
A Conference Control Model for

Light-weight Sessions

(DRAFT)

Woohyong Choi

A thesis submitted to the faculty of the Korea Advanced Institute of

Science and Technology in partial ful�llment of the requirements for the

degree of Master of Science in the Department of Computer Science.

July 1, 1996

Korea Advanced Institute of Science and Technology

ABSTRACT

The current model for light-weight multicast session based teleconferenc-

ing applications provide a very primitive set of control mechanisms such as

net mutes mic and mic mutes net . Commercial products based on T.124

Recommendation of International Telecommunication Union(ITU) are being

introduced, and it seems likely that a similar one based on T.124 will be de-

rived for Internet usage. However, the current emphasis on wide area scalable

multicast based conferencing in the Internet Engineering Task Force(IETF)

is desirable, and we shouldn't sacri�ce the bene�ts of multicast based sessions

to conform to the tightly coupled model of T.124 Recommendation.

This paper proposes a conference control model for light-weight sessions

where media applications can collaborate with a coordination tool to provide

a level of control over the light-weight sessions. This coordination tool pro-

vides a generic base to manage conferencing states, �nd agreements among

the participants upon which a varying range of policies could be implemented

without any changes to each applications. A prototype of the coordination

tool has been built and is being used to provide conference control to existing

applications.

CONTENTS

1. Introduction : 1

2. Related Works : 4

2.1 MBone Applications : 6

2.2 Conference Control Channel Protocol : : : : : : : : : : : : : : 8

3. Model : 11

3.1 Agreement Protocol : 12

3.2 Conference Control Architecture : : : : : : : : : : : : : : : : : 15

3.2.1 Coordination Tool : 15

3.2.2 Conference Bus : 17

3.2.3 Specifying Policies : 18

4. Design : 20

4.1 Coordination Tool : 21

4.1.1 Runtime Description : : : : : : : : : : : : : : : : : : : 21

4.1.2 Conferee Identi�cation : : : : : : : : : : : : : : : : : : 23

4.2 Policy Speci�cation : 23

4.2.1 Syntax : 24

4.2.2 Prede�ned Variables : : : : : : : : : : : : : : : : : : : 25

4.2.3 Initialization : 26

4.3 Agreement Protocol : 27

Contents iv

4.4 Conference Bus Messages : 30

5. Application : 31

6. Analysis : 35

7. Conclusion : 39

A. Terminologies : 40

LIST OF FIGURES

2.1 The Conference Bus : 8

2.2 Conceptualisation of CCCP : : : : : : : : : : : : : : : : : : : 9

3.1 The Conference Contrl Model : : : : : : : : : : : : : : : : : : 16

3.2 The Coordination Tool : 17

4.1 The Coordination Tool : 22

4.2 User Interface of the Coordination Tool : : : : : : : : : : : : : 23

4.3 The Runtime Model : 26

4.4 Agreement Protocol in a Nutshell : : : : : : : : : : : : : : : : 27

4.5 Agreement Protocol Messages : : : : : : : : : : : : : : : : : : 28

6.1 Comparison between Conference Control Models : : : : : : : : 36

Chapter 1

INTRODUCTION

There has been much work in recent years on multimedia teleconferencing

applications based on desktop computers. Signi�cant progress has been made

on enabling technologies such as packet transport for audio and video, re-

source management, connection establishment, scalability and privacy. These

applications are now highly usable and, after long gestating as research proto-

types, are now vigorously entering the mainstream commercial market. With

the increasing availability of audio and video equipment on workstations,

and with much faster networks being installed, we expect teleconferencing

applications to become an important component of many future social and

business interactions.

The previous generation of conferencing tools, such as mmconf[2], etherphone[22]

and the Touring Machine[3] were based on centralized architectures, where

a central application on a central machine acted as the repository for all

information relating to the conference. Although simple to understand and

simple to implement, this model proved to have a number of disadvantages,

the most important of which was the disregard for the failure modes arising

from conferencing over the wide area[10].

Since early 1992, a multicast virtual network has been constructed over

the Internet[1]. This multicast backbone or MBone[14] has been used for

Chapter 1. Introduction 2

a number of applications including multimedia (audio, video and shared

workspace) conferencing. The initial deployment of these applications such

as vat[12], ivs[20], nv[4], and vic[15] has proven successful especially in terms

of scalability. This alternative approach to the centralized model is the

lightweight session model promoted by Van Jacobson[13]. In the lightweight

session model, communication is regarded as inherently unreliable and ap-

plications are loosely-coupled cooperating instantiations distributed over the

network. Observations of the MBone show that humans can cope with a de-

gree of inconsistency that arises from partitioned networks and lost messages,

as long as the distributed state will tend to converge in time. However, they

just lend themselves to relatively open conferences, and do not have ways to

support the various range of policies in diverse social conventions[19].

Recently, centralized conference systems based on International Telecom-

muniaction Union(ITU)'s T.124[21] recommendation are being introduced

into market places, and it seems likely that a similar one based on T.124 will

be derived for internet usage[7]. However, the current emphasis of the In-

ternet Engineering Task Force(IETF) on wide area scalable multicast based

conferencing is desirable, and we shouldn't sacri�ce the bene�ts of multicast

based sessions to conform to the ITU centralized model[6].

This paper presents a conference control model for the light-weight ses-

sions. The model relies on a coordinator running on each conferees' host

to manage shared states among the participants and to control media ap-

plications. Policies are speci�ed in a way that they are not to tied to any

speci�c mechanisms so that policies can be easily changed as needed. To

manage shared states, the coordinator use an agreement protocol derived

from a similar protocol[19] proposed by the Multiparty Multimedia Session

Control(MMUSIC) working group[17] of Internet Engineering Task Force.

