
An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol

 Salman A. Baset and Henning G. Schulzrinne
Department of Computer Science

Columbia University, New York NY 10027
{salman,hgs}@cs.columbia.edu

Abstract—Skype is a peer-to-peer VoIP client developed in 2003
by the organization who created Kazaa. Skype claims that it can
work almost seamlessly across NATs and firewalls and has better
voice quality than other VoIP clients. It encrypts calls end-to-end,
and stores user information in a decentralized fashion. Skype
also supports instant messaging and conferencing.
This paper analyzes key Skype functions such as login, NAT and
firewall traversal, call establishment, media transfer, codecs, and
conferencing under three different network setups. Analysis is
performed by careful study of the Skype network traffic and by
intercepting the shared library and system calls of Skype. We
draw a map of super nodes to which Skype establishes a TCP
connection at login.

I. INTRODUCTION
Skype [1] is a peer-to-peer (p2p) VoIP client developed by

the organization who created Kazaa [2]. Skype allows its users
to place voice calls and send text messages to other users of
Skype clients. In essence, it is very similar to the MSN and
Yahoo IM applications, as it has capabilities for voice-calls,
instant messaging, audio conferencing, and buddy lists.
However, the underlying protocols and techniques it employs
are quite different.

Like its file sharing predecessor KaZaa, Skype uses an
overlay peer-to-peer network. There are two types of nodes in
this overlay network, ordinary hosts and super nodes (SN). An
ordinary host is a Skype application that can be used to place
voice calls and send text messages. A super node is an ordinary
host’s end-point on the Skype network. Any node with a public
IP address having sufficient CPU, memory, and network
bandwidth is a candidate to become a super node. An ordinary
host must connect to a super node and must authenticate itself
with the Skype login server. Although not a Skype node itself,
the Skype login server is an important entity in the Skype
network as user names and passwords are stored at the login
server. This server ensures that Skype login names are unique
across the Skype name space. Starting with Skype version 1.2,
the buddy list is also stored on the login server. Figure 1
illustrates the relationship between ordinary hosts, super nodes
and the login server.

Apart from the login server, there are SkypeOut [3] and
SkypeIn [4] servers which provide PC-to-PSTN and PSTN-to-
PC bridging. SkypeOut and SkypeIn servers do not play a role
in PC-to-PC call establishment and hence we do not consider
them to be a part of the Skype peer-to-peer network. Thus, we
consider the login server to be the only central component in
the Skype p2p network. Online and offline user information is
stored and propagated in a decentralized fashion.

Skype login
server

Message exchange
with the login server
during login

ordinary host (SC)

super node (SN)

neighbor relationships in the
Skype network

Figure 1. Skype Network. There are three main entities: supernodes,
ordinary nodes, and the login server.

We believe that each Skype node uses a variant of the
STUN [5] protocol to determine the type of NAT and firewall
it is behind. We also believe that there is no global NAT and
firewall traversal server because if there was one, the Skype
node would have exchanged traffic with it during the login and
call establishment phases in the many experiments we
performed.

The Skype network is an overlay network and thus each
Skype client (SC) needs to build and refresh a table of
reachable nodes. In Skype, this table is called host cache (HC)
and it contains IP address and port number of super nodes.
Starting with Skype v1.0, the HC is stored in an XML file.

Skype claims to have implemented a ‘3G P2P’ or ‘Global
Index’ [6] technology, which is guaranteed to find a user if that
user has logged in the Skype network in the last 72 hours.

Skype uses wideband codecs which allows it to maintain
reasonable call quality at an available bandwidth of 32 kb/s. It
uses TCP for signaling, and both UDP and TCP for
transporting media traffic.

The rest of this paper is organized as follows. Section II
describes key components of the Skype software and the Skype
network. Section III describes the experimental setup we used
for reverse-engineering the Skype protocol. Section IV
discusses key Skype functions like startup, login, user search,
call establishment, media transfer and codecs, and presence
timers. Flow diagrams based on actual network traffic have
been included to elaborate on the details. Section V discusses
conferencing. Section VI discusses other experiments and
compares aspects of Skype with Yahoo, MSN and Google Talk
IM applications. A world map of SNs to which a SC
establishes a TCP connection at login is also drawn.

II. KEY COMPONENTS OF THE SKYPE SOFTWARE
A Skype client listens on particular ports for incoming

calls, maintains a table of other Skype nodes called a host
cache, uses wideband codecs, maintains a buddy list, encrypts
messages end-to-end, and determines if it is behind a NAT or a
firewall. This section discusses these components and
functionalities in detail.

A. Ports
A Skype client (SC) opens a TCP and a UDP listening port

at the port number configured in its connection dialog box. SC
randomly chooses the port number upon installation. In
addition, SC also opens TCP listening ports at port number 80
and 443 which, otherwise, are used to listen for incoming
HTTP and HTTP-over-TLS requests. Unlike many Internet
protocols like SIP [9] and HTTP [10], there is no default TCP
or UDP listening port. Figure 14 shows a snapshot of the Skype
(v1.4) connection dialog box. This figure shows the ports on
which a SC listens for incoming connections.

B. Host Cache
The host cache (HC) is a list of super node IP address and

port pairs that SC builds and refreshes regularly. It is a critical
part to the Skype operation. In SC v0.97, at least one valid
entry must be present in the HC. A valid entry is an IP address
and port number of an online Skype node. At login time, a SC
v0.97 tried to establish a TCP connection and exchange
information with any HC entry. If it was unable to do so, it
reported a login failure. In Skype v1.2 and onwards, if a SC is
unable to establish a TCP connection with any HC entry, it
tries to establish a TCP connection and exchange information
with one of the seven bootstrap IP address and port pairs hard-
coded in the Skype executable. A SC for Windows XP stores
the host cache as a XML file ‘shared.xml’ in C:\Documents
and Settings\<XP User>\Application Data\Skype. A SC for
Linux stores the HC as a XML file ‘shared.xml’ at
$(HOMEDIR)/.Skype. After running a SC for two days, we
observed that HC contained a maximum of 200 entries. Host
and peer caches are not new to Skype. Chord [20], another
peer-to-peer protocol, has a finger table, which it uses to
quickly find a node.

C. Codecs
During our experiments, we observed that Skype uses the

iLBC [12], iSAC [13], and iPCM [14] codecs. These codecs

have been developed by GlobalIPSound [15]. For SC v1.4 we
measured that the Skype codecs allow frequencies between 50-
8,000 Hz to pass through. This frequency range is the
characteristic of a wideband codec.

