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Abstract—Skype is a peer-to-peer VoIP client developed in 2003 
by the organization who created Kazaa. Skype claims that it can 
work almost seamlessly across NATs and firewalls and has better 
voice quality than other VoIP clients. It encrypts calls end-to-end, 
and stores user information in a decentralized fashion. Skype 
also supports instant messaging and conferencing. 
This paper analyzes key Skype functions such as login, NAT and 
firewall traversal, call establishment, media transfer, codecs, and 
conferencing under three different network setups. Analysis is 
performed by careful study of the Skype network traffic and by 
intercepting the shared library and system calls of Skype. We 
draw a map of super nodes to which Skype establishes a TCP 
connection at login. 

I. INTRODUCTION 
Skype [1] is a peer-to-peer (p2p) VoIP client developed by 

the organization who created Kazaa [2]. Skype allows its users 
to place voice calls and send text messages to other users of 
Skype clients. In essence, it is very similar to the MSN and 
Yahoo IM applications, as it has capabilities for voice-calls, 
instant messaging, audio conferencing, and buddy lists. 
However, the underlying protocols and techniques it employs 
are quite different. 

Like its file sharing predecessor KaZaa, Skype uses an 
overlay peer-to-peer network. There are two types of nodes in 
this overlay network, ordinary hosts and super nodes (SN). An 
ordinary host is a Skype application that can be used to place 
voice calls and send text messages. A super node is an ordinary 
host’s end-point on the Skype network. Any node with a public 
IP address having sufficient CPU, memory, and network 
bandwidth is a candidate to become a super node. An ordinary 
host must connect to a super node and must authenticate itself 
with the Skype login server. Although not a Skype node itself, 
the Skype login server is an important entity in the Skype 
network as user names and passwords are stored at the login 
server. This server ensures that Skype login names are unique 
across the Skype name space. Starting with Skype version 1.2, 
the buddy list is also stored on the login server. Figure 1 
illustrates the relationship between ordinary hosts, super nodes 
and the login server. 

Apart from the login server, there are SkypeOut [3] and 
SkypeIn [4] servers which provide PC-to-PSTN and PSTN-to-
PC bridging. SkypeOut and SkypeIn servers do not play a role 
in PC-to-PC call establishment and hence we do not consider 
them to be a part of the Skype peer-to-peer network. Thus, we 
consider the login server to be the only central component in 
the Skype p2p network. Online and offline user information is 
stored and propagated in a decentralized fashion. 
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Figure 1.  Skype Network. There are three main entities: supernodes, 
ordinary nodes, and the login server. 

We believe that each Skype node uses a variant of the 
STUN [5] protocol to determine the type of NAT and firewall 
it is behind. We also believe that there is no global NAT and 
firewall traversal server because if there was one, the Skype 
node would have exchanged traffic with it during the login and 
call establishment phases in the many experiments we 
performed. 

The Skype network is an overlay network and thus each 
Skype client (SC) needs to build and refresh a table of 
reachable nodes. In Skype, this table is called host cache (HC) 
and it contains IP address and port number of super nodes. 
Starting with Skype v1.0, the HC is stored in an XML file.  

Skype claims to have implemented a ‘3G P2P’ or ‘Global 
Index’ [6] technology, which is guaranteed to find a user if that 
user has logged in the Skype network in the last 72 hours. 



Skype uses wideband codecs which allows it to maintain 
reasonable call quality at an available bandwidth of 32 kb/s. It 
uses TCP for signaling, and both UDP and TCP for 
transporting media traffic.  

The rest of this paper is organized as follows. Section II 
describes key components of the Skype software and the Skype 
network. Section III describes the experimental setup we used 
for reverse-engineering the Skype protocol. Section IV 
discusses key Skype functions like startup, login, user search, 
call establishment, media transfer and codecs, and presence 
timers. Flow diagrams based on actual network traffic have 
been included to elaborate on the details. Section V discusses 
conferencing. Section VI discusses other experiments and 
compares aspects of Skype with Yahoo, MSN and Google Talk 
IM applications. A world map of SNs to which a SC 
establishes a TCP connection at login is also drawn. 

II. KEY COMPONENTS OF THE SKYPE SOFTWARE 
A Skype client listens on particular ports for incoming 

calls, maintains a table of other Skype nodes called a host 
cache, uses wideband codecs, maintains a buddy list, encrypts 
messages end-to-end, and determines if it is behind a NAT or a 
firewall. This section discusses these components and 
functionalities in detail. 

A. Ports 
A Skype client (SC) opens a TCP and a UDP listening port 

at the port number configured in its connection dialog box. SC 
randomly chooses the port number upon installation. In 
addition, SC also opens TCP listening ports at port number 80 
and 443 which, otherwise, are used to listen for incoming 
HTTP and HTTP-over-TLS requests.  Unlike many Internet 
protocols like SIP [9] and HTTP [10], there is no default TCP 
or UDP listening port. Figure 14 shows a snapshot of the Skype 
(v1.4) connection dialog box. This figure shows the ports on 
which a SC listens for incoming connections. 

B. Host Cache 
The host cache (HC) is a list of super node IP address and 

port pairs that SC builds and refreshes regularly. It is a critical 
part to the Skype operation. In SC v0.97, at least one valid 
entry must be present in the HC. A valid entry is an IP address 
and port number of an online Skype node. At login time, a SC 
v0.97 tried to establish a TCP connection and exchange 
information with any HC entry. If it was unable to do so, it 
reported a login failure. In Skype v1.2 and onwards, if a SC is 
unable to establish a TCP connection with any HC entry, it 
tries to establish a TCP connection and exchange information 
with one of the seven bootstrap IP address and port pairs hard-
coded in the Skype executable. A SC for Windows XP stores 
the host cache as a XML file ‘shared.xml’ in C:\Documents 
and Settings\<XP User>\Application Data\Skype. A SC for 
Linux stores the HC as a XML file ‘shared.xml’ at 
$(HOMEDIR)/.Skype. After running a SC for two days, we 
observed that HC contained a maximum of 200 entries. Host 
and peer caches are not new to Skype. Chord [20], another 
peer-to-peer protocol, has a finger table, which it uses to 
quickly find a node. 

