
CCMP: a novel standard protocol for Conference
Management in the XCON Framework

Mary Barnes
Nortel

mary.barnes@nortel.com

Lorenzo Miniero
Meetecho srl

lorenzo@meetecho.com

Roberta Presta
University of Napoli Federico II
roberta.presta@unina.it

Simon Pietro Romano
Univeristy of Napoli Federico II

spromano@unina.it

Henning Schulzrinne
Columbia University

hgs+xcon@cs.columbia.edu

ABSTRACT
This paper presents the design and implementation of CCMP,
a conference management protocol currently under stan-
dardization within the IETF, conceived at the outset as a
lightweight protocol allowing conferencing clients to access
and manipulate objects describing a centralized conference.
The CCMP is a state-less, XML-based, client-server pro-
tocol carrying in its request and response messages con-
ference information in the form of XML documents and
fragments conforming to the centralized conferencing data
model schema. It represents a powerful means to control
basic and advanced conference features such as conference
state and capabilities, participants and relative roles and de-
tails. We first focus on the design of the protocol and then
discuss how it has been integrated in the Meetecho collab-
orative framework developed at the University of Napoli as
an active playground for IETF standardization activities in
the field of real-time applications and infrastructure.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communi-
cations Applications—Computer conferencing, teleconferenc-
ing, and videoconferencing ; C.2.2 [Computer Communi-
cation Networks]: Network Protocols—Applications; C.2.4
[Computer Communication Networks]: Distributed Sys-
tems—Client/server

General Terms
Standardization, Design, Experimentation

Keywords
Conferencing, Conference Control and Manipulation, Pro-
tocol Design, Protocol Integration

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPTComm 2010, 2-3 August, 2010 Munich, Germany
Copyright 2010 ACM ...$10.00.

In the latest years, the IETF (Internet Engineering Task
Force) has devoted many efforts to the definition of standard
conferencing solutions. Among such solutions, the Frame-
work for Centralized Conferencing [2] (XCON Framework)
defines a signaling-agnostic architecture, naming conventions
and logical entities required for building advanced conferenc-
ing systems. The XCON Framework introduces the confer-
ence object as a logical representation of a conference in-
stance, representing the current state and capabilities of
a conference. The Centralized Conferencing Manipulation
Protocol (CCMP) illustrated in this paper is the latest out-
put to be produced by the XCON working group. It is
currently undergoing review from the international research
community and it is heading towards completion and pub-
lication as an RFC (Request For Comments) standard doc-
ument.

CCMP allows authenticated and authorized users to cre-
ate, manipulate and delete conference objects. Operations
on conferences include adding and removing participants,
changing their roles, as well as adding and removing media
streams and associated end points. CCMP is based on a
client-server paradigm and is specifically suited to serve as a
conference manipulation protocol within the XCON frame-
work, with the Conference Control Client and Conference
Control Server acting as client and server, respectively. The
CCMP uses HTTP as the protocol to transfer requests and
responses, which contain the domain-specific XML-encoded
data objects defined in [7].

This paper is structured in 8 sections. We first briefly
introduce, in section 2, the general architecture for central-
ized conferencing defined by the XCON working group in
the IETF. We then present, in section 3, a bird’s eye view of
the Centralized Conferencing Manipulation Protocol. The
same section also provides some insights on the history of
the overall specification process. Section 4 drills down on
the specific messages that can be carried inside the body of
the CCMP protocol, while section 5 concludes the part asso-
ciated with our standardization work by depicting a typical
call flow related to a CCMP-based interaction between a
conferencing client and an XCON Conferencing server. The
second part of the paper is entirely devoted to the imple-
mentation of the CCMP specification. Such part is based on
the work ongoing at the University of Napoli “Federico II”,
which is since long involved in the IETF activities falling in
the area of real-time applications and infrastructures. The
University of Napoli has contributed to the activities in the

Figure 1: The XCON framework: protocols

XCON working group, by also providing timely prototype
implementations of most of the protocols therein involved
and/or specified. As far as the CCMP protocol is concerned,
we have worked both on the specification of the protocol
and on its implementation, during the various phases of its
long-lived design history. Information about this activity
is hence provided in section 6. Section 7 reports informa-
tion about the history of the CCMP specification within the
IETF community. Finally, section 8 provides some conclud-
ing remarks, as well as information about our future work
related to the protocol.

2. XCON CONFERENCE CONTROL SYS-
TEM ARCHITECTURE

RFC5239 defines an architecture for centralized conferenc-
ing, and the associated protocol interactons. Such relations
are depicted in Fig. 1.

As it can be seen in the figure, several protocols are in-
volved in an XCON-compliant framework architecture. While
all the protocols implicitly interact with conference objects
somehow, the generically called Conference Control Proto-
col is probably the most important of them in that regard,
as it directly manipulates the conference objects themselves.

Fig. 2 illustrates the typical life cycle of a conference ob-
ject in the XCON framework. At each instant in time, a
conference object is associated with an XML representation
compliant with the XCON data model specification. With-
out digging into the details of the data model, we never-
theless recall that it basically describes all of the features
of a conference, starting from its general description (pur-
pose, hosting entity, status, etc.) and arriving at much more
detailed information like participants and available media,
as well as potential sidebars associated with it (i.e. sub-
conferences involving part of the users participating in the
main conference).

