
Composition for Enhanced SIP Presence

Ron Shacham
Department of Computer Science

Columbia University
New York, NY 10027

shacham@cs.columbia.edu

Henning Schulzrinne
Department of Computer Science

Columbia University
New York, NY 10027
hgs@cs.columbia.edu

Wolfgang Kellerer
DoCoMo Communications Labs Europe

Munich 80687
Germany

kellerer@docomolab-euro.com

Srisakul Thakolsri
DoCoMo Communications Labs Europe

Munich 80687
Germany

thakolsri@docomolab-euro.com

Abstract

Presence has taken shape as a way to present a compre-
hensive view of the communications capabilities of a user or
resource. Standardized protocols allow for receiving pres-
ence data from a variety of sources, such as a user’s com-
munication devices, cellular provider, online calendar and
sensors in his environment. This data can describe many
different aspects of his communication capability, such as
his device characteristics, activities, and even physical lo-
cations. The large number of presence sources may lead to
irrelevant or inconsistent data. Also, the data may be in-
complete and not as usable as it could be to the presence
watcher. This paper proposes the use of presence composi-
tion to remove unusable data and create new more usable
data. We discuss the details of this composition and present
a format with which a user can specify a policy for compo-
sition.

1 Introduction

In its simplest form, presence is a binary indication of
a user’s online status for a specific application, such as
instant messaging. As IP multimedia communication be-
comes more widespread, presence is taking on a more com-
prehensive and ambitious role. One standards document [2]
defines it as follows: ”Presence conveys the ability and will-
ingness of a user to communicate across a set of devices.”
In fact, presence describes not only human users, but any-
one or anything, broadly grouped under the term “presen-
tity”, found in [14]. Receivers of this presence information,

called watchers, can use it not only to know whether the
user is online or not, but also to make better decisions about
communicating with him.
This comprehensive view of a user’s communication is dif-
ferent in the type of information that it conveys and in the
sources of information. Far richer than a simple on/off sta-
tus, it can potentially provide information about the types of
media and devices to which the user currently has access,
what he is currently doing, and even his physical location.
Furthermore, instead of being based only on the input of a
single type of application, presence could be based on input
from PCs, cellular devices, calendar applications, and sen-
sors in the user’s environment.
The large amount of information could prove difficult for
the watcher to use. Some available information may be in-
correct because it is stale, contradictory or redundant. Hu-
mans may be able to resolve these issues by looking at the
data supplied by all of the sources. However, that may
sometimes by difficult to do, besides requiring more effort
than many people are willing to exert. Moreover, watchers
could also be applications that provide user-customized be-
havior based on presence. As an example, [3] describes the
use of presence in personalized telephony services, such as
call routing, using extensions to the Call Processing Lan-
guage [4]. Such an application requires a single, accurate
indication of the user’s presence. The problem caused by
having multiple sources can be remedied through the pro-
cess of composition. Presence composition, is defined in
[5] as the aggregation of the multiple sources of presence
into a single record. This does not mandate any manner
of merging the sources. In this paper, we more fully de-
fine composition, showing how it can present a more usable
view of the user’s presence. This is done by removing infor-



mation that falls into one of the categories mentioned above.
Additionally, much useful information about the user is not
provided by any source, but could be easily extrapolated
based on existing information. For this reason, composition
also derives new presence information.
We begin by introducing presence as defined in the Session
Initiation Protocol (SIP) in Section 2. We then reference
related work in Section 3. Following that, we discuss dif-
ferent types of presence sources in Section 4. In Section 5
we discuss the four steps of composition. Section 6 presents
a format for specifying composition policies as well as an
example of such a policy. We conclude in Section 7.

2 Introduction to SIP Presence

The Session Initiation Protocol (SIP) [1] is used for the
establishment of multimedia sessions between multiple
parties. This is accomplished using a specific method,
or function, called INVITE. SIP has subsequently stan-
dardized event notification through the SUBSCRIBE and
NOTIFY methods, for creating a subscription and sending
a notification, respectively. The event-specific information
may be updated in any manner, and SIP defines its own
PUBLISH method for this purpose. The event mechanism
has been used most notably for presence notification,
defined in [15].