C. Codecs 
During our experiments, we observed that Skype uses the 

iLBC [12], iSAC [13], and iPCM [14] codecs. These codecs 

have been developed by GlobalIPSound [15]. For SC v1.4 we 
measured that the Skype codecs allow frequencies between 50-
8,000 Hz to pass through. This frequency range is the 
characteristic of a wideband codec. 

D. Buddy List1 
In Windows XP, Skype stores its buddy information in an 

XML file ‘config.xml’ at C:\Documents and Settings\<XP 
user>\Application Data\Skype\<skype user id>. In Linux, 
Skype stores the ‘config.xml’ file in 
$(HOMEDIR)/.Skype/<skype user id>. Starting with Skype 
v1.2 for Windows XP, the buddy list is also stored on a central 
Skype server whose IP address is 212.72.49.142. The buddy 
list is stored unencrypted on a computer. Figure 2 shows a 
fragment of the config.xml file. 

<CentralStorage> 
  <LastBackoff>0</LastBackoff> 
  <LastFailure>0</LastFailure> 
  <LastSync>1135714076</LastSync> 
  <NeedSync>0</NeedSync> 
  <SyncSet> 
    <u> 
    <skypebuddy1>2f1b8360:2</skypebuddy1> 
    <skypebuddy2>d0450f12:2</skypebuddy2 

Figure 2.  A fragment of the config.xml file for a SC. It shows two Skype 
buddies and an four-byte number for each buddy. If two SCs have the same 
buddy, their corresponding config.xml files have a different four-byte number 
for the same buddy. 

E. Encryption 
The Skype website [18] explains: “Skype uses AES 

(Advanced Encryption Standard), also known as Rijndael, 
which is used by U.S. Government organizations to protect 
sensitive, information. Skype uses 256-bit encryption, which 
has a total of 1.1 x 1077 possible keys, in order to actively 
encrypt the data in each Skype call or instant message. Skype 
uses 1024 bit RSA to negotiate symmetric AES keys. User 
public keys are certified by the Skype server at login using 
1536 or 2048-bit RSA certificates.” 

F. NAT and Firewall 
We conjecture that SC uses a variation of the STUN [5] and 

TURN [19] protocols to determine the type of NAT and 
firewall it is behind. We also conjecture that SC refreshes this 
information periodically. This information is also stored in the 
shared.xml file.  

Unlike its file sharing counter part KaZaa, a Skype client 
cannot prevent itself from becoming a super node. 

III. EXPERIMENTAL SETUP 
Experiments were performed for the Windows Skype 

version 1.4.0.84 and for the Linux Skype version 1.2.0.18. We 
used traffic analysis, shared library and system call interception 
techniques to analyze various aspects of the Skype protocol. 
Tools like memgrp [21] can be used to perform a runtime 
analysis of the Skype memory. We have used this tool 
sparingly as it requires an extensive effort and trial and error to 
‘decipher’ the memory dumps. Therefore, we do not present 
any results from using that tool. Tools by MaxMind [26] were 

                                                        
1 Buddy list is an AOL trademark. 



used to perform reverse country, city, and ISP lookups for an 
IP address when dig failed to return a DNS PTR record. 

Below, we explain the experimental setup for experiments 
performed on different versions of the Skype client. 

A. Skype version 1.4.0.84.  
This version was available for Windows. Traffic analysis 

was the primary mechanism for experiments performed for this 
version. A SC was installed on two Windows XP machines. 
Each machine had a 3 GHz Pentium 4 CPU with 1 GB of 
RAM. Each machine had a 10/100 Mb/s Ethernet card and was 
connected to a 100 Mb/s network.  

We performed experiments under three different network 
setups. In the first setup, both Skype users were on machines 
with public IP addresses; in the second setup, one Skype user 
was behind a port-restricted1 NAT; in the third setup, both 
Skype users were behind a port-restricted NAT and UDP-
restricted firewall. The NAT and firewall machines ran 
Mandriva Linux 10.2 and were connected to 100 Mb/s Ethernet 
network. The NAT was configured using Linux ‘iptables’. 

Ethereal [7] and NetPeeker [8] were used to monitor and 
control network traffic, respectively. NetPeeker was used to 
tune the bandwidth so as to analyze the Skype operation under 
network congestion. 

B. Skype version 1.2.0.18 
This version is available for Linux. We used shared library 

and system call redirection techniques to gain more insights 
into the Skype protocol. In Linux, at program startup, dynamic 
linking allows to load a shared library pointed by 
LD_PRELOAD environment variable before any other shared 
library. This makes it possible to overload a library function 
such as strcpy() or send(). When LD_PRELOAD is set to a 
library containing an overloaded strcpy() function, and the 
program which contains strcpy() calls is executed, the 
overloaded strcpy() is called. The parameters passed to this 
overloaded strcpy() function can be displayed or any 
appropriate action can be taken. Also, the overloaded strcpy() 
function can then call the libc strcpy() function. Austin Godber 
[22] provides a nice tutorial on this technique and Linux 
function interception.  

In our experiments, we exported the display of two Linux 
machines using X-Win32 [23]. Thus, we were able to run 
different instances of a Skype client on the same host machine. 
However, the sound device cannot be accessed when the 
display is exported. To overcome this problem, we overrode 
the open(), close(), select(), and ioctl() calls using the technique 
described above. Each of these calls called the namesake libc 
function from within. In Skype, the socket and sound 
descriptors are polled by a select() system call. When Skype 
requests to open a sound device, our overloaded open() system 
call returns a fake descriptor. Skype then requests this 
descriptor to be polled by select(); however since this is a fake 
descriptor, we must not pass this descriptor to the actual 
select() system call. Therefore, our overloaded select() clears 
this fake descriptor from the read descriptor list before calling 
the actual select() function.  

                                                        
1 A port-restricted NAT allows an external host, with source IP 

address X and source port P, to send a packet to the internal host 
only if the internal host had previously sent a packet to IP address 
X and port P. 

An actual sound device (microphone) will have periodic 
data to read after it is open. However, since ours is a dummy 
sound device, select() will not return periodically on this 
device. To solve this issue, we created a select() timer in the 
actual select() system call with an interval of 20 ms. When the 
select() returns on a timer event, we add to the select() read 
descriptor list which is passed to the overloaded select() the 
fake sound device descriptor. Skype then issues a read() on this 
fake descriptor. Since read() is overloaded, our read() function 
is called. The overloaded read() then returns a dummy sound 
buffer to the Skype. We observed that Skype requested to read 
960 bytes from the sound device on each read request. 