Chapter 1. Introduction 3

Coordination among media applications and the coordination tool are made

possible by the conference bus abstraction as brie
y introduced in the design

of vic[15]. An implementation of the conference tool has been demonstrated

in several scenarios, in particular, negotiation of media encoding, and
oor

management.

Chapter 2

RELATED WORKS

In the following sections, some of the related works in the area of conference

control model are discussed to get the requirements for the conference control

model. MBone applications are discussed as the paper is about to add con-

ference control to these applications. It is meaningful to discuss Conference

Control Channel Protocol[10] since it proposes a conferencing architecture

with requirements from MBone applications as well as from the MICE[9]

project.

The task of conference control breaks down in the following way[10].

Application Control Applications need to be started with the correct initial

state, and the knowledge of their existance must be propagated across

all participating sites. Applications may need to cooperate(for example

to archive audio and video synchronization).

Membership Control Who is currently in the conference and has access to

what applications.

Floor Management Who or what has control over the input to particular ap-

plications.

Network Management Requests to set up and tear down media connections

between end-points (no matter whether they be analogue through a

Chapter 2. Related Works 5

video switch, a request to set up an ATM virtual circuit, or using

RSVP[23] over the Internet), and requests from the network to change

bandwidth usage because of congestion.

Meta-conference Management How to initiate and �nish conferences, how to

advertise their availability, and how to invite people to join.

It is observed that the problem of meta-conference management is out-

side the bounds of the conference control architecture, and should be ad-

dressed using tools such as Lawrence Berkeley Laboratory(LBL)'s Session

Directory[sd], traditional directory services or through external mechanisms

such as email. The conference control system is intended to maintain con-

sistency of state amongst the participants as far as is practical and not to

address the social issues of how to bring people together, and co-ordinate

initial information.

It is also believed that the membership control is the problem of limiting

and/or modifying participation and is entirely a key distribution/revocation

problem[13]. This same problem appears in many other areas of the internet

architecture, not just conferencing (network management, resource reserva-

tion, online publication, etc.).

This paper doesn't attempt to de�ne an exhaustive set of session control

protocol to support all the tasks described above. Instead, the paper take

these tasks as the basis for de�ning a conference control model upon which

a set of simple messages are exchanged between conferencing applications..

The model primarily focus on providing
oor management and application

control. Conference control policies are con�gurable and policies are sepa-

rated from mechanisms so that the policies can be changed as required.

Chapter 2. Related Works 6

2.1 MBone Applications

Since early 1992, a multicast virtual network has been constructed over the

Internet[1]. This multicast backbone or MBone [14] has been used for a num-

ber of applications including multimedia (audio, video and shared workspace)

conferencing. These applications involved include vat[12], ivs[20], nv[4], and

wb[11] amongst others. These applications have a number of things in com-

mon:

� They are based on IP multicast.

� They all report who is present in a conference by occasional multicas-

ting of session information.

� The di�erent media are represented by separate applications.

� There is no conference control, other than each site deciding when and

at what rate they send.

The light-weight session model used in these application as promoted by

Van Jacobson[13] is an alternative approach to the traditional centralized

model. Communication is regarded as inherently unreliable and applications

are loosely-coupled cooperating instantiations distributed over the network.

These applications are designed so that conferencing will scale e�ectively

to large members of conferees. At the time of this writing, they have been

used to provide audio, video and shared whiteboard to conference with about

500 participants. Without multicast, this is clearly not possible. It is also

clear that, with unreliable networks, these applications cannot achieve com-

plete consistency between all participants, and so they do not attempt to do

so { the conference control they support usually consists of:

Chapter 2. Related Works 7

� Periodic (unreliable) multicast reports of receivers

� The ability to locally mute a sender if you do not wish to hear or see

them. However, in some cases stopping the transmission at the sender

is actually what is required.

Thus any form of conference control that is to work with these appli-

cations should at least provide these basic facilities, and should also have

scaling properties that are no worse than the media applications themselves.

The domains these applications have been applied to vary immensely.

The same tools are used for small (say 20 participants), highly interactive

conferences as for large (500 participants) disseminations of seminars, and

the applications developers are working towards being able to use these ap-

plications for broadcasts that scale towards millions of receivers.

It should be clear that any proposed conference control scheme should not

restrict the applicability of the applications it controls, and therefore should

not impose any single conference control policy. For example we would like

to be able to use the same audio encoding engine (such as vat), irrespective

of the size of the conference or the conference control scheme imposed.

Since the various media in a conference session are handled by separate

applications, we need a mechanism to provide coordination among the sep-

arate processes. The Conference Bus[15] abstraction, illustrated in �gure

2.1, provides this mechanism. The concept is simple. Each application can

broadcast a typed message on the bus and all applications that are regis-

tered to receive that message type will get a copy. The �gure depicts a single

session composed of audio(vat), video(vic), and whiteboard(wb) media, or-

chestrated by a (to be discussed in this paper) coordination tool(ct).

The conference bus is currently only used to support voice-switched win-

dows in vic with cues from vat to focus on the current speaker. The bus

Chapter 2. Related Works 8

vat vic wb ct

Fig. 2.1: The Conference Bus

can be utilized to support
oor control, synchronization among the various

media applications, and to support coordinated access to audio and video

devices.

Conference buses are implemented as multicast datagram sockets bound

to the loopback interface. Local-machine IP multicast provides a simple, ef-

�cient way for one process to send information to arbitrary set of processes

without needing to have the destinations wired in. Since one user may be par-

ticipating in several conferences simultaneously, the transport address (UDP

destination port) is used to create a separate bus for each active conference.

This simpli�es the communication model since a tool knows that everything

it sends and receives over the bus refers to the conference it is participating

in and also improves performance since tools are awakened only when there

is activity in their conference. Each application in the conference is handled

the address (port) of its bus via a startup command line argument.

