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ABSTRACT 
Internet server selection mechanisms attempt to optimize, subject 
to a variety of constraints, the distribution of client requests to a 
geographically and topologically diverse pool of servers. Research 
on server selection has thus far focused primarily on techniques 
for choosing a server from a group administered by single entity, 
like a content distribution network provider.  In a federated, multi-
provider computing system, however, selection must occur over 
distributed server sets deployed by the participating providers, 
without the benefit of the full information available in the single-
provider case.  Intelligent server set selection algorithms will 
require a model of the expected performance clients would 
receive from a candidate server set. 

In this paper, we study whether the complex policies and 
dynamics of intelligent server selection can be effectively 
modeled in order to predict client performance for server sets.  We 
introduce a novel server set distance metric, and use it in a 
measurement study of several million server selection transactions 
to develop simple models of existing server selection schemes.  
We then evaluate these models in terms of their ability to 
accurately predict performance for a second, larger set of 
distributed clients.  We show that our models are able to predict 
performance within 20ms for over 90% of the observed samples.  
Our analysis demonstrates that although existing deployments use 
a variety of complex and dynamic server selection criteria, most 
of which are proprietary, these schemes can be modeled with 
surprising accuracy. 
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1. INTRODUCTION 
Internet services and resources are often replicated over 
geographically and topologically diverse locations to improve 
performance and availability.   In these cases, the problem of 
server selection naturally arises, in which clients are transparently 
directed to an optimal server based on specific selection criteria.  
Much of the recent research into Internet server selection has 
focused primarily on developing algorithms and mechanisms for 
redirecting clients [4,5,15,17], or on measuring and evaluating 
current redirection schemes [6,7,16]. 
A common feature of these earlier efforts is that they study 
selection within a group of servers administered by a single entity.  
Examples include distributed mirrors of a high-volume Web site, 
or a content distribution network (CDN) with a large number of 
servers run by a single provider.  Increasingly, however, 
federated, multi-provider computing systems are emerging in 
which multiple service providers compose distributed sets of 
servers to increase performance, scale, or capacity.  
For example, the IETF Content Distribution Internetworking  
(CDI) working group [1] seeks to enable interoperability between 

separately administered CDNs by developing standard interfaces 
for publishing, distribution, and client redirection.  The goal of 
this effort, also referred to as CDN peering, is to allow individual 
providers to achieve greater scale and network reach 
cooperatively than they could otherwise attain individually. 
In such a cooperative multi-provider environment, clients are 
redirected across distributed sets of servers deployed by 
partnering service providers, in contrast to the single-provider 
case.  Here, a request router must direct requests over sets of 
servers, as opposed to individual servers belonging to a single 
provider.  The problem is further complicated by the limited 
information about response time or service cost typically available 
from individual providers.  Service providers will retain load 
balancing control within their own server sets (much the way 
Internet routing works between and within domains).  Therefore, 
unlike existing server selection algorithms, an estimate of delay 
between clients and individual servers is not available. Server set 
selection algorithms require a model representing the expected 
performance each candidate server set is likely to deliver to a 
group of clients.  
Developing such a model of traffic redirection, however, is 
challenging for a number of reasons.  The actual server selection 
criteria used in CDNs are generally considered proprietary 
information, making it difficult to predict the performance a given 
client is expected to experience.  Since the goal is generally to 
minimize client response time, the selection criteria may be a 
complex combination of attributes such as server responsiveness 
or load, expected network delay, or geographic location.   
Furthermore, several of the potential attributes vary with time.  
Also, since there is no single repository listing attributes such as 
geographic location or expected delay for all Internet-connected 
systems, the values used in a given scheme are likely to be based 
on heuristics. 
In this paper, our objective is to determine whether the complex 
policies and dynamics of intelligent server selection can be 
effectively modeled in order to predict client performance.  In 
particular, we focus on the problem of modeling redirection in 
geographically and topologically diverse server sets deployed for 
delivery of Web content.  Our work makes the following 
contributions: 

• a novel metric, server set distance (SSD), which we use to 
simplify the modeling and classification of redirection 
schemes 

• measurement-based methodology in which we analyze over 
4.3 million client redirection transactions to produce a 
taxonomy of schemes used in existing distributed server set 
deployments  

• simple server set redirection models, along with an 
evaluation of their accuracy  based on measurements using a 
second, non-overlapping set of clients. 



The usefulness of our results is not limited to the multi-provider 
Web content delivery context.  The need to intelligently select 
resources from independently administered infrastructures is the 
subject of investigation in other applications as well.  For 
example, the scientific community is developing utility-like 
infrastructures such as the Grid [2] to harness distributed 
computing power.  Also, providers of 3G wireless networks may 
benefit from the use of dynamic confederations to share 
bandwidth, processing, and storage resources [3]. 
The remainder of this paper is organized as follows.  In the next 
section we give a brief overview of common traffic redirection 
techniques.  In Section 3, we present our data collection 
methodology, and provide an overview of the datasets used in our 
study.  We detail the results of our analysis in Section 4, and offer 
conclusions in Section 5. 