All experiments were performed between November and 
December, 2005. 

In the subsequent sections, any reference to function 
overloading in experiments implies that Linux Skype version 
1.2.0.18 was used. Otherwise, Windows Skype version 
1.4.0.84 was under test.  

IV. SKYPE FUNCTIONS 
Skype functions can be classified into startup, login, user 

search, call establishment and tear down, media transfer, and 
presence messages. This section discusses each of them in 
detail. 

A. Startup 
When SC v1.4 was run for the first time after installation, it 

sent a HTTP 1.1 GET request to the Skype server (skype.com). 
The first line of this request contained the keyword ‘installed’.  

The complete startup messages for Skype v0.97 are 
reported in the technical report [11]. 

B. Login 
Login is perhaps the most critical function to the Skype 

operation. It is during this process a SC authenticates its user 
name and password with the login server, advertises its 
presence to other peers and its buddies, determines the type of 
NAT and firewall it is behind, discovers online Skype nodes 
with public IP addresses, and checks the availability of latest 
Skype version. 

1) Login Process 
Using the library function call overloading technique 

described in section III.B, we overrode the connect(), and 
sendto() calls such that these calls always returned with a 
failure.  However, we permitted a TCP connection to localhost 
since Skype refuses to run if cannot establish this connection. 
The system time was printed whenever the connect() and 
sendto() functions were called to accurately profile the time at 
which Skype sends its login messages. Also, before running the 
Skype we deleted the HC XML file. Then we ran the SC, and 
made a login attempt. We observed that the SC first sent a 
UDP packet of length 18 bytes to each of the seven bootstrap 
SN IP address and port 33033. If there was no response after 
five seconds, SC tried to establish a TCP connection with each 
of these seven default SNs IP address on port 33033. If the 
connection attempts failed, it repeated the whole process after 
six seconds. We ran this experiment for 15 minutes, and 
strangely Skype never reported a login failure. Figure 3 shows 
these login attempts as a flow chart. 

In the same experiment conducted in July 2005 for Skype 
Linux v1.0, we had observed that Skype tried to establish a 



connection with each of the SN IP address on port 80 and port 
443. Most firewalls are configured to allow outgoing TCP 
traffic to port 80 (HTTP port) and port 443 (HTTP-over-TLS 
port). However, we did not observe such attempts for Skype 
Linux v1.2. 

Since the HC file had been deleted, and since we saw the 
same bootstrap IP address and port pairs in subsequent failed 
login attempts, we conclude that these IP address and port pairs 
are hard-coded in the Skype executable. 

We have observed that a SC must establish a TCP 
connection with a SN in order to connect to the Skype network. 
If it cannot connect to a super node, it will report a login 
failure.  

In another experiment, we filled the SC HC with an invalid 
IP address and port pair. Initially, SC was unable to establish a 
TCP connection with this invalid entry; however, after some 
time, it established a TCP connection with one of the bootstrap 
SNs. Since IP address and port number of any bootstrap SN 
was not present in the HC, it gives more credence to our belief 
that some SN IP address and port number pairs are hard-coded 
in the Skype executable. 

In order to see the minimal set of messages a SC exchanges 
with other entities for a successful login, we performed the 
following experiment. We deleted the HC and permitted 
inbound and outbound UDP and TCP traffic. A SC was started 
and a login attempt was made. The login attempt succeeded. 
We then repeated this experiment for the same Skype user id 
two more times. Figure 4 shows the set of messages exchanged 
between SC, bootstrap SN, SN, and the login server in a 
condensed form. 

In  these  experiments  we  observed  that  the  first  and  the  
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Figure 3.  Skype login process. SC sends UDP packets of length 18 bytes to 
all bootstrap SNs. After 5s, it attempts TCP connections with the seven 
bootstrap SN IP address and ports 33033. Authentication with the login server 
is not shown. 

second messages exchanged with the login server were always 
the same across multiple login attempts even for different 
skype user ids. The decimal representation of message (1) is 22 
3 1 0 0 and decimal representation of message (2) is 23 3 1 0 0. 
In most of our experiments, only four messages were 
exchanged between SC and the login server. The length of 
these messages was almost the same in subsequent 
experiments. Messages (3) and (4) were different for each login 
attempt.  However, message (3) and (4) shared a four byte 
common header across different experiments. The decimal 
equivalent of first four bytes of these common headers is the 
same as message (1) and (2), respectively. The decimal 
equivalent of the fifth byte in message (3) was 205. On 
inspection, we found the header ’23 3 1 0’ at that location 
[header+205] and another length field after that header whose 
value was 198. The decimal equivalent of the fifth byte in 
message (4) was ‘217’ which appears to be the length of the 
message. 

Note that in SSL messages, the first byte indicates the 
message type and the next two bytes indicate the SSL version. 
The value 22 (0x16) corresponds to the SSL message type 
client_key_exchange and the value 3 0 corresponds to the SSL 
version 3.0. Since the messages a SC sends to the login server 
contains the header 22 3 1 0, it indicates that Skype is using 
part of SSL header for its login messages. 

Using the same setup that was used for the experiment 
described in the above paragraph, a login attempt was made 
with an invalid password. The length of the messages (1), (2), 
and (3) exchanged with the login server remained the same. 
The length of the message (4) returned by the login server was 
18 bytes indicating a login failure. The decimal equivalent of 
the fifth byte in message (4) was 13 which indicated the length 
of this message after a four byte header. 

To see if it is possible to block Skype, we performed the 
following experiment. A successful login attempt was made. 
Then, the SC was shut down. We overrode connect() such that 
it returned with an error when a connection attempt was made 
with  the  login  server  IP  addresses. SC was then started and a 
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Figure 4.  Minimal set of messages exchanged with the bootstrap SN, the SN, 
and the login server. Messages exchanged with the bootstrap SN, and SN have 
been aggregated. Message size for messages exchanged with the bootstrap 
node and SN correspond to the cumulative size. Messages sent after the 
exchange with the login server is completed are not shown. 



login attempt was made. Strangely, the login attempt 
succeeded. We noted the IP address of the node to which the 
initial login message having decimal representation 22 3 1 0 0 
was sent. In our overloaded connect(), we blocked connection 
attempts to this IP address. We then started Skype, and 
attempted a login. However, Skype was still able to login 
successfully.  We then kept on blocking IP addresses in 
connect() to which login messages  were  sent  in  the  previous 
login attempt. In all, we ended up blocking six IP addresses in 
connect(). However, Skype was still able to login successfully. 
From this experiment, we conclude that Skype routes login 
messages through SNs. This is a change from version 0.97 
where it was possible to block Skype by simply blocking the 
login server IP address. 