Creation of such an object is usually performed through a
cloning operation, i.e. by replicating the structure of one of
the blueprints (also known as conference object templates)
available at the server.

A newly created conference object is typically marked as

“registered”until the first user joins the conference and it will
stay “active” until either the last user leaves the conference
(in which case it comes back to the “registered” state) or a
user (holding the right to do so) deletes it.

CCMP is the protocol used to manipulate conference ob-
jects during the above described lifetime. The next section
will present a protocol overview in more detail.

3. PROTOCOL OVERVIEW
CCMP is a client-server, XML-based protocol, which has

been specifically conceived to provide users with the neces-
sary means for the creation, retrieval, modification and dele-
tion of conference objects. CCMP is also state-less, which
means implementations can safely handle transactions inde-
pendently from each other. Conference-related information
is encapsulated into CCMP messages in the form of XML
documents or XML document fragments compliant with the
XCON data model representation.

The core set of objects manipulated in the CCMP proto-
col includes conference blueprints, conference objects, users,
and sidebars. CCMP is completely independent from un-
derlying protocols, which means that there can be different
ways to carry CCMP messages across the network, from a
conferencing client to a conferencing server. Indeed, there
have been a number of different proposals as to the most
suitable transport solution for the CCMP. It was soon rec-
ognized that operations on conference objects can be imple-
mented in many different ways, including remote procedure
calls based on SOAP [6] and by defining resources following
a RESTful [5] architecture. In both approaches, servers will
have to recreate their internal state representation of the
object with each update request, checking parameters and
triggering function invocations. In the SOAP approach, it
would be possible to describe a separate operation for each
atomic element, but that would greatly increase the com-
plexity of the protocol. A coarser-grained approach to the
CCMP does require that the server process XML elements in
updates that have not changed and that there can be multi-
ple changes in one update. For CCMP, the resource (REST)
model might appear more attractive, since the conference
operations nicely fit the so-called CRUD (Create-Retrieve-
Update-Delete) approach. Neither of these approaches was
finally selected. SOAP was not considered to be general
purpose enough for use in a broad range of operational envi-
ronments. Similarly, it was deemed quite awkward to apply
a RESTful approach since CCMP requires a more complex
request/response protocol in order to maintain the data both
in the server and at the client. This doesn’t map very ele-
gantly to the basic request/response model, whereby a re-
sponse typically indicates whether the request was successful
or not, rather than providing additional data to maintain the
synchronization between the client and server views. Apart
from this, the RESTful approach was considered too restric-
tive, since it strictly couples the application-level protocol
to HTTP messages and semantics. Even though the cur-
rent implementation of the CCMP relies on HTTP as the
preferred transport means, its specification has been kept
completely independent of such a choice. Just as an exam-
ple, work is in full swing at our laboratory related to both
an XMPP-based and a UDP-based implementation of the
protocol.

The solution for the CCMP at which we arrived can be
viewed as a good compromise amongst the above mentioned

first
join

Template
conference object

(blueprint)

Registered
conference object

Active
conference object

cloning
creation

last
leave

<conference-info>

<sidebars-by-val>
<sidebars-by-ref>

<conference-description>

<host-info>

<floor-information>

<conference-state>

<users>delete

delete

Figure 2: Conference Object Life Cycle

candidates and is referred to as “HTTP single-verb trans-
port plus CCMP body”. With this approach, CCMP is
able to take advantage of existing HTTP functionality. As
with SOAP, it uses a “single HTTP verb” for transport (i.e.
a single transaction type for each request/response pair);
this allows decoupling CCMP messages from HTTP mes-
sages. Similarly, as with any RESTful approach, CCMP
messages are inserted directly in the body of HTTP mes-
sages, thus avoiding any unnecessary processing and commu-
nication burden associated with further intermediaries. This
said, we nonetheless remark once again that with this ap-
proach no modification to the CCMP messages/operations is
required to use a different transport protocol. The remain-
der of this paper focuses on the selected approach. We will
show how the CCMP protocol inserts XML-based CCMP
requests into the body of HTTP POST operations and re-
trieves responses from the body of HTTP “200 OK” mes-
sages. CCMP messages will have a MIME-type of “applica-
tion/ccmp+xml”, which appears inside both the “Content-
Type” and “Accept” fields of HTTP requests and responses.

3.1 Protocol Operations
The main operations provided by CCMP belong in four

general categories:

• create: for the creation of a conference, a conference
user, a sidebar, or a blueprint;

• retrieve: to get information about the current state
of either a conference object (be it an actual confer-
ence or a blueprint, or a sidebar) or a conference user.
A retrieve operation can also be used to obtain the
XCON-URIs of the current conferences (active or reg-
istered) handled by the conferencing server and/or the
available blueprints;

• update: to modify the current features of a specified
conference or conference user;

• delete: to remove from the system a conference object
or a conference user.

Thus, the main targets of CCMP operations are: (i) con-
ference objects associated with either active or registered
conferences; (ii) conference objects associated with blueprints;

(iii) conference objects associated with sidebars, both em-
bedded in the main conference (i.e. <entry> elements in
<sidebars-by-value>) and external to it (i.e. whose XCON-
URIs are included in the <entry> elements of <sidebars-
by-ref>); (iv) <user> elements associated with conference
users; (v) the list of XCON-URIs related to conferences and
blueprints available at the server, for which only retrieval
operations are allowed.

