
1

Bridging communications and the physical world:
Sense Everything, Control Everything

Omer Boyaci, Member, IEEE, Victoria Beltran, Member, IEEE,
and Henning Schulzrinne, Fellow, IEEE

Abstract—SECE (Sense Everything, Control Everything) allows non-technical end-users to create services that
combine communication, social networks, presence, calendaring, location and devices in the physical world. SECE is
an event-driven system that uses a natural-English-like language to trigger action scripts. Users associate actions with
events; when an event occurs, associated actions are executed. Presence updates, incoming calls, email, calendar and
time events, sensor inputs and location updates can trigger rules. SECE combines information from multiple sources
to personalize services and to adapt them to changes in the user’s context and preferences. Actions can control the
delivery of email, change the handling of phone calls, update the user’s social network status and set the state of
actuators such as lights, thermostats and electrical appliances.

✦

COmmunication is not limited to telephony
anymore, as millions use IM, SMS, email,

Twitter, and Facebook everyday. Although
these stand alone Internet services improve
our daily life, they are not automated and
programmable by end-users, decreasing their
utility. For example, it is not easy to create a
service which forwards incoming calls to voice
mail while the user is in a meeting or turns on
the air conditioner while the user approaches
his home. Moreover, although these services
handle very similar information (e.g., calen-
dar, presence, messages and user history), they
do not work together. Such a lack of service
cooperation and automation forces users to
check services one after another and manually
copy data or configure services based on other
services.

SECE is a context-aware, intelligent, integra-
tive, human-oriented and proactive platform
that connects services that until now were iso-
lated, leading to new, more useful and user-
personalized, composite services will make our
communication more efficient and our life eas-
ier. These services do not require user interac-
tion; they are automated and embedded into
users’ life. SECE does not require user interac-
tion except during the service creation phase
due to its event-driven operation. Incoming

and outgoing phone calls, IM or email mes-
sages, presence status updates, sensor inputs,
location updates, social network activities such
as incoming wall messages or tweets, changes
in stock prices or weather are all possible
SECE events. Whenever an event occurs, it trig-
gers one or more user-created SECE services.
SECE converges fixed and mobile services by
integrating the Internet, cellular and sensor
networks. This integration requires interacting
with Internet servers, web services, home gate-
ways, and wireless and fixed user devices.
SECE has to both sense and control because
sensing without controlling is not very useful.

SECE takes actions automatically on behalf
of users depending on the monitored informa-
tion and triggered events. In order to build
such a system, the user has to define event-
action rules. In general, there are several ways
to define these rules such as using XML,
forms or scripts. We chose to develop SECE
using a natural-English-like formal language
because it is more powerful and easy-to-use
than XML and form-based solutions. SECE ad-
dresses users who are comfortable with tech-
nology, but are not programmers. The main
challenges were to keep the language user-
friendly while not decreasing its power and
to develop the software which has to integrate



2

and communicate with several Internet services
such as email, IM, phone, SMS, location, cal-
endar, presence and translation services, and
social networks.

An example script which turns the home’s
lights on every sunset shows the end-user
friendliness of SECE:

Listing 1: SECE script which turns the home’s lights on
every sunset

every sunset {
homelights on;

}

IETF standard protocols are used to intercon-
nect networked components. We first discuss
the related work. Then we present the SECE
language and integration of SECE with external
services and resources.

RELATED WORK

Several solutions for user created
communication-related services have been
proposed; some of these solutions are
compared in Table 1. CPL [1], LESS [2],
SPL [3], VisuCom [4] and DiaSpec [5] are
attempts to allow end users to create services,
but they are all limited to controlling call
routing. Also, CPL and LESS use XML and,
hence, even simple services require long
programs. Moreover, XML-based languages
are difficult to read and write for non-technical
end-users. DiaSpec is a very low level domain-
specific design language similar to Java.
Writing a specification in DiaSpec and then
developing a service using the generated
Java framework is definitely not suitable
for non-technical end users. The authors of
DiaSpec extended [6] their initial work to
support services beyond telephony, which
include sensors and actuators. However, it is
still only suitable for advanced developers.
SPL is a scripting language which is suitable
for end-users but only for telephony events
such as forwarding or rejecting incoming calls.
VisuCom has the same functionality as SPL,
but allows users to create services visually via
GUI components. Although visual interface of
VisuCom is suitable for end-users, its services
are limited to telephony events.