2.2 Conference Control Channel Protocol

The Conference Control Channel Protocol[10] abstracts a messaging chan-

nel providing reliable/unreliable semantics using a simple distributed inter-

process communication system. The protocol de�nes a simple class hierarchy,

Chapter 2. Related Works 9

with an application type as the parent class and subclasses of network man-

ager, member and
oor manager, and de�ne a generic protocols that are

used to talk between these classes and the application class, and an inter-

application announcement protocol.

Audio

Video

White
Boar

Session
Control

Floor
Control

Audio

Video

White
Boar

Session
Control

Floor
Control

Audio

Video

White
Boar

Session
Control

Floor
Control

Conference Control Channel

Control
Applications

Media
Applications

CCCP

Control Messages (CCCP)

Media Data

Fig. 2.2: Conceptualisation of CCCP

CCCP takes the following requirements originated primarily from the

MICE[9] project as well as from multicast internet conferencing.

Modularity Conference Control Mechanisms and Conference Control appli-

cations should be separated. The mechanism to control applications

Chapter 2. Related Works 10

(mute, unmute, change video quality, start sending, etc) should not

be tied to any one conference control application. This suggests that

a modular approach be taken, with for example, speci�c
oor control

modules being added when required.

A uni�ed user interface Each applications in multicast internet conferencing

has a separate set of session information. For example, a participant

in a conference using vat(audio), vic(video), and wb(whiteboard) has

three separate sets of session information, and three places to look to

see who is active. CCCP states that any conference interface should

provide a single set of session and activity information. Say, a conferee

wants to mute the other user in a conference, this should be possible

from a single interface with a single command.

Flexible
oor control policies Conferences come in all shapes and sizes. It

should be possible to provide
oor control functionality, but the providers

of audio, video and workspace applications should not specify which

policy to be used.

Scaling from tightly coupled to loosely coupled conferences CCCP originates in

part as a result of experience gained from tightly coupled centralized

systems, such as the Touring Machine system[3] and also from MBone

based loosely coupled conferences. Tightly coupled conferences have

advantages for small conferences where membership needs to be con-

trolled. Loosely coupled conferences are the only way to achieve scala-

bility, but the current lightweight sessions are too unrestricted for some

uses.

Chapter 3

MODEL

We now address the conference control model that will support requirements

discusses in the previous chapter. Observations from the previous chapter

lead us to the conclusion that the conference control model for light-weight

sessions has the following requirements.

� Existing applications be used without much modi�cations

� Retain scaling properties of media applications

� Support
exible policies

The conference control model discussed in the paper should work with

existing applications in the Internet multicast conferencing. Thus any form

of conference control that is to work with these applications should at least

provide these basic facilities, and should also have scaling properties that are

no worse than the media applications themselves. It should also be clear that

any proposed conference control scheme should not restrict the applicability

of the applications it controls, and therefore should not impose any single

conference control policy. A class of ten year olds might use very di�erent

oor control from a class of PhD candidates.

The conference control model discussed in this paper take the MMUSIC

agreement protocol[19] as an integral part of the architecture. Before we go

Chapter 3. Model 12

into the further details of the model, the agreement protocol needs to be

discussed brie
y.

3.1 Agreement Protocol

The agreement protocol introduces a framework for expressing a broad family

of policies for joint control of ephemeral state. These policies describe who

can propose changes to state, and the degree of consensus needed to enact

these changes. The policies also describe to what extent the views of state

must be consistent when voting and when all changes to state have been

executed.

The protocol consider two di�erent models of the reliability of commu-

nication: reliable and unreliable. In the reliable communication model, all

messages arrive at their intended destination on time and all messages from

a particular sender to a particular receiver arrive in the order in which they

are sent; we do not require that messages from di�erent senders arrive in the

same order as sent. In the unreliable model, the probability that k consecu-

tive messages from a sender destined for a particular receiver all fail to arrive

is O(k�y). In this model, messages from the same sender may arrive out of

order.

The protocol also consider two di�erent models for how the underlying

transport is addressed. In the Explicitly Named List (ENL) model, messages

are delivered only to those members that are known by the sender to be

members. Another would be using a sender-de�ned multicast tree. In the

Shared Bus (SB) model, messages are delivered to all those who choose to

receive the messages. each model has two di�erent degree of reliability, reli-

able and unreliable. Combining the reliability and addressing options gives

four systems to consider; reliable ENL, unreliable ENL, reliable SB, and un-

Chapter 3. Model 13

reliable SB. The internet multicast where the light-weight session model is

based on can be described as \unreliable SB" model. We now restrict our

discussions with the unreliable SB model in mind.

Policies are speci�ed along three dimensions: initiator policies, voting

policies, and consistency policies.

initiator For each elemental operation Oi we de�ne the initiating set of mem-

bers I(Oi); only those members in I(Oi) can initiate the operation.1

voting For every elemental change operation Oi, there is an associated voting

rule V (Oi) which takes a vector of votes, with each element taking a

value from fYES, NO, ABSTAIN, NO-REPLYg and returns 0 if the

vote fails and returns 1 if the vote carries. Voting rules can span the

gamut from requiring unanimous consent to requiring no consent at all.

The �rst three responses (YES, NO, ABSTAIN) are explicit responses

from other members; the NO-REPLY value indicates that no explicit

response was received.

consistency This dimension is of particular importance when, as assumed in

this paper, the teleconference is to be controlled in a distributed man-

ner. There is no other de�nition of the session state besides the state

belonging to each member; in particular, there is no \truth" against

which to compare these individual versions. We can only compare these

individual versions to each other and require various degree of consis-

tency. The weak eventual consistency requires only that the state on

1 The initiator policy described in the MMUSIC agreement protocol required that

changes on variables can only be initiated by a certain speci�ed member. This should

be relaxed to changes on variables can only be initiated by a certain speci�ed member at

a given moment . The relaxed requirement allows initiators to be changed over time.