D. Buddy List1
In Windows XP, Skype stores its buddy information in an

XML file ‘config.xml’ at C:\Documents and Settings\<XP
user>\Application Data\Skype\<skype user id>. In Linux,
Skype stores the ‘config.xml’ file in
$(HOMEDIR)/.Skype/<skype user id>. Starting with Skype
v1.2 for Windows XP, the buddy list is also stored on a central
Skype server whose IP address is 212.72.49.142. The buddy
list is stored unencrypted on a computer. Figure 2 shows a
fragment of the config.xml file.

<CentralStorage>
 <LastBackoff>0</LastBackoff>
 <LastFailure>0</LastFailure>
 <LastSync>1135714076</LastSync>
 <NeedSync>0</NeedSync>
 <SyncSet>
 <u>
 <skypebuddy1>2f1b8360:2</skypebuddy1>
 <skypebuddy2>d0450f12:2</skypebuddy2

Figure 2. A fragment of the config.xml file for a SC. It shows two Skype
buddies and an four-byte number for each buddy. If two SCs have the same
buddy, their corresponding config.xml files have a different four-byte number
for the same buddy.

E. Encryption
The Skype website [18] explains: “Skype uses AES

(Advanced Encryption Standard), also known as Rijndael,
which is used by U.S. Government organizations to protect
sensitive, information. Skype uses 256-bit encryption, which
has a total of 1.1 x 1077 possible keys, in order to actively
encrypt the data in each Skype call or instant message. Skype
uses 1024 bit RSA to negotiate symmetric AES keys. User
public keys are certified by the Skype server at login using
1536 or 2048-bit RSA certificates.”

F. NAT and Firewall
We conjecture that SC uses a variation of the STUN [5] and

TURN [19] protocols to determine the type of NAT and
firewall it is behind. We also conjecture that SC refreshes this
information periodically. This information is also stored in the
shared.xml file.

Unlike its file sharing counter part KaZaa, a Skype client
cannot prevent itself from becoming a super node.

III. EXPERIMENTAL SETUP
Experiments were performed for the Windows Skype

version 1.4.0.84 and for the Linux Skype version 1.2.0.18. We
used traffic analysis, shared library and system call interception
techniques to analyze various aspects of the Skype protocol.
Tools like memgrp [21] can be used to perform a runtime
analysis of the Skype memory. We have used this tool
sparingly as it requires an extensive effort and trial and error to
‘decipher’ the memory dumps. Therefore, we do not present
any results from using that tool. Tools by MaxMind [26] were

1 Buddy list is an AOL trademark.

used to perform reverse country, city, and ISP lookups for an
IP address when dig failed to return a DNS PTR record.

Below, we explain the experimental setup for experiments
performed on different versions of the Skype client.

A. Skype version 1.4.0.84.
This version was available for Windows. Traffic analysis

was the primary mechanism for experiments performed for this
version. A SC was installed on two Windows XP machines.
Each machine had a 3 GHz Pentium 4 CPU with 1 GB of
RAM. Each machine had a 10/100 Mb/s Ethernet card and was
connected to a 100 Mb/s network.

We performed experiments under three different network
setups. In the first setup, both Skype users were on machines
with public IP addresses; in the second setup, one Skype user
was behind a port-restricted1 NAT; in the third setup, both
Skype users were behind a port-restricted NAT and UDP-
restricted firewall. The NAT and firewall machines ran
Mandriva Linux 10.2 and were connected to 100 Mb/s Ethernet
network. The NAT was configured using Linux ‘iptables’.

Ethereal [7] and NetPeeker [8] were used to monitor and
control network traffic, respectively. NetPeeker was used to
tune the bandwidth so as to analyze the Skype operation under
network congestion.

B. Skype version 1.2.0.18
This version is available for Linux. We used shared library

and system call redirection techniques to gain more insights
into the Skype protocol. In Linux, at program startup, dynamic
linking allows to load a shared library pointed by
LD_PRELOAD environment variable before any other shared
library. This makes it possible to overload a library function
such as strcpy() or send(). When LD_PRELOAD is set to a
library containing an overloaded strcpy() function, and the
program which contains strcpy() calls is executed, the
overloaded strcpy() is called. The parameters passed to this
overloaded strcpy() function can be displayed or any
appropriate action can be taken. Also, the overloaded strcpy()
function can then call the libc strcpy() function. Austin Godber
[22] provides a nice tutorial on this technique and Linux
function interception.

In our experiments, we exported the display of two Linux
machines using X-Win32 [23]. Thus, we were able to run
different instances of a Skype client on the same host machine.
However, the sound device cannot be accessed when the
display is exported. To overcome this problem, we overrode
the open(), close(), select(), and ioctl() calls using the technique
described above. Each of these calls called the namesake libc
function from within. In Skype, the socket and sound
descriptors are polled by a select() system call. When Skype
requests to open a sound device, our overloaded open() system
call returns a fake descriptor. Skype then requests this
descriptor to be polled by select(); however since this is a fake
descriptor, we must not pass this descriptor to the actual
select() system call. Therefore, our overloaded select() clears
this fake descriptor from the read descriptor list before calling
the actual select() function.

1 A port-restricted NAT allows an external host, with source IP

address X and source port P, to send a packet to the internal host
only if the internal host had previously sent a packet to IP address
X and port P.

An actual sound device (microphone) will have periodic
data to read after it is open. However, since ours is a dummy
sound device, select() will not return periodically on this
device. To solve this issue, we created a select() timer in the
actual select() system call with an interval of 20 ms. When the
select() returns on a timer event, we add to the select() read
descriptor list which is passed to the overloaded select() the
fake sound device descriptor. Skype then issues a read() on this
fake descriptor. Since read() is overloaded, our read() function
is called. The overloaded read() then returns a dummy sound
buffer to the Skype. We observed that Skype requested to read
960 bytes from the sound device on each read request.

All experiments were performed between November and
December, 2005.

In the subsequent sections, any reference to function
overloading in experiments implies that Linux Skype version
1.2.0.18 was used. Otherwise, Windows Skype version
1.4.0.84 was under test.

IV. SKYPE FUNCTIONS
Skype functions can be classified into startup, login, user

search, call establishment and tear down, media transfer, and
presence messages. This section discusses each of them in
detail.

A. Startup
When SC v1.4 was run for the first time after installation, it

sent a HTTP 1.1 GET request to the Skype server (skype.com).
The first line of this request contained the keyword ‘installed’.

The complete startup messages for Skype v0.97 are
reported in the technical report [11].

B. Login
Login is perhaps the most critical function to the Skype

operation. It is during this process a SC authenticates its user
name and password with the login server, advertises its
presence to other peers and its buddies, determines the type of
NAT and firewall it is behind, discovers online Skype nodes
with public IP addresses, and checks the availability of latest
Skype version.