Each operation in the protocol model is atomic and either
succeeds or fails as a whole. The conference server must
ensure that the operations are atomic in that the operation
invoked by a specific conference client completes prior to an-
other client’s operation on the same conference object. The
details for this data locking functionality are out of scope for
the CCMP protocol specification and are implementation
specific for a conference server. Thus, the conference server
first checks all the parameters, before making any changes
to the internal representation of the conference object.

Also, since multiple clients can modify the same confer-
ence objects, conference clients should first obtain the cur-
rent object from the conference server and then update the
relevant data elements in the conference object prior to in-
voking a specific operation on the conference server. In or-
der to effectively manage modifications to conference data,
a versioning approach is exploited in the CCMP. More pre-
cisely, each conference object is associated with a version
number indicating the most up to date view of the confer-
ence at the server’s side. Such version number is reported to
the clients when answering their requests. A client willing
to make modifications to a conference object has to send
an update message to the server. In case the modifica-
tions are all successfully applied, the server sends back to
the client a “success” response which also carries informa-
tion about the current server-side version of the modified
object. With such approach, a client which is working on
version “X” of a conference object and finds inside a “suc-
cess” response a version number which is “X+1” can be sure
that the version it was aware of was the most up to date.
On the other hand, if the “success” response carries back a
version which is at least “X+2”, the client can detect that
the object that has been modified at the server’s side was
more up to date than the one it was working upon. This is
clearly due to the effect of concurrent modification requests

issued by independent clients. Hence, for the sake of hav-
ing available the latest version of the modified object, the
client can send to the conference server a further “retrieve”
request. In no case a copy of the conference object avail-
able at the server is returned to the client as part of the
update response message. Such a copy can always be ob-
tained through an ad-hoc “retrieve” message. Based on the
above considerations, all CCMP response messages carry-
ing in their body a conference document (or a fragment of
it) must contain a “version” parameter. This does not hold
for request messages, for which the “version” parameter is
not at all required, since it represents useless information
for the server: as long as the required modifications can be
applied to the target conference object with no conflicts, the
server does not care whether or not the client had an up to
date view of the information stored at its side. This said, it
stands clear that a client which has subscribed at the server,
through the XCON event package [4], to notifications about
conference object modifications, will always have the most
up to date version of that object available at his side.

A final consideration concerns the relation between the
CCMP and the main entities it manages, i.e. conference
objects. Such objects have to be compliant with the XCON
data-model, which identifies some elements and attributes as
mandatory. From the CCMP standpoint this can become a
problem in cases of client-initiated operations, like either the
creation or the update of conference objects. In such cases,
not all of the mandatory data can be known in advance to
the client issuing a CCMP request. As an example, a client
has no means to know, at the time it issues a conference cre-
ation request, the XCON-URI that the server will assign to
the yet-to-be-created conference and hence it is not able to
appropriately fill with that value the mandatory ‘entity’ at-
tribute of the conference document contained in the request.
To solve this kind of issues, the CCMP will fill all mandatory
data model fields, for which no value is available at the client
at the time the request is constructed, with fake values in
the form of wildcard strings (e.g. AUTO GENERATE X,
with X being an incremental index initialized to a value of
1). Upon reception of the mentioned kinds of requests, the
server will: (i) generate the proper identifier(s); (ii) produce
a response in which the received fake identifier(s) carried
in the request has (have) been replaced by the newly cre-
ated one(s). With this approach we maintain compatibility
with the data model requirements, at the same time allow-
ing for client-initiated manipulation of conference objects at
the server’s side (which is, by the way, one of the main goals
for which the CCMP protocol has been conceived at the
outset).

4. CCMP MESSAGES
As anticipated, CCMP is a request/response protocol. Be-

sides, it is completely stateless, which explains why HTTP
has been chosen as the perfect transport candidate for it.

For what concerns the protocol by itself, both requests
and responses are formatted basically in the same way, as
depicted in Fig. 3. In fact, they both have a series of head-
ing parameters, followed by a specialized message indicating
the particular request/response (e.g., a request for a specific
blueprint). This makes it quite easy to handle a transaction
in the proper way and map requests and related responses
accordingly.

For what concerns the shared parameters:

Figure 3: CCMP Request and Response messages

• confUserID indicates the participant making the re-
quest;

• confObjID indicates the conference the request is as-
sociated with;

• operation specifies what has to be done, according to
the specialized message that follows.

Other parameters are defined which are more strictly re-
lated to either requests or responses. There is, for instance,
a ‘password’ parameter participants may need to provide
in CCMP requests for password-protected conferences, as
well as a ‘response-code’ parameter (which is carried just
by responses) providing information about the result of a
requested operation.

That said, the core of a CCMP message is actually the
specialized part. In fact, as stated in the previous section,
the CCMP specification describes several different opera-
tions that can be made on a conference object, namely: (i)
blueprints retrieval, (ii) conference creation and manipula-
tion, (iii) users management, (iv) sidebar-related operations.
All these operations have one or more specialized message
formats, instead of a generalized syntax, in order to best suit
the specific needs each operation may have.