CybreMinder [7] is a context-aware tool
which allows users to setup email, SMS, print
out and on-screen reminders based not only on
time but also location and presence status of
other users. It uses local sensors such as active
badges and floor-embedded pressure sensors
to detect a user’s location. It does not take
any actions, but rather displays reminders to
the end user. Also it is not as powerful as
scripting-based systems due to its form-based
nature. Task.fm [8] is a similar SMS and email
remainder system which uses natural language
to describe time instants when email or SMS
reminders will be sent. However, Task.fm only
supports time-based rules and does not include
information from sensors. This tool does not
take actions other than reminding users via
SMS, email or phone call.

Yahoo Pipes [9] is a graphical tool for web
service composition, but it only generates web
mashups from public web feeds and public
webpages, which means it could not even gen-
erate web mashups from users’ private infor-
mation such as their Facebook wall messages
or emails.

There are also some web aggregation services
like Timelimes [10] and netvibes [11], but they
just combine all the news and events from
users’ social networking, webmail and news
sites into one simple page. Ping.fm [12] can
update several social network statuses from a
single webpage, but it does not support actions
triggered by events.

Google previewed an initiative called An-
droid @ Home during Google I/O conference
2011, which allows Android apps to discover,
connect and communicate with appliances and
devices in your home. SECE may control and
sense these devices using the same APIs avail-
able to Android applications.

AppleScript, which also tries to mimic nat-
ural English diction, allows end-users to write
scripts for automating repetitive tasks and in-
tegrating a range of desktop applications.

In summary, the tools shown in Table 1 are
either not suitable for non-technical users or
only support a limited set of context informa-
tion.



3

 











    







 



 



 



   

  



      

  



      



  



      

 







      

 



       

         

         

TABLE 1: Comparison to related work

THE SECE LANGUAGE

A SECE rule has two parts, the event descrip-
tion and the actions. The event description
defines the conditions that need to be satisfied
to execute the actions. We have designed the
SECE language as formal language but similar
to natural English, making it easy to remember
and use. A very simple but illustrative example
which sends an SMS to the user when Bob’s
presence status changes to available is given
below:

Listing 2: An example script which SMS the user when
Bob’s presence status changes to available

If Bob’s status is available {
sms me "Bob is available now.";

}

The SECE language is only intended to de-
fine events, while rule actions are written in
the Tcl language [13]. We chose Tcl due to
its extensibility that makes it simple to add
new commands. We introduced a set of new
Tcl commands, such as “sms”, “im”, “email”,
“tweet” or “call” (complete list is shown in
Table 2). Combined with the SECE’s web-
based editor which features auto-completion
and shortcut buttons for the action commands;
the end-users do not need any Tcl knowledge

in most situations. Thus, SECE users can de-
scribe events in a user-friendly and natural
way while taking advantage of the expressive
power of Tcl to define advanced actions if they
need to. (Support for other scripting languages
like Ruby or Python may be added in the
future.)

The SECE language currently supports five
types of events: time, calendar, context, location
and request. The following subsections explain
each of these rules. As a formal language,
SECE states the valid combinations of key-
words and variables for each kind of event.
Some newly introduced Tcl commands are spe-
cific for particular events as for example the
“accept” and “reject” commands can only be
used in communication-based rules. SECE tries
to make it easy to integrate external knowledge
and uses context such as addresses, phone
numbers, weather, and stock prices seamlessly
without having to explicitly invoke libraries or
functions.