Chapter 3. Model 14

which the eventual members agree be given by a sequence of change

operations that may be only a subset of all executed change operations;

that is, some executed change operations may be ignored, as long as

all members ignore them2.

There are three dimensions to policy: initiation, voting and consistency.

The implementation of the initiation rules is essentially a local matter. We

use repeated transmission of a State message that announces the current

value of a particular (or a set of) state variables. We choose to announce the

resulting variable, rather than the operation, since (as will become clearer

below) that relieves the need for all members to receive exactly the same set

of change operations to eventually agree. Our mechanisms in the unreliable

cases rely on the set of messages:

Poll(Id: id, Operation: op, Variable: i, Value: value-i, Variable: j, Value: value-j, : : :)

Asks for a vote on the proposed operation, with result as shown. The

response is fYES, NO, ABSTAINg.

Response(Id: id, Response: response) Response to Poll message.

State(Variable: i, Value: value-i, Variable: j, Value: value-j, : : :, Time: timestamp)

This announces the content of state variable i (several state variables

can be included in the same message).

2 Consistency policies include consistent voting and strong eventual consistency. Since

they cannot be implemented in the unreliable communication model, we do not consider

these policies in the discussion. We do not attempt to build a reliable transport protocol

on top of the unreliable communication media, which will take discussions back to reliable

communication. The design of the reliable communication protocol is out of the scope of

this paper

Chapter 3. Model 15

If the proposed operation requires a vote, then the message exchange

is Poll, Response, and then a sequence of State messages. If no vote is re-

quired, then there is merely the sequence of State messages. Exactly how

this sequence of State messages is sent out will determine the overhead of

the algorithm and its correctness.

3.2 Conference Control Architecture

In theory, the basic conference control architecture is straightforward: we

establish a conference bus[15] to exchange messages between media applica-

tions and coordination tool. Coordination tool dictates behaviors of media

applications as de�ned in the session policy; coordination tool can send mute

message or unmute message to media applications. Session policies are de-

scribed in series of procedural commands that are interpreted by coordination

tool. To take some examples, Poll command to cast a vote among the confer-

ees and Send command to send messages to the media applications via the

conference bus.

In the following subsections, we look into more details each parts that

constitutes the conference control architecture

3.2.1 Coordination Tool

The coordination tool lies in the central part of the conference control model.

The coordination tool keeps consistencies of shared variables and make changes

to variables as de�ned by the policy description. Upon changes to certain

variables, the coordination tool puts messages on the conference bus so that

media applications listening to the conference bus to take appropriate actions

according to the messages.

Chapter 3. Model 16

Audio

Video

White
Board

Coordination
Tool

Audio

Video

White
Board

Audio

Video

White
Board

Conference Bus Messages

Media Data

Conference BusConference BusConference Bus

Coordination
Tool

Coordination
ToolAgreement

Protocol

Fig. 3.1: The Conference Contrl Model

There are two kinds of communication in the coordination tool; commu-

nication with media applications is implemented through conference buses

and communication with other coordination tools are implemented as mul-

ticast sockets bound to another transport address of the current conference.

The agreement protocol is bound on the latter part of the communication

interface.

Chapter 3. Model 17

conference bus

vat vic

speak with other
coordination tools

ct

speak with other
media applications

policy interpreteruser
interface

agreement
protocol
engine

policy
spec.

.................

...some......
plicy... des-
scription...

Coordination Tool

interacts with
conferee

Fig. 3.2: The Coordination Tool

3.2.2 Conference Bus

An application listens to the conference bus and �nd if any message is ad-

dressed to itself by comparing the message with the list of know messages

de�ned within the application. The messages are prede�ned, and applica-

tions need to be con�gured to handle the messages.

The coordination tool can send messages to media applications through

the conference bus to assure that the media application follow any speci�c

session policy of the conference; the coordination tool can send mute message

or unmute message to media applications. Media applications also can send

Chapter 3. Model 18

messages to the coordination tool; vat(audio) asking for
oor to the coordi-

nation tool. Media applications themselves can send messages to each other

to achieve cross-media synchronization. Messages in the conference bus can

be de�ned as needed.

Media applications as well as the coordination tool should be designed so

that any message handle could be easily incorporated them. Vat, vic, and

wb currently support this by separating user interface part with the core

application design.

3.2.3 Specifying Policies

There are three dimensions to policy: initiation, voting and consistency. Any

change operation that doesn't require a vote can be modeled as a voting with

pass always condition and any initiation policy can be combined into a vote

cast. The consistency is always supported by the agreement protocol. This

lead us to the fact that any policy statement can be speci�ed as a form of

a vote. A policy statement can now be speci�ed as a tuple of the following

variables.

Poll(label, initiator, pass-condition, query-dialogue, notify-dialogue,

pass-code, reject-dialogue, fail-code, variable i, value value-i, vari-

able j, value value-j, : : :)

label Identi�er string to be mapped with the user interface object.

initiator who can initiate this poll

pass-condition the condition that should be met for the poll to be passed

query-dialogue query dialogue to be used in interacting with a conferee

Chapter 3. Model 19

notify-dialogue noti�cation dialogue to be shown to all conferees when the

poll is passed

reject-dialogue noti�cation dialogue to be shown to the initiator when the

poll cannot be passed.

pass-code script to be executed when the poll passes

fail-code script to be executed when the poll fails

Chapter 4

DESIGN

This chapter discusses a coordination control tool prototyped from the model

described in the previous chapter. Before we go into the details of the coor-

dination tool, programming languages issues are �rst discussed.

The policy speci�cation to be used in coordination tool should support

the following features.