Indeed, requesting a blueprint and adding a new user to
a conference have very different requirements for what con-
cerns the associated semantics level, and as such they need
different modes of operation. This is reflected in what is car-
ried in the specialized message body, which will always con-
tain information (compliant with the XCON common data
model specification) strictly related to the operation it is as-
sociated with. The specialization of the message then allows
for an easier and faster management at the implementation
level.

To better highlight the considerations above, we show in
Fig. 4 the structure of a CCMP confRequest message, which
is used in all operations concerning the manipulation and
control of an entire conference object. As described in the
picture, each such message is a specialization of the general
CCMP request message, specifically conceived to transport,
through the confInfo element, an XCON-compliant confer-
ence object (i. e. an object whose representation conforms to
the common data model specification) towards the CCMP
server.

5. CCMP SAMPLE CALL FLOW

Figure 4: CCMP confRequest message

Figure 5: CCMP transported in HTTP

To better clarify how a CCMP transaction can occur, this
section presents a sample call flow. This example comes from
a real implementation deployment, as it will be explained in
section 6.

For the sake of conciseness, we chose a very simple ex-
ample, which nevertheless provides the reader with a gen-
eral overview of both CCMP requests and responses. As
mentioned previously, HTTP is suggested by the CCMP
specification as a transport for the protocol messages, and
Fig. 5 shows the typical request/response paradigm involved
in that case.

As it can be seen, the CCMP request (in this case, a
’blueprintRequest’) is sent by an interested participant to
the conference server. This request is carried as payload of
an HTTP POST message:

POST /Xcon/Ccmp HTTP/1.1

Content-Length: 657

Content-Type: application/ccmp+xml

Host: example.com:8080

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.0.1 (java 1.5)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ccmp:ccmpRequest

xmlns:info="urn:ietf:params:xml:ns:conference-info"

xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"

xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">

<ccmpRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="ccmp:ccmp-blueprint-request-message-type">

<confUserID>xcon-userid:Alice@meetecho.com</confUserID>

<confObjID>xcon:MeetechoRoom@meetecho.com</confObjID>

<operation>retrieve</operation>

<ccmp:blueprintRequest/>

</ccmpRequest>

</ccmp:ccmpRequest>

The Content-Type header instructs the receiver that the
content of the message is a CCMP message (application/
ccmp+xml). For what concerns the request itself, as men-

tioned, it is a ‘blueprintRequest’: this means that the partic-
ipant is interested in the details of a specific blueprint avail-
able at the server. This is reflected by the specialized part
of the message, i.e., the <ccmp:blueprintRequest> element.
The generic parameters introduced in the previous section
are also provided as part of the request: ‘confUserID’ refers
to the requestor (Alice’s XCON URI), ‘confObjID’ in this
case relates to the blueprint to be retrieved (as an XCON
conference URI), while ‘operation’ clarifies what needs to be
done according to the request (retrieve the blueprint).

The CCMP response, in turn, is carried as payload of an
HTTP 200 OK reply to the previous POST:

HTTP/1.1 200 OK

X-Powered-By: Servlet/2.5

Server: Sun GlassFish Communications Server 1.5

Content-Type: application/ccmp+xml;charset=ISO-8859-1

Content-Length: 1652

Date: Thu, 04 Feb 2010 14:47:56 GMT

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ccmp:ccmpResponse

xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"

xmlns:info="urn:ietf:params:xml:ns:conference-info"

xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp">

<ccmpResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="ccmp:ccmp-blueprint-response-message-type">

<confUserID>xcon-userid:Alice@meetecho.com</confUserID>

<confObjID>xcon:MeetechoRoom@meetecho.com</confObjID>

<operation>retrieve</operation>

<response-code>200</response-code>

<response-string>Success</response-string>

<ccmp:blueprintResponse>

<blueprintInfo entity="xcon:MeetechoRoom@meetecho.com">

<info:conference-description>

<info:display-text>MeetechoRoom</info:display-text>

<info:available-media>

<info:entry label="audioLabel">

<info:type>audio</info:type>

</info:entry>

<info:entry label="videoLabel">

<info:type>video</info:type>

</info:entry>

<info:entry label="jSummitLabel">

<info:type>whiteboard</info:type>

</info:entry>

</info:available-media>

</info:conference-description>

<info:users>

<xcon:join-handling>

allow

</xcon:join-handling>

</info:users>

<xcon:floor-information>

<xcon:floor-request-handling>

confirm

</xcon:floor-request-handling>

<xcon:conference-floor-policy>

<xcon:floor id="audioFloor">

<xcon:media-label>

audioLabel

</xcon:mediaLabel>

</xcon:floor>

<xcon:floor id="videoFloor">

<xcon:media-label>

videoLabel

</xcon:mediaLabel>

</xcon:floor>

<xcon:floor id="jSummitFloor">

<xcon:media-label>

jSummitLabel

</xcon:mediaLabel>

</xcon:floor>

</xcon:conference-floor-policy>

</xcon:floor-information>

</blueprintInfo>

</ccmp:blueprintResponse>

</ccmpResponse>

</ccmp:ccmpResponse>

As a reply to a ‘blueprintRequest’ message, the CCMP re-
sponse includes a ‘blueprintResponse’ specialized message in
its body: this element includes the whole conference object
(compliant with the XCON common data model specifica-
tion) associated with the requested blueprint, as part of a
<blueprintInfo> container. Besides containing some of the
parameters provided in the request (confUserID, confObjID,
operation), the response also carries back an additional piece
of information related to the result of the request, namely,
a ‘response-code’ parameter telling the participant that the
request was successfully taken care of (‘200’), which is also
reflected in the related ‘response-string’ (‘Success’).