Time-based rules
Time-based rules support single and recurring
events. We base our time sublanguage design
on the iCal specification. iCal can express single
and recurring events but it is designed to be



4

processed by computers rather than users. We
designed the SECE’s time sublanguage to be
easy to write while maintaining the full ex-
pressive power of the iCal specification. Single
events start with an on keyword, while recur-
ring events start with an every keyword.

An example of SECE time event which will
trigger every noon till next April and its equiv-
alent iCal definition for a recurring event is
given below.

Listing 3: An example recurring time event which will
trigger every day 3 PM till next April

SECE: every day at 15:00 until April

iCal: BEGIN:VCALENDAR
BEGIN:VEVENT
DTSTART;TZID=America/New_York

:20100101T150000
RRULE:FREQ=DAILY;BYHOUR=15;UNTIL

=20100401T150000
END:VEVENT
END:VCALENDAR

The recurrence can be defined by the second,
minute, hour, day, week, month or year. How
long the recurrence takes is determined by the
from, until, during or for parameters. A recur-
rence will repeat indefinitely if no until, during,
or for parameters are indicated. The time sub-
language supports natural language constructs
like Thanksgiving, Bob’s birthday, sunset, sun-
rise, lunch break, and tomorrow. In the case of
Bob’s birthday, future versions of SECE may
try to find the birthdate of Bob from available
services like the user’s calendar, Facebook or
contacts. Similar lookup operations can be per-
formed for sunset, sunrise, and lunch break.
Some expressions like sunset and sunrise can
be computed programmatically whereas others
like lunch break have to be defined by the
user via SECE’s web-based user interface. Some
example time-based rules are given below.

Listing 4: Sends an SMS to Anne on her birthday

on Anne’s birthday, 2010 at 15:00 in Europe
/Zurich {

sms Anne "Happy Birthday!!!kisses. John";
}

Listing 5: Sends a reminder email to a list about weekly
meeting

every week on WE at 6:00 PM from 1/1/10
until May 10, 2010 except 3th WE of Feb
including first day of June, 2010 {

email irt-list "Meeting Reminder" "weekly
meeting today at 6:00 PM";

}

Calendar-based rules
Calendar-based rules specify events that are
defined in the user’s calendar. They can be
triggered some time before or after an event
occurs, as well as when an event begins or fin-
ishes. SECE can download all the events from
user’s Google account using the Google Calen-
dar API. We implemented the event command
to get a Calendar event’s information (title,
description, location, duration, start time, end
time and participants). Calendar-based rules
can be useful to create user-personalized re-
minders, as in the example below.

Listing 6: Reminds the participants half an hour before
the weekly meeting begins and if the user is not within the
three miles of campus emails Bob to prepare everything

when 30 minutes before "weekly meeting" {
email [event participants] "Reminder" "

The weekly meeting will start in 30
minutes";

if {me not within 3 miles of campus } {
email [status bob.email] "I’m away" "

Please, head the conference room
and prepare everything for the
weekly meeting. Not sure if I will
be on time.";

}
}

Location-based rules
The SECE’s location sublanguage supports
five types of location information that are
commonly used: geospatial coordinates
(longitude/latitude), civic information (street
addresses), well-known places, user-specific
places and the location of other users. Well-
known places are unique and widely-known
landmarks such as “Columbia University” or
“Rockefeller Center”. User-specific locations



5

are places that are of interest for the local user
and therefore are defined by the user in the
system, such as office, home and university.
The system resolves these constants via the
user’s address book, but also allows the user to
define custom terms, such as “office” in the list
below. The supported location operators are
near [landmark], within [distance] of [landmark],
in [landmark] and outside of [landmark]. All
these operators can be combined with the
“a” and “an” indefinite articles to express
generic locations (e.g., ‘a postal office’). Some
examples of location events are given below.