 

2. BACKGROUND 
Because traffic redirection for content delivery servers is 
generally enabled via enhancements to the Domain Name Service 
(DNS), we begin with a brief overview of DNS. We then describe 
policies commonly invoked in intelligent DNS-based redirection 
schemes. 

2.1 DNS Overview 
DNS is a distributed database that maps domain names to Internet 
Protocol (IP) addresses [8]. The domain name space is partitioned 
into a hierarchy of domains and subdomains so that each domain 
can be independently administered.  DNS servers hold 
information about a subset of the name space, and pointers 
leading to information about any part of the name space. Name 
servers are said to be authoritative for a subdomain, or zone, of 
the name space if they maintain complete information about that 
subdomain.   
As illustrated in Figure 1, a client typically resolves a fully 
qualified domain name (FQDN) of a content server by utilizing a 
client application, called a resolver, to query its local DNS 
(LDNS) server.  The LDNS server queries the authoritative DNS 
(ADNS) server for the content server’s domain, returns the result 
to the client, and caches the information.  If the LDNS receives 
additional requests to resolve this FQDN before the time-to-live 
(TTL) specified by the ADNS expires, the LDNS will respond 
with the cached information. 

2.2 DNS Redirection 
Websites with stringent performance and availability constraints 
often replicate content on multiple, geographically distributed 
servers.  In simple load-balancing schemes, the ADNS makes a 
round-robin or proportional selection amongst the IP addresses of 
the candidate servers. In more sophisticated schemes, a DNS 
proxy may intercept ADNS responses and, based on attributes 
such as server responsiveness or expected network delay, modify 
the response to enable intelligent server selection.  
There are a number of commercially available DNS proxies [13, 
14], also referred to as global load balancing switches, with a 
variety of configurable redirection policies.  Examples of 
supported policies include: 

• server responsiveness or available capacity 
• round trip time between server and client network  
• geographic location of server and client   
• least number of requests or connections 
• round robin or administrative priority 

• client IP address 
• time of day 

 
Modeling DNS traffic redirection presents a number of 
challenges.  First, the actual policies used by content delivery 
service providers are generally considered to be proprietary 
information, and therefore not publicly disclosed.    Any 
combination of the above policies, or policies specific to the 
service provider, may be in use.  Further, some of the attributes 
(e.g., server responsiveness) vary with time. Additionally, the 
client IP address upon which the DNS proxy bases its decision 
may be the address of the client’s agent or LDNS, as opposed to 
the client itself.  Finally, because the LDNS and the client may 
cache query results, there is not a one-to-one correspondence 
between DNS responses and client requests arriving at the content 
server.  
The goal of our study was not to determine the effectiveness of 
any particular scheme, or to evaluate the performance of a given 
CDN.  Instead, our intent was to determine whether the complex 
policies and dynamics of intelligent server selection could be 
effectively modeled.  We also sought to quantify the accuracy of 
our proposed models. In the next section, we describe the 
methodology used to collect data used for this experiment. 
 

3. EXPERIMENTAL METHODOLOGY 
Data collection was performed in two phases.  In the first phase, 
we determined a list of target server sets, and a small number of 
widely distributed clients.  We used data collected in the first 
phase to develop a baseline estimation of the redirection model 
used by the target server sets.  In the second phase, we used the 
same target server sets, but enlisted a completely different, and 
more extensive, group of clients.  We used data collected in the 
second phase to assess the accuracy of the baseline model 
assigned in the first phase.  In the following subsections, we detail 
how server sets were selected, and our measurement 
methodology. 
 

3.1 Server Set Selection 
Our first task was to select a group of server sets for which we 
would collect traffic redirection data.  We used two data sources 
to create this list.  First, we visited the websites of 5 known CDN 
service providers to retrieve a customer listing.  Second, we 
augmented this list with 25 popular websites using a recognized 
rating site [11].  We then requested content from each of these 
websites, specifically seeking content that was being served from 
a CDN, or from a distributed set of servers. 
   

