
Modeling Redirection in Geographically Diverse Server Sets
Lisa Aminiab, Anees Shaikha, Henning Schulzrinneb

aIBM TJ Watson Research Center
bColumbia University

ABSTRACT
Internet server selection mechanisms attempt to optimize, subject
to a variety of constraints, the distribution of client requests to a
geographically and topologically diverse pool of servers. Research
on server selection has thus far focused primarily on techniques
for choosing a server from a group administered by single entity,
like a content distribution network provider. In a federated, multi-
provider computing system, however, selection must occur over
distributed server sets deployed by the participating providers,
without the benefit of the full information available in the single-
provider case. Intelligent server set selection algorithms will
require a model of the expected performance clients would
receive from a candidate server set.

In this paper, we study whether the complex policies and
dynamics of intelligent server selection can be effectively
modeled in order to predict client performance for server sets. We
introduce a novel server set distance metric, and use it in a
measurement study of several million server selection transactions
to develop simple models of existing server selection schemes.
We then evaluate these models in terms of their ability to
accurately predict performance for a second, larger set of
distributed clients. We show that our models are able to predict
performance within 20ms for over 90% of the observed samples.
Our analysis demonstrates that although existing deployments use
a variety of complex and dynamic server selection criteria, most
of which are proprietary, these schemes can be modeled with
surprising accuracy.

Keywords
Content Distribution Network (CDN), performance, Web traffic
redirection, server selection.

1. INTRODUCTION
Internet services and resources are often replicated over
geographically and topologically diverse locations to improve
performance and availability. In these cases, the problem of
server selection naturally arises, in which clients are transparently
directed to an optimal server based on specific selection criteria.
Much of the recent research into Internet server selection has
focused primarily on developing algorithms and mechanisms for
redirecting clients [4,5,15,17], or on measuring and evaluating
current redirection schemes [6,7,16].
A common feature of these earlier efforts is that they study
selection within a group of servers administered by a single entity.
Examples include distributed mirrors of a high-volume Web site,
or a content distribution network (CDN) with a large number of
servers run by a single provider. Increasingly, however,
federated, multi-provider computing systems are emerging in
which multiple service providers compose distributed sets of
servers to increase performance, scale, or capacity.
For example, the IETF Content Distribution Internetworking
(CDI) working group [1] seeks to enable interoperability between

separately administered CDNs by developing standard interfaces
for publishing, distribution, and client redirection. The goal of
this effort, also referred to as CDN peering, is to allow individual
providers to achieve greater scale and network reach
cooperatively than they could otherwise attain individually.
In such a cooperative multi-provider environment, clients are
redirected across distributed sets of servers deployed by
partnering service providers, in contrast to the single-provider
case. Here, a request router must direct requests over sets of
servers, as opposed to individual servers belonging to a single
provider. The problem is further complicated by the limited
information about response time or service cost typically available
from individual providers. Service providers will retain load
balancing control within their own server sets (much the way
Internet routing works between and within domains). Therefore,
unlike existing server selection algorithms, an estimate of delay
between clients and individual servers is not available. Server set
selection algorithms require a model representing the expected
performance each candidate server set is likely to deliver to a
group of clients.
Developing such a model of traffic redirection, however, is
challenging for a number of reasons. The actual server selection
criteria used in CDNs are generally considered proprietary
information, making it difficult to predict the performance a given
client is expected to experience. Since the goal is generally to
minimize client response time, the selection criteria may be a
complex combination of attributes such as server responsiveness
or load, expected network delay, or geographic location.
Furthermore, several of the potential attributes vary with time.
Also, since there is no single repository listing attributes such as
geographic location or expected delay for all Internet-connected
systems, the values used in a given scheme are likely to be based
on heuristics.
In this paper, our objective is to determine whether the complex
policies and dynamics of intelligent server selection can be
effectively modeled in order to predict client performance. In
particular, we focus on the problem of modeling redirection in
geographically and topologically diverse server sets deployed for
delivery of Web content. Our work makes the following
contributions:

• a novel metric, server set distance (SSD), which we use to
simplify the modeling and classification of redirection
schemes

• measurement-based methodology in which we analyze over
4.3 million client redirection transactions to produce a
taxonomy of schemes used in existing distributed server set
deployments

• simple server set redirection models, along with an
evaluation of their accuracy based on measurements using a
second, non-overlapping set of clients.