The general format of a user’s presence is described in
[2]. This is an XML document, divided up into multiple
tuples, each describing information about the person him-
self, a communication service he uses or a device that he
uses. These are called person tuples, service tuples, and
device tuples, respectively, and they are represented by dis-
trinct <person>, <tuple> and <device> elements. Each
of these elements may have any number of sub-elements
called attributes (not to be confused with XML attributes
which are part of the element itself. We will refer to those in
this paper as “XML attributes”). For example, a <person>
element may have an <activities> sub-element listing his
current activities or a <user-input> element to indicate
whether the user is active or idle. The sub-elements con-
tain further sub-elements representing their value. For ex-
ample, a <person> element may contain an <activities>
element which contains the elements <on-the-phone> and
<appointment>. These elements are defined in [12] and
other standards documents.
Services are defined by a ”service URI”, a unique identifier
used to reach the user, such as a SIP URI. Each service must
contain at least one sub-element, <status>, which includes
a <basic> element that may be set to “open” or “closed”. A
service may be available on multiple devices. For example,
a tuple that describes the user’s ability to accept communi-
cations at his ”sip” address may list multiple devices that

may be used as endpoints for the service. Since specific de-
vice information is described in separate tuples, a ”device-
id” attribute is defined. This “device-id” may be used in a
single device tuple, and in any number of service tuples to
indicate that the service is available on that device.
Presence information is based on input received from possi-
bly many sources. The compositor, defined in [5] is a mod-
ule that is charged with joining these together into a single
view of the user’s presence. This paper discusses an ex-
panded role for the compositor to remove ostensibly incor-
rect or irrelevant presence information and extrapolate new
information, based on user specifications.

3 Related Work

The problem of inconsistent information associated with
multiple contributing presence sources is presented in [7].
That work describes an implemented solution based on
scripts that are triggered by changes in the presence data.
Our paper goes into greater detail about the conceptual pro-
cess of composition, such as the causes of inconsistent data
and the need for deriving new data. Furthermore, their so-
lution, though powerful, makes use of extensions to the
presence format itself. Our solution works with the stan-
dard presence data that is normally aggregated by the pres-
ence server from various sources. Furthermore, the full-
fledged programming solution described there, while pro-
viding more fine-grained capabilities to the user, is more
complex than the policy rule format that we present here.
We are more concerned with determining a set of basic com-
position functions and providing the user access to these
through a simple XML format.

4 Types of Information Sources

A presence source is a provider of any presence infor-
mation that is received by the compositor and integrated
into the view of the user’s presence. This information
could be provided either through publication or subscrip-
tion. The difference between these modes, besides the
protocol-specific ones, is whether the compositor must ac-
tively seek the presence information. In publication mode,
the source is configured to provide it to the compositor,
whereas in subscription mode, the source waits for requests.
However, how the information is injected into the presence
system is less important to us, and we assume, in this paper
that the compositor has a set of presence information from
different sources without getting into how it was received.
We can classify all presence data as falling into one of the
following categories:

• Reported current: Reported current information has
been provided by the presentity within processing time



delays of the current time. We assume that this infor-
mation is correct when entered, but the trustworthiness
of the information is likely to decay as time goes on,
given that most human users will find it difficult to con-
tinuously keep presence information up-to-date.

• Reported scheduled: For reported scheduled informa-
tion, a presentity indicates its plans for the future rather
than the present, in some type of calendar. The reliabil-
ity of this information depends largely on the diligence
of the user in updating calendars and similar sources.

• Measured device usage information: Measured device
information uses observed user behavior on communi-
cation devices, such as the act of placing or receiving
calls or typing, or device status such as signal strength.
This data may come from the device itself or a network
element. The main source of error is that it may not be
known whether the presentity itself is using the device
or some other person.

• Measured by sensors: Presence information measured
by sensors reflects the status of the presentity, such as
his location, place type, activity or other environmental
factors. Examples of sensors include Global Position-
ing System (GPS) information for location or a Blue-
Tooth beacon that announces the type of location, such
as ”theater”, in which a person finds himself. Sensors
have the advantage that they do not rely on humans to
keep the information up-to-date, but are naturally sub-
ject to measurement errors, partly because they must
make assumptions about identity. For example, a pas-
sive infrared sensor (PIR) can detect that somebody is
in the office of the presentity, but cannot detect whether
this is the presentity himself or the cleaning staff. A
GPS sensor cannot detect whether the cell phone is be-
ing used by the presentity or has been borrowed by the
presentity’s spouse.