Figure 6: Reference scenario @ unina

The next section will provide further details on our im-
plementation experience with the protocol. Specifically, we
will address the way we designed the process according to
the specification (both from the client and the server per-
spective), and the related implementation choices.

6. CCMP WORK AT UNINA
This section deals with our prototype implementation of

the CCMP protocol. The reference scenario is the one de-
picted in Fig. 6.

As the figure shows, in order to have a working instance of
the CCMP protocol which could be used as a playground for
testing and validation of the specification in progress, as a
first step we have realized a stand-alone Java-based CCMP
client and a Java-based CCMP server.

The CCMP testing client presents a very simple graphical
user interface through which it is possible to create and send
to the CCMP Server the desired CCMP request. All CCMP
messages sent and received by the client are logged onto a
debugging window which allows to easily visualize the entire
call flow associated with client-server interactions.

As to the server, it has been integrated into our Meetecho
conferencing platform [1]. Since Meetecho already makes use
of a“proprietary”protocol1 for conference creation, manipu-
lation and scheduling (which is herein called ‘Scheduler’), we
had to implement the CCMP server as a proxy towards it.
The CCMP server receives CCMP requests from the testing
client, converts them into Scheduler requests and forwards
them to the Meetecho server by using the Meetecho Sched-
uler protocol, which is a simple, text-based protocol based on
TCP. When the Meetecho server is done with the forwarded
request, it sends back to the CCMP server a Scheduler-
compliant answer, which is then converted into a CCMP-
compliant response and forwarded to the CCMP testing
client. The CCMP server takes care of the correct map-
ping between CCMP- and Scheduler-compliant messages.
We also remark that synchronization between the Meete-
cho server and the CCMP proxy server can be achieved
through asynchronous notifications. As soon as something
worth communicating happens at the Meetecho server, a no-
tification can be sent to the CCMP proxy (which subscribes
to the events associated with conference management and
manipulation) in order to let it always have an up-to-date

1This is due to the fact that, when the Meetecho XCON-
compliant conferencing platform has been conceived, inside
the XCON Working Group there was no consensus yet as to
the standard conference control protocol to be adopted.

view of the actual situation inside the conferencing server.
Indeed, the notification mechanism described above, al-

lows us to improve the overall performance of the integrated
server made of the CCMP proxy combined with the Meete-
cho server. In fact, provided that the CCMP proxy is al-
ways kept aligned with the Meetecho server for all what con-
cerns conference-related information, we can let it respond
to CCMP client requests directly, thus skipping the complex
operations associated with the needed ‘CCMP-Scheduler’
mapping procedures, along both directions.

Upon activation, the CCMP Server retrieves, through spe-
cific Scheduler requests, all the Meetecho blueprints and
conferences and loads them into a native XML database.
Conference objects hence take the form of XML confer-
ence documents compliant with the XCON data model. As
stated above, the CCMP Server is also a subscriber to the
Meetecho Notification Service, and is thus aware of all mod-
ifications taking place on the conferences managed by the
Meetecho server (modifications which might also be due to
actions undertaken by non-CCMP aware Meetecho confer-
encing clients). Accordingly to the received notifications, the
database is updated. In such a way, the CCMP Server has
always available an aligned image of the conference informa-
tion set managed by the Meetecho platform. This allows the
CCMP Server to immediately answer to CCMP retrieve re-
quests, without forwarding the corresponding Scheduler re-
quest to the Meetecho server each time this kind of message
arrives. Unlike the retrieve case, the CCMP requests associ-
ated with an operation of either create, or update, or delete
must be translated into the equivalent Scheduler messages
to be sent to Meetecho, in order to have an actual effect on
the Meetecho Server side. The Scheduler responses are then
interpreted and converted into the appropriate database up-
dates, as well as translated into the equivalent CCMP re-
sponses to be returned to the CCMP Client.

Having transposed the Meetecho Conference Control plane
to the CCMP world, we have integrated a library of CCMP
APIs into our Meetecho client, thus allowing it to make use
of CCMP (instead of the legacy Meetecho Scheduler proto-
col) as the Conference Control Protocol, in such way com-
pleting the scenario we presented in Fig. 6.

In the following subsections, we delve somehow into the
details of the main actors involved in the Conferencing Con-
trol environment we have introduced, namely the CCMP
client, the CCMP proxy server and the native XML data-
base. We will discuss both the design and the implemen-
tation choices associated with the above mentioned compo-
nents. Some notes and considerations about the way CCMP
has been integrated into the Meetecho client are also re-
ported.

6.1 Managing XML CCMP messages and con-
ference information

The CCMP server and client components have both been
implemented in Java. Since CCMP messages, as well as the
conference-related information they carry, are formatted as
XML documents, we faced the need of generating, parsing
and handling such items in Java. Besides, as it will be ex-
plained in the following section, we also needed a proper way
to handle an XML-aware database, which could manage the
manipulation of conference objects.