Graphical user interface Conferencing is fundamentally a human endeavor and

the policy speci�cation involves interactions with users.

Messaging To send messages over the conference bus and to the other coor-

dination tools in the conference.

Standard procedural language features It seems hard to specify policies other

than procedurally[13].

To meet these requirements, the policy speci�cation is implemented as

a Tcl/Tk script[16]. Tcl is a simple scripting language which was origi-

nally developed as a generic command language for intergated circuit design.

Tcl provides generic programming facilities, such as variables and loops and

procedures, that are useful for a variety of applications. Furthermore, its

interpreter is a library of C procedures that can easily be incorporated into

Chapter 4. Design 21

applications, and each application can extend the core Tcl features with ad-

ditional commands for that application. One of the most useful extensions

to Tcl is Tk, which is a toolkit for the X window System. Together with Tcl,

Tk provide a programming system for developing and using graphical user

interface. We use a distributed programming extension to Tcl/Tk, called

Tcl-DP for the development of the coordination tool.

4.1 Coordination Tool

The coordination tool is composed of the following parts.

Agreement Protocol Engine Keeps the states in the coordination tool consis-

tent with the states in the other coordination tools. In the events of

changes in variables, appropriate messages are sent to the conference

bus to control media applications.

Policy Interpreter Interpretes the policy speci�ed in Tcl commands and hooks

up policies with user interface glues.

User Interface Displays participants of the conference, states of the variables,

and debug messages. Prompts dialog boxes when the coordination tool

need users' attention.

When the coordination tool is initiated, the policy interpreter parses a

policy speci�cation, and binds each policies with a user interface object.

4.1.1 Runtime Description

User casts a vote by selecting a menu item under the Policy menu bar. The

command bound with the menu item is executed and the initiator sends

Chapter 4. Design 22

conference bus

vat vic

speak with other
coordination tools

ct

speak with other
media applications

policy interpreteruser
interface

agreement
protocol
engine

policy
spec.

.................

...some......
plicy... des-
scription...

Coordination Tool

interacts with
conferee

Fig. 4.1: The Coordination Tool

poll message to relevant conferees. Conferees participating in the vote are

prompted with a dialog asking whether they agree the vote to be passed or

not. Upon receiving user response, each conferee's coordination tool responds

with response messages. The initiator solicits response messages for a certain

amount of time1 and checks if the poll condition is passed each time it receives

a response message. If the poll passes, the initiator sends out state message

periodically. Figure 4.5 depicts the dynamics of the coordination tool.

1 the time is a linear function of time-to-live value of a conferencing session

Chapter 4. Design 23

Fig. 4.2: User Interface of the Coordination Tool

4.1.2 Conferee Identi�cation

Conferees are identi�ed with a RTPv2 [18] CNAME type handles. Vat, vic

and web uses the following convention to identify a conferee and we adopt

this convention to be used also in the coordination tool.

user@host.domain.name or host.domain.name

when the host is a multi-user system the login id of the user with the sign

is pre�xed to the fully quali�ed domain name of the conference host. The

host name can be replaced with the IP address of the host when the DNS

inverse zone is not available.

4.2 Policy Speci�cation

As described in section 3.2.3, each policies can be speci�ed as a form of

voting.

Poll(label, initiator, rule, query-dialogue, notify-dialogue, reject-

dialogue, confbus-message, variable i, value value-i, variable j,

value value-j, : : :)

Chapter 4. Design 24

4.2.1 Syntax

The following syntax is used to specify policies. The policy description is

written in two parts; one that declares shared variables, and one that declares

any operation upon those variables.

global V(variable) value

� � �

ct pack

label

initiator

voting-condition

query-dialog

notify-dialog

pass-code

reject-dialog

fail-code

varlist-number

f

variable1

value1

� � �

g

Each of the items written in italics are further explained as follows. The

language syntax used to describe the policies are that of Tcl[16]. When there

is no explicit notation given, the Tcl notation is assumed.

Chapter 4. Design 25

label String to be bound with the menu item under the policy menu of the

coordination tool.

initiator VariableList of variables can also be used, but the coordination tool

prototype doesn't implement this feature yet to designate who can ini-

tiate the operation. There are prede�ned variables that can be used

as the initiator string. $myself, $creator are examples of such vari-

ables. The following section describes more details of prede�ned vari-

ables. Variables de�ned in the �rst section of the speci�cation can also

be used.

voting-condition Prede�ned keywords or participants from which positive re-

sponse should be collected to pass the vote. pass-always, majority,

and unanimous are the list of prede�nd keywords.

query-dialogue Query string to be used in the dialog asking for a con�rmation.

notify-dialogue Notify string to be used in the dialog when the vote is passed.

reject-dialogue Notify string to be used in the dialog when the vote is rejected.

pass-code Tcl code to be invoked when the poll passes. This is usually used

to control media applications via messages over the conference bus.

fail-code Tck code to be invoked when the poll fails. This is usually used to

handle failure recoveries.

varlist-number Number of variables passed in the variable list.

4.2.2 Prede�ned Variables

The following is a list of prede�ned variables. More variables can be de�ned

as required as we gain more experience using the coordination tool.

Chapter 4. Design 26

$myself Same as $cname variable that is used to identify the conferee

$creator Creator of the conference

$title Session Title

$audio Format of the audio

$video Format of the video

4.2.3 Initialization

Distribution of initial policy speci�cations and initial variables is made avail-

able from the Session Description Protocol version 2 [8]. Coordination tool

is launched from the session directory with initial variables passed in the

arguments list.

sd

conference bus

vat vic ct

instantiates
a conference

session description
with policy spec.

create

sdsd

conference bus

vat vic ct

joins
the confernce

announce

Fig. 4.3: The Runtime Model

Chapter 4. Design 27

4.3 Agreement Protocol

In a nutshell, the agreement protocol used in the coordination tool works in

a simple manner as shown in the �gure 4.4.

conferee1

unreliable shared bus
(internet multicast)

conferee2

conferee4

a=1
b=2

a=1
b=2

a=1
b=2

 1 a=0 ?

