
Bridging communications and the physical world:

Sense Everything, Control Everything

Omer Boyaci, Victoria Beltran and Henning Schulzrinne

Columbia University

1214 Amsterdam Avenue

New York, USA 10027

Email: {boyaci,hgs}@cs.columbia.edu, mvb2120@columbia.edu

Abstract—The SECE (Sense Everything, Control Everything)
system allows users to create services that combine communi-
cation, calendaring, location and devices in the physical world.
SECE is an event-driven system that uses a natural-English-like
language to trigger action scripts. Presence updates, incoming
calls, email, calendar and time events, sensor inputs and location
updates can trigger rules. SECE retrieves all this information
from multiple sources to personalize services and to adapt them
to changes in the user’s context and preferences. Actions can
control the delivery of email, change the handling of phone calls,
update social network status and set the state of actuators such as
lights, thermostats and electrical appliances. We give an overview
of the SECE language and system architecture.

I. INTRODUCTION

Communication is not limited to telephony anymore, as

millions use IM, SMS, email, Twitter, and Facebook everyday.

These Internet services are not automated and programmable

by end-users, decreasing their utility. Moreover, although

these services handle very similar information (e.g., calendar,

buddies status, presence, messages and user history), they

do not interoperate with each other. Such a lack of service

cooperation and automation forces users to check services one

after another and manually copy data or configure services

based on other services. Unfortunately, there is currently no

easy way to create new services which integrate location,

presence, calendar, address book, IM, SMS, calls, email, Face-

book and Twitter. Networked sensors and actuators for lights,

temperature, humidity, smoke, and motion are also becoming

popular both in residential and commercial environments. To

address these problems, we are developing SECE, a new

language and supporting infrastructure which will enable users

to create services for controlling their communication flow,

and a range of different sensors, devices and services.

SECE is a context-aware platform that connects services

that until now were isolated, leading to new, more useful and

user-personalized, composite services. These services do not

require user interaction; they are automated and embedded

into users’ life. SECE converges fixed and mobile services

by integrating the Internet, cellular and sensor networks.

This integration requires interacting with Internet servers, web

services, home gateways, and wireless and fixed user devices.

SECE has to both sense and control because sensing without

controlling is not very useful.

SECE takes actions automatically on behalf of the users

depending on the monitored information and triggered events.

In order to build such a system, the user has to define event-

action rules. There are several ways to allow users to define

these rules such as using XML, forms or scripts. We choose

to develop SECE using a natural-English-like formal language

because it is more powerful and easy-to-use than XML and

form-based solutions. An example script which turns the

home’s lights on every sunset shows the end-user friendliness

of SECE.

every sunset {

homelights on;

}

SECE has two fully-integrated components, the language

itself and its supporting software architecture. IETF standard

protocols are used to interconnect networked components.

The paper is organized as follows. Section II discusses

related work. The SECE language is described in Section III,

and the architecture of SECE is presented in Section IV.

Section V presents conclusions and future work.

II. RELATED WORK

Several solutions for user created services have been pro-

posed; some of these solutions are compared in Figure 1.

CPL [1], LESS [2], SPL [3], VisuCom [4] and DiaSpec [5] are

attempts to allow end users to create services, but they are all

limited to controlling call routing. Also, CPL and LESS use

XML and, hence, even simple services require long programs.

Moreover, XML-based languages are difficult to read and write

for non-technical end-users. DiaSpec is very low level. Writing

a specification in DiaSpec and then developing a service using

the generated framework is definitely not suitable for non-

technical end users. The authors of DiaSpec extended [6]

their initial work to support services beyond telephony, which

include sensors and actuators. However, it is still only suitable

for advanced developers. SPL is a scripting language which is

suitable for end-users but only for telephony events. VisuCom

has the same functionality as SPL, but allows users to create

services visually via GUI components.