Figure 1: DNS redirection flow.  The process begins with a client
requesting resolution of the fully qualified domain name of the content
server from a local DNS (LDNS) server.  The LDNS queries the
authoritative DNS server for the content server.  The client then establishes
a connection to the content server. 
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We were able to determine customer content being served from a 
CDN by querying the ADNS for the hostnames of website 
content, and noting responses indicating a canonical name 
(CNAME) in a CDN’s domain.  This limits our experiment to 
server sets using DNS redirection.  That is, in this paper, we 
evaluate server sets in which a server set is defined as the set of IP 
addresses to which the ADNS maps a particular FQDN.  While 
there are other redirection mechanisms, DNS redirection is the 
most prevalent among commercial CDN providers. 
We also tracked server sets that were not in a CDN’s domain, but 
whose ADNS returned multiple IP addresses for a single FQDN.  
We utilized the traceroute [6] tool to determine whether 
the IP addresses in each group were geographically distributed. 
More precisely, from multiple, geographically distributed 
systems, we issued traceroutes targeting each of the IP 
addresses returned by the ADNS.  We then inspected the DNS 
names of intermediate routers discovered by traceroute – 
since a common practice among network service providers is to 
name routers according to their location.  We also verified against 
the round trip time (RTT) data from the traceroutes, since we 
issued the traceroutes from systems for which we knew the 
location.   
Using these techniques, we compiled a list of 23 server sets 
believed to be deployed by a CDN or on geographically 
distributed systems.  This list is provided in Table 1.  To 
anonymize this list, we assigned a numeric identifier to each 
server set.  We used the domain part of the DNS name to 
distinguish between providers and we assigned a provider 
identifier to illustrate which server sets were deployed by the 
same provider.  It is common for a single CDN to partition its 
servers into multiple server sets, and host customer content from a 
single server set. Our target server set list includes examples of 
such deployments.   
There are a number of potential reasons for a provider to partition 
its servers into multiple sets. For example, partitioning could be 
used as a coarse-grained form of resource management by 
assigning fewer customers to one server set versus another.  
Another possibility is to partition according to capabilities, such 
as the ability to serve streaming media content. We did not 
attempt to isolate the exact reason.  
However, we were interested in whether CDN providers who 
partitioned their server sets used the same IP addresses in multiple 
server sets.  In column 4 of Table 1, we provide the total number 
of servers discovered by methods detailed in Section 3.3. (We 
defer discussion of columns 5-8 of Table 1 to Section 4.1.)  
We found that 174 of the 213 IP addresses discovered in the two 
server sets deployed by Provider 1 were unique. For Provider 2, 
we discovered 284 unique IP addresses across their 6 server sets.  
We also observed an overlap in the server sets deployed by 
Providers 1 and 2.  Namely, only 353 of the 458 IP addresses 
discovered for these two providers were unique to either Provider 
1 or Provider 2. Since Provider 2 is a CDN and Provider 1 is not, 
we presume Provider 1 is using servers in Provider 2’s CDN.  For 
Providers 5 and 10, we discovered 84 and 16 unique IP addresses, 
respectively.  Provider 4 is not a CDN. 
 

3.2 Server Set Distance 
Evaluating the actual response time achieved by a particular 
traffic redirection scheme is beyond the scope of our effort. 
Instead, we focus on the ability to model, given a particular client 
IP address, the expected network delay between the client, and the 

physical server assigned by the individual server set redirection 
mechanism.  We define a novel metric, server set distance (SSD), 
to characterize the expected delay between a client and a server 
set.  More formally, we define Rik, the SSD between a client i and 
a server set k as: 
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where Nk is the number of servers in server set k. The value aij is 
the probability that client i, when requesting service from server 
set k, will be redirected to server j.  Depending on the policies 
established by the entity deploying the server set, this probability 
may not be constant over time.  Finally, dij is the expected round 
trip time (RTT) in milliseconds between client i and server j.  In 
Section 4, we will detail our observations in using average and 
minimum RTT to estimate the expected RTT between a client and 
a server.  Next, we describe our measurement methodology. 
 
 

3.3 Baseline Measurements 
Baseline measurements were taken over a 33-day period starting 
in July 2002, and produced two datasets.  The first, A1, will 
establish empirical values for aik, and the second, D1, comprises 
observed values for dij, where i denotes clients in Table 2 and j 
denotes servers specified by the ADNS of server sets in Table 1.   
The dataset A1 was collected as follows.  A measurement daemon 
(digd) was installed on a system at each of the client locations 
listed in Table 2.  We refer to these client locations as collection 
points (CPs). Digd uses the dig [10] tool to collect a single 

Table 1: Server sets tested.  Each server set is assigned a unique
identifier.  Since some providers deploy multiple server sets, each
provider is assigned a unique provider identifier.  The CDN Domain
column indicates whether the CNAME for the server set is registered to
a CDN.  Also shown are the total number of IP addresses discovered in
the set, the number of addresses in a single DNS query response, and the
number of addresses per measurement sample. 

ID Provider CDN IP Addrs Addr/rsp Addr/sample
ID Domain Discovered mean var mean var