1) Login Process
Using the library function call overloading technique

described in section III.B, we overrode the connect(), and
sendto() calls such that these calls always returned with a
failure. However, we permitted a TCP connection to localhost
since Skype refuses to run if cannot establish this connection.
The system time was printed whenever the connect() and
sendto() functions were called to accurately profile the time at
which Skype sends its login messages. Also, before running the
Skype we deleted the HC XML file. Then we ran the SC, and
made a login attempt. We observed that the SC first sent a
UDP packet of length 18 bytes to each of the seven bootstrap
SN IP address and port 33033. If there was no response after
five seconds, SC tried to establish a TCP connection with each
of these seven default SNs IP address on port 33033. If the
connection attempts failed, it repeated the whole process after
six seconds. We ran this experiment for 15 minutes, and
strangely Skype never reported a login failure. Figure 3 shows
these login attempts as a flow chart.

In the same experiment conducted in July 2005 for Skype
Linux v1.0, we had observed that Skype tried to establish a

connection with each of the SN IP address on port 80 and port
443. Most firewalls are configured to allow outgoing TCP
traffic to port 80 (HTTP port) and port 443 (HTTP-over-TLS
port). However, we did not observe such attempts for Skype
Linux v1.2.

Since the HC file had been deleted, and since we saw the
same bootstrap IP address and port pairs in subsequent failed
login attempts, we conclude that these IP address and port pairs
are hard-coded in the Skype executable.

We have observed that a SC must establish a TCP
connection with a SN in order to connect to the Skype network.
If it cannot connect to a super node, it will report a login
failure.

In another experiment, we filled the SC HC with an invalid
IP address and port pair. Initially, SC was unable to establish a
TCP connection with this invalid entry; however, after some
time, it established a TCP connection with one of the bootstrap
SNs. Since IP address and port number of any bootstrap SN
was not present in the HC, it gives more credence to our belief
that some SN IP address and port number pairs are hard-coded
in the Skype executable.

In order to see the minimal set of messages a SC exchanges
with other entities for a successful login, we performed the
following experiment. We deleted the HC and permitted
inbound and outbound UDP and TCP traffic. A SC was started
and a login attempt was made. The login attempt succeeded.
We then repeated this experiment for the same Skype user id
two more times. Figure 4 shows the set of messages exchanged
between SC, bootstrap SN, SN, and the login server in a
condensed form.

In these experiments we observed that the first and the

Send UDP
packets to seven
bootstrap SNs at

port 33033

Response within
6 seconds

TCP connection attempts
with seven bootstrap SN
IP addresses and port
33033

No

Connected

Success

Yes

No

Start

Wait for 6 seconds

Yes

Figure 3. Skype login process. SC sends UDP packets of length 18 bytes to
all bootstrap SNs. After 5s, it attempts TCP connections with the seven
bootstrap SN IP address and ports 33033. Authentication with the login server
is not shown.

second messages exchanged with the login server were always
the same across multiple login attempts even for different
skype user ids. The decimal representation of message (1) is 22
3 1 0 0 and decimal representation of message (2) is 23 3 1 0 0.
In most of our experiments, only four messages were
exchanged between SC and the login server. The length of
these messages was almost the same in subsequent
experiments. Messages (3) and (4) were different for each login
attempt. However, message (3) and (4) shared a four byte
common header across different experiments. The decimal
equivalent of first four bytes of these common headers is the
same as message (1) and (2), respectively. The decimal
equivalent of the fifth byte in message (3) was 205. On
inspection, we found the header ’23 3 1 0’ at that location
[header+205] and another length field after that header whose
value was 198. The decimal equivalent of the fifth byte in
message (4) was ‘217’ which appears to be the length of the
message.

Note that in SSL messages, the first byte indicates the
message type and the next two bytes indicate the SSL version.
The value 22 (0x16) corresponds to the SSL message type
client_key_exchange and the value 3 0 corresponds to the SSL
version 3.0. Since the messages a SC sends to the login server
contains the header 22 3 1 0, it indicates that Skype is using
part of SSL header for its login messages.

Using the same setup that was used for the experiment
described in the above paragraph, a login attempt was made
with an invalid password. The length of the messages (1), (2),
and (3) exchanged with the login server remained the same.
The length of the message (4) returned by the login server was
18 bytes indicating a login failure. The decimal equivalent of
the fifth byte in message (4) was 13 which indicated the length
of this message after a four byte header.

To see if it is possible to block Skype, we performed the
following experiment. A successful login attempt was made.
Then, the SC was shut down. We overrode connect() such that
it returned with an error when a connection attempt was made
with the login server IP addresses. SC was then started and a

UDP
UDP

195.215.8.145:33033 (Bootstrap node)
41B
64B

TCP
TCP

SN: (IP address not shown for privacy reasons)
357B

4032B

TCP
TCP

5B (1)
5B (2)

TCP
TCP

413B (3)
222B (4)

TCP:SYN
195.215.8.141:33033 (login server)

SC

SC

SC

TCP:ACK

UDP
UDP

18B
18B

SC

Figure 4. Minimal set of messages exchanged with the bootstrap SN, the SN,
and the login server. Messages exchanged with the bootstrap SN, and SN have
been aggregated. Message size for messages exchanged with the bootstrap
node and SN correspond to the cumulative size. Messages sent after the
exchange with the login server is completed are not shown.

login attempt was made. Strangely, the login attempt
succeeded. We noted the IP address of the node to which the
initial login message having decimal representation 22 3 1 0 0
was sent. In our overloaded connect(), we blocked connection
attempts to this IP address. We then started Skype, and
attempted a login. However, Skype was still able to login
successfully. We then kept on blocking IP addresses in
connect() to which login messages were sent in the previous
login attempt. In all, we ended up blocking six IP addresses in
connect(). However, Skype was still able to login successfully.
From this experiment, we conclude that Skype routes login
messages through SNs. This is a change from version 0.97
where it was possible to block Skype by simply blocking the
login server IP address.

Next, we overrode the send() call such that it always
returned with an error when it saw a message whose first four
bytes were 22 3 1 0. Note that these are the first four bytes of
message (1) and (3) shown in Figure 4. Skype was then started
and a login attempt was made. Skype was unable to login
despite multiple login attempts for different Skype user ids.
Thus, it is possible to block Skype by dropping all the packets
whose first four bytes of payload are 22 3 1 0. However, care
should be taken to ensure that any such rule at the firewall does
not result in blocking legitimate traffic.