The usefulness of our results is not limited to the multi-provider
Web content delivery context. The need to intelligently select
resources from independently administered infrastructures is the
subject of investigation in other applications as well. For
example, the scientific community is developing utility-like
infrastructures such as the Grid [2] to harness distributed
computing power. Also, providers of 3G wireless networks may
benefit from the use of dynamic confederations to share
bandwidth, processing, and storage resources [3].
The remainder of this paper is organized as follows. In the next
section we give a brief overview of common traffic redirection
techniques. In Section 3, we present our data collection
methodology, and provide an overview of the datasets used in our
study. We detail the results of our analysis in Section 4, and offer
conclusions in Section 5.

2. BACKGROUND
Because traffic redirection for content delivery servers is
generally enabled via enhancements to the Domain Name Service
(DNS), we begin with a brief overview of DNS. We then describe
policies commonly invoked in intelligent DNS-based redirection
schemes.

2.1 DNS Overview
DNS is a distributed database that maps domain names to Internet
Protocol (IP) addresses [8]. The domain name space is partitioned
into a hierarchy of domains and subdomains so that each domain
can be independently administered. DNS servers hold
information about a subset of the name space, and pointers
leading to information about any part of the name space. Name
servers are said to be authoritative for a subdomain, or zone, of
the name space if they maintain complete information about that
subdomain.
As illustrated in Figure 1, a client typically resolves a fully
qualified domain name (FQDN) of a content server by utilizing a
client application, called a resolver, to query its local DNS
(LDNS) server. The LDNS server queries the authoritative DNS
(ADNS) server for the content server’s domain, returns the result
to the client, and caches the information. If the LDNS receives
additional requests to resolve this FQDN before the time-to-live
(TTL) specified by the ADNS expires, the LDNS will respond
with the cached information.

2.2 DNS Redirection
Websites with stringent performance and availability constraints
often replicate content on multiple, geographically distributed
servers. In simple load-balancing schemes, the ADNS makes a
round-robin or proportional selection amongst the IP addresses of
the candidate servers. In more sophisticated schemes, a DNS
proxy may intercept ADNS responses and, based on attributes
such as server responsiveness or expected network delay, modify
the response to enable intelligent server selection.
There are a number of commercially available DNS proxies [13,
14], also referred to as global load balancing switches, with a
variety of configurable redirection policies. Examples of
supported policies include:

• server responsiveness or available capacity
• round trip time between server and client network
• geographic location of server and client
• least number of requests or connections
• round robin or administrative priority

• client IP address
• time of day

Modeling DNS traffic redirection presents a number of
challenges. First, the actual policies used by content delivery
service providers are generally considered to be proprietary
information, and therefore not publicly disclosed. Any
combination of the above policies, or policies specific to the
service provider, may be in use. Further, some of the attributes
(e.g., server responsiveness) vary with time. Additionally, the
client IP address upon which the DNS proxy bases its decision
may be the address of the client’s agent or LDNS, as opposed to
the client itself. Finally, because the LDNS and the client may
cache query results, there is not a one-to-one correspondence
between DNS responses and client requests arriving at the content
server.
The goal of our study was not to determine the effectiveness of
any particular scheme, or to evaluate the performance of a given
CDN. Instead, our intent was to determine whether the complex
policies and dynamics of intelligent server selection could be
effectively modeled. We also sought to quantify the accuracy of
our proposed models. In the next section, we describe the
methodology used to collect data used for this experiment.

3. EXPERIMENTAL METHODOLOGY
Data collection was performed in two phases. In the first phase,
we determined a list of target server sets, and a small number of
widely distributed clients. We used data collected in the first
phase to develop a baseline estimation of the redirection model
used by the target server sets. In the second phase, we used the
same target server sets, but enlisted a completely different, and
more extensive, group of clients. We used data collected in the
second phase to assess the accuracy of the baseline model
assigned in the first phase. In the following subsections, we detail
how server sets were selected, and our measurement
methodology.