CybreMinder [7] is a context-aware tool which allows users

to setup email, SMS, print out and on-screen reminders based

not only on time but also location and presence status of other



External knowledge Example

access to the registry of personal information My mobile, Bob’s address

access to contextual information me.location, bob.activity, bob.presence

access to in-context variables inside an incoming call rule [call caller], reject

address book and IM/presence names Bob’s

calendar events, including public holidays Thanksgiving, Bob’s birthday

daily times sunset, sunrise, dawn, dusk, twilight

usage of geocoding and gazettes to look up landmark names ”Columbia University”

TABLE I
SECE MAKES IT EASY TO INTEGRATE EXTERNAL KNOWLEDGE SEAMLESSLY

Fig. 1. Comparison to related work

users. It uses local sensors to detect a user’s location. It does

not take any actions, but rather displays reminders to the end

user. Also it is not as powerful as scripting-based systems

due to its form-based nature. Task.fm [8] is a similar SMS

and email remainder system which uses natural language to

describe time instants when email or SMS reminders will be

sent. However, Task.fm only supports time-based rules and

does not include information from sensors. This tool does not

take actions other than reminding users via SMS, email or

phone call.

To the best of our knowledge, there is no platform for

composing services of different kind. Although service com-

position is being of great interest in the research community,

most of the proposed solutions are only theoretical and do not

provide any implementation. Yahoo Pipes [9] is a graphical

tool for web service composition. However, it is not really

easy-to-use and intuitive, which makes it very difficult for

non-technical users. The scripting languages shown in Figure

1 are neither suitable for non-technical users and only support

a limited set of context information.

There is not any solution that allows users to compose their

own services and execute them when particular context events

occur. The current solutions, as Yahoo Pipes, are not proactive

because the end-user is who triggers the composite services.

The Semantic Web [10] is making efforts to achieve automatic

web service discovery, composition and execution based on

ontologies. However, the implementation and acceptance of

semantic composite services is being problematic due to

practical issues such as user choice and long response times,

among others.

III. THE SECE LANGUAGE

A SECE rule has two parts, the event description and the

actions. The event description defines the conditions that need

to be satisfied to execute the actions. The SECE language is

a formal language similar to natural English that has been

designed to be easy-to-use and easy-to-remember by end-

users. A very simple but illustrative example is below.

If Bob’s status is working {
sms me ”Bob is already working”;

}

The SECE language is only intended to define events, while

rule actions are written in the Tcl language [11]. We chose Tcl

due to its extensibility that allows adding new commands to

its core in an easy and convenient way. Thus, SECE users

can describe events in a user-friendly and natural way while

taking advantage of the expressive power of Tcl to define

actions. Moreover, Tcl’s syntax is simple if no complex control

statements and structures are considered, which can be seen

in the rule examples given by the following subsections. We

may add support for other scripting languages like Ruby [12]

or Python [13] in the future. However, a promising although

challenging future step would be to extend the SECE language

to define rule actions.

The SECE language supports five types of events, which

determine the kinds of rule that SECE handles: time, calen-

dar, context, location and request. The following subsections



Fig. 2. The Architecture of SECE

explain each of these rules. As a formal language, SECE states

the valid combinations of keywords and variables for each kind

of event. In all the rule examples, the variables have been

highlighted in bold to expose the structure of the language.

SECE provides a set of new Tcl commands, such as ”sms”,

”email”, ”tweet” or ”call”. Some commands are specific for

particular events as for example the ”accept” and ”reject”

commands can only be used in request-based rules. SECE tries

to make it easy to integrate external knowledge seamlessly

without having to explicitly invoke libraries or functions. The

current status of this integration can be seen from Table I.

A. Time-based rules

Time-based rules support single and recurring events. The

iCal specification (RFC5545 [14]) covers single and recurring

events but it is designed to be processed by computers, not

users. We designed the SECE’s time sublanguage to be easy-

to-write while maintaining the full expressive power of the

iCal specification. Single events start with an on keyword,

while recurring events start with an every keyword. An exam-

ple of SECE time event and its equivalent iCal definition for

a recurring event is given below.