SS1 1 No 114 2.0 0.08 2.3 2.13
SS2 2 Yes 98 2.0 0.00 2.1 0.56
SS3 1 No 99 2.0 0.03 2.1 0.55
SS4 2 Yes 81 2.0 0.00 2.1 0.32
SS5 2 Yes 88 2.0 0.00 2.2 0.79
SS6 2 Yes 97 2.0 0.00 2.2 0.87
SS7 3 No 28 1.0 0.00 1.2 0.16
SS8 4 No 21 16.0 0.30 15.9 0.54
SS9 5 Yes 76 2.0 0.00 3.4 3.77
SS10 6 No 3 2.0 0.00 2.0 0.00
SS11 7 Yes 9 8.0 0.01 8.0 0.00
SS12 5 Yes 76 2.0 0.00 3.2 3.11
SS13 8 No 21 1.0 0.00 5.4 3.19
SS14 9 No 5 4.0 0.00 4.0 0.00
SS15 2 Yes 4 1.0 0.02 1.2 0.29
SS16 10 Yes 14 1.0 0.00 2.6 2.17
SS17 10 Yes 13 1.0 0.00 2.6 2.09
SS18 11 No 6 5.0 0.01 5.0 0.01
SS19 10 Yes 14 1.0 0.00 2.7 2.72
SS20 12 No 5 1.1 0.41 4.0 0.07
SS21 2 Yes 5 1.0 0.00 1.0 0.03
SS22 4 No 5 1.0 0.00 4.0 0.09
SS23 13 Yes 3 1.0 0.00 1.0 0.01



redirection sample by issuing a series of DNS queries to the 
ADNS of a target server set.  DNS queries were sent directly to 
the ADNS, as opposed to a local DNS server, to avoid receiving 
information cached by the LDNS.  Query invocations within a 
series were randomly spaced according to a Poisson distribution, 
with a mean of 2.5 seconds between each query.  Each query 
series lasted 60 seconds, resulting in an average of 24 queries per 
sample.  Digd measurement invocations were also randomly 
spaced with a mean of 3 hours between measurements to any 
given server set.  Each CP collected samples independently of the 
other CPs. 
The D1 dataset was collected by issuing traceroutes [9] to 
the IP addresses collected in A1 from each of the CPs.  
Measurement invocations were randomly spaced with a mean 3 
hours between each invocation, but were not synchronized with 
A1 measurement invocations.  

A well-known difficulty with collecting RTT measurements to 
servers is the practice of blocking or discarding the ICMP 
messages used by tools such as traceroute and ping.  In 
those cases where traceroute failed to elicit a response from 
the target server, we used the RTT between the client and the last 
hop of the traceroute.  While our argument for this 
substitution is not formal, it is based on two observations. 
First, administratively blocking undesired traffic is often 
performed by a firewall at the ingress/egress of a data center.  
Second, we developed a simple measurement utility, tcprtt, 
which measures the time to successfully complete a connect 
request on a TCP socket. Measurements that exceeded the 
retransimit timeout value employed by TCP (e.g., 3 seconds on 
Linux implementations) during connection establishment were 
discarded.  We used tcprtt to measure the RTT to the IP 
addresses for which traceroute failed, from several of the 
CPs.  We compared the minimum connection time measured by 
tcprtt for these IP addresses, to the minimum RTT to the last 
hop of a traceroute to the same IP address.  We used the minimum 
times, as opposed to average or median, since we anticipated the 
TCP connection time is more likely to vary with server load.  For 
the servers we tested, the minimum time to complete the 
connect request was consistently within 1ms of the minimum 
RTT observed to the last hop of the traceroute.  
 

3.4 Validation Measurements 
Measurements used in the validation phase of our analysis were 
taken over a 15-day period starting in October 2002, and produced 
two datasets, A2 and D2.  The same target server sets and 
measurement techniques employed for A1 were used to capture 
A2, with the exception that data was collected using the PlanetLab 
[12] servers listed in Table 3.  

The procedure for D2 however, differed from that of D1 in one 
additional aspect.  At the time of our experiment, access to ICMP 
sockets on the PlanetLab servers was limited to privileged users.  
For this reason, we used the tcprtt utility to collect RTT 
observations for D2.. 

 

4. RESULTS 
Our first objective was to determine whether we could infer, 
based on the data in A1 and D1, and the policy information 
summarized in Section 2.2, a redirection policy for each of the 
target server sets. After assigning an inferred policy for each 
server set, the data in A2 and D2 was used to evaluate the accuracy 
of this assignment across a more extensive set of clients. 

4.1 Redirection Attributes 
Columns 4-8 of Table 1 summarize some coarse-grained attributes 
for each of the server sets’ redirection schemes. These statistics 
provide a number of interesting insights.  For example, the 
number of servers discovered in server sets deployed by CDN 
providers tended to be greater than those that were not, but this 
was not strictly the case.  Further, by comparing the total servers, 
and servers per sample, we could broadly classify the sets into two 
categories: those for which most or all of the set’s IP addresses 
were present in a sample, versus those for which only a small 
portion of the set’s IP addresses were present in a sample.   
We were interested in comparing the effect of these attributes on 
the server set distance observed from the various CPs. We used 
the data in A1 and D1 to calculate the observed SSD from each CP 
to each server set.  That is, for each sample collected, A1 provides 

Table 3: Set of collection points used in validation measurements. 

Table 2: Collection points used for baseline measurements. While only a
small number of clients were used in the baseline measurements, the
number of collection points enlisted for verification measurements (Table
3) is significantly larger. 