Next, we overrode the send() call such that it always 
returned with an error when it saw a message whose first four 
bytes were 22 3 1 0. Note that these are the first four bytes of 
message (1) and (3) shown in Figure 4. Skype was then started 
and a login attempt was made. Skype was unable to login 
despite multiple login attempts for different Skype user ids. 
Thus, it is possible to block Skype by dropping all the packets 
whose first four bytes of payload are 22 3 1 0. However, care 
should be taken to ensure that any such rule at the firewall does 
not result in blocking legitimate traffic. 

For Skype v1.4, we performed experiments to understand 
the Skype login behaviour for the three network setups 
described in section III.A. For these experiments, a previous 
copy of SC was uninstalled and Windows registry was cleared 
of old Skype entries. Then, a new copy of SC was installed. 
Table I summarizes the results of these experiments. Detailed 
message flows for these login attempts for v0.97 are available 
in the technical report [11].  

In most of the login attempts, we observed that a SC sent 
ICMP messages to the following IP addresses: 204.152.* 
(USA), 130.244.* (Sweden), 202.139.* (Australia), 202.232.* 
(Japan). The reason for sending these messages is not clear. 
The reverse lookup done using MaxMind [26] suggests that 
each of these IP addresses are in countries located in different 
continents.  

For the first two experimental setups, the SC sent messages 
to about 22 nodes and received responses from them after 
authenticating itself with the login server.  

2) Login Server 
After a SC is connected to a SN, the SC must authenticate 

the user name and password with the Skype login server. The 
login server is the only central component in the Skype p2p 
network. It stores Skype user names and passwords and ensures 
that Skype user names are unique across the Skype name 
space. SC must authenticate itself with the login server for a 
successful login. During our experiments we observed that SC 
always exchanged data over TCP with a node whose IP address 
was either 212.72.49.141 or 195.215.8.141. We believe that 
these nodes are the login servers.  A reverse lookup of these 
two IP addresses did not retrieve a NS record. The first 
hostname returned in the authority section of the reverse 

lookup query (dig) was ns07.customer.eu.level3.net and 
ns3.DK.net respectively. Country lookup done using MaxMind 
tools suggests that 212.72.49.141 is in Netherlands and 
195.215.8.141 is in Denmark. The buddy list is hosted on a 
server whose IP address is 212.72.49.142. We consider it to be 
a part of the login server. 

3) Bootstrap Super Nodes 
We list the IP address and port numbers of the seven 

default SNs observed during a failed login attempt. The 
corresponding hostnames and the first entry of the authority 
section returned by reverse lookup query (dig) are given in 
Table II. 

From the reverse lookup, it appears that one SN is 
maintained by Skype itself.  

4) NAT and Firewall Determination 
We conjecture that a SC is able to determine at login if it is 

behind a NAT and a firewall. We guess that there are at least 
two ways in which a SC can determine this information. One 
possibility is that it can determine this information by 
exchanging messages with its SN using a variant of the STUN 
[5] protocol. The other possibility is that during login, a SC 
sends and possibly receives data from some nodes after it has 
established a TCP connection with the SN. We conjecture that 
at this point, SC uses its variation of STUN [5] protocol to 
determine the type of NAT or firewall it is behind. Once 
determined, the SC stores this information in the shared.xml 
file. We also conjecture that SC refreshes this information 
periodically. We are not clear on how often a SC refreshes this 
information since Skype messages are encrypted. 

5) Skype Latest Version 
During login, a SC sent a HTTP 1.1 GET request to the 

Skype server (skype.com) to determine if a new version was 
available. The first line of this request contained the keyword 
‘getlatestversion’. Along with the HTTP request sent at first 
time startup, these are the only text-based messages sent by 
Skype.  

6) Login Process Time 
We measured the time to login on the Skype network for 

the three different network setups described in section III. For 
this experiment, the HC already contained the maximum of two 
hundred entries. The SC with a public IP address and the SC 
behind a port-restricted NAT took about 3-7 seconds to 
complete the login procedures. The SC behind a UDP-
restricted firewall took about 35 seconds to complete the login 
process. For SC behind a UDP-restricted firewall, we observed 
that it sent UDP packets to its twenty HC entries. At that point 
it concluded that it is behind UDP-restricted firewall. It then 
tried to establish a TCP connection with the HC entries and 

TABLE I 
SKYPE (VER 1.4) LOGIN EXPERIMENT SUMMARY 

Skype on a Machine 
with/behind Data Exchanged Time to Login 

Public IP address 10 KB 3-7 s 
Port-restricted NAT 11 KB 3-7 s 
UDP-restricted firewall 7 KB 35 s 

 

TABLE II 
BOOTSTRAP SN IP ADDRESS AND HOSTNAMES OBTAINED BY A REVERSE LOOKUP  

IP address:port Reverse Lookup Result Authority Section 

66.235.180.9:33033 sss1.skype.net ns1.hopone.net 
66.235.181.9:33033  No PTR result ns1.hopone.net 
212.72.49.143:33033   No PTR result ns07.customer.e

u.level3.net 
195.215.8.145:33033 No PTR result ns3.DK.net 
64.246.49.60:33033 rs-64-246-49-

60.ev1.net 
ns2.ev1.net 

64.246.49.61:33033 rs-64-246-49-
61.ev1.net 

ns2.ev1.net 

64.246.48.23:33033 ev1s-64-246-48-
23.ev1servers.net 

ns1.ev1.net 



was ultimately able to connect to a SN. Also, a SC behind a 
UDP-restricted firewall and port-restricted NAT took 5-10 
seconds for immediate subsequent logins. This shows that a SC 
stores its last connectivity information in a file. 