SECE: every day at 12:00 until April

iCal: BEGIN:VCALENDAR

BEGIN:VEVENT

DTSTART;TZID=America/New_York:20100101T120000

RRULE:FREQ=DAILY;BYHOUR=12;UNTIL=20100401T120000

END:VEVENT

END:VCALENDAR

The recurrence can be defined by the second, minute, hour,

day, week, month or year. How long the recurrence takes

is determined by the from, until, during or for parameters.

A recurrence will repeat indefinitely if no until, during, or

for parameters are indicated. The time sublanguage supports

natural language constructs like Thanksgiving, Tom’s birthday,

sunset, sunrise, lunch break, and tomorrow. In the case of

Bob’s birthday, SECE will try to find the birthdate of Bob

from available services like the users’s calendar, Facebook

or contacts. Similar lookup operations will be performed for

sunset, sunrise, and lunch break. Some expressions like sunset

and sunrise can be computed programatically whereas some

of them like lunch break have to be defined by the user. Some

example time-based rules are given below.

on Anne’s birthday, 2010 at 12:00 in Europe/Zurich {
sms Anne ”Happy Birthday!!!kisses. John”;

}
on July 16, 2011 at 10:00 am in bob@example.com.location {

call bob;

}
every day at last working hour except August {

backup;

}
every last monthly day {

email me ”Reminder: Check the students’ monthly report”;

tweet ”one more month is finished.”;

}
every week on WE at 6:00 PM from 1/1/10 until May 10, 2010

except 3th WE of Feb including first day of June, 2010 {
email irt-list ”reminder: weekly meeting today at 6:00 PM”;

}

B. Calendar-based rules

Calendar-based rules specify events that are defined in the

user’s calendar and can be triggered some time before or

after the events occur, as well as when the events begin or

finish. These rules can be useful to create user-personalized

reminders, as the first example below, but also for other

services, as the second example. When a calendar-based rule

is entered, SECE asks all of the user calendars about the event

and, if it is found, determines when the rule should be triggered

based on the rule’s conditions and the event’s starting and end

times.

when 30 minutes before ”weekly meeting” {
email [event participants] ”The weekly meeting will start in 30 minutes”;



if {me not within 3 miles of campus } {
email [status bob.email] ”I’m away” ”Please, head the conference room and

prepare everything for the weekly meeting. Not sure if I will be on time.”;

}
}
when ”weekly meeting” begins {

status activity busy;

sms [event participants] ”Please, switch your cell phone off or set silent mode”;

}

C. Location-based rules

The SECE’s location sublanguage supports five types of lo-

cation information that are commonly used: geospatial coordi-

nates (longitude/latitude), civic information (street addresses),

well-known places, user-specific places and other users. Well-

known places are unique and widely-known landmarks such as

“Columbia University” or “Rockefeller Center”. User-specific

locations are places that are of interest for the local user and

therefore are defined by the user in the system, such as office,

home and school. The system resolves these constants via the

user’s address book, but also allows the user to define custom

terms, such as clubhouse in the list below. The supported

location operators are near [landmark], within [distance] of

[landmark], in [landmark] and outside of [landmark]. All these

operators can be combined with the ”a” and ”an” indefinite

articles to express generic locations (e.g., ’a postal office’).

Some location events are given below.

Bob near ”Columbia University” { ... }
me near a post office { ... }
me within 3 miles of ”1000 Massachusetts Avenue, Washington, DC” { ... }
Alice in clubhouse { ... }
Tom within 5 miles of me { ... }

D. Request based rules

Request-based rules specify the action to execute in re-

sponse to (1) incoming calls, IMs, emails, SMSs or voicemails,

(2) outgoing calls or IMs, and (3) missed calls. While an

incoming or outgoing call is always a SIP call, a missed call

could be also a phone call. All these events can be filtered

by the user destination and origin, using the from and to

parameters respectively. Some request-based rules are given

below.

incoming call from a workmate {
if {[my activity is ”on the phone”] } { forward sip:bob@example.com; }