ID Hostname

C01 kupl2.ittc.ku.edu
C02 pl2.cs.utk.edu
C03 planet.cc.gt.atl.ga.us
C04 planet2.berkeley.intel-research.net
C05 planet2.cs.ucsb.edu
C06 planet2.pittsburgh.intel-research.net
C08 planet2.seattle.intel-research.net
C10 planetlab-2.cs.princeton.edu
C12 planetlab-2.stanford.edu
C13 planetlab02.cs.washington.edu
C14 planetlab1.cs.ucla.edu
C15 planetlab2.canterbury.ac.nz
C16 planetlab2.cis.upenn.edu
C17 planetlab2.cs-ipv6.lancs.ac.uk
C18 planetlab2.cs.arizona.edu
C19 planetlab2.cs.cornell.edu
C20 planetlab2.cs.duke.edu
C21 planetlab2.cs.ubc.ca
C22 planetlab2.cs.umass.edu
C23 planetlab2.cs.unibo.it
C24 planetlab2.cs.wisc.edu
C25 planetlab2.csres.utexas.edu
C26 planetlab2.eecs.umich.edu
C27 planetlab2.flux.utah.edu
C28 planetlab2.it.uts.edu.au
C29 planetlab2.lbl.gov
C30 planetlab2.lcs.mit.edu
C31 planetlab2.millennium.berkeley.edu
C32 planetlab2.netlab.uky.edu
C33 planetlab2.ucsd.edu
C34 planetlab2.xeno.cl.cam.ac.uk
C35 planlab2.cs.caltech.edu
C36 ricepl-2.cs.rice.edu
C37 righthand.eecs.harvard.edu
C38 vn2.cs.wustl.edu

ID Location
CP1 Berlin, Germany
CP2 Chicago, Illinois
CP3 College Station, Texas
CP4 Lausanne, Switzerland
CP5 New York, New York
CP6 Amherst, Massachussetts
CP7 Almaden, California
CP8 Tokyo, Japan



a list of all IP addresses specified by the ADNS in a query 
response. Thus, for each sample s, we have nj(s), the number of 
times the IP address j was observed in the sample s, and Nk(s), the 
total number of IP addresses observed in the corresponding 
sample.   From D1, we established an estimate for dij – we set dij 
to the minimum observed RTT from CP i to the IP address of 
server j, for each IP address in A1. For each sample, we calculated 
the observed SSD, Rik(s), as the weighted sum, (nj(s) / Nk(s))* dij, 
over all servers in the set.   
We used these observed SSD values to confirm a number of 
intuitions.  For example, one would expect the SSD observed 
from a single CP to different server sets to vary.  Likewise, one 
would anticipate the SSD experienced by different CPs when 
accessing the same server set to vary.  In the following paragraphs 
we quantify this variances.  
As illustrated in Figure 2, the observed SSD from a single CP to 
different server sets varies widely.  While plots for only a few of 
the CPs are shown, the remaining CPs followed this pattern of 
clear differentiation in SSD values for the target server sets. We 
also calculated the SSD using the average RTT, as opposed to 
minimum RTT, for dij.  The differences were insignificant.   
Additionally, we calculated the SSD using only the first IP 
address listed in any DNS response.  In this case, Nk(s) was the 

number of queries in the sample s, and nj(s) was the number of 
times IP address j was the first IP address specified by the ADNS 
in a query response.  The purpose of this test was to determine 
whether LDNS implementations that used only the first IP address 
in a query response would affect our results. We did not observe 
any appreciable differences in SSD for this variation either. 
Another interesting feature of Figure 2 is that the SSD values 
between a single server set – CP pair were fairly stable over the 
duration of our test period.  This is not surprising since one would 
expect CDNs to target consistent performance for a given client. 
However, the SSD did vary over time for some server sets.   
Consider SS20, which had varying SSD values from all 3 CPs and 
the most widely varying SSD from CP6.  According to Table 1, 
we discovered only 5 IP addresses for SS20, and the mean number 
of addresses returned in a single sample was 4.  This indicates 
SS20 may be uniformly distributing client requests across most or 
all of its servers.  The SSD from CP6 and CP8 to SS16 also 
varied.  According to the statistics in Table 1, it is unlikely that 
SS16 is uniformly distributing client requests over all of its 
servers.  We speculate SS16’s redirection policy may consider 
network congestion or server load, but defer more detailed 
analysis of SS16’s policy to Section 4.3. 
We were also interested in knowing whether the SSD of a single 
server set was consistent across all collection points.  In Figure 3, 

Figure 2: Comparison of server set distances (SSDs) observed from
CP3, CP6, CP8.  A legend for (a),(b), and (c) is provided in (d). 
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we provide this comparison for 4 of the server sets.  Each graph in 
Figure 3 represents a single server set, and is divided into 8 rows.  
Each row represents the SSD observed by one of the 8 CPs.  The 
vertical space allocated to each row represents 0-200ms.  The 
intent of this format is to enable visualization of the SSD for a 
single server set – CP pair over time, and relative comparisons 
across CPs.  For example, in (a) the SSD from CP7 was 
approximately 10 ms in the initial and final samples, but hovered 
around 80ms in-between. In (b) the SSD from CP8 to SS11 was 
consistently about 190ms.  These graphs illustrate that the target 
server sets did not provide uniform SSD values across all of the 
collection points.  
This initial assessment confirmed the SSD of the target server sets 
was not uniform across all CPs for a single server.  We also noted 
that different server sets achieved better SSD results for certain 
CPs than for others.  