• Derived: Presence information might be derived indi-
rectly from other sources of data. We discuss deriva-
tion in Section 5.2.

5 Composition Steps

The composition process takes an input set of data from
presence sources and produces another presence document.
The following steps are followed in order:

1. Discarding tuples

2. Deriving presence information

3. Resolving conflicts

4. Merging tuples

Discarding tuples should be done first. Since the eliminated
tuples are not useful, regardless of any possible conflict, as
described in Section 5.1, they have no reason to be included
in the other steps. Deriving presence information is useful
for identifying conflicts later, and should therefore be done
next. Resolving conflicts between tuples must be done be-
fore merging, while the tuples are still distinct. We describe
these steps in detail in the next four sub-sections.

5.1 Discarding

Whole tuples may be discarded, even if they do not con-
flict with others, if they fall into one of the following cate-
gories.

• Closed contacts: All service tuples with a basic status
of ’closed’. The presentity is currently not reachable
using such services.

• Old tuples: All person, service, or device tuples whose
age is older than a given threshold. Any presence infor-
mation has an expiration time, and should be removed
at that point, so discarding applies only to tuples before
their expiration.

• Unreferenced tuples: device tuples that are not refer-
enced by any ’open’ service tuple. This means that it
does not represent current communication capabilities
of the presentity, and is therefore of limited use to the
watcher.

5.2 Deriving Presence Information

Certain presence sources may not be capable of publish-
ing all relevant information, and users are unlikely to always
update all information that requires their input. Such infor-
mation may be derived in order to include it in the user’s
presence.
Derivation of new information makes it easier to identify a
conflict with another presence source. For example, know-
ing the locations of two presence sources allows the com-
positor to determine that the user is only colocated with one
of them, and the information from the other one is inaccu-
rate. Therefore, deriving location where it would not other-
wise be included could make a conflict clear to the compos-
itor that it would not have detected.
It can also provide information to the watcher indicating
communication capability that may not otherwise be known
based on automatic presence sources. Based on known
presence input, and possibly outside information, such as
time of day, new and more useful data could be added to
the user’s presence. For example, a user’s mobile device
may easily be able to identify and publish that it is in a
car based on available sensors. However, more relevant in-
formation for the watcher is that the user is driving, which



may be derived if this is usually true when the user is in
his car (possibly during certain times, such as mornings
and evenings). The user may also wish people to know
that when he is ”on-the-phone” (which may be discovered
automatically by subscribing to the ’dialog’ event, which
summarizes a user’s current communication sessions), this
means that he is ”busy” and shouldn’t be called unless it is
urgent. The user may know that a specific place does not al-
low for private communications, and he may automatically
supplement his location information with privacy informa-
tion. When ’user-input’ appears as ’idle’ between certain
hours of the night, the user’s activity should be set to ’sleep-
ing’.
Such derivations each have two parts: a predicate and addi-
tional content. The predicate is one or more elements that
must all be present in a tuple, or outside information that
must be true, in order for the specified content to be added.
A special case of this is the supplementing of static informa-
tion that doesn’t depend on dynamically changing data. For
example, a device may not support publishing certain pres-
ence extensions, but they may be added to its tuple. Such a
derivation could be defined using only the device’s device-
id as the predicate.
There is another way that this static information can be sup-
plemented. The Extensible Markup Language (XML) Con-
figuration Access Protocol (XCAP) [9] is used to update
XML-based application configuration data on a server. The
document, and all of its attributes, are addressable using
HTTP URIs, and manipulated through HTTP. This protocol
has been applied to directly manipulate a user’s presence,
as described in [11]. XCAP does not manipulate the user’s
final presence that is shown to watcher, but, rather, a single
document which is one of the inputs to the compositor, as
described earlier. This document may contain device tuples
containing static information about the device. In the merg-
ing stage of composition, described in Section 5.4, multiple
tuples associated with a single device (containing identical
device-IDs) are merged together. If no identical device tu-
ple has been received from any other source, the static tuple
will appear in the resulting raw presence document. If there
is another identical tuple, the static and dynamic elements
will be merged into a single tuple, adding the new informa-
tion.