In order to facilitate these operations, we chose to exploit
the JAXB API (Java Architecture for XML Binding API)

2.1, which is the last API version at the time of this writ-
ing. This API allows to represent XML documents (that
also have to be validated against a given XML Schema) in a
Java format, i.e. through Java objects representing their dif-
ferent composing parts. The binding indeed represents the
correspondence between XML document elements and the
Java objects created with JAXB. Accessing XML contents
by means of JAXB presents several advantages in terms of
both efficiency and easiness with respect to SAX and DOM
parsing. In fact, just like DOM, the output analysis can be
saved at once and then consulted at any time without having
to re-parse the whole document again, while the concerning
memory occupation turns out to be lower than the one of
the DOM tree; like SAX, on the other hand, it is possible
to access specific document parts without performing a fur-
ther complete document parsing and without traversing the
XML tree until the leaf to be examined is reached.

JAXB not only allows for easy access to XML documents,
but also for a seamless creation of XML documents from the
representative Java counterparts. This operation is called
‘marshalling’. The inverse operation, from XML to Java
objects, is instead called ‘unmarshalling’.

Each JAXB generated class, corresponding to a specific
type of XML element or attribute described in the schema
file, is equipped with get and set methods that make it very
easy to both extract information values and set them.

The JAXB architecture is composed of a set of APIs (con-
tained in the javax.xml.bind extension package) and of a
binding compiler, called XJC, which generates, starting from
an XML Schema, the set of Java classes representing the ele-
ment types embedded in XML documents compliant with it.
In this context we have used the XJC Eclipse plug-in and
produced the package of Java classes related to the XML
Schema files collected from the data model documents [8,
7], as well as from the most up-to-date CCMP draft [3].

6.2 Managing HTTP
Considering the suggested transport for CCMP messages

is HTTP (precisely, POST and 200 messages for requests
and responses, respectively), we also had to cope with the
issue of handling HTTP messages both at the client and at
the server sides.

For the CCMP server implementation, we made use of
the Apache open-source servlet engine Tomcat. The CCMP
server business logic is realized through a servlet which,
in the doPost() method, extracts the CCMP body from
the HTTP POST request and, once the proper CCMP re-
quest type has been detected, starts the specific management
thread accordingly.

On the client side, instead, we made use of the HTTP
open source package provided by Apache, Apache Commons
HTTP Client 3.1. This package is widely deployed in several
projects, and allowed us to easily create and send to the
CCMP server HTTP POST requests containing the CCMP
message inside their payload, as well as handle the associated
HTTP response accordingly.

6.3 Xindice database
We previously mentioned the need for an XML-aware data-

base. In fact, CCMP handles the manipulation of conference
objects compliant with the XCON common data model spe-
cification. Such conference objects are XML documents, and
so, having an XML-aware database to store and manipulate

them instead of relying on a relational databases relieved us
form the burden of taking care of the transformation from
tables to XML documents and viceversa whenever needed.

To cope with this requirement we chose Xindice, an open
source Apache server handling an XML-native database specif-
ically conceived for storing XML documents. Just as we
needed, it allows to simply insert the XML data as it is
when writing to the database, as well as to return the data
in the same format when accessing the database. This fea-
ture is very useful when having to deal with complex XML
documents like XCON conference objects, which might be-
come very difficult or even impossible to be effectively stored
in structured databases.

Xindice is installed as a Tomcat web application, and as
such it was seamlessly integrated into our CCMP server
prototype implementation. The XML:DB Java API is used
to access the XML database. Such API is vendor-neutral,
meaning that they are independent of the specific native
XML database implementation, and operate on XML doc-
ument collections, allowing the user to perform, on the col-
lected XML documents, XPath queries as well as XUpdate
modifications. Document collections are created and ac-
cessed through Xindice-specific Java APIs (Xindice Collec-
tion Manager Service).

In this context, we generated two main collections: (i)
confs – the set of active and registered conferences hosted
on the Meetecho server, reported in the form of confer-
ence documents compliant with the XCON data model; (ii)
blueprints - the set of the Meetecho conference templates,
in the XML XCON data model compliant format as well. A
snapshot of the database content is showed in Fig. 7.

XPath queries are then executed by the CCMP server
whenever needed, for instance to select the conference ob-
ject referred to by the confObjID in CCMP requests, or to
retrieve specific conference information from the XML con-
ference documents grouped in the database collections.

XUpdate queries are instead performed to update the con-
ference documents according to received Meetecho notifica-
tions (generated, for example, as a consequence of a new user
join or leave event) and CCMP client requests (e.g. when
a client sets via CCMP a participant as chair of a certain
floor).

6.4 CCMP-Meetecho integration
As anticipated, our reference conferencing platform, Meete-

cho, does not support CCMP natively. It instead currently
relies on a proprietary protocol, called Scheduler, to handle
conference objects and their manipulation. This protocol
has a limited set of functionality available, which neverthe-
less can be logically mapped in a quite straightforward way
to a subset of CCMP operations. This motivated us into in-
tegrating CCMP in our platform by handling at first CCMP
as a simple wrapper to the operations made available by the
Scheduler. This mapping is presented in Fig. 8.