C. User Search 
Skype uses its Global Index (GI) [6] technology to search 

for a user. Skype claims that search is distributed and is 
guaranteed to find a user if it exists and has logged in during 
the last 72 hours. Extensive testing suggests that Skype was 
always able to locate users who logged in using a public or 
private IP address in the last 72 hours. 

Skype is a not an open protocol and its messages are 
encrypted. Whereas for login, we were able to form a 
reasonably precise opinion about the different entities involved, 
it is not possible to do so in search, since we cannot trace the 
Skype messages beyond a SN. Also, we were unable to force a 
SC to connect to a particular SN. Nevertheless, we have 
observed and present search message flows for the three 
different network setups. 

A SC has a search dialog box. After entering the Skype user  
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Figure 5.  Message flow for a successful user search when SC v1.4 has a 
public IP address. ‘B’ stands for bytes and ‘N’ stands for node. Message sizes 
correspond to payload size of TCP or UDP packets. Not all messages are 
shown. 
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Figure 6.  Message flow for a successful user search when SC v1.4 is behind 
a port-restricted NAT. ‘B’ stands for bytes and ‘N’ stands for node. UDP 
packets were sent to N1, N2, N3, and N4 during login process and responses 
were received from them. Message size corresponds to payload size of TCP or 
UDP packets. Not all messages are shown. 
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Figure 7.  User search by a SC v1.4 behind a UDP-restricted firewall. ‘B’ 
stands for bytes. Messages have been aggregated for space. Data is exchanged 
with SN only. Message size corresponds to the approximate cumulative size 
of messages exchanged between SC and a SN and vice versa. 

id  and  pressing   the  find  button,  SC  starts  its  search  for  a 
particular user. For SC on a public IP address, SC sent a TCP 
packet to its SN. It appears that the SN gave SC  the  IP address 
and port number of eight nodes to query, since after that 
exchange with SN, SC sent UDP packets to eight nodes. If it 
could not find the user, it informed the SN over TCP. It appears 
that the SN now asked it to contact sixteen different nodes, 
since the SC then sent UDP packets to sixteen different nodes. 
This process continued until the SC found the user or it 
determined that the user did not exist. On average, SC 
contacted more than 24 nodes. The search took three to four 
seconds. 

A SC behind a port-restricted NAT exchanged data 
between SN and some of the nodes which responded to its 
UDP request during login process. The message flow is shown 
in Figure 6. The search took about five to six seconds. 

A SC behind a port-restricted NAT and UDP-restricted 
firewall sent the search request over TCP to its SN. We believe 
that SN then performed the search query and informed SC of 
the search results. Unlike a user search by SC on a public IP 
address, SC did not contact any other nodes. This suggests that 
SC knew that it was behind a UDP-restricted firewall. The 
aggregated message flow is shown Figure 7. The search took 
about 10-15 seconds. 

In some successful searches, we saw the SC exchanging 
information with the login server. It appears that Skype is using 
the login server as a fall back option in case the search is 
unsuccessful. For a non-existent Skype name, a SC always 
contacted the login server. 

We are not clear on how SC terminates the search if it is 
unable to find a user. 

1) Search Result Caching 
To observe if search results are cached at intermediate 

nodes, we performed the following experiment for SC v1.4. 
User A was behind a port-restricted NAT and UDP-restricted 
firewall and logged on the Skype network. User B logged in 
using a SC running on machine B, which was on a public IP 
address. User B (on a machine with a public IP address) 
searched for user A, who was behind a port-restricted NAT and 
UDP-restricted firewall. We observed that search took about 
10-11 seconds. Next, SC on machine B was uninstalled, and 
the Skype registry cleared so as to remove any local caches. SC 
was reinstalled on machine B and user B searched for user A. 
The search took about 3-4 seconds. This experiment was 
repeated four times on different days and similar results were 
obtained. 

From the above discussion we infer that the SC performs 
user information caching at intermediate nodes. 

Skype allows the user to perform wildcard searches of 
different Skype user ids. To see if the same wildcard search 
query executed on two instances of SC retrieved the same 
result, we performed the following experiment. We started two 
instances of a Skype client on two different machines and 
executed the same wildcard search query on them. The 
retrieved results were not completely identical. In all the 
wildcard searches we performed, the retrieved results were 
never completely identical. 

D. Call Establishment and Teardown 
We consider call establishment for SC v1.4 for the three 

network setups described in section III. Further, for each setup,  
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Figure 8.  Message flow for call establishment when caller and callee SC 
v1.4 are on machines with public IP addresses and the callee is present in the 
buddy list of the caller. ‘B’ stands for bytes. Messages have been aggregated 
for space.  Message size corresponds to the approximate cumulative size of 
messages exchanged between caller and a callee and vice versa. The number 
in paranthesis shows the total number of messages sent in that direction. 
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Figure 9.  Message flow for call establishment when caller SC is behind a 
port-restricted NAT and callee SC is on a public IP address. ‘B’ stands for 
bytes. Not all messages are shown. Messages have been aggregated for space.  
Message size corresponds to the approximate cumulative size of messages 
exchanged between caller, callee, SN, other nodes and vice versa. The number 
in paranthesis shows the total number of messages sent in that direction. 
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Figure 10.  Message flow for call establishment when caller and callee SC are 
behind a port-restricted NAT and UDP-restricted firewall. ‘B’ stands for bytes 
and ‘N’ stands for a node. Not all messages are shown. Messages have been 

aggregated for space. Message size corresponds to the approximate 
cumulative size of messages exchanged between caller, callee, other nodes 
and vice versa. Voice traffic flows over TCP. The number in paranthesis 
shows the total number of messages sent in that direction. 

we consider call establishment for users that are in the buddy 
list of caller and for users that are not present in the buddy list. 
It is important to note that call signaling is always carried over 
TCP. 

For users that are not present in the buddy list, call 
placement is equal to user search plus call signaling. Thus, we 
discuss call establishment for the case where the callee is in the 
buddy list of the caller. 

If both users were on machines with public IP addresses, 
online and were in the buddy list of each other, then upon 
pressing the call button, the caller SC established a TCP 
connection with the callee SC. Signaling information was 
exchanged over TCP. The aggregated message flow between 
caller and callee is shown in Figure 8. 

The initial exchange of messages between caller and callee 
indicates the existence of a challenge-response mechanism. 
The caller also sent some messages (not shown in Figure 8) 
over UDP to alternate Skype nodes. For this scenario, 
approximately six kilobytes of data was exchanged. 