5.3 Resolving Conflicts

5.3.1 Sources of Information Conflict

Information conflict occurs when multiple sources give dif-
ferent views of the presentity, some of which may be out-
dated or incorrect. Information can be incorrect for any
number of reasons, but some examples include:

• Location divergence: The publisher collecting the in-

formation may not be colocated with the presentity at
this particular time. For example, Alice’s home PC
may report that the user is idle (not typing), but Alice
is using the office PC. Presence information may be
available based on the state of a device, but it may be
borrowed temporarily by someone else (if the owner
were to “log out” and unregister this device as a con-
tact, this problem would not occur)

• Update diligence: Some sources, particularly those up-
dated manually, are prone to only approximate real-
ity. For example, few users record all appointments or
meetings in their calendar or, conversely, remove all
canceled meetings. This is particularly true for reg-
ularly scheduled activities such as meals or commute
times.

• Sensor failure: Sources that report their information
differentially are subject to silence ambiguity. If such
a source does not report new data, the receiver cannot
tell whether the sensor is malfunctioning or whether
the information last received is still current. This can
be partially mitigated by requiring sources to report
when they are no longer confident of the data. How-
ever, this does not deal with sudden source failures.
Thus, some form of keep-alive mechanism may well
be needed that overrides differential notification mech-
anisms. Even with keep-alive, there is likely to be a
substantial period of time between source failure and
failure detection, causing stale information.

5.3.2 Detecting information conflicts

Detecting information conflicts is the first step in remov-
ing the inaccurate information. There are many elements
in person tuples that could end up having conflicting values
from different sources. However, this step is less relevant
for service tuples. The elements found there are not likely
to conflict, even if multiple tuples report information about
the same service. For example, the basic status in a service
tuple cannot be said to conflict with the status sent for the
same service by another device. <deviceID>, <privacy>,
and <user-input> describe a specific instance of the service
and can all be true. Our discussion of conflict resolution is
focused on person and device information.
Information conflicts can be classified as to how easy it is
to detect them. We distinguish three types of information
conflict: obvious, probable and undetectable, described in
turn below. While it is possible that conflicts could exist
across elements, where the value of one element conflicts
with another, for simplicity, we look only at conflicts in the
same element.
For some pieces of presence information, information con-
flicts are obvious and readily detectable. For example, a



single presentity can only be in one place at a time. Thus,
if two sources report location information that differs by
more than the margin of error, one must be wrong. Some
elements such as <place-is> and <user-input> elements
have exlusive values.
For other types of information, an automaton can guess with
some probability that two sources of information contradict
each other, but this may well depend on the values them-
selves. For example, the <activities> combination of:
<away>, <appointment>, <in-transit>, <meeting>,
<on-the-phone>, <steering>
incrementally reported by different sources may well reflect
the activity of the typical Wall Street commuter in the Lin-
coln Tunnel, speaking on his cell phone. The <place-type>
element is another one that may take different values that
are sometimes, but not always, contradictory. For exam-
ple, the values ”outdoors” and ”stadium” differ only in their
specificity. In lieu of a better approach, different values may
be treated as complementary. However, a more refined ap-
proach for determining conflict between elements may be
possible. For example, the approach used in [16] to de-
scribe situational terminology, such as “in a meeting” using
ontologies may allow a logical determination to be made as
to whether two terms, such as types of place or activities are
contradictory.
Undetectable information conflicts are those where a ma-
chine lacking human intelligence cannot reliable detect that
the two pieces of information cannot both be true. For ex-
ample, an automaton is unlikely to be able to decide which
of several notes or free-text fields is valid, without basing
this on other information in the tuple, person or device ele-
ment.

5.3.3 Handling Information Conflicts

Once an information conflict is detected, a choice must be
made about how to handle it. In some cases, no action
should be taken. For an element such as <activities> or
<mood>, for which different reported values make sense
and it is hard to distinguish which values really conflict, as
mentioned above, the different values can be treated as non-
conflicting. This means that both tuples are retained, and
handling is deferred to the merging step, during which the
multiple values will be unioned within a single tuple.
For other elements, however, conflict is more easily de-
tectable and multiple values are not sensical. A conservative
approach to handling such a conflict would be to simply list
all values. This is different from the approach mentioned
earlier, because the tuples are kept distinct and not merged
in the next step. Multiple versions are presented which are
admittedly conflicting, and the watcher may make a judg-
ment about which is more correct. To limit the amount of
information that the watcher must digest, it may be more

useful to choose one value over the other. For this decision,
one of the following heuristics may be used:

• Choose recent tuple: Choose the value from the tu-
ple that was more recently published for the first time.
Simply choosing the most recently updated value is
likely to cause flip-flopping between dueling publish-
ers.