Specifically, the Scheduler protocol allows a participant to:
(i) create a new conference; (ii) delete existing conferences;
(iii) retrieve the list of available blueprints; (iv) retrieve a
specific blueprint; (v) setting a participant as floor chair of
a media; (vi) retrieving the list of users in a conference. All
these operations are made available by CCMP as well, and so
this allowed us to test our prototype CCMP implementation
in realistic scenarios.

The integration was realized by implementing a wrapper

Figure 7: An image of the Xindice native XML database used in the prototype

Figure 8: CCMP-Scheduler mapping

on the server side. We deployed our CCMP server (Tomcat,
JAXB and Xindice) by putting it side by side with the exist-
ing Meetecho server. We then added to the already imple-
mented CCMP server logic a wrapping functionality, in or-
der to handle incoming CCMP requests and translate them
into Scheduler directives accordingly, where applicable, and
viceversa. On the client side, we replaced the Scheduler
client module with our CCMP client implementation and
logic.

The mode of operation is quite straightforward. Any time
a participant issues a CCMP request, it is handled by the
CCMP server. The CCMP server maps the request to the
Scheduler counterpart, translating the message. Such a mes-
sage is then forwarded to the legacy Meetecho Scheduler
server, where it is handled and enforced. According to the
Scheduler reply that is received as a consequence, the CCMP
server takes the related action, e.g. updating the XML con-
ference object on the Xindice database if needed, and pro-
viding the participant with a coherent CCMP response.

An example is provided in Fig. 9.
A dump of the CCMP messages exchanged follows:

ccmpRequest message sent:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ccmp:ccmpRequest

Figure 9: A sample CCMP-based interaction involv-
ing protocol mapping

xmlns:info="urn:ietf:params:xml:ns:conference-info"

xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"

xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">

<ccmpRequest

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="ccmp:ccmp-conf-request-message-type">

<confUserID>xcon-userid:alex@meetecho.com</confUserID>

<confObjID>xcon:8977777@meetecho.com</confObjID>

<operation>update</operation>

<conference-password>1377</conference-password>

<ccmp:confRequest>

<confInfo entity="xcon:8977777@meetecho.com">

<xcon:floor-information>

<xcon:conference-floor-policy>

<xcon:floor id="11">

<xcon:moderator-id>19</xcon:moderator-id>

</xcon:floor>

</xcon:conference-floor-policy>

</xcon:floor-information>

</confInfo>

</ccmp:confRequest>

</ccmpRequest>

</ccmp:ccmpRequest>

ccmpResponse message received:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ccmp:ccmpResponse

xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"

xmlns:info="urn:ietf:params:xml:ns:conference-info"

xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp">

<ccmpResponse

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="ccmp:ccmp-conf-response-message-type">

<confUserID>xcon-userid:alex@meetecho.com</confUserID>

<confObjID>xcon:8977777@meetecho.com</confObjID>

<operation>update</operation>

<response-code>200</response-code>

<response-string>Success</response-string>

<version>10</version>

<ccmp:confResponse/>

</ccmpResponse>

</ccmp:ccmpResponse>

This simple example shows the process for a typical sce-
nario. In an active conference (identified by its ID 8977777),
a participant, Alex (who happens to be administrator of the
conference), decides to assign a floor chair for the audio re-
source, in order to have it properly moderated by means of
BFCP. In CCMP, this is achieved by issuing a ‘confRequest’
with an ‘update’ operation: the body of the specialized ‘con-
fRequest’ element contains the part of the conference object
that needs manipulation, in this case the floor information
associated with the existing audio resource. This audio re-
source is identified by means of a floor id (11 in the ex-
ample), which in the conference object itself is explicitly
mapped to the label assigned to the audio medium. Since
Alex is interested in assigning a floor chair to take care of
this medium, he specifies a ‘moderator-id’ (19) which refers
to a specific userID in the Floor Control Server. A password
is also provided (1377) since this operation requires special
permissions.

This request is sent to the CCMP server which, since a
mapping with the Scheduler functionality exists, translates
the message accordingly to the Scheduler format, and sends
the newly created message to the legacy Meetecho Server.
The server handles the request and enforces it, updating
the Floor Control Server policy accordingly. The successful
result of the operation is reported by means of a Scheduler
reply to the CCMP server, which in turn updates the Xindice
database coherently with the request. This means that the
XML conference object associated with conference 8977777
is updated. A success is finally returned to the participant
by means of a CCMP response.

7. CCMP HISTORY AND RELATED WORK
Every time a framework for conferencing has been pro-

posed, the need for a proper Conference Control mechanism
has arisen as a consequence. For this reason, such mecha-
nism has been the subject of a lot of efforts. Nevertheless,
the proprietary nature of most of the conferencing solutions
currently available paved the way to numerous heteroge-
neous and incompatible solutions for such a functionality.
For the sake of conciseness, we don’t provide in this sec-
tion a list of such solutions, considering it would be quite
incomplete. We instead focus on the related work carried
within the standardization bodies. In fact, since the XCON
architecture has been introduced within the IETF, several
different candidates have been proposed to play the role
of the Conference Control Protocol. Such candidates dif-
fered in many aspects, which reflected the discussion within
the standardization fora with respect to the approach that
should be taken in that sense. An interesting debate took
place, for instance, about whether a semantic or a syntactic
approach would be better as a basis for a Conference Control
Protocol. Besides, the best transport means to be adopted
has also been the subject of investigation.