In the second network setup, where the caller was behind a 
port-restricted NAT and the callee was on a public IP address, 
signaling information did not flow directly between caller and 
callee initially. Instead, the caller sent signaling information 
over TCP to an online Skype node which forwarded it to callee 
over TCP. After a call had been established, the media flowed 
directly between caller and callee over UDP. The message flow 
is shown in Figure 9. For this scenario, approximately eight 
kilobytes of data was exchanged. 

For the third setup, in which both users were behind port-
restricted NAT and UDP-restricted firewall, both caller and 
callee SC exchanged signaling information over TCP with 
another online Skype node. Caller SC sent media over TCP to 
an online node, which forwarded it to callee SC over TCP and 
vice versa. The message flow is shown in Figure 10. For this 
scenario, approximately eight kilobytes of data was exchanged. 

There are certain advantages of having a node route the 
voice packets from caller to callee and vice versa. First, it 
provides a mechanism for users behind NATs and firewalls to 
talk to each other. Second, if users behind NATs or firewalls 
want to participate in a conference, and some users on public 
IP address also want to join the conference, this node serves as 
a mixer and broadcasts the conferencing traffic to the 
participants. The negative side is that there will be a lot of 
traffic flowing across this node. Users generally do not like the 
fact that arbitrary traffic could flow across their machines. 

During call tear-down, signaling information is exchanged 
over TCP between caller and callee if they are both on public 
IP addresses, or between caller, callee and their respective SNs. 
The messages observed for call tear down between caller and 
callee on public IP addresses are shown in Figure 11.  

For the second and third network setups, call tear down 
signaling is also sent over TCP. We, however, do not present 
these message flows, as they do not provide any interesting 
information. 

For SC v1.4, we performed experiments to determine if the 
call signaling goes end-to-end when caller and callee SC are on 
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Figure 11.  Call tear down message flow for caller and callee with public IP 
addresses. Messages have been aggregated for space. The number in 
paranthesis shows the total number of messages sent in that direction. 

machines with public IP addresses and are in  the buddy  list  of 
each other. Two instances of SC were started on two Windows 
machines with pubic IP addresses. Each instance had the other 
Skype user in its buddy list. After successful login, we waited 

until each instance was aware of the presence of other instance. 
This was shown by a buddy item changing color to green in the 
buddy list. We ensured that there was no TCP connection 
between the two machines. Using NetPeeker, we blocked all 
outgoing and incoming connections except for the one destined 
for the callee machine and vice versa. A call attempt was made 
which succeeded. 

We then blocked all TCP connection attempts between 
these two machines and attempted to make a call. The call 
attempt failed. 

This experiment shows that for the scenario described 
above, the call signaling does go end-to-end. Also, call 
signaling is carried over TCP. 

E. Media Transfer and Codecs 
If both Skype clients (v1.4) were on machines with public 

IP addresses, then media traffic flowed directly between them 
over UDP. The media traffic flowed to and from the UDP port 
configured in the options dialog box. The voice packet size 
varied between 40 and 120 bytes. For two users connected to 
Internet over 100 Mb/s Ethernet with almost no congestion in 
the network, roughly 85 voice packets were exchanged both 
ways in one second. The total uplink and downlink bandwidth 
used for voice traffic was 5 kilobytes/s. This bandwidth usage 
agrees with the Skype claim of 3-16 kilobytes/s.  

If either caller or callee or both were behind port-restricted 
NAT, they sent voice traffic to each other. The voice packet 
size varied between 40 and 110 bytes, which is the size of UDP 
payload. The bandwidth used was about 5 kilobytes/s.  

If both users were behind port-restricted NAT and UDP-
restricted firewall, then caller and callee sent and received 
voice traffic over TCP from another online Skype node. The 
TCP packet payload size for voice traffic varied between 30 
and 90 bytes. The total uplink and downlink bandwidth used 
for voice traffic was about 5.5 kilobytes/s. For media traffic, 
SC used TCP with retransmissions.  

In all three cases, the codec used was iSAC [13]. 

The Skype protocol seems to prefer the use of UDP for 
voice transmission. The SC will use UDP for voice 
transmission if it is behind a NAT or firewall that allows UDP 
packets to flow across.  

1)  Silence Suppression 
No silence suppression is supported in Skype. We observed 

that when neither caller nor callee was speaking, voice packets 
were still flowing between them. While this increases the 
bandwidth usage, transmitting these silence packets has two 
advantages. First, it maintains the UDP bindings at NAT and 
second, these packets can be used to play some background 
noise at the peer. In the case where media traffic flowed over 

TCP between caller and callee, silence packets were still sent. 
The purpose is to avoid the drop in TCP congestion window 
size, which takes some RTT to reach the maximum level again.  

2) Putting a Call on Hold 
Skype allows peers to hold a call. Since a SC can operate 

behind NATs, it must ensure that UDP bindings are valid at a 
NAT box. On average, a SC sent one UDP packet every three 
seconds to the call peer, SN, or the online Skype node acting as 
a media proxy when a call is put on hold. We also observed 
that in addition to UDP messages, the SC also sent periodic 
messages over TCP to the peer, SN, or online Skype node 
acting as a media proxy during a call hold. 

3) Codec Frequency Range 
We performed experiments to determine the range of 

frequencies Skype codecs allow to pass through. A call was 
established between two Skype clients (v1.4). Tones of 
different frequencies were generated using the NCH Tone 
Generator [16] on the caller SC and output was observed on the 
callee SC and vice versa. We observed that the minimum and 
maximum audible frequency Skype codecs allowed to pass 
through were 50 Hz and 8,000 Hz respectively. 

Using Net Peeker [8], we reduced the uplink and downlink 
bandwidth available to Skype application to 1,500 bytes/s, 
respectively. We observed that the minimum and maximum 
audible frequencies Skype codecs allowed to pass through 
remained unchanged, i.e., 50 Hz and 8,000 Hz, respectively.  

4) Congestion 
We checked Skype call quality in a low bandwidth 

environment by using Net Peeker [8] to tune the upload and 
download bandwidth available for a call. We observed that 
uplink and downlink bandwidth of 2 kilobytes/s each was 
necessary for bare minimum audible call quality. The voice 
was almost unintelligible at an uplink and downlink bandwidth 
of 1.5 kilobytes/s. 