Listing 7: Examples of location-based rules

Bob near "Columbia University" { ... }
me near a post office { ... }
me within 3 miles of "1000 Massachusetts

Avenue, Washington, DC" { ... }
Alice in clubhouse { ... }
Tom within 5 miles of me { ... }

Communication-based rules
Communication-based rules specify the action
to execute in response to incoming calls, IMs,
emails, SMSs or voicemails, outgoing calls or
IMs, and missed calls. While an incoming or
outgoing call is always a SIP call in our imple-
mentation, a missed call could be also a phone
call. All these events can be filtered by the user
destination and origin, using the from and to
parameters, respectively.

The Tcl environment of SECE is context
aware. Properties of incoming events can be
accessed via the incoming command. This com-
mand takes a parameter and returns the re-
quested information about the incoming event.
The supported parameters are origin, destina-
tion, content, timestamp, and subject. Depend-
ing on the incoming event type this command
may return different results. For example, in-
coming content may return the message text
for an IM event or the email body for an email
event. There are other commands like accept,
reject, and forward; these will only be available
if the context is right.

Listing 8: Call forwarding in a busy situation

incoming call from a workmate {
if {[my activity is "on the phone"] } {
forward sip:bob@example.com;
email me "[incoming origin] tried to

reach you at [incoming timestamp]";
}

}

Context-based rules
Context-based rules specify the action to exe-
cute when context information changes, such as
presence, call, weather, stock prices, or sensor
states. To be more extensible, SECE keeps all
the contextual information in a Document Ob-
ject Model (DOM) tree registry. The contextual
information is not restricted to personal infor-
mation like phone numbers but also includes
information from sensors and Internet services.
The contextual information (e.g., activity, status
and stock.google in the below example rules)
can be any hierarchical variable in the form
of x.y.z.t, such as phone.office, activity and of-
fice.temperature. Context-based rules associate
events with the nodes of the registry. A rule
does not have to be associated with a leaf node;
it can be associated with any node. The benefit
of associating rules with top-level nodes is to
write generic rules like “if Bob changes {...}”
to allow monitoring any activity related to a
subtree.

Each user has a separate and isolated tree in
the current implementation, but future versions
of SECE may enable users to share parts of their
tree with other users. Any existing or newly
introduced component of SECE can read and
write to the registry tree. Registry trees are
automatically stored in permanent storage and
their state are restored in case the SECE server
reboots. The following listings present example
context-based rules.

Listing 9: Notifies the user via instant messaging as soon
as Bob becomes available

if bob@example.com’s status is available {
im me "Bob is available.";

}



6

Listing 10: Notifies the user via SMS if Google’s stock
prices passes $580

if stock.google > 580 {
sms me "google stock: [stock google]";

}

The context’s subject is given by the my

and ’s operators (e.g., “bob’s phone.office”
and “my activity”). Shortcuts can be used in-
stead of these operators, so that for exam-
ple bob.device.mobility is equal to bob’s de-
vice.mobility. The relational operators can be
expressed as symbols or text (e.g., the equal re-
lation can be given by “=”, “is”, or “equal”). In-
formation derived from sensors, such as smoke,
light, humidity, motion and temperature can
be also used in context-based rules. Naming of
sensors is an open problem that, for now, is
beyond our scope. We have adopted a simple
solution that consists of a translation table from
internal, machine-friendly names (e.g., 00-0C-
F1-56-98-AD) to more user-friendly identifiers
(e.g., office.smoke).

Listing 11: Notifies the user via SMS and fire department
via text-to-speech if office smoke detector detects a fire

if my office.smoke equals true {
sms me "fire in the office";
calltts firedepartment "fire in [status

office.address]";
}

INTEGRATION WITH EXTERNAL SER-
VICES

Due to its integrative nature, SECE commu-
nicates with several third party applications,
hardware, and APIs like Google services (e.g.,
GMail, Google Contacts and Google Calendar),
Facebook, Twitter, online maps, VoIP proxy
servers, presence servers, sensors and actua-
tors, and location, photo sharing and calendar-
ing services (Figure 1). SECE considers not only
the user’s context but also information about
external entities other than sensors, such as his
or her buddies.