4.2 Redirection Model Definition 
The insights derived in Section 4.1 helped us define a small 
number of traffic redirection models.  For example, Table 1 shows 
that for several of the server sets, the mean number of addresses 
per response and the mean number of addresses per sample were 
equal.  This might be indicative of a simple load balancing policy 
where all of the server addresses for a set were returned on every 

response, and only the order of these addresses changed on a per 
response basis.  Also, several server sets returned only a single 
address per response.  Intuitively, such a policy would likely 
attempt to choose the single “best” address for this client, where 
best might be defined in terms of expected network delay.  A 
variant could be to load balance over the two addresses expected 
to provide the minimum delay.  Finally, a server selection scheme 
may intentionally direct a percentage of a client’s requests to the 
server expected to provide minimum delay, but distribute the 
remaining percentage uniformly across all servers.  Such a policy 
enables an assignment that predominantly conforms to the 
minimum-delay, while still probing alternate servers. 
We defined four traffic redirection models as follows. 
LBP: under LBP, or load-balanced policy, traffic is uniformly 
distributed over all servers in the server set.   
MIN: traffic is directed to a server with the minimum expected 
RTT. 
MIN2: traffic is uniformly distributed over the 2 servers in the set 
with the minimum expected RTT.  We also tested MIN3, which 
uniformly distributed clients over the 3 servers with the minimum 
expected delay, but none of the server sets conformed better to 
this policy. 

Figure 3: Server set distances (SSD) to a representative 4 server sets, over a 33-day period.  Namely, server sets: (a) SS1 (b) SS11
(c) SS12 (d) SS17 are depicted.  Each server set’s graph is divided into 8 rows, with 1 row per collection point (CP).  Each row
contains a plot of the SSD from the CP, to the SS.  The vertical space allocated to each row represents 0-200ms.   
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WGT: 80% of traffic is directed to the server with the minimum 
expected RTT.  The remaining 20% of traffic is uniformly 
distributed over all other servers in the set.  We explore other 
distributions for some server sets later. 
One might argue that expanding our evaluation to include 
additional server sets may introduce the need for new models.  
However, as we will illustrate in subsequent subsections, these 
four simple models did provide good coverage of the server sets 
we assessed.  Further, we argue that the value of our study is not 
limited to the assessment of these four models.  Instead, we 
anticipate the methodology used to discover these four models 
would be useful for discovering and validating new models.   

4.3 Redirection Model Assignment 
To assign a policy to each server set, we calculated a predicted 
SSD using each of the above policies and the minimum RTT 
observed from D1, for each sample. For each CP, we then 
computed the average predicted SSD, over all samples, for each 
policy.  Thus, for each CP we had the average predicted SSD, 
under each of the policies, to each of the server sets.  We also 
calculated the average measured SSD from each of the CPs to 
each of the server sets.  We then calculated the mean squared 
error (MSE) between the average observed SSD and the average 
predicted SSD, for each of the policies.  We averaged these MSE 
values over all CPs, and refer to this value as the average MSE of 
the policy.  
For each server set, Figure 4 shows the average MSE of the four 
policies.  Since the y-axis of this plot is log-scale, MSE values of 
0 were rounded up to 1 so they could be displayed.  While the 
minimum average MSE varied from one server set to another, all 
server sets except SS7 had at least one policy for which the 
average MSE was less than 100.  That is, each had a policy for 
which the average difference between the predicted and observed 
SSD was less than 10ms. 
Several servers had equivalent average MSE values for multiple 
policies.  For example, the MIN and MIN2 policies appear to 
perform equivalently for SS1-SS7. This begs the question, if 
multiple models result in equivalent average MSE values, would 
choosing one model in an uninformed manner be good enough?  