• Choose trustworthy tuple: Choose the element from
the more trustworthy tuple. Trustworthiness may be
based on the source identity, such as a user’s cell
phone. Alternatively, it is based on the types of re-
porting listed in Section 2. For example, they may be
ranked in the order ”reported current”, ”measured de-
vice information”, ”measured by sensors”, ”reported
scheduled”. Derived information may be considered
as reliable as the original information.

• Value of another element: Other elements may indicate
that one version of the information should be trusted.
For example, <user-input> may indicate that one de-
vice that provides presence is actually being used, and
another is not.

When one value is chosen over another, the resulting pres-
ence document may be affected on the tuple level or on the
element level. On the tuple level, the more trusted tuple is
chosen and the other is discarded. On the element level,
both tuples are maintained, but only the more trusted ele-
ment is kept, while the other is discarded. Either of these ap-
proaches may have advantages in certain situations, but us-
ing only tuple-level conflict resolution is simpler and avoids
inconsistencies in the final document.

5.4 Tuple Merging

Merging combines several tuples that logically represent
the same information. For example, a presence document
should only contain one report of <person> information,
so the multiple reports from different sources should be
merged. Merging of device tuples may be useful for de-
riving presence information as described above in Section
5.2. Merging of service tuples is less useful.
In any of the above cases, the elements in the resulting tu-
ple must be based on the original tuples. Although the
original values should not conflict, following the previous
step, some elements will have multiple non-conflicting val-
ues. For example, person tuples will be merged which con-
tain elements which are treated as non-conflicting, such as
<activities> and <mood>, as described above. These val-
ues should be unioned.



6 Composition Policy Format

We define here an XML format for specifying a policy
for composition. The aim is to define the most common ma-
nipulations of presence data so that a user’s policy may be
defined fairly easily. Full programming solutions may give
more exact results, and could complement this approach.
Standard composition documents would likely be created
by network administrators. More advanced users could de-
fine policies by themselves, as they are expected to do with
authorization rules in SIP [8] or with mail filtering scripts
using Sieve [17]. Graphical user interfaces could also help
users in a way similar to their usage in defining customized
services in multimedia communications [18].

The document is a sequence of composition steps, each
with its own options for customization. The steps are ”dis-
card”, ”derive”, and ”resolve-conflicts”, each represented
by an XML element, with sub-elements to define the pro-
cessing done in that step. As we mention below, the merg-
ing step does not require user customization, and it is there-
fore absent from this format.

6.1 Discard Step

This step allows for discarding of tuples. Three types of
discarding may be specified: discard all service tuples with
closed contacts, all tuples whose timestamps are older than
a certain amount of time, and all device tuples not associ-
ated with a service.

6.2 Derive Step

This step contains rules for deriving new information
based on existing information. The XML Patch format
[6] is generally used to express changes to XML content,
such as adding or removing elements. The <add> element
contains a “sel” XML element contains an XPath [13]
expression which identifies the location where the content
is to be added. The XML content under the <add> element
is the content to be added. We use this format to express
the derivation of new content. For example, the following
Patch operation:

<add sel=
’//person[place-type/car]’>
<activities>
<driving />

</activities>
</add>

adds the ’driving’ activity directly under a <person> ele-
ment of a tuple that contains a <place-type> element that
contains <car>.

In order to make derivation dependent on the time of day,
the selecting Xpath expression may refer to the tuple’s
timestamp in the predicate. Functions built into Xpath 2.0
may be used to retrieve the desired part of the date/time ex-
pression. For example, if someone sleeps between the hours
of midnight and 7 am unless he is working on a deadline, a
derivation of his sleep based on his user- input may be ex-
pressed as follows:

<add sel= \
’//person[user-input="idle"]\
[fn:hours-from-dateTime(timestamp)

> 0 \
and \

fn:hours-from-dateTime(timestamp)
< 7]’>

<activities>
<sleeping>

</activities>
</add>

This states that if the user-input is ’idle’ during normal
sleeping hours, the user is sleeping. If the value is not ’idle’
during those hours, he is likely working on a deadline.