In order to integrate with online services,
SECE has to take actions on behalf of the user;
such actions usually require authentication.
Asking the user for his username and pass-
word is a possible but problematic solution.

Users do not want to give their username and
passwords to other services to prevent account
theft and unauthorized activities. Fortunately,
the IETF OAuth standard solves these prob-
lems by authenticating SECE to these online
services without requiring the user’s username
and password.

External services can update a user’s DOM
tree registry which may trigger associated
context-based rules.

Sensors and Actuators
Sensors and actuators are an important part of
our daily life and we thus made them part of
SECE. Electrical appliances can be controlled
automatically depending on the information
coming from sensors, from other web services
such as weather services and from time of
day. Presence sensors may update a user’s
availability. Combined with SECE’s knowledge
on the user’s presence, location, and avail-
ability, actuators may take actions on behalf
of the user. For example, when the user is
approaching his office, SECE may turn on the
air conditioner depending on the temperature
information coming from office temperature
sensor. Or SECE may turn off the lights if there
is no motion sensor activity in the user’s home
or office.

SECE’s sensors and actuators support is plat-
form independent. Currently, we are experi-
menting with ZigBee and Insteon wireless de-
vice control modules and Phidgets USB sensors
and actuators.

Location
SECE learns the user’s current location from
Google Latitude service. We choose Google Lat-
itude since it has clients for almost all mobile
platforms. The user’s mobile device uploads
his location to Google Latitude servers periodi-
cally. SECE retrieves the user’s current location
from Latitude servers.

In order to support location-based rules,
learning the user’s current location is not
enough. SECE computes the distance between
the user’s location and an address and sup-
ports not only point-based locations but also
polygon based ones. SECE uses online map



7

Fig. 1: The Architecture of SECE

APIs for geo-coding and supports polygon def-
initions both in the location sublanguage and
also in the GUI.

Social Networks
SECE can receive direct and wall messages
from Twitter and Facebook. It can also post
tweets to Twitter and change Facebook status.

Presence and Instant Messaging (IM)
Integration of Presence and Instant Messaging
(IM) networks to SECE allows users to monitor
their friends presence states, to send instant
messages to their friends programmatically, to
update their presence states using other infor-
mation sources such as their current location,
activity (e.g., on the phone call) or calendar
(e.g., in a meeting), to process incoming IM
programmatically. SECE not only can monitor
incoming instant messages but can also relay
them via other communication methods like
SMS in case users are away from their com-
puter. IETF has standardized two presence and

IM protocols namely SIP for Instant Messaging
and Presence Leveraging Extensions (SIMPLE)
and The Extensible Messaging and Presence
Protocol (XMPP). We integrated both of them
into SECE.

VoIP Systems

SECE is integrated with the SER (SIP Express
Router, http://www.iptel.org/ser/). There is a
TCP-based communication link between SER
and SECE. Using this link, SER and SECE
can exchange messages to initiate new calls or
to handle an incoming or outgoing call. New
Tcl commands reject, forward, and accept are
added to handle an incoming or outgoing call.
SECE can initiate SIP calls using the new Tcl
action command call. Another action command
calltts is introduced to allow reading the given
command parameters to the dialed number
with the help of text-to-speech technology. The
current SER implementation does not support
call and calltts commands yet.



8

Context Event Action

Facebook
incoming wallmessage

facebookincoming newsmessage
incoming direct
incoming twitter directTwitter
incoming twitter wallmessage

tweet

Phone calls

incoming call call
incoming voicemail calltts
missed call accept
outgoing call reject

forward
SMS incoming SMS sms

IM incoming im imoutgoing im
Email incoming email email
Presence if Bob is available presence

when [time] before [meeting]Calendar when [meeting] begins schedule

Flickr flickr
Translate to en, to tr, . . .