For Skype v1.4, we performed experiments to understand
the Skype login behaviour for the three network setups
described in section III.A. For these experiments, a previous
copy of SC was uninstalled and Windows registry was cleared
of old Skype entries. Then, a new copy of SC was installed.
Table I summarizes the results of these experiments. Detailed
message flows for these login attempts for v0.97 are available
in the technical report [11].

In most of the login attempts, we observed that a SC sent
ICMP messages to the following IP addresses: 204.152.*
(USA), 130.244.* (Sweden), 202.139.* (Australia), 202.232.*
(Japan). The reason for sending these messages is not clear.
The reverse lookup done using MaxMind [26] suggests that
each of these IP addresses are in countries located in different
continents.

For the first two experimental setups, the SC sent messages
to about 22 nodes and received responses from them after
authenticating itself with the login server.

2) Login Server
After a SC is connected to a SN, the SC must authenticate

the user name and password with the Skype login server. The
login server is the only central component in the Skype p2p
network. It stores Skype user names and passwords and ensures
that Skype user names are unique across the Skype name
space. SC must authenticate itself with the login server for a
successful login. During our experiments we observed that SC
always exchanged data over TCP with a node whose IP address
was either 212.72.49.141 or 195.215.8.141. We believe that
these nodes are the login servers. A reverse lookup of these
two IP addresses did not retrieve a NS record. The first
hostname returned in the authority section of the reverse

lookup query (dig) was ns07.customer.eu.level3.net and
ns3.DK.net respectively. Country lookup done using MaxMind
tools suggests that 212.72.49.141 is in Netherlands and
195.215.8.141 is in Denmark. The buddy list is hosted on a
server whose IP address is 212.72.49.142. We consider it to be
a part of the login server.

3) Bootstrap Super Nodes
We list the IP address and port numbers of the seven

default SNs observed during a failed login attempt. The
corresponding hostnames and the first entry of the authority
section returned by reverse lookup query (dig) are given in
Table II.

From the reverse lookup, it appears that one SN is
maintained by Skype itself.

4) NAT and Firewall Determination
We conjecture that a SC is able to determine at login if it is

behind a NAT and a firewall. We guess that there are at least
two ways in which a SC can determine this information. One
possibility is that it can determine this information by
exchanging messages with its SN using a variant of the STUN
[5] protocol. The other possibility is that during login, a SC
sends and possibly receives data from some nodes after it has
established a TCP connection with the SN. We conjecture that
at this point, SC uses its variation of STUN [5] protocol to
determine the type of NAT or firewall it is behind. Once
determined, the SC stores this information in the shared.xml
file. We also conjecture that SC refreshes this information
periodically. We are not clear on how often a SC refreshes this
information since Skype messages are encrypted.

5) Skype Latest Version
During login, a SC sent a HTTP 1.1 GET request to the

Skype server (skype.com) to determine if a new version was
available. The first line of this request contained the keyword
‘getlatestversion’. Along with the HTTP request sent at first
time startup, these are the only text-based messages sent by
Skype.

6) Login Process Time
We measured the time to login on the Skype network for

the three different network setups described in section III. For
this experiment, the HC already contained the maximum of two
hundred entries. The SC with a public IP address and the SC
behind a port-restricted NAT took about 3-7 seconds to
complete the login procedures. The SC behind a UDP-
restricted firewall took about 35 seconds to complete the login
process. For SC behind a UDP-restricted firewall, we observed
that it sent UDP packets to its twenty HC entries. At that point
it concluded that it is behind UDP-restricted firewall. It then
tried to establish a TCP connection with the HC entries and

TABLE I
SKYPE (VER 1.4) LOGIN EXPERIMENT SUMMARY

Skype on a Machine
with/behind Data Exchanged Time to Login

Public IP address 10 KB 3-7 s
Port-restricted NAT 11 KB 3-7 s
UDP-restricted firewall 7 KB 35 s

TABLE II
BOOTSTRAP SN IP ADDRESS AND HOSTNAMES OBTAINED BY A REVERSE LOOKUP

IP address:port Reverse Lookup Result Authority Section

66.235.180.9:33033 sss1.skype.net ns1.hopone.net
66.235.181.9:33033 No PTR result ns1.hopone.net
212.72.49.143:33033 No PTR result ns07.customer.e

u.level3.net
195.215.8.145:33033 No PTR result ns3.DK.net
64.246.49.60:33033 rs-64-246-49-

60.ev1.net
ns2.ev1.net

64.246.49.61:33033 rs-64-246-49-
61.ev1.net

ns2.ev1.net

64.246.48.23:33033 ev1s-64-246-48-
23.ev1servers.net

ns1.ev1.net

was ultimately able to connect to a SN. Also, a SC behind a
UDP-restricted firewall and port-restricted NAT took 5-10
seconds for immediate subsequent logins. This shows that a SC
stores its last connectivity information in a file.

C. User Search
Skype uses its Global Index (GI) [6] technology to search

for a user. Skype claims that search is distributed and is
guaranteed to find a user if it exists and has logged in during
the last 72 hours. Extensive testing suggests that Skype was
always able to locate users who logged in using a public or
private IP address in the last 72 hours.

Skype is a not an open protocol and its messages are
encrypted. Whereas for login, we were able to form a
reasonably precise opinion about the different entities involved,
it is not possible to do so in search, since we cannot trace the
Skype messages beyond a SN. Also, we were unable to force a
SC to connect to a particular SN. Nevertheless, we have
observed and present search message flows for the three
different network setups.

A SC has a search dialog box. After entering the Skype user

UDP
UDP

SN

UDP

SC
TCP
TCP

18B N1
54B N2
18B N2

171B N1

UDP

13B
48B

.

.

Figure 5. Message flow for a successful user search when SC v1.4 has a
public IP address. ‘B’ stands for bytes and ‘N’ stands for node. Message sizes
correspond to payload size of TCP or UDP packets. Not all messages are
shown.

UDP
UDP

SN

UDP

SC
TCP
TCP

18B
54B
25B

91B

13B
48B

SC

UDP
.
.

N1, N2, N3, N4

Figure 6. Message flow for a successful user search when SC v1.4 is behind
a port-restricted NAT. ‘B’ stands for bytes and ‘N’ stands for node. UDP
packets were sent to N1, N2, N3, and N4 during login process and responses
were received from them. Message size corresponds to payload size of TCP or
UDP packets. Not all messages are shown.