}
missed call {

if { [my activity is meeting] } {
sms [incoming caller] ”Sorry,I am in a meeting but will call you back asap.”;

}
}
incoming call to me.phone.work {

if { [my location is not office] } {
autoanswer audio no office.au;

email me ”[incoming caller] tried to reach you on your work phone at

[incoming time]”;

}
}
incoming email from my boss {

if { my activity is not working } {
sms me ”New email from the boss at [incoming time]. Subject:

[incoming subject]”;

}
}
incoming im {

if { [my status is away] } {
sms me ”[incoming from] sent this IM: [incoming message]”

}
}

E. Context-based rules

Context-based rules specify the action to execute when

context information changes, such as presence, call and sensor

state.

if my activity changed { publish ”activity: [status activity]” to calendar; }
if bob@example.com’s status is available { alarm me; }
if my stock.google >14 { sms me ”google stock: [stock google]”; }

The rule’s context (e.g., activity, status and stock.google in

the above rules) can be any hierarchical variable in the form

of x.y.z.t, such as phone.office, activity and office.temperature.

The context’s subject is given by the my and ’s operators

(e.g., ”bob’s phone.office” and ”my activity”). Shortcuts can

be used instead of these operators, so that for example

bob.device.mobility is equal to bob’s device.mobility. The

relational operators can be expressed as symbols or text (e.g.,

the equal relation can be given by ”=”, ”is” or ”equal”).

Information derived from sensors, such as smoke, light, hu-

midity, motion and temperature sensors can be also used in

context-based rules. Naming of sensors is an open problem

that, for now, is beyond our scope. We have adopted a simple

solution that consists in a translation table from internal,

machine-friendly names (e.g., 00-0C-F1-56-98-AD) to more

user-friendly identifiers (e.g., office.smoke).

if my warehouse.motion equals true { sms me ”person in the warehouse.”; }
if my office.smoke equals true {

sms me ”fire in the office”;

calltts firedepartment ”fire in [status office.address]”;

}

1) States vs. Events: SECE is designed for handling events,

i.e., state transitions, that trigger a set of actions. This works

well for discrete events, such as calls and calendar entries, but

is somewhat more awkward for expressing behavior that com-

bines a set of variables to define the state of another variable.

For example, to manage the home heating systems, events

would have to be defined for people entering and leaving the

house, along with temperature and time-of-day conditions. It is

much easier to write such cases as predicates, such as ”turn on

the air conditioner if the indoor temperature is higher than 80 F

and I am at home”. One possible syntax for such conditions is

shown in the example below. Only one predicate can exist for

a variable and, hence, rule conflicts on actuators are avoided.

We are currently exploring the applicability of predicate- and

event-based systems, and whether it makes sense to integrate

them or keep them separate.

ac := temperature > 80 and me in home;

IV. THE ARCHITECTURE OF SECE

Due to its integrative nature, SECE has to communicate

with several third party applications, hardware, and APIs like

Google services (e.g., GMail, GContacts and GCalendar),

Facebook, Twitter, maps, VoIP proxy servers, presence servers,

sensors and actuators (see Figure 2). SECE considers not only



Fig. 3. The architecture of sensors and actuators gateway

the user’s context but also information about external entities

other than sensors, such as his or her buddies. SECE keeps

the user information in a Document Object Model (DOM) [15]

tree registry. The user information is not restricted to personal

information like phone numbers but also includes contextual

information from sensors and Internet services. Context-based

rules associate events with the nodes of the registry. A rule

does not have to be associated with a leaf node; it can be

associated with any node. The benefit of associating rules with

top-level nodes is to write generic rules like ”if Bob changes

{...}” to allow monitoring any activity related to a subtree.

As Figure 2 depicts, the Presence Server (PS) plays a key

role in recollecting context from different sources. According

to SIMPLE [16], the PS receives presence publications from

the context sources that contain the most recent information

and, in turn, it notifies SECE of the context changes. In the

SECE framework, context sources include user devices’ pres-

ence applications and gateways that control sensor networks,

energy consumption and user location via RFID. Currently,

we are using a Mobicents Presence Server [17].

