be physically adjacent, a general assumption
can be made that MIP tunnel end points should support CASP
signaling.

Furthermore, at tunnel entry points or CASP nodes inside
a tunnel, unlike normal IP routing cases, it is infeasible to
discover next CASP hop by the target address. The solution is
to use the tunnel exit address as the destination to the discovery
request message in this case. Discovery requests initiated at
the tunnel exit or outside a tunnel are destined to the normal
destination, e.g., the MN or the CN.

A pseudo-code for mobility support in CASP summarizing
discussions above is shown in Algorithm 1.

IV. SECURITY CONSIDERATIONS

Due to the separation of the discovery mechanism from
signaling messages and the change from end-to-end addressing
to hop-by-hop addressing in CASP, existing security proto-
cols such as TLS [11] and IPsec [13] can be used without
modification. These protocols support a number of different
authentication and key exchange protocols (e.g. IKE[14])
with different properties. Security for individual client data
objects in a non hop-by-hop way is provided with the help
of CMS [15] at the level of client protocols when selective
protection for the semantics of these objects is required.

Algorithm 1 Pseudocode of mobility support for CASP sig-
naling

/* State initialization */

s_id = choose_session_id();

branch_id = 0;

creat_m_state(&m_state, branch_id, s_id, ...);

/* for MN, CN, HA or FA/MAP/GFA/... */
if (a node gets a mobility route change notification) then
flow_id = (nCoA, CN, ...);
next_hop = discovery(dest); /* if the node is a tunnel entry
or inside a tunnel, dest is the tunnel exit; otherwise dest
is the normal dest */
if (next_hop != old_next_hop) then
/* this is a new branch */
branch_id = (branch_id + 1) % MAX_VAL;
creat_m_state(&m_state,branch_id,flow_id,s_id,...);
else {update the existing state with the new flow_id}
update(&m_state (s_id), flow_id);

end if
/* send a refresh, local repair if it is a new branch */
mesg = new._msg (t-flag = “off”, branch_id, flow_id,

s-id,...); /* t_flag=off means to refresh, not teardown */
send_msg(&mesg);
end if

/* Determine the cross-over node */
if (a node gets a msg with t_flag == 0) then
if (s_id(msg) == s_id(m_state)) then
/* decide whether to update branch_id */
if (branch_id>=(branch_id(m_state)+1) % MAX_VAL)
then
branch_oid = branch_id(m_state);
update(&m_state(s_id), branch_id(&msg));
end if
/* then send a teardown mesg in the old path */
mesg=new._msg(t_flag=1, branch_oid, flow_id, s_id,...);
send_msg(&mesg); /* send the new mesg backward */
forward_msg(&msg); /* forward refresh mesg on */
else {it is not the cross-over node}
if (s_id(msg) does not exit in local state) then
create(&m_state(s_id, flow_id(&msg));
else
update(&m_state(s_id), flow_id(&msg));
end if
forward_msg(&msg);
end if
end if

/* Determine the end of teardown msg */
if (a node gets a msg with teardown_flag==1) then
if (branch_id ; branch_id(&m_state) then
remove(&me_state); remove(&client_state);
forward_msg(&msg);
end if/*else stop here, don’t forward on the teardown
msg*/
end if
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V. SUMMARY

To summarize, our approach based on a layered signaling
architecture presented in this paper overcomes the major
challenges faced by existing techniques for providing generic
signaling services over IP-based networks, including reliable,
secure and congestion-controlled delivery of signaling mes-
sages of arbitrary size. Through the use of session and branch
identifiers, old state can be torn down efficiently. In general,
mobility support mechanisms introduced in this paper can be
extended to more general route change and tunnel support.

Nevertheless, a number of open issues still exist. Of par-
ticular importance is the tradeoffs using different transport
mechanisms and routing interfaces with mobile IP. We are cur-
rently investigating these issues through analytical modeling
and a prototype implementation of general CASP components
(messaging layer and discovery client) and certain critical
signaling client protocols.
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