3. pass
2. ok

2. ok

conferee1

unreliable shared bus
(internet multicast)

conferee2

conferee4

a=0
b=2

a=1
b=2

a=0
b=2

 4 a=0
 5 a=0

Fig. 4.4: Agreement Protocol in a Nutshell

The initiator sends a poll message to the multicast channel to which all

coordination tools are subscribed. When other conferees' receive the poll

message, they (when they �nd they are addressed to themselves) send re-

sponse messages back to the initiator via the multicast channel. The ini-

tiator decodes each response messages for a certain period of time, updates

the varaible when the voting condition is passed. state messages are sent

Chapter 4. Design 28

periodically to keep consistencies among the conferees.

initiator peers

alive alive

alive

poll

response

response

state

sends alive
message upon
startup

casts a vote

in case poll
has been
passed,
sends status
message

sends alive
message
upon

replies with
response message

updates variables

Fig. 4.5: Agreement Protocol Messages

alive messages are periodically sent by all coordination tools participating

in the conference to identify conferees' who is alive. The frequency each alive

and state messages are sent is determined by the number of participants to

keep the bandwidth bound on a constant number. The delay in learning the

new state also increases with the number of members since the overhead is

kept constant by reducing the update frequency as membership increases.

Chapter 4. Design 29

This is similar to the algorithm used in the Internet teleconferencing tools

vat and nv to maintain lists of members of the conference. Each new member

is apprised of the current state by the incoming state messages. The lack of

an initial state status exchange allows this mechanism to e�ciently support

an open membership policy (anybody who wants to can join), since then

membership is merely announced by beginning to send state messages; the

new member need not contact an old member to be initiated into the group.

Message Format

The protocol messages are formatted in plain ascii texts. There are four

message types de�ned for the agreement protocol.

poll src poll id dst query-dialog

response src response id dst response

status src status var-num var-list pass-code

alive src alive name

Items written in italics above have the following meanings

src Identi�er of the source

dst Identi�er of the destination

id Unique identi�cation number given to the poll message generated by the

source. The tuple src, id uniquely identi�es a given poll.

query-dialog The dialogue string to be used when prompting for a user to

poll.

Chapter 4. Design 30

response Response to a poll. Either of yes, no, or abstain.

var-num Number of varibles in the var-list .

var-list List of variables and values. f variable1 value1 � � � g

name Human readable form of the conferee's name

pass-code The Tcl code to be executed when the variable is changed.

4.4 Conference Bus Messages

Media Applications such as vat, vic, and wb are already designed to support

conference buses. The user interface part of these applications are built with

Tcl so that new message types can be easily handled by the applications. The

only message currently being used is focus message which is used to support

the voice-switched window feature in vat and vic.

Whenever a new message type is de�ned, it can be declared as a cb dispatch

handle, and the handler function can be bound with the dispatch handle. For

example, the mute message in vat can be implemented as follows.

conference bus API

$cb send "mute $cname"

set cb_dispatch(mute) mute_someone

proc mute_someone cname {

audio $cname mute

}

Since many of the MBone applications currently use Tcl to control user

interface parts, messages in the conference bus are written in Tcl.

Chapter 5

APPLICATION

The coordination tool described in the previous chapter can be used to sup-

port various types of conference policies. The followings show some of the

possible use of the coordination tool in action.

Explicitly chaired conference

In an explicit chaired conference, a chairperson decides when someone can

send audio and video. There are three policy descriptions, i.e. Request Floor ,

Release Floor , and Revoke Floor .

The variables used in the policy desciption are declared �rst. The �rst

policy de�nes \Any conferee needs explicit permission of the chairperson

before she/he can talk." The second one de�nes \Speaker returns
oor when

she/he �nishes to talk." \Floor can be revoked by the chairperson" is what

it means by the third one.

global V(chair) whchoi@cosmos.kaist.ac.kr

global V(speaker) ""

ct_pack

"Request Floor" \

Chapter 5. Application 32

$V(myself) \

$V(chair) \

"Can I speak next time?" \

"You can speak now" \

{ confbus "mute all" confbus "unmute $V(speaker)" } \

"You are not allowed talk right now" \

{ } \

1 \

{ speaker $myself }

ct_pack

"Release Floor" \

$V(speaker) \

pass-always \

"" \

"" \

{ confbus "mute $V(speaker)" } \

"" \

{ } \

1 \

{ speaker "unknown" }

ct_pack

"Revoke Floor" \

$V(chair) \

pass-always \

{ confbus "mute $V(speaker)" } \

Chapter 5. Application 33

"" \

"" \

"" \

1 \

{ speaker "unknown" } \

Token-passing conference

In the token passing conference, the potential speaker asks for
oor to the

current token holder. This is very similar to the previous example, but

there is no conference moderator at all. The policy description has a failure

recovery code to handle when there is no current speaker de�ned.

global V(speaker)

ct_pack

"Request Floor" \

$V(myself) \

$V(speaker) \

"Can I speak next time?" \

"You can speak now" \

{ confbus "mute all" confbus "unmute $V(speaker)" } \

"You are not allowed talk right now" \

{ if [expr $V{speaker} = "unknown"] set $V(speaker) $myself reenter } \

1 \

{ speaker $myself } \

Chapter 5. Application 34

Changing the audio format

Assume that unanimous agreement is required to change the audio format.