Location

near [landmark]
within [dist] of [landmark]
in [landmark]
outside of [landmark]
on [time]Time every [time]

Contextual if [variable] [operator] status [variable] [value]
if office.motion equals trueSensors
if office.temperature > 250

Actuators status office.light true

TABLE 2: Summary of SECE events and actions

Extensibility and Graphical User Interface
While designing SECE we specifically consid-
ered the fact that SECE should be able to sup-
port new event types and action commands.
Adding a new action command or a new event
type is pretty easy, however recompilation and
server restart are still required. SECE has a
web interface to manage rules, registry, logs,
location polygons and third party service sub-
scriptions. Beltran et al. [14] propose integrat-
ing SECE with more advanced, easy-to-use
front-end applications as well as discovering
and composing web services automatically in
SECE.

Deployment
The SECE server could be deployed in a home
device or provided as a cloud service. The
latter may make controlling in-home devices
more challenging, given NATs. Also, in-home
servers protect privacy and security by keeping
the rules and details of sensors and actuators
within home boundaries. However, such an

arrangement makes it more difficult to update
the rules from anywhere.

Implementation Details and Evaluation
SECE provides a simple way to express end-
users requirements. Table 2 summarizes action
commands and events supported by SECE. We
compared the complexity of weekly tweeting
a message using both SECE and Java. The
SECE rules consists of two natural-English-like
lines, whereas Java version required 125 lines
of code [15]. Also, in order to write the same
rule in Java, the user has to learn how to use
iCal4j and Twitter4J third-party Java libraries.
This comparison excludes the authentication
part which is just a mouse click in SECE, while
the Java one has to use an OAuth library.

In the future, more sophisticated GUIs may
be built on top of SECE for providing users
with suggestion systems that help in construct-
ing meaningful rules. On the other hand, the
SECE language is more resource-efficient and
flexible for people with some skills on technol-
ogy. An end-user evaluation study may help us
to better understand the end-user friendliness
of the SECE language.

SECE consists of almost 20,000 lines of Java
source code and 2,000 lines of grammar defi-
nition to describe the sublanguages. Fifty dif-
ferent third-party Java libraries are used. Some
events such as time, communication and sen-
sors are handled in a push-based fashion, while
others like facebook and email are handled
in a pull-based fashion. SECE does not sup-
port boolean constructs for events, but allows
responding to an event depending on other
contextual information. For example, in Listing
11 for an incoming call event, the caller is
forwarded to Bob if the user is on the phone.

Actions are triggered independently, so there
is no checking that actions do not contradict
each other. We also make no guarantees as
to the order of execution if a single condition
triggers multiple rules.

WE believe that intelligent, integrative,
context-aware, human-oriented and

proactive systems like SECE will make our
communication more efficient and our life
easier.



9

ACKNOWLEDGMENTS
We would like to thank Andrea G. Forte, Fan
Yang, Gerald Scott Schuff, Jan Janak, Jaya Al-
lamsetty and Ted Shin for helping us to build
SECE. Victoria Beltran is supported by the
scholarship grant FPU AP2006-02846 from the
Government of Spain. Omer Boyaci is sup-
ported by a grant from CounterPath.

REFERENCES
[1] J. Rosenberg, J. Lennox, and H. Schulzrinne, “Program-

ming Internet Telephony Services,” IEEE Internet Comput-

ing, vol. 3, no. 3, pp. 63–72, May/Jun 1999.
[2] X. Wu and H. Schulzrinne, “Programmable End System

Services Using SIP,” in IEEE International Conference on

Communications, vol. 2, Anchorage, Alaska USA, May
2003, pp. 789–793 vol.2.

[3] L. Burgy, C. Consel, F. Latry, J. Lawall, N. Palix,
and L. Réveillère, “Language Technology for Internet-
Telephony Service Creation,” in IEEE International Con-

ference on Communications, vol. 4. Istanbul Turkey: IEEE
Computer Society Press, 2006, pp. 1795–1800.