We anticipate it would not, and that having equivalent MSE 
values is likely to be a side effect of evaluating the policy based 
on a small number of CPs. In the discussion below, we attempt to 
resolve which model better represents these server sets.  Also, we 
use a non-overlapping and substantially larger set of CP’s to 
evaluate these assignments in Section 4.4.  
For SS1-SS7, which had equivalent average MSE values for MIN 
and MIN2, we further examined the maximum MSE values.  The 
maximum MSE value for MIN2 was lower than for MIN, for SS1-
SS7.  Therefore, we assigned the MIN2 policy to SS1-SS7. 
The average MSE values for SS13 were equivalent for all four 
policies, as were the maximum MSE values.  Since an overlap 
between MIN and LBP might be indicative of a server set in 
which all servers are located within close proximity, we checked 
the raw data for SS13.  We found that while the ADNS for SS13 
had resolved SS13 to 21 different IP addresses, there were only 4 
different subnets.  On closer inspection, we found that all of the IP 
addresses appeared to be in the New York or Washington DC 
area.  We determined this by issuing traceroute commands 
to the IP addresses and inspecting the RTT times and DNS names 
of intermediate routers, as described in Section 3.1.  Further, an 
inspection of the queries in A1 indicated SS13’s ADNS primarily 
directed CPs to a single subnet, regardless of the location, but in 
some cases would load balance over the various other subnets.  
We classified SS13 as LBP. 
For SS16, SS17 and SS19, the average MSE values for the WGT 
policy were lower than for the other policies.  However, the 
average MSE values for WGT were higher than for policies 
selected for other server sets.  We experimented by varying the 
weight assigned the server with the minimum RTT, versus the 
remaining servers in the set.   We also tested variations that 
uniformly distributed a percentage of the traffic over the 2 servers 
with the minimum RTT, and uniformly distributed the remaining 
percentage over the other servers in the set.  We were unable to 
find a policy that achieved a better average MSE value.  Likewise, 
the MIN policy achieved the best results for SS7, but was higher 
than the minimum average MSE values for other server sets.  The 
average difference between the observed SSD and the SSD 
predicted by the MIN policy for SS7 was approximately 13ms.  
To gain insights into this issue, we plotted the minimum MSE 
values for each server set, on a per CP basis.  This plot is provided 
in Figure 5.  Note that each graph in Figure 5 represents only the 
MSE values for the policies selected for each server set.  For 
example, (a) contains those server sets assigned the LBP policy, 
namely SS8, SS10, SS11, SS13, SS14, SS18, and SS20-23.  
Graph (b) depicts server sets assigned the MIN2 policy.  Server 
sets assigned the remaining policies, WGT and MIN, are shown in 
(c).   
A prominent feature of Figure 5 is the large MSE observed at 
CP7, for all of the server sets classified as MIN2 and for SS7.  We 
inspected the raw data for CP7 and found that, although CP7 is 
located in California, it was frequently directed to servers in the 
New York area.   
There could be several reasons why a given redirection policy 
would result in sending most clients to servers with low minimum 
RTT values, but not doing so for other clients.  For example, the 
server with the minimum RTT value might be persistently 
overloaded.  Or, a more likely scenario is the redirection 
mechanism might be incorrectly evaluating the location of the 
client.  Also, the redirection mechanism may base its proximity 
evaluation on metrics other than observed RTT – such as the 
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Figure 4: Average MSE of each policy over all CPs for a given SS. The symbols
used to represent policies are: o=LBP, *=MIN, =MIN2, (=WGT.  Note the y-
axis is log-scale.  MSE values of 0 were rounded up to 1 so they could be
displayed on this log-scale plot. 
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estimated geographic location of the client.   It is interesting to 
note that CP7’s IP address is allocated from a Class A address 
block, known to be distributed across the US.  The ARIN routing 
registry [18] entry lists New York as the location for this Class A 
address block.   
Since the issue with the MIN policy for SS7 appeared to be 
localized to CP7, we did not change its MIN classification.  The 
issues with the WGT policy for SS16, SS17, and SS19 also appear 
to be dependent on the collection point, with CP4 showing the 
largest deviation.  We did not reclassify the WGT server sets. 
Figure 5 (a) also indicates a potential issue with the LBP policy 
for SS21.  We inspected the raw data for SS21 and found that it 
actually did not conform to the LBP policy.  This server set had 
the unusual characteristic that nearly all samples were identical, 
regardless of the CP from which they were collected.  More 
specifically, all CPs were directed to a single IP address for over 
97% of the samples.  In rare instances, the ADNS would direct a 
CP to different IP address, but return to the predominant IP 
address for the next sample.  Similar behavior was also observed 
for another server set deployed by the same provider, SS15.  SS15 
had been classified as MIN.  Both SS21 and SS15 achieved the 
best MSE using a model that simply directed all requests to a 
single IP address.    

4.4 Evaluation of Assigned Model 
For this portion of our analysis, we relied on the A2 and D2 data 
sets. Our goal was to evaluate whether our model assignment 
would hold for a different time period, and for a completely 
different, and larger set of collection points.   
We began our evaluation by calculating the observed SSD, Rik(s), 
and the SSD predicted by the assigned model, pik(s), for each 
sample in A2.  The SSD values are calculated as described in 
Sections 4.1 and 4.2, but using data from A2 and D2.  For each 
sample, we then calculated the sample prediction error eik(s) as: 

|)()(|)( spsRse ikikik −=  

The cumulative distributions of the sample prediction errors for 
each server set are plotted in Figure 6. The distributions represent 
all samples, taken from all of the collection points listed in Table 
3.  All of the server sets had prediction errors of less than 20 ms 
for over 90% of the samples, with SS7 performing the worst.  In 
SS7, 9% of the samples had prediction errors of 20 ms or more.  
Upon closer inspection, we noted that all of the samples with 