SC SN
TCP
TCP

6165B
1130B

Figure 7. User search by a SC v1.4 behind a UDP-restricted firewall. ‘B’
stands for bytes. Messages have been aggregated for space. Data is exchanged
with SN only. Message size corresponds to the approximate cumulative size
of messages exchanged between SC and a SN and vice versa.

id and pressing the find button, SC starts its search for a
particular user. For SC on a public IP address, SC sent a TCP
packet to its SN. It appears that the SN gave SC the IP address
and port number of eight nodes to query, since after that
exchange with SN, SC sent UDP packets to eight nodes. If it
could not find the user, it informed the SN over TCP. It appears
that the SN now asked it to contact sixteen different nodes,
since the SC then sent UDP packets to sixteen different nodes.
This process continued until the SC found the user or it
determined that the user did not exist. On average, SC
contacted more than 24 nodes. The search took three to four
seconds.

A SC behind a port-restricted NAT exchanged data
between SN and some of the nodes which responded to its
UDP request during login process. The message flow is shown
in Figure 6. The search took about five to six seconds.

A SC behind a port-restricted NAT and UDP-restricted
firewall sent the search request over TCP to its SN. We believe
that SN then performed the search query and informed SC of
the search results. Unlike a user search by SC on a public IP
address, SC did not contact any other nodes. This suggests that
SC knew that it was behind a UDP-restricted firewall. The
aggregated message flow is shown Figure 7. The search took
about 10-15 seconds.

In some successful searches, we saw the SC exchanging
information with the login server. It appears that Skype is using
the login server as a fall back option in case the search is
unsuccessful. For a non-existent Skype name, a SC always
contacted the login server.

We are not clear on how SC terminates the search if it is
unable to find a user.

1) Search Result Caching
To observe if search results are cached at intermediate

nodes, we performed the following experiment for SC v1.4.
User A was behind a port-restricted NAT and UDP-restricted
firewall and logged on the Skype network. User B logged in
using a SC running on machine B, which was on a public IP
address. User B (on a machine with a public IP address)
searched for user A, who was behind a port-restricted NAT and
UDP-restricted firewall. We observed that search took about
10-11 seconds. Next, SC on machine B was uninstalled, and
the Skype registry cleared so as to remove any local caches. SC
was reinstalled on machine B and user B searched for user A.
The search took about 3-4 seconds. This experiment was
repeated four times on different days and similar results were
obtained.

From the above discussion we infer that the SC performs
user information caching at intermediate nodes.

Skype allows the user to perform wildcard searches of
different Skype user ids. To see if the same wildcard search
query executed on two instances of SC retrieved the same
result, we performed the following experiment. We started two
instances of a Skype client on two different machines and
executed the same wildcard search query on them. The
retrieved results were not completely identical. In all the
wildcard searches we performed, the retrieved results were
never completely identical.

D. Call Establishment and Teardown
We consider call establishment for SC v1.4 for the three

network setups described in section III. Further, for each setup,

TCP
TCP

1159B
1536B

Caller Callee
Caller press dial

(4)
(4)

Figure 8. Message flow for call establishment when caller and callee SC
v1.4 are on machines with public IP addresses and the callee is present in the
buddy list of the caller. ‘B’ stands for bytes. Messages have been aggregated
for space. Message size corresponds to the approximate cumulative size of
messages exchanged between caller and a callee and vice versa. The number
in paranthesis shows the total number of messages sent in that direction.

UDP
UDP

Caller
271B
221B

TCP
TCP

Caller SN
184B

1269B

Voice packet size is between 70 and 100 bytes.

TCP
TCP

Caller Other
265B
77B

TCP
TCP

Caller Callee
1554B
1176B

Callee

UDP
UDP

Caller
748B

3287B

Other

Caller
Media: UDP

Callee

(6)
(6)

(5)
(7)

(20)
(20)

(12)
(6)

(9)
(8)

Figure 9. Message flow for call establishment when caller SC is behind a
port-restricted NAT and callee SC is on a public IP address. ‘B’ stands for
bytes. Not all messages are shown. Messages have been aggregated for space.
Message size corresponds to the approximate cumulative size of messages
exchanged between caller, callee, SN, other nodes and vice versa. The number
in paranthesis shows the total number of messages sent in that direction.

TCP
TCP

Caller SN
713B

3464B
Relay

Media:TCP
Caller

Media:TCP
Relay Callee

TCP
Caller N1, N2, N3

TCP
TCP

Callee

TCP

19B
19B

19B
19B

Caller and callee on the average exchange 3 msg/s
over TCP with N1, N2 and N3 after call has been
established.

TCP
TCP

Caller
124B
45B

Callee
TCP
TCP

51B
117B

(7)
(8)

(4)
(4)

(4)
(3)

Figure 10. Message flow for call establishment when caller and callee SC are
behind a port-restricted NAT and UDP-restricted firewall. ‘B’ stands for bytes
and ‘N’ stands for a node. Not all messages are shown. Messages have been

aggregated for space. Message size corresponds to the approximate
cumulative size of messages exchanged between caller, callee, other nodes
and vice versa. Voice traffic flows over TCP. The number in paranthesis
shows the total number of messages sent in that direction.

we consider call establishment for users that are in the buddy
list of caller and for users that are not present in the buddy list.
It is important to note that call signaling is always carried over
TCP.

For users that are not present in the buddy list, call
placement is equal to user search plus call signaling. Thus, we
discuss call establishment for the case where the callee is in the
buddy list of the caller.

If both users were on machines with public IP addresses,
online and were in the buddy list of each other, then upon
pressing the call button, the caller SC established a TCP
connection with the callee SC. Signaling information was
exchanged over TCP. The aggregated message flow between
caller and callee is shown in Figure 8.

The initial exchange of messages between caller and callee
indicates the existence of a challenge-response mechanism.
The caller also sent some messages (not shown in Figure 8)
over UDP to alternate Skype nodes. For this scenario,
approximately six kilobytes of data was exchanged.

In the second network setup, where the caller was behind a
port-restricted NAT and the callee was on a public IP address,
signaling information did not flow directly between caller and
callee initially. Instead, the caller sent signaling information
over TCP to an online Skype node which forwarded it to callee
over TCP. After a call had been established, the media flowed
directly between caller and callee over UDP. The message flow
is shown in Figure 9. For this scenario, approximately eight
kilobytes of data was exchanged.

For the third setup, in which both users were behind port-
restricted NAT and UDP-restricted firewall, both caller and
callee SC exchanged signaling information over TCP with
another online Skype node. Caller SC sent media over TCP to
an online node, which forwarded it to callee SC over TCP and
vice versa. The message flow is shown in Figure 10. For this
scenario, approximately eight kilobytes of data was exchanged.