SECE obtains sensor information through SIMPLE noti-

fications that include RDF [18] documents, which makes it

sensor network agnostic. Actions on actuators are described

in RDF documents that are sent to the gateway via POST

HTTP (see Figure 3). The gateway is split into two layers:

a device-independent layer and a protocol layer. The former

maintains an RDF database that represents the conceptual

sensor model, while the latter carries out the necessary trans-

lations between the RDF model and the device- and network-

dependent information and actions. SECE automatically cre-

ates Tcl commands for each actuator after being notified of

the RDF model. Currently, we are experimenting with ZigBee

and Insteon wireless device control modules.

Another external server that plays a key role in SECE is

the SIP Express Router (SER) [19], which handles SIP com-

munications. SER will inform SECE whenever an incoming

or outgoing communication, such as a call or IM, takes place.

Then, if a communication rule is triggered, a rule action could

forward, reject, or modify the call.

Fig. 4. The software components of SECE

A. The software components of SECE

The software components of SECE can be seen from

Figure 4. We are developing SECE in Java due to its extensive

libraries and support for all operating systems. Figure 4

only shows some relevant Java libraries such as ANTLR,

which is used by the language compiler, JACL [20] that

is a Tcl implementation in Java, JAINSIP for SIP signaling

and GDATA to access the Google web services. The agent

layer contains the agents that communicate with external

services. Agents can generate events (e.g., the Mobicents agent

creates presence events), provide some useful functions (e.g.,

the GMaps agent provides direct and reverse geo-coding) or

take some action (e.g., the Gmail agent can send emails).

The rules layer contains the rule implementations. These

implementations utilize the service API layer to subscribe to

interesting events, to check rules’ conditions and to execute

rules’ actions if necessary. The context DB contains all the

users and their buddies context, including presence, location,

preferences, configuration data and sensor information. Rules

only can modify or read this DB through the APIs in the

Service API layer.

V. CONCLUSION AND FUTURE WORK

SECE enables end-users to create advanced services. Al-

though users today can use several individual Internet services,

there is currently no easy way to create new services which

integrate diverse information, such as location, presence, IM,

SMS, calls, Facebook, Twitter, sensors and actuators. Facing

it, we are developing a context-aware platform and associated

language to create user-personalized composite services and

automate their execution. SECE is intended for not only

developers but also end-users without programming skills.

SECE users create natural-language-like rules to composite

their own services. Every rule specifies the event that triggers

its service (i.e., the rule’s body) and SECE monitors the

event and proactively executes the service whenever the event

occurs. The SECE language makes service composition GUI-

independent as long as the GUI translates the user input into

rules. In the future, it will make it possible to develop a more

advanced GUI (e.g., suggestions and templates for service

composition) without modifying the SECE’s core.



The definition and syntax of the language has been finalized.

We developed a multi-user server to allow users to edit,

compile, and deploy SECE scripts, which provides a web-

based interface. From the components shown in Figure 4,

all the rules are fully implemented except some location

operators. Particularly, the ”outside of” and ”in” operators

need the support of a tool for users to draw polygons and

points of interest, which is still under development. Generic

locations (e.g., a restaurant) are being implemented along with

a LoST (Location-to-Service Translation Protocol) [21] server.

The home gateway, Mobicents and Facebook agents are also

still under development.

Although rule conflicts have already been considered for a

particular user (i.e., resource rules in Section III-E), multi-user

conflicts should be studied in the future, as well as run-time

error handling. Future work also includes experimenting with

real-life scenarios in order to demonstrate the usability of the

language by end-users and the system scalability.

VI. ACKNOWLEDGMENTS

We would like to thank Andrea G. Forte, Fan Yang, Gerald

Scott Schuff, Jan Janak, Jaya Allamsetty and Ted Shin for

helping us to build SECE. Victoria Beltran is supported by the

scholarship grant FPU AP2006-02846 from the Government of

Spain. Omer Boyaci is supported by a grant from CounterPath.