The following example shows a policy speci�cation to change the current

audio format to a low bandwidth format.

ct_pack

"Change Audio to Low" \

$V(myself) \

unanimous \

"Can I speak next time?" \

"Audio format changed to low quality GSM" \

{ confbus "select_format gsm 4" } \

"Audio format could be changed" \

{ } \

1 \

{ audio "gsm 4" }

Chapter 6

ANALYSIS

Before we discuss bene�ts and drawbacks of the conference control model

proposed in the paper, we brie
y give an overview of the previous chapters.

By investigating the state-of-the-art works in the area of conference con-

trol for light-weight sessions, we had the following requirements for the con-

ference control model.

� Existing applications be used without much modi�cations

� Retain scaling properties of media applications

� Support
exible policies

To meet these requirements, a conference control model has been pro-

posed. The model had a coordination tool in the central part of the archi-

tecture which used an agreement protocol to manage shared states among

the conferees. The agreement protocol assumed an unreliable shared-bus

communiation model as it is in the Internet multicast communications. The

coordination tool could colaborate with media applications via the conference

bus abstraction.

A prototype of the coordination tool has been implemented in a small

Tcl-DP code which is around 1000 lines long. This could be made possible

Chapter 6. Analysis 36

by high-level communiactions and string manipulation functions provided in

Tcl-DP.

We now discuss bene�ts and drawbacks of the conference control model

proposed in the paper. The conference control model is based on the light-

weight session model of the Internet multicast conferencing. Thus it inherits

many of the properties of the MBone applications. The conference con-

trol model is compared with traditional MBone applications, the Conference

Control Channel Protocol, and ITU T.124 recommendation in terms of scal-

ability, reliability,
exible policies, the level of control provided, availability

of applications.

Traditional
MBone

CCCP

Coordination
Tool

ITU T.124

Scalibility Reliability
Flexible
Policies

Level of
Control

Availibility

Fig. 6.1: Comparison between Conference Control Models

Scalability

Traditional MBone tools lacked any meaningful conference control features,

but they are most scalable due to their communications model, IP multi-

cast. The coordination tool works with existing MBone applications without

any modi�cations in the communication architecture, so media applications

Chapter 6. Analysis 37

themselves retain their scalability. The agreement protocol underlying in the

coordination tool is at least as scalable as the media applications themselves

since the protocol is based on the multicast communication model and is

implemented in a similar mechanism that is found in Internet multicasting

conference applications.

CCCP is as scalable as MBone applications when the transport reliability

condition is relaxed. ITU T.124 Recommendation is based on the centralized

Multipoint Communication Unit(MCU). MCU's can be cascaded to support

broader coverage, but it is not as scalible as Internet multicast since T.124

assumes point-to-point communications model.

Reliability

Reliability can always be provided by sacri�cing scalability. The coordination

tool doesn't use any reliable transport protocol. There is always non zero

probability that all messages be lost in unreliable multicast communications.

However, the agreement protocol guarantees weak eventual consistency[19]

in shared states. CCCP has an reliability option, and T.124 is based on a

reliable transport protocol.

Flexible Policies

Policies are represented in a simple script in the coordination tool. The script

can be written by anybody who wants to implement a di�erent policy, and

can be incorporated into the coordination tool in run time. However the

policies themselves cannot be changed durinng the course of the conference

in the conference control model proposed in this paper.

The conference control architecture in CCCP allows
oor control and ses-

Chapter 6. Analysis 38

sion control applications be modularized and replaced at will. But CCCP

leave it to designers of control applications how to support
exible policies.

T.124 lends the policy implementations into the each conferencing appli-

cations. Policies cannot be changed unless the application is designed to

support
exible policies.

Level of Control

The conference control model proposed in this paper is based on the confer-

ence bus where media applications and the coordination tool can speak with

each other. New messages can be de�ned and implemented in applications

to provide more control features. On the other hand, these could be limita-

tion of the conference control model proposed in the paper. The conference

control model lacks any well-de�ned set of application control interface.

Comparison with CCCP in this perspective is not applicable since CCCP

leaves this also to the hands of the control application designers. In the case

of T.124, applications can be built to provide more control features than that

is de�ned in T.124, but this is not likely since T.124 would be the least and

the most common denominator in most cases.

Availability of Applications

MBone applications are available now, and they can be used in controlled

conferences without any modi�cations with the help of the coordination tool.

T.124 based products are already available in market places while there is

no known control applications based on CCCP as of this writing. The coor-

dination tool need to be fully integrated with session directory applications

and this should be resolved with further works.

Chapter 7

CONCLUSION

This paper has presented a conference control model for Internet multicast-

ing applications. The model had on two kinds of communications involved;

the conference bus for collaborations among media applications and the coor-

dination tool, and communications among the conferees' coordination tools

where they use an agreement protocol to assure state consistencies. A coor-

dination tool has been built to support policies in existing applications and

various applications of the coordination tool has been demonstrated.

Two key changes that are made possible by the model are that; The

model does not rely on cooperation among all the remote participants in a

session. A misbehaving participant cannot cause problems because it will be

muted by all participants that follow the protocol. Another bene�t of the

model is that the conference policy can be changed at will since the model

has been designed to carefully separated policies from the mechanisms that

implement the policies.

The model can be incorporated with session directory tools and session

description protocols to keep the directory information keep up-to-date so

that late comers can join the on-going conference without any problems. The

coordination tool might also be extended to support reliable communications

sacri�cing the scalability to support tightly coupled conferences.

Appendix A

TERMINOLOGIES

This section describe the terminologies used throughout the paper. Many of

the literatures in the area of conference control use these terms in di�erent

ways, and it is necessary to provide de�nitions of the terms used to avoid

potential confusions. These terminologies are adopted from the discussions

in the IETF MMUSIC working group[5].

General

Conference A logical abstraction among multiple participants for multimedia

real-time communication. A conference consists of a control session,

related media associations, and conference policies.

Conferee A participant in a conference.