6.3 Resolve Conflicts Step

In this step, conflicts are identified and resolved using
one of a number of policies. Identifying conflicts is a matter
of local policy and we do not consider it to be something
that users should specify.
The <resolve-conflicts> element contains possibly several
<conflict> elements, each defining how conflict is to be
resolved. An ”element” XML attribute may be included so
that the included policy applies only to that element. When
this attribute is omitted, it applies to all elements.
Options for resolution are ”merge”, ”union”, ”most-
recently-published”, ”source-precedence”, or ”other-
attribute”. Several policies may be listed, and conflict
resolution is attempted. <merge> is not a conflict reso-
lution, per se, but, in effect, defines the given element as
non-conflicting. Examples of elements appropriate for this
are <activities> and <mood>. The use of <merge> for a
given element precludes any other conflict resolution policy
for that element.
Choosing ”union” causes both conflicting tuples to be
included, and precludes any other policy for conflict
resolution for the specified elements. It also ensures that
the two tuples will remain distinct, even after the merging
step, so that multiple versions will be represented, and the
human watcher will be able to decide which is more likely
to be accurate. This is the default value for the resolution of
a conflict for any given element when an alternative policy
is not given.



The <most-recently-published> element directs the
compositor to choose the tuple which was most recently
published for the first time. This does not choose a tuple
simply because it was refreshed more recently.
The <source-precedence> element lists a number of source
types. This list may contain any of the following tokens
at most once: ”reported current”, ”reported scheduled”,
”measured device information”, ”measured by sensors”. If
each of the conflicting tuples is from one of the sources
listed, the one with a higher value is chosen. If only one of
the tuples is from a source with a listed value, that one is
chosen. If neither of them are, the conflict is not resolved
by this method.
The <other-attribute> element specifies that resolution be
done based on another element besides the one in conflict.
An XML attribute is included to specify the element. A list
of elements gives the ordered preference of various values.

6.4 Merging Step

This final step merges multiple tuples to present a final
view of the user’s presence before continuing to later steps
such as privacy filtering. We currently consider only merg-
ing of person tuples as this is the most likely to be useful.
When multiple tuples are merged, they may have different
values for the same attribute. The conflict resolution step
is used to declare for which elements, such as <activities>
multiple values should be listed, rather than be treated as
conflicting. Therefore, no real specification is required by
the user in this step for person tuples. It is expected that for
the merging of service tuples, input from the user will be
desired regarding whether to merge them and, if so, how to
handle multiple values of elements.

6.5 Example

We provide an example use case to help motivate the
need for our composition steps. Bob is sitting in his of-
fice, waiting to attend a meeting in the conference room.
He receives a call about a very important matter to which
he must attend. He calls up the other meeting participants
to tell them, then rushes out of the office, without logging
off of his PC, proceeds to his car and drives away.

Bob now has three different accounts of his place-type
that a watcher may see. His office PC indicates that he is in
the office, his cellular phone indicates that he is in the car,
and his schedule indicates that he is in the conference room.
He is currently in the car, but there is no indication that he is
driving. The following shows an abbreviated example of a
composition format that Bob may have defined or that may
have been provided by the network administrator.

<discard>
<old-tuples \

age="00:30:00.000" />
<tuples-with-closed-contacts />

</discard>
<derive>

<add sel= \
’//person[place-type/car]’>

<activities>
<driving>

</activities>
</add>

</derive>
<resolve-conflicts>

<conflict \
element="activities">

<merge />
</conflict>
<conflict element="place-type">
<other-attribute \

attribute=\
’person/user-input’>

<value>active</value>
<value>idle</value>

</other-attribute>
<source-precedence>
<source>

reported current
</source>
<source>

reported scheduled
</source>

</source-precedence>
</conflict-element>

</resolve-conflicts>

The compositor, detecting that Bob is in the car, derives
that his activity is “driving.” Though he is separately re-
ported as having activities “working,” “in a meeting,” and
“driving,” the compositor does not take any action to re-
solve this conflict, but leaves the activities to be merged at
a later stage if no other conflict causes them to be removed.
There is a conflict about the type of place where Bob cur-
rently is. The compositor first tries to resolve the conflict
based on another attribute, user-input. Since the user’s cell-
phone reports him as “active,” the tuple published by that
device is chosen over the other two. Now the conflicting
activities will also not appear. A watcher of Bob’s presence
would now only see that he is in the car and driving.