F. Keep-alive Messages 
We observed for three different network setups that the SC 

v1.4 sent a refresh message to its SN over TCP. When SC ws 
on a machine with a public IP address, a refresh message was 
sent every 120s.  
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Figure 12.  Skype refresh message to SN when SC was on a machine with 
public IP address. 

V. CONFERENCING 
We observed the Skype conferencing features for a three-

user conference for the three network setups discussed in 
section III.A for Skype v1.4. We use the term user and machine 
interchangeably. Let us name the three users or machines as A, 
B, and C. Machine A was a 1.6 GHz Pentium 4 laptop with 
512 MB RAM while machine B and C had a 3 GHz Pentium 4 
CPU with 1 GB  of RAM. In the first setup, the three machines 
had public IP addresses. A call was established between A and 
B. Then B decided to include C in the conference. From the 
ethereal dump, we observed that B and C were sending their 
voice traffic over UDP to SC on machine A, which was acting 
as a mixer. It mixed its own packets with those of B and sent 
them to C over UDP and vice versa as shown in Figure 13.  



In the second setup, B and C were behind port-restricted 
NAT, and A was on the public Internet. Initially, user A and B 
established the call. Both A and B were sending media to each 
other over UDP. User A then put B on hold and established a 
call with C. It then started a conference with B and C. We 
observed that both B and C were now sending their packets to 
A over UDP, which mixed its own packets with those coming 
from B and C, and forwarded it to them appropriately. 

In the third setup, B and C were behind port-restricted NAT 
and UDP-restricted firewall and A was on the public Internet. 
User A started the conference with B and C. We observed that 
both B and C were sending their voice packets to A over TCP. 
A mixed its own voice packets with those coming from B and 
C and forwarded them to B and C appropriately.  

If user B was in a call with user C using a relay D and if 
user B initiated a conference with user A, relay D was still 
being used between user B and C. 

In the same experiments for Skype v0.97, we had observed 
that the most powerful machine always got elected as a 
conference host.  

For a three party conference, Skype does not do full mesh 
conferencing [17]. 

C
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Figure 13.  Skype three user conferencing 

VI. OTHER EXPERIMENTS 
Unlike MSN and Yahoo Messenger, which signs out a user 

if that user logs in on another machine, Skype allows a user to 
log in from multiple machines simultaneously. The calls 
intended for that user are routed to all locations. Upon picking 
a call at one location, the call is immediately cancelled at other 
locations. Similarly, instant messages for a user who is logged 
in at multiple machines are delivered to all the locations. 

The SN is selected by the Skype protocol based on a 
number of factors like CPU and available bandwidth. It is not 
possible to arbitrarily select a SN by filling the HC with the IP 
address of an online SC. This conclusion was drawn from the 
following experiment. Consider two online Skype nodes A and 
B. A is connected to the Skype network and has only one entry 
in its HC. We call super node of A as SN_A. Now we modify 
the HC of SC on machine B, such that it only contains the IP 
address and port number of SC running at A. When B logged 
onto the Skype network, we observed that it connected to 
another super node rather than connecting to A. 

To see if a different encryption key is embedded within 
each Skype executable, we compared the Skype setup files 
downloaded at randomly chosen times during a week. There 
were no differences between the setup files. 

If two Skype users were behind the same NAT and 
established a call with each other, voice traffic flowed directly 
between them over the private network. If two Skype users 
were behind different NATs, then some ARP messages were 
seen on the wire. This seems to indicate that Skype was trying 
to determine network connectivity. 

A. Comparison with Yahoo, MSN and Google Talk  
IM/Voice Applications 
We measured memory usage and process priority before 

and during calls, and mouth-to-ear latency for the Skype, 
Yahoo, MSN, and Google Talk applications.  

For our experiments, mouth-to-ear latency is defined as the 
difference between the time the words are spoken on one voice 
client, and the time they are heard at the other voice client 
given the two voice clients are already in a voice session. If 
both the original voice signal and the signal that traveled over 
the network can be recorded in a stereo format, then the delay 
or relative shift between these two signals can be calculated by 
computing a correlation between these two signals using a fast 
fourier transform (FFT). adelay [24] is a tool developed by Hao 
Huang in our IRT Lab that computes the mouth-to-ear latency 
using the technique described above.  

For this experiment, the input signal was a pre-recorded 
Sun .au file of 24s. Skype, MSN, Yahoo and Google Talk 
applications were started on two separate laptops running 
Windows XP service pack 2 (SP2) and having identical 
hardware configuration. Each laptop had a Pentium (M) 1.7 
GHz processor with 1 GB of RAM. Both machines had public 
IP addresses and were connected to a 100 Mb/s LAN. A voice 
session was established between respective voice clients. Using 
Ethereal we checked that both caller and callee Skype, Yahoo, 
MSN, and Google Talk clients were sending audio packets 
directly to each other. The pre-recorded audio file was played 
on a separate machine and the audio signal was provided as an 
input to the caller machine. The original signal and the signal 
received over the network were given as an input to the LineIn 
jack of another machine which ran the Cool Edit Pro version 
2.1 [25] software. Using Cool Edit Pro, the two signals were 
recorded in Sun .au stereo format sampled at 8,000 Hz with 16 
bit signed linear encoding. The sampling time for adelay was 
two seconds. For each voice client, the experiment was 
repeated four times. The results of these experiments are 
summarized in Table III. The mouth-to-ear latency is an 
average of four experiments for each IM client. The round-trip 
delay between the caller and callee machines, measured using 
ping, was less than one second. 

We compared the memory usage and process priority for 
the three clients under test. Unlike Yahoo, MSN and Google 
Talk clients, Skype changes its priority to High priority, when a 
call is established.  