prediction errors of 10ms or more were localized to 5 collection 
points.  An examination of the raw data indicated that C04 and 
C08 were both consistently directed to hosts in the Chicago area.  
C04 is located in the San Jose area; C08 is located in the Seattle 
area.  Other collection points proximal with C04 and C08 were 
directed to San Jose and Seattle areas, respectively. 
We also note from Figure 6 that 8% of the samples for SS1 and 
SS4 had a prediction error of 20ms or more. Similarly to SS7, all 
of the samples with a prediction error of 10ms or more were 
limited to originating from 4 and 5 collection points for SS4 and 
SS1, respectively.   
In Section 4.3, we listed several potential causes for a given 
redirection scheme to send most clients to servers with low 
minimum RTT values, but not do so for other clients.  We wished 
to gain insights into which were the most likely issues for our 
target server sets.  A consistently high prediction error across the 
majority of samples from a given CP is more likely to be caused 
by an incorrect evaluation of the client’s location.  Conversely, a 
widely varying prediction error is more likely indicative of a 
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Figure 6: Cumulative distributions of prediction error for each server set
under the selected policy. The distributions are taken over all samples, from
all collection points listed in Table 3. Plots for SS1, SS4, SS7 are
distinguished (in black) from others as the poorest performers.  All server
sets had prediction errors of less than 20ms for at least 90% of the samples.

Figure 5: MSE between the measured SSD and the SSD predicted by the policy assigned the given SS, from each CP. In (a), the LBP policy was used for all SSs. In
(b), MIN2 was used for all SSs.  In (c), MIN was used for SS7 and SS15, while WGT was used for SS16, SS17, SS19.  Each figure is divided into multiple rows, with 1
row per SS.  The vertical space allocated to each row in (a), (b), and (c), represents 0-10ms2, 0-700ms2, and 0-1400ms2, respectively 
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redirection scheme using dynamic metrics, such as server load. 
In Figure 7, we plot the individual SSDs, both observed and 
predicted, for those collection points that registered a prediction 
error of 10ms or more on at least 1 sample.  That is, Figure 7 
includes only the server set – collection point pairs that achieved 
the poorest prediction results. To be precise, only the server sets 
with the highest percentage (8-9%) of samples with prediction 
errors of 20ms or more, and only the collection points that had at 
least one sample with a prediction error of 10 ms or more to these 
server sets are represented.   
For C01, C02, C04, C06, and C08, the majority of the samples 
suffered from a relatively consistent error between the measured 
and predicted SSD values – indicative of an incorrect evaluation 
of the client’s location.  However, the measured SSD, as well as 
the prediction error, for C18, C21 and C29 varied more widely.  
This behavior is more characteristic of a redirection scheme 
compensating for issues such as server overload.  In future work, 
we intend to investigate methods to better model these behaviors. 
 

5. CONCLUSIONS 
In this paper, we have proposed an innovative approach to 
modeling the redirection of traffic in geographically diverse server 
sets.  We defined a novel metric, server set distance (SSD), to 
simplify the process of classifying redirection schemes. We 
presented our measurement methodology and an analysis of over 
4.3 million redirection transactions.  
Our analysis demonstrates that, although existing deployments 
factor in dynamic attributes, such as expected network delay and 
server load, these schemes can be modeled with surprising 
accuracy.  All of our model assignments achieved a prediction 
error of 20ms or less for over 90% of the samples.  For 52% of the 
model assignments, 100% of the predicted SSDs – across all 
samples, from all collection points – were within 25ms of the 
actual measured SSD.  Additionally, 29% of the model 
assignments predicted 100% of the sample SSDs within 10ms of 
the measured SSD, again across all collection points and samples. 
Our model provides a foundation for intelligent selection over 
multiple, separately-administered server pools.  Consider, for 
example, the CDI scenario described in Section 1.  A Web hosting 
or CDN service provider seeks to achieve scalability, resiliency, 
or network delay objectives by offloading content delivery 
requests to partners.  This provider might deploy a base 
infrastructure and, under conditions such as a load surge, data 
center failure, or unexpected demand from distant geographic 
regions, direct client requests to one or more partners.  Since the 
partners retain load-balancing control within their own server sets, 
the provider requires algorithms to intelligently select amongst the 
sets of servers, as opposed to individual servers.  Instead of 
requiring each partner to specify how individual clients would be 
serviced, our server set models could be used to determine the 
expected performance that groups of clients would experience 
from various partners.  Our model-based approach is important 
since having each partner communicate how it would service 
millions of potential web clients would introduce significant 
scalability issues, and requesting this information from each 
partner at client request time would introduce substantial delays. 
The value of such techniques is not limited to the CDN context in 
which we have performed our analysis.  Federated, multi-provider 
computing systems are also sought for other applications, 
including Grid and 3G wireless deployments.  Our methodology 

can be applied in these scenarios to develop models for predicting 
client performance. 
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