7 Conclusion

We have discussed the need for composition in enhanced
presence. This includes the need to decide between multi-
ple, possibly conflicting presence reports. Also, deriving



new presence information is a way to offer watchers with
rich, useful information without requiring the user or de-
vices to report everything. We have provided solutions, both
conceptually and in the definition of an XML format for
users to define their own policies.

References

[1] Rosenberg, J., Schulzrinne, H., Camarillo, G., John-
ston, A., Peterson, J., Sparks, R., Handley, M, Schooler,
E., SIP: Session Initiation Protocol, IETF RFC 3261,
June 2002.

[2] Rosenberg, J., A Presence Data Model, IETF RFC
4479, July 2006.

[3] Jiang, D., Liscano, R., Logrippo, L., Personalization of
Internet Telephony Services for Presence with SIP and
Extended CPL, Computer Communications, Vol.29,
No.18 (November 28, 2006), pp. 3766-3779.

[4] Lennox, J., Wu, X., Schulzrinne, H., Call Processing
Language (CPL): A Language for User Control of In-
ternet Telephony Services, IETF RFC 3880, October,
2004.

[5] Rosenberg, J., A Processing Model for Presence, IETF
Internet Draft, June 2006 (Work in Progress).

[6] Urpalainen, J., An Extensible Markup Language (XML)
Patch Operations Framework Utilitizing XML Path
Language (XPath) Selectors, IETF Internet Draft,
March 2006 (Work in Progress).

[7] Bergmann, O., Ott, J., Kutscher, D., A Script-based
Approach to Distributed Presence Aggregation, In Pro-
ceedings of International Conference on Wireless Net-
works, Communications and Mobile Computing 2005,
Maui, HI, USA, June 2005.

[8] Rosenberg, J., Presence Authorization Rules, IETF In-
ternet Draft, October 2006 (Work in Progress).

[9] Rosenberg, J., The Extensible Markup Language (XML)
Configuration Access Protocol (XCAP), IETF Internet
Draft, October 2006 (Work in progress).

[10] Khartabil, H., Leppanen, E., Lonnfors, M., Costa-
Requena, J., An Extensible Markup Language (XML)-
Based Format for Event Notification Filtering, IETF In-
ternet Draft, September 2006 (Work in Progress).

[11] Isomaki, M., Leppanen, E., An Extensible Markup
Language (XML) Configuration Access Protocol
(XCAP) Usage for Manipulating Presence Document
Contents, IETF Internet Draft, October 2004 (Work in
Progress).

[12] Schulzrinne, H., Gurbani, V., Kyzivat, P., Rosenberg,
J., RPID: Rich Presence Extensions to the Presence In-
formation Data Format (PIDF), IETF RFC 4480, July
2006.

[13] XML Path Language (Xpath) 2.0, W3C Candidate
REcommendation 8 20060608, June 2006.

[14] Day, M., Rosenberg, J., Sugano, H., A Model for Pres-
ence and Instant Messaging, IETF RFC 2778, February
2000.

[15] Rosenberg, J., A Presence Event Package for the Ses-
sion Initiation Protocol (SIP), IETF RFC 3856, August
2004.

[16] Luther, M., Mrohs, B., Wagner, M., Steglich, S.,
Kellerer, W., Situation Reasoning-A Practical OWL
Use Case, In Proceedings of 7th International Sympo-
sium on Autonomous Decentralized Systems (ISADS
2005), Chengdu, China, April 4-8, 2005, pp. 461-468.

[17] Showalter, T., Sieve: A Mail Filtering Language, IETF
RFC 3028, January 2001.

[18] Wu, X., Schulzrinne, H., Location-based Services
in Internet Telephony, In Proceedings of IEEE Con-
sumer Communications and Networking Conference
(CCNC’05), Las Vegas, NV, USA, Jan. 2005