There are certain advantages of having a node route the
voice packets from caller to callee and vice versa. First, it
provides a mechanism for users behind NATs and firewalls to
talk to each other. Second, if users behind NATs or firewalls
want to participate in a conference, and some users on public
IP address also want to join the conference, this node serves as
a mixer and broadcasts the conferencing traffic to the
participants. The negative side is that there will be a lot of
traffic flowing across this node. Users generally do not like the
fact that arbitrary traffic could flow across their machines.

During call tear-down, signaling information is exchanged
over TCP between caller and callee if they are both on public
IP addresses, or between caller, callee and their respective SNs.
The messages observed for call tear down between caller and
callee on public IP addresses are shown in Figure 11.

For the second and third network setups, call tear down
signaling is also sent over TCP. We, however, do not present
these message flows, as they do not provide any interesting
information.

For SC v1.4, we performed experiments to determine if the
call signaling goes end-to-end when caller and callee SC are on

TCP
TCP

Caller Callee
68B
70B (4)

(4)

Figure 11. Call tear down message flow for caller and callee with public IP
addresses. Messages have been aggregated for space. The number in
paranthesis shows the total number of messages sent in that direction.

machines with public IP addresses and are in the buddy list of
each other. Two instances of SC were started on two Windows
machines with pubic IP addresses. Each instance had the other
Skype user in its buddy list. After successful login, we waited

until each instance was aware of the presence of other instance.
This was shown by a buddy item changing color to green in the
buddy list. We ensured that there was no TCP connection
between the two machines. Using NetPeeker, we blocked all
outgoing and incoming connections except for the one destined
for the callee machine and vice versa. A call attempt was made
which succeeded.

We then blocked all TCP connection attempts between
these two machines and attempted to make a call. The call
attempt failed.

This experiment shows that for the scenario described
above, the call signaling does go end-to-end. Also, call
signaling is carried over TCP.

E. Media Transfer and Codecs
If both Skype clients (v1.4) were on machines with public

IP addresses, then media traffic flowed directly between them
over UDP. The media traffic flowed to and from the UDP port
configured in the options dialog box. The voice packet size
varied between 40 and 120 bytes. For two users connected to
Internet over 100 Mb/s Ethernet with almost no congestion in
the network, roughly 85 voice packets were exchanged both
ways in one second. The total uplink and downlink bandwidth
used for voice traffic was 5 kilobytes/s. This bandwidth usage
agrees with the Skype claim of 3-16 kilobytes/s.

If either caller or callee or both were behind port-restricted
NAT, they sent voice traffic to each other. The voice packet
size varied between 40 and 110 bytes, which is the size of UDP
payload. The bandwidth used was about 5 kilobytes/s.

If both users were behind port-restricted NAT and UDP-
restricted firewall, then caller and callee sent and received
voice traffic over TCP from another online Skype node. The
TCP packet payload size for voice traffic varied between 30
and 90 bytes. The total uplink and downlink bandwidth used
for voice traffic was about 5.5 kilobytes/s. For media traffic,
SC used TCP with retransmissions.

In all three cases, the codec used was iSAC [13].

The Skype protocol seems to prefer the use of UDP for
voice transmission. The SC will use UDP for voice
transmission if it is behind a NAT or firewall that allows UDP
packets to flow across.

1) Silence Suppression
No silence suppression is supported in Skype. We observed

that when neither caller nor callee was speaking, voice packets
were still flowing between them. While this increases the
bandwidth usage, transmitting these silence packets has two
advantages. First, it maintains the UDP bindings at NAT and
second, these packets can be used to play some background
noise at the peer. In the case where media traffic flowed over

TCP between caller and callee, silence packets were still sent.
The purpose is to avoid the drop in TCP congestion window
size, which takes some RTT to reach the maximum level again.

2) Putting a Call on Hold
Skype allows peers to hold a call. Since a SC can operate

behind NATs, it must ensure that UDP bindings are valid at a
NAT box. On average, a SC sent one UDP packet every three
seconds to the call peer, SN, or the online Skype node acting as
a media proxy when a call is put on hold. We also observed
that in addition to UDP messages, the SC also sent periodic
messages over TCP to the peer, SN, or online Skype node
acting as a media proxy during a call hold.

3) Codec Frequency Range
We performed experiments to determine the range of

frequencies Skype codecs allow to pass through. A call was
established between two Skype clients (v1.4). Tones of
different frequencies were generated using the NCH Tone
Generator [16] on the caller SC and output was observed on the
callee SC and vice versa. We observed that the minimum and
maximum audible frequency Skype codecs allowed to pass
through were 50 Hz and 8,000 Hz respectively.

Using Net Peeker [8], we reduced the uplink and downlink
bandwidth available to Skype application to 1,500 bytes/s,
respectively. We observed that the minimum and maximum
audible frequencies Skype codecs allowed to pass through
remained unchanged, i.e., 50 Hz and 8,000 Hz, respectively.

4) Congestion
We checked Skype call quality in a low bandwidth

environment by using Net Peeker [8] to tune the upload and
download bandwidth available for a call. We observed that
uplink and downlink bandwidth of 2 kilobytes/s each was
necessary for bare minimum audible call quality. The voice
was almost unintelligible at an uplink and downlink bandwidth
of 1.5 kilobytes/s.

F. Keep-alive Messages
We observed for three different network setups that the SC

v1.4 sent a refresh message to its SN over TCP. When SC ws
on a machine with a public IP address, a refresh message was
sent every 120s.

TCP
TCP

SC SN
2B
2B

Figure 12. Skype refresh message to SN when SC was on a machine with
public IP address.

V. CONFERENCING
We observed the Skype conferencing features for a three-

user conference for the three network setups discussed in
section III.A for Skype v1.4. We use the term user and machine
interchangeably. Let us name the three users or machines as A,
B, and C. Machine A was a 1.6 GHz Pentium 4 laptop with
512 MB RAM while machine B and C had a 3 GHz Pentium 4
CPU with 1 GB of RAM. In the first setup, the three machines
had public IP addresses. A call was established between A and
B. Then B decided to include C in the conference. From the
ethereal dump, we observed that B and C were sending their
voice traffic over UDP to SC on machine A, which was acting
as a mixer. It mixed its own packets with those of B and sent
them to C over UDP and vice versa as shown in Figure 13.

In the second setup, B and C were behind port-restricted
NAT, and A was on the public Internet. Initially, user A and B
established the call. Both A and B were sending media to each
other over UDP. User A then put B on hold and established a
call with C. It then started a conference with B and C. We
observed that both B and C were now sending their packets to
A over UDP, which mixed its own packets with those coming
from B and C, and forwarded it to them appropriately.