[4] F. Latry, J. Mercadal, and C. Consel, “Staging Telephony
Service Creation: A Language Approach,” in IPTComm

’07: Proceedings of the 1st International Conference on Prin-

ciples, Systems and Applications of IP Telecommunications.
New-York United States: ACM, 2007, pp. 99–110.

[5] W. Jouve, N. Palix, C. Consel, and P. Kadionik, “A SIP-
based Programming Framework for Advanced Telephony
Applications,” in 2nd LNCS Conference on Principles, Sys-

tems and Applications of IP Telecommunications, Heidelberg
Germany, 2008.

[6] D. Cassou, B. Bertran, N. Loriant, and C. Consel, “A
Generative Programming Approach to Developing Per-
vasive Computing Systems,” in GPCE ’09: Proceedings of

the 8th International Conference on Generative Programming

and Component Engineering. Denver, CO États-Unis: ACM,
2009, pp. 137–146.

[7] A. K. Dey and G. D. Abowd, “CybreMinder: A Context-
Aware System for Supporting Reminders,” in HUC ’00:

Proceedings of the 2nd International Symposium on Handheld

and Ubiquitous Computing. Bristol, UK: Springer-Verlag,
2000, pp. 172–186.

[8] “task.fm Free SMS and Email Reminders,” http://task.
fm, 2011, [Online; accessed 18-April-2011].

[9] “Yahoo pipes,” http://pipes.yahoo.com/pipes/, 2011,
[Online; accessed 18-April-2011].

[10] “Timelimes web aggregator,” http://www.timelimes.
com/, Sep. 2010, [Online; accessed 18-April-2011].

[11] “Netvibes - Dashboard Everything,” http://www.
netvibes.com/, Sep. 2010, [Online; accessed 18-April-
2011].

[12] “Ping.fm,” http://www.ping.fm/, Sep. 2010, [Online; ac-
cessed 18-April-2011].

[13] J. K. Ousterhout and K. Jones, Tcl and the Tk Toolkit; 2nd

ed., ser. Addison-Wesley Professional Computing Series.
Addison-Wesley, 2009.

[14] K. A. Victoria Beltran and Henning Schulzrinne,
“Ontology-based User-defined Rules and Context-aware
Service Composition System,” in Proceeding of the 4th

International Workshop on Resource Discovery (RED 2011),
Heraklion, Greece, May 2011.

[15] “Comparison of Java and SECE by example,” http://
www.cs.columbia.edu/∼boyaci/sece/comparison/, 2011,
[Online; accessed 22-November-2011].

PLACE
PHOTO
HERE

Omer Boyaci Omer Boyaci is a software
engineer at Google. He holds a B.S. in
computer science from Bilkent University
(Turkey) and a PhD in computer science
from Columbia University. His research in-
terests are real-time networking, software
development and multimedia networking.
Contact him at boyaci@cs.columbia.edu.

PLACE
PHOTO
HERE

Victoria Beltrán Martı́nez received a de-
gree in computer engineering from the Uni-
versity of Murcia, Spain, 2005. She is cur-
rently a PhD candidate in the Department
of Telematics Engineering of the Technical
University of Catalonia (UPC), Spain. Her
research interests include context man-
agement, context-aware applications and
presence-based systems. Contact her at

vbeltran@entel.upc.edu.

PLACE
PHOTO
HERE

Henning Schulzrinne Prof. Henning
Schulzrinne, Levi Professor of
Computer Science at Columbia
University, received his Ph.D. from
the University of Massachusetts in
Amherst, Massachusetts. He was an MTS
at ATT Bell Laboratories and an associate
department head at GMD-Fokus (Berlin),
before joining the Computer Science and

EE departments at Columbia University. He served as chair of
Computer Science from 2004 to 2009.

Protocols co-developed by him, such as RTP, RTSP and
SIP, are now Internet standards, used by almost all Internet
telephony and multimedia applications. His research interests
include Internet multimedia systems, ubiquitous computing,
mobile systems. He is a Fellow of the IEEE. Contact him at
hgs@cs.columbia.edu.