Session An association of members for control; for instance, to control a

conference with multiple conferees.

Media Association Encapsulation of the transport (point-to-point or multi-

point) in a single medium.

Conference Policies Rules regarding the style of interaction for a conference.

Appendix A. Terminologies 41

Control

(Multiparty Multimedia) Session Control Protocol The protocol used for ses-

sion control, the management and coordination of multiple sessions,

and their multiple members in multiple media.

Distributed Control A control model where control functions are distributed

among session managers.

Centralized Control A control model where control functions are the respon-

sibility of a centralized agent.

Tight Control A session style in which state is actively shared among partic-

ipants and that aims to keep state consistent among participants.

Loose Control A sessions style in which state information is passively shared

among participants. In the extreme, no state sharing is performed.

System Components

Conference Session Manager A software entity that resides at each conferee's

end system to coordinate the initiation, maintenance and interactions

of sessions. A communication endpoint for the session control protocol.

Media Agent A software entity that handles media-speci�c functions such

as encoding, compression and transport packetization that are used by

conferences. Media in a conference might include audio, video, graphics

and text.

Resource Manager A software entity that manages the media agents on a

workstation. It understands the static end-system descriptions (hard-

Appendix A. Terminologies 42

ware and software capabilities), as well as the negotiated per-session

preferences.

Conference Directory Service A directory that provides user network addresses,

conference IDs and addresses, the conference begin time, conference

topic, etc.

Conference Scheduling The advertisement of a conference's start time with a

session directory service.

Policies

Initiator A conferee that initiates a conference.

Chair A designated conferee having more authority than other conferees in

the conference. For example, the chair might decide the policy on late

joins, media
oor control, interaction style, etc.

Receiver A conferee that receives session data.

Sender A conferee that transmits/sends session data.

Passive Participant A conferee that only acts as a receiver

Active Participant A conferee that acts both as a sender and receiver

Re
ector Participant An entity that relays data between conferees, acting as

a go-between.

Floor Control Coordinated control over who may or may not send and/or

receive data.

Connectivity Style The interconnectivity of conferees (e.g. 1-to-N, N-to-N,

M-to-N) in either the control or data realm.

Appendix A. Terminologies 43

Access Control The accessibility of a session to potential conferees.

Interaction Policies The model and rules used by conferees to interact with

one another in a conference.

References 44

References

[1] S. Casner. First IETF Internet Audiocast. ACM SIGCOMM Computer

Communications Review, July 1992.

[2] T. Crowley et al . MMConf: An infrastructure for building Shared Mul-

timedia Applications. In Proceedings of CSCW'90, Los Angeles, USA,

October 1990.

[3] M. Arango et al . The Touring Machine system. Communications of the

ACM, 36(1), January 1993.

[4] R. Frederick. nv UNIX Manual Pages. Xerox Palo Alto Research Center,

Palo Alto, USA.

[5] MMUSIC Working Group. The glossary taken from slides presented

at the MMUSIC meeting. The 27th Internet Enginnering Task Force

Meeting, July 1993.

[6] M. Handley. Minutes of the Multiparty Multimedia Session Control

Working Group. The 31st Internet Enginnering Task Force Meeting,

July 1995.

[7] M. Handley, J. Crowcroft, and C. Bormann. The internet multimedia

conferencing architecture. Technical report, Internet-Draft, February

1996.

[8] M. Handley and V. Jacobson. SDP: Session Description Protocol (draft

2.1). Technical report, Internet Draft, February 1996.

[9] M. Handley, P. Kirstein, and A. Sasse. Multimedia Integrated Confer-

encing for European Researchers (MICE): Piloting Acticities and the

References 45

Conference Management and Multiplexing Center. Computer Networks

and ISDN Systems, 26, November 1993.

[10] M. Handley, I. Wakeman, and J. Crowcroft. The Conference Control

Channel Protocol (CCCP): A scalable base for building conference con-

trol applications. In Proceedings of ACM SIGCOMM'95, Boston, USA,

August 1995.

[11] V. Jacobson and S. McCanne. Using the LBL Network Whiteboard.

Lawrence Berkeley Laboratory, Berkeley, USA.

[12] V. Jacobson and S. McCanne. vat UNIX Manual Pages. Lawrence

Berkeley Laboratory, Berkeley, USA.

[13] V. Jacobson, S. McCanne, and S. Floyd. A Conferencing Architecture for

Light-weight Sessions. Technical report, Lawrence Berkeley Laboratory,

November 1993.

[14] M. Macedonia and D. Brutzman. MBONE provides Audio and Video

across the Internet. IEEE Computer, 27(4), April 1994.

[15] S. McCanne and V. Jacobson. vic: A Flexible Framework for Packet

Video. In Proceedings of ACM Multimedia'95, San Francisco, USA,

November 1995.

[16] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[17] E. Schooler, R. Lang, and M. Handley. Charter of the Multiparty Multi-

media Session Control Working Group. Internet Engineering Task Force

Working Group.

References 46

[18] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A

Transport Protocol for Real-Time Applications. Technical report, RFC

1889, January 1996.

[19] S. Shenker, A. Weinrib, and E. Schooler. Managing Shared Ephemeral

Teleconferencing State: Policy and Mechanism. Technical report,

Internet-Draft, July 1993.

[20] T. Turletti. INRIA Video Conferencing System(ivs). Institut National

de Recherche en Informatique et an Automatique.

[21] International Telecommunication Union. ITU Recommendation T.124

{ Generic Conference Control.

[22] H. Vin et al . Multimedia Conferencing in the Etherphone Environment.

IEEE Computer, 24(10), October 1991.

[23] L. Zhang, S. Deering, D. Estrin, S. Schenker, and D. Zappala. RSVP: A

New Resource ReSerVation Protocol. IEEE Network, September 1993.