In the third setup, B and C were behind port-restricted NAT
and UDP-restricted firewall and A was on the public Internet.
User A started the conference with B and C. We observed that
both B and C were sending their voice packets to A over TCP.
A mixed its own voice packets with those coming from B and
C and forwarded them to B and C appropriately.

If user B was in a call with user C using a relay D and if
user B initiated a conference with user A, relay D was still
being used between user B and C.

In the same experiments for Skype v0.97, we had observed
that the most powerful machine always got elected as a
conference host.

For a three party conference, Skype does not do full mesh
conferencing [17].

C

B

A

B CA+C

A+B

Figure 13. Skype three user conferencing

VI. OTHER EXPERIMENTS
Unlike MSN and Yahoo Messenger, which signs out a user

if that user logs in on another machine, Skype allows a user to
log in from multiple machines simultaneously. The calls
intended for that user are routed to all locations. Upon picking
a call at one location, the call is immediately cancelled at other
locations. Similarly, instant messages for a user who is logged
in at multiple machines are delivered to all the locations.

The SN is selected by the Skype protocol based on a
number of factors like CPU and available bandwidth. It is not
possible to arbitrarily select a SN by filling the HC with the IP
address of an online SC. This conclusion was drawn from the
following experiment. Consider two online Skype nodes A and
B. A is connected to the Skype network and has only one entry
in its HC. We call super node of A as SN_A. Now we modify
the HC of SC on machine B, such that it only contains the IP
address and port number of SC running at A. When B logged
onto the Skype network, we observed that it connected to
another super node rather than connecting to A.

To see if a different encryption key is embedded within
each Skype executable, we compared the Skype setup files
downloaded at randomly chosen times during a week. There
were no differences between the setup files.

If two Skype users were behind the same NAT and
established a call with each other, voice traffic flowed directly
between them over the private network. If two Skype users
were behind different NATs, then some ARP messages were
seen on the wire. This seems to indicate that Skype was trying
to determine network connectivity.

A. Comparison with Yahoo, MSN and Google Talk
IM/Voice Applications
We measured memory usage and process priority before

and during calls, and mouth-to-ear latency for the Skype,
Yahoo, MSN, and Google Talk applications.

For our experiments, mouth-to-ear latency is defined as the
difference between the time the words are spoken on one voice
client, and the time they are heard at the other voice client
given the two voice clients are already in a voice session. If
both the original voice signal and the signal that traveled over
the network can be recorded in a stereo format, then the delay
or relative shift between these two signals can be calculated by
computing a correlation between these two signals using a fast
fourier transform (FFT). adelay [24] is a tool developed by Hao
Huang in our IRT Lab that computes the mouth-to-ear latency
using the technique described above.

For this experiment, the input signal was a pre-recorded
Sun .au file of 24s. Skype, MSN, Yahoo and Google Talk
applications were started on two separate laptops running
Windows XP service pack 2 (SP2) and having identical
hardware configuration. Each laptop had a Pentium (M) 1.7
GHz processor with 1 GB of RAM. Both machines had public
IP addresses and were connected to a 100 Mb/s LAN. A voice
session was established between respective voice clients. Using
Ethereal we checked that both caller and callee Skype, Yahoo,
MSN, and Google Talk clients were sending audio packets
directly to each other. The pre-recorded audio file was played
on a separate machine and the audio signal was provided as an
input to the caller machine. The original signal and the signal
received over the network were given as an input to the LineIn
jack of another machine which ran the Cool Edit Pro version
2.1 [25] software. Using Cool Edit Pro, the two signals were
recorded in Sun .au stereo format sampled at 8,000 Hz with 16
bit signed linear encoding. The sampling time for adelay was
two seconds. For each voice client, the experiment was
repeated four times. The results of these experiments are
summarized in Table III. The mouth-to-ear latency is an
average of four experiments for each IM client. The round-trip
delay between the caller and callee machines, measured using
ping, was less than one second.

We compared the memory usage and process priority for
the three clients under test. Unlike Yahoo, MSN and Google
Talk clients, Skype changes its priority to High priority, when a
call is established.

TABLE III
SKYPE, YAHOO, MSN AND GOOGLE TALK COMPARISON

Application
version

Memory Usage
before call (caller,
callee)

Memory Usage
during call (caller,
callee)

Process priority
before call

Process priority
during call

Mouth-to-ear
latency

Latency
Standard
Deviation

Skype 1.4.0.84 19 MB, 19 MB 21 MB, 27 MB Normal High 96 ms 4
Yahoo 7.0.0.437 38 MB, 34 MB 43 MB, 42 MB Normal Normal 152 ms 12
MSN 7.5 25 MB, 22 MB 34 MB, 31 MB Normal Normal 184 ms 16
G-Talk 1.0.0.80 9 MB, 9 MB 13 MB, 13 MB Normal Normal 109 ms 10

B. Skype Super Node Map
We performed experiments to get insights into the Skype

super node selection mechanism. We know that at login, a SC
must always connect to a SN. We take advantage of the fact
that if a SC is behind a NAT, it will never become a SN and it
will most likely connect to only one super node. Also, in a
subsequent immediate login, a SC does not always reconnect to
the same super node it connected last time. By having Skype
repeatedly login onto the Skype network for an extended
period of time, we can get a partial snapshot of the Skype super
nodes.

For this experiment, we used AutoIt [27] to automatically
start the Skype application, have it login on the Skype network,
and then terminate it. AutoIt is a scripting tool for automating
Windows tasks such as GUI input. There was a gap of 30
seconds between Skype application startup and termination and
a gap of 10 seconds between the termination and the next
startup. We ran the experiment for 96 hours (four days). Using
netstat, we noted the IP address and port number to which the
test machine had established a TCP connection. Since there
were no applications running on the machine which established
TCP connections except Skype, and since Skype must establish
a TCP connection with a SN at login, the IP address and port
number of the established TCP connection reported by netstat
are indeed the IP address and port number of the SN to which
Skype connects.

Theoretically, over a period of four days 8,640 login
attempts are possible since the runtime of one iteration is 40
seconds. However, we recorded 8,175 login attempts and the
lesser number is attributed to the script execution and Windows
overhead. After removing the datasets that contained multiple
TCP connections in ESTABLISHED state in the netstat data,
we found 898 unique super nodes in 8,163 successful login
attempts.

Using MaxMind tools, we determined the latitude,
longitude, country and city of each IP address. They have been
plotted on the map shown in Figure 16. MaxMind tools were
unable to determine the country for four IP addresses, which
were only used for 10 connections. Thus, our data set size was
reduced to 8,153 successful login attempts and 894 unique
super nodes.