In this spirit, at least three candidates were proposed in
the XCON WG before CCMP was chosen as the official pro-
tocol.

The first proposal, at the end of 2004, was the“Centralized
Conference Control Protocol” (draft-levin-xcon-cccp) by
O. Levin and G. Kimchi. This protocol, as CCMP, was

XML-based and had a client-server organization, but unlike
CCMP it was designed using SOAP as a reference model. It
likely reflected the implementation work carried out within
Microsoft at the time. Despite being in a quite advanced
state (four updates were submitted), the proposal was even-
tually put aside.

Shortly after the first individual submission of the CCCP,
another candidate came to the light, “COMP: Conference
Object Manipulation Protocol” (draft-schulzrinne-xcon-
comp-00) by H. Schulzrinne. Like its predecessors, it heavily
relied on Web Services as a reference, while stressing the use
of SIP for notification purposes. Unlike CCCP, COMP had
a strong semantic approach for what concerned the protocol
specification. No updated versions of the draft were submit-
ted; this work nevertheless paved the ground to a stimulating
discussion that eventually led to CCMP.

One month later, another candidate was proposed, the
“Conference State Change Protocol (CSCP)”by C. Jennings
and A. Roach. Unlike both its predecessors, CSCP took
a completely different approach towards the protocol. In
fact, CSCP was basically a proposal to extend the already
defined Binary Floor Control Protocol in order to allow it to
also deal with conference manipulation functionality. CSCP
motivated such an approach stressing the fact that binary
messages would be smaller and easier to handle, especially
for mobile devices. Besides, it was the authors’ opinion that
every XCON-compliant entity would likely support BFCP
already, and as such CSCP would prove a trivial addition.
Nevertheless, the proposal was eventually abandoned, and
a text-, possibly XML-based solution was decided to be a
preferred approach.

Finally, a last proposal saw the light at the end of 2005,
the individual submission that would subsequently become
the official CCMP draft. Such a draft has seen many revi-
sions and efforts since then, which have resulted in the work
presented in this paper.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the design and implemen-

tation of the Centralized Conferencing manipulation Proto-
col (CCMP), currently on the way towards its steady-state
as a standard IETF protocol for conference objects manage-
ment in the XCON framework.

We highlighted the main motivations behind such a work
and illustrated the complex path that has been followed
within the IETF community along the many phases of the
overall standardization process.

We first described the general structure of the protocol,
as well as its main functionality. Then, we focused on the
work carried out at the University of Napoli during these last
years and centered around a running prototype acting as a
major playground for all the activities associated with on-
going standardization work inside some of the key working
groups of the RAI (Real-time Applications and Infrastruc-
ture) area of the IETF.

At the time of this writing, the specification of the CCMP
protocol is close to completion. Its implementation has been
heavily used to both test its behavior and to provide in-
valuable feedback to the authors of the CCMP document.
Furthermore, to aid implementors, a specific draft focusing
on call flows has been written in order to provide the Inter-
net community with guidelines in the form of Best Common
Practices.

Our future work related to CCMP will definitely concern
the final refinement of the specification, with the goal of
arriving at a well-assessed RFC document. As to the im-
plementation, we are currently working on the integration
of the CCMP server within the Meetecho platform as a ‘na-
tive’ component, in such a way as to avoid the unavoidable
burden associated with proxying CCMP requests and map-
ping them onto the legacy scheduler protocol.

When done with such integration, we will also focus on
carrying out a thorough experimental campaign aimed at
assessing the performance achievable by our protocol imple-
mentation, as well as identifying its potential bottlenecks.

9. REFERENCES
[1] A. Amirante, T. Castaldi, L. Miniero, and S. P.

Romano. Meetecho: A standard multimedia
conferencing architecture. In FMN ’09: Proceedings of
the 2nd International Workshop on Future Multimedia
Networking, pages 218–223, Berlin, Heidelberg, 2009.
Springer-Verlag.

[2] M. Barnes, C. Boulton, and O. Levin. RFC 5239 - A
Framework for Centralized Conferencing. Request for
comments, IETF, June 2008.

[3] M. Barnes, C. Boulton, S. Romano, and H. Schulzrinne.
Centralized Conferencing Manipulation Protocol (work
in progress). Internet draft, IETF, June 2010.

[4] G. Camarillo, S. Srinivasan, R. Even, and
J. Urpalainen. Conference event package data format
extension for centralized conferencing (xcon) (work in
progress). Internet draft, IETF, September 2008.

[5] Fielding. Architectural styles and the design of
network-based software architectures. Technical report,
2000.

[6] M. Gudgin, N. Mendelsohn, M. Hadley, J. Moreau, and
H. Nielsen. Soap version 1.2 part 1: Messaging
framework. World wide web consortium first edition
rec-soap12-part1-20030624, W3C, June 2003.

[7] O. Novo, G. Camarillo, D. Morgan, and J. Urpalainen.
Conference information data model for centralized
conferencing (xcon) (work in progress). Internet draft,
IETF, February 2010.

[8] J. Rosenberg, H. Shulzrinne, and O. Levin. RFC 4575 -
A Session Initiation Protocol (SIP) Event Package for
Conference State. Request for comments, IETF, August
2006.