REFERENCES

[1] J. Rosenberg, J. Lennox, and H. Schulzrinne, “Programming Internet
telephony services,” Internet Computing, IEEE, vol. 3, no. 3, pp. 63–72,
May/Jun 1999.

[2] Xiaotao Wu and Henning Schulzrinne, “Programmable End System
Services Using SIP,” Conference Record of the International Conference

on Communications (ICC), May 2003.

[3] L. Burgy, C. Consel, F. Latry, J. Lawall, N. Palix, and L. Reveillere,
“Language Technology for Internet-Telephony Service Creation,” in
Communications, 2006. ICC ’06. IEEE International Conference on,
vol. 4, June 2006, pp. 1795–1800.

[4] F. Latry, J. Mercadal, and C. Consel, “Staging telephony service cre-
ation: a language approach,” in IPTComm ’07: Proceedings of the 1st

international conference on principles, systems and applications of IP

telecommunications. New York, NY, USA: ACM, 2007, pp. 99–110.

[5] W. Jouve, N. Palix, C. Consel, and P. Kadionik, “A SIP-Based Program-
ming Framework for Advanced Telephony Applications,” in IPTComm,
ser. Lecture Notes in Computer Science, H. Schulzrinne, R. State, and
S. Niccolini, Eds., vol. 5310. Springer, 2008, pp. 1–20.

[6] D. Cassou, B. Bertran, N. Loriant, and C. Consel, “A generative
programming approach to developing pervasive computing systems,”
in GPCE ’09: Proceedings of the eighth international conference on

Generative programming and component engineering. New York, NY,
USA: ACM, 2009, pp. 137–146.

[7] A. K. Dey and G. D. Abowd, “CybreMinder: A Context-Aware System
for Supporting Reminders,” in HUC ’00: Proceedings of the 2nd inter-

national symposium on Handheld and Ubiquitous Computing. London,
UK: Springer-Verlag, 2000, pp. 172–186.

[8] “task.fm Free SMS and Email Reminders,” http://task.fm.

[9] “Yahoo pipes,” http://pipes.yahoo.com/pipes/.

[10] “The semantic web,” http://www.w3.org/2001/sw/.

[11] J. K. Ousterhout and K. Jones, Tcl and the Tk Toolkit, 2nd ed. Upper
Saddle River, NJ: Addison-Wesley, 2009.

[12] “Ruby Programming Language,” http:/www.ruby-lang.org/.

[13] “Python Programming Language,” http:/www.python.org/.

[14] B. Desruisseaux, “Internet Calendaring and Scheduling Core Object
Specification (iCalendar),” RFC 5545 (Proposed Standard), Internet
Engineering Task Force, Sep. 2009, updated by RFC 5546. [Online].
Available: http://www.ietf.org/rfc/rfc5545.txt

[15] “Document Object Model (DOM) Level 3 Core Specification,” http:
//www.w3.org/TR/DOM-Level-3-Core/.

[16] “SIP for Instant Messaging and Presence Leveraging Extensions (SIM-
PLE),” http://datatracker.ietf.org/wg/simple/charter/.

[17] “Mobicents,” http://www.mobicents.org/.
[18] “Resource Description Framework,” http://www.w3.org/RDF/.
[19] “About SIP Express Router,” http://www.iptel.org/ser/.
[20] I. K. Lam and B. Smith, “Jacl: a Tcl implementation in Java,” in

TCLTK’97: Proceedings of the 5th conference on Annual Tcl/Tk Work-

shop 1997. Berkeley, CA, USA: USENIX Association, 1997, pp. 4–4.
[21] T. Hardie, A. Newton, H. Schulzrinne, and H. Tschofening, “LoST:

A Location-to-Service Translation Protocol,” RFC5222 (Proposed
Standard), Internet Engineering Task Force, August 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5222.txt