The processing of data revealed the following:
• SN IP address distribution: US 83.7%, Asia 8.9%,

Europe 7.1%.
• In 8153 login attempts, 2855 (35%) hostnames had a

‘.edu’ suffix and belonged to 102 universities.
• Out of the 894 unique SNs, the top 20 nodes received

43.8% of the total connections and top 100 nodes
received 70.5% connections.

Table IV shows the number of unique super nodes per 24
hours. It also shows the number of unique SNs that were
common between the last day and the current day. Note that

there were a total of 894 unique SNs. Table V shows the top
five countries excluding US that received the most number of
connections. Table VI shows the top five universities that
received the highest number of connections.

VII. CONCLUSION
In this paper, we have tried to analyze various aspects of

the Skype protocol by analyzing the Skype network traffic and
by intercepting the shared library and system calls of Skype.
We observed that Skype can work almost seamlessly behind
NATs and firewalls. We believe that Skype client uses its
version of STUN [5] protocol to determine the type of NAT or
firewall it is behind. The NAT and firewall traversal techniques
of Skype are similar to many existing applications such as
network games. It is by the random selection of sender and
listener ports, the use of TCP as voice streaming protocol, and
the peer-to-peer nature of the Skype network, that not only a
SC traverses NATs and firewalls but it does so without any
explicit NAT or firewall traversal server. Skype uses TCP for
signaling. It uses wide band codecs and has licensed them from
GlobalIPSound [15]. Skype communication is encrypted.

The underlying search technique that Skype uses for user
search is still not clear. Our guess is that it uses a combination
of hashing and periodic controlled flooding to gain information
about the online Skype users. Skype search mechanism falls
back to the login server for all unsuccessful and some
successful searches.

Skype has a central login server which stores the login
name, password and buddy list of each user. Since Skype
packets are encrypted, it is not possible to say with certainty
what other information is stored on the login server. However,
during our experiments we did not observe any subsequent
exchange of information with the login server after a user
logged onto the Skype network.

Compared to Yahoo, MSN, and Google Talk applications,
Skype reported the best mouth-to-ear latency.

Skype is a selfish application and it tries to obtain the best
available network and CPU resources for its execution. It
changes its application priority to high priority in Windows
during the time call is established. It evades blocking by
routing its login messages over SNs. This also implies that
Skype is relying on SNs, who can misbehave, to route login
messages to the login server. Skype does not allow a user to
prevent its machine from becoming a SN although it is possible
to prevent Skype from becoming a SN by putting a bandwidth
limiter on the Skype application when no call is in progress.
Theoretically speaking, if all Skype users decided to put
bandwidth limiter on their application, the Skype network can
possibly collapse since the SNs hosted by Skype may not have
enough bandwidth to relay all calls.

From our experience of analyzing the Skype protocol, we
gather that packet intercept and blocking can be used for
protocol reverse engineering. Classical packet sniffing tools

TABLE IV
SN DISTRIBUTION PER DAY FOR 894 UNIQUE SN’S

 Unique SNs
per day

Cumulative
Unique SNs

Common SNs
between prev
and current day

Day1 224 224
Day2 371 553 42
Day3 202 699 98
Day4 246 898 103

TABLE V
SN DISTRIBUTION PER COUNTRY (NON-US)

Countries Cumulative
SNs

Taiwan 256
Israel 194
Japan 168
France 75
Switzerland 55

TABLE VI
SN DISTRIBUTION PER UNIVERSITY

Countries Cumulative
SNs

Harvard 367
Columbia 366
UNL 350
UPenn 245
BU 179

such as Ethereal are less useful when packet content is
encrypted. Shared library and system call interception
techniques can be used to manipulate the network traffic of a
black box executable.

ACKNOWLEDGMENTS
The authors would like to thank Faisal Ghias Mir, Antonio

Altamare, and Ricardo Barrato for the insightful discussions on
Linux function call interception and various aspects of Skype.
The authors would also like to thank David Chaum, Alok
Agrawal, Eunsoo Shim, Sarah Baker, Balwant Rathore and
numerous others who gave comments on our Skype technical
report.

REFERENCES
[1] Skype. http://www.skype.com
[2] Kazaa. http://www.kazaa.com
[3] SkypeOut. http://www.skype.com/products/skypeout/
[4] SkypeIn. http://www.skype.com/products/skypein/
[5] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN: simple

traversal of user datagram protocol (UDP) through network address
translators (NATs). RFC 3489, IETF, Mar. 2003.

[6] Global Index (GI): http://www.skype.com/skype_p2pexplained.html
[7] Ethereal. http://www.ethereal.com
[8] Net Peeker. http://www.net-peeker.com
[9] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. SIP: session initiation protocol.
RFC 3261, IETF, June 2002.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee. HTTP: hyper text transfer protocol. RFC 2616, IETF, June
1999.

[11] S. Baset and H. Schulzrinne. An analysis of the skype peer-to-peer
Internet telephony protocol. Columbia University Technical Report
CUCS-039-04, September 2004.

Figure 14. Skype (v1.4) connection tab. It shows the port on which Skype
listens for incoming connections.

[12] iLBC codec.
http://www.globalipsound.com/datasheets/iLBC.pdf

[13] iSAC codec.
http://www.globalipsound.com/datasheets/iSAC.pdf

[14] iPCM codec.
http://www.globalipsound.com/datasheets/iPCM-wb.pdf

[15] Global IP Sound. http://www.globalipsound.com/
[16] NCH Tone Generator. http://www.nch.com.au/tonegen/
[17] J. Lennox and H. Schulzrinne. A protocol for reliable decentralized

conferencing. ACM International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), Monterrey,
California, June 2003.

[18] Skype FAQ.
http://support.skype.com/index.php?_a=knowledgebase&_j=questiondet
ails&_i=145

[19] J. Rosenberg, R. Mahy, C. Huitema. TURN: traversal using relay NAT.
Internet draft, Internet Engineering Task Force, September 2005. Work
in progress.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proc. ACM SIGCOMM (San Diego, 2001).

[21] memgrp. http://www.hick.org/code/skape/memgrep/
[22] Linux Function Interception. http://uberhip.com/godber/interception/
[23] X-Win32. http://www.xwin32.com/
[24] adelay. Measure the delay between two audio channels.

http://www1.cs.columbia.edu/IRT/software/adelay/adelay.html
[25] Cool Edit Pro v2.1. http://www.softpedia.com/progDownload/Cool-

Edit-Pro-Download-2076.html
[26] MaxMind. http://www.maxmind.com
[27] AutoIt. http://www.hiddensoft.com

Figure 15. Skype (v1.4) host cache list (shared.xml)

Figure 16. Worldmap of super nodes to which Skype establishes a TCP connection at login.