TABLE III 
SKYPE, YAHOO, MSN AND GOOGLE TALK COMPARISON 

 
Application 
version 

Memory Usage 
before call (caller, 
callee) 

Memory Usage 
during call (caller, 
callee) 

Process priority 
before call 

Process priority 
during call 

Mouth-to-ear 
latency 

Latency 
Standard 
Deviation 

Skype 1.4.0.84 19 MB, 19 MB 21 MB, 27 MB Normal High 96 ms 4 
Yahoo 7.0.0.437 38 MB, 34 MB 43 MB, 42 MB Normal Normal 152 ms 12 
MSN 7.5 25 MB, 22 MB 34 MB, 31 MB Normal Normal 184 ms 16 
G-Talk 1.0.0.80 9 MB, 9 MB 13 MB, 13 MB Normal Normal 109 ms 10 



B. Skype Super Node Map 
We performed experiments to get insights into the Skype 

super node selection mechanism. We know that at login, a SC 
must always connect to a SN. We take advantage of the fact 
that if a SC is behind a NAT, it will never become a SN and it 
will most likely connect to only one super node. Also, in a 
subsequent immediate login, a SC does not always reconnect to 
the same super node it connected last time. By having Skype 
repeatedly login onto the Skype network for an extended 
period of time, we can get a partial snapshot of the Skype super 
nodes. 

For this experiment, we used AutoIt [27] to automatically 
start the Skype application, have it login on the Skype network, 
and then terminate it. AutoIt is a scripting tool for automating 
Windows tasks such as GUI input. There was a gap of 30 
seconds between Skype application startup and termination and 
a gap of 10 seconds between the termination and the next 
startup. We ran the experiment for 96 hours (four days). Using 
netstat, we noted the IP address and port number to which the 
test machine had established a TCP connection. Since there 
were no applications running on the machine which established 
TCP connections except Skype, and since Skype must establish 
a TCP connection with a SN at login, the IP address and port 
number of the established TCP connection reported by netstat 
are indeed the IP address and port number of the SN to which 
Skype connects. 

Theoretically, over a period of four days 8,640 login 
attempts are possible since the runtime of one iteration is 40 
seconds. However, we recorded 8,175 login attempts and the 
lesser number is attributed to the script execution and Windows 
overhead. After removing the datasets that contained multiple 
TCP connections in ESTABLISHED state in the netstat data, 
we found 898 unique super nodes in 8,163 successful login 
attempts. 

Using MaxMind tools, we determined the latitude, 
longitude, country and city of each IP address. They have been 
plotted on the map shown in Figure 16. MaxMind tools were 
unable to determine the country for four IP addresses, which 
were only used for 10 connections. Thus, our data set size was 
reduced to 8,153 successful login attempts and 894 unique 
super nodes. 

The processing of data revealed the following: 
• SN IP address distribution: US 83.7%, Asia 8.9%, 

Europe  7.1%. 
• In 8153 login attempts, 2855 (35%) hostnames had a 

‘.edu’ suffix and belonged to 102 universities. 
• Out of the 894 unique SNs, the top 20 nodes received 

43.8% of the total connections and top 100 nodes 
received 70.5% connections. 

Table IV shows the number of unique super nodes per 24 
hours. It also shows the number of unique SNs that were 
common between the last day and the current day. Note that 

there were a total of 894 unique SNs. Table V shows the top 
five countries excluding US that received the most number of 
connections. Table VI shows the top five universities that 
received the highest number of connections.  

VII. CONCLUSION 
In this paper, we have tried to analyze various aspects of 

the Skype protocol by analyzing the Skype network traffic and 
by intercepting the shared library and system calls of Skype. 
We observed that Skype can work almost seamlessly behind 
NATs and firewalls. We believe that Skype client uses its 
version of STUN [5] protocol to determine the type of NAT or 
firewall it is behind. The NAT and firewall traversal techniques 
of Skype are similar to many existing applications such as 
network games. It is by the random selection of sender and 
listener ports, the use of TCP as voice streaming protocol, and 
the peer-to-peer nature of the Skype network, that not only a 
SC traverses NATs and firewalls but it does so without any 
explicit NAT or firewall traversal server. Skype uses TCP for 
signaling. It uses wide band codecs and has licensed them from 
GlobalIPSound [15]. Skype communication is encrypted. 

The underlying search technique that Skype uses for user 
search is still not clear. Our guess is that it uses a combination 
of hashing and periodic controlled flooding to gain information 
about the online Skype users. Skype search mechanism falls 
back to the login server for all unsuccessful and some 
successful searches.  

Skype has a central login server which stores the login 
name, password and buddy list of each user. Since Skype 
packets are encrypted, it is not possible to say with certainty 
what other information is stored on the login server. However, 
during our experiments we did not observe any subsequent 
exchange of information with the login server after a user 
logged onto the Skype network. 

Compared to Yahoo, MSN, and Google Talk applications, 
Skype reported the best mouth-to-ear latency. 

Skype is a selfish application and it tries to obtain the best 
available network and CPU resources for its execution. It 
changes its application priority to high priority in Windows 
during the time call is established. It evades blocking by 
routing its login messages over SNs. This also implies that 
Skype is relying on SNs, who can misbehave, to route login 
messages to the login server. Skype does not allow a user to 
prevent its machine from becoming a SN although it is possible 
to prevent Skype from becoming a SN by putting a bandwidth 
limiter on the Skype application when no call is in progress. 
Theoretically speaking, if all Skype users decided to put 
bandwidth limiter on their application, the Skype network can 
possibly collapse since the SNs hosted by Skype may not have 
enough bandwidth to relay all calls. 

From our experience of analyzing the Skype protocol, we 
gather that packet intercept and blocking can be used for 
protocol reverse engineering.  Classical packet sniffing tools 

TABLE IV 
SN DISTRIBUTION PER DAY FOR 894 UNIQUE SN’S 

 Unique SNs 
per day 

Cumulative 
Unique SNs 

Common SNs 
between prev 
and current day 

Day1 224 224  
Day2 371 553 42 
Day3 202 699 98 
Day4 246 898 103 

 

TABLE V 
SN DISTRIBUTION PER COUNTRY (NON-US) 

Countries Cumulative 
SNs 

Taiwan 256 
Israel 194 
Japan 168 
France 75 
Switzerland 55 

TABLE VI 
SN DISTRIBUTION PER UNIVERSITY 

Countries Cumulative 
SNs 

Harvard 367 
Columbia 366 
UNL 350 
UPenn 245 
BU 179 

 



such as Ethereal are less useful when packet content is 
encrypted. Shared library and system call interception 
techniques can be used to manipulate the network traffic of a 
black box executable.  
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Figure 15.  Skype (v1.4) host cache list (shared.xml)

 

Figure 16.  Worldmap of super nodes to which Skype establishes a TCP connection at login. 