3.1 Server Set Selection
Our first task was to select a group of server sets for which we
would collect traffic redirection data. We used two data sources
to create this list. First, we visited the websites of 5 known CDN
service providers to retrieve a customer listing. Second, we
augmented this list with 25 popular websites using a recognized
rating site [11]. We then requested content from each of these
websites, specifically seeking content that was being served from
a CDN, or from a distributed set of servers.

Figure 1: DNS redirection flow. The process begins with a client
requesting resolution of the fully qualified domain name of the content
server from a local DNS (LDNS) server. The LDNS queries the
authoritative DNS server for the content server. The client then establishes
a connection to the content server.

1

3

2

Authoritative
DNS Local

DNS

Client
Content
Server

We were able to determine customer content being served from a
CDN by querying the ADNS for the hostnames of website
content, and noting responses indicating a canonical name
(CNAME) in a CDN’s domain. This limits our experiment to
server sets using DNS redirection. That is, in this paper, we
evaluate server sets in which a server set is defined as the set of IP
addresses to which the ADNS maps a particular FQDN. While
there are other redirection mechanisms, DNS redirection is the
most prevalent among commercial CDN providers.
We also tracked server sets that were not in a CDN’s domain, but
whose ADNS returned multiple IP addresses for a single FQDN.
We utilized the traceroute [6] tool to determine whether
the IP addresses in each group were geographically distributed.
More precisely, from multiple, geographically distributed
systems, we issued traceroutes targeting each of the IP
addresses returned by the ADNS. We then inspected the DNS
names of intermediate routers discovered by traceroute –
since a common practice among network service providers is to
name routers according to their location. We also verified against
the round trip time (RTT) data from the traceroutes, since we
issued the traceroutes from systems for which we knew the
location.
Using these techniques, we compiled a list of 23 server sets
believed to be deployed by a CDN or on geographically
distributed systems. This list is provided in Table 1. To
anonymize this list, we assigned a numeric identifier to each
server set. We used the domain part of the DNS name to
distinguish between providers and we assigned a provider
identifier to illustrate which server sets were deployed by the
same provider. It is common for a single CDN to partition its
servers into multiple server sets, and host customer content from a
single server set. Our target server set list includes examples of
such deployments.
There are a number of potential reasons for a provider to partition
its servers into multiple sets. For example, partitioning could be
used as a coarse-grained form of resource management by
assigning fewer customers to one server set versus another.
Another possibility is to partition according to capabilities, such
as the ability to serve streaming media content. We did not
attempt to isolate the exact reason.
However, we were interested in whether CDN providers who
partitioned their server sets used the same IP addresses in multiple
server sets. In column 4 of Table 1, we provide the total number
of servers discovered by methods detailed in Section 3.3. (We
defer discussion of columns 5-8 of Table 1 to Section 4.1.)
We found that 174 of the 213 IP addresses discovered in the two
server sets deployed by Provider 1 were unique. For Provider 2,
we discovered 284 unique IP addresses across their 6 server sets.
We also observed an overlap in the server sets deployed by
Providers 1 and 2. Namely, only 353 of the 458 IP addresses
discovered for these two providers were unique to either Provider
1 or Provider 2. Since Provider 2 is a CDN and Provider 1 is not,
we presume Provider 1 is using servers in Provider 2’s CDN. For
Providers 5 and 10, we discovered 84 and 16 unique IP addresses,
respectively. Provider 4 is not a CDN.

3.2 Server Set Distance
Evaluating the actual response time achieved by a particular
traffic redirection scheme is beyond the scope of our effort.
Instead, we focus on the ability to model, given a particular client
IP address, the expected network delay between the client, and the

physical server assigned by the individual server set redirection
mechanism. We define a novel metric, server set distance (SSD),
to characterize the expected delay between a client and a server
set. More formally, we define Rik, the SSD between a client i and
a server set k as:

ij

N

j
ijik daR

k

*
1
∑

=

=

where Nk is the number of servers in server set k. The value aij is
the probability that client i, when requesting service from server
set k, will be redirected to server j. Depending on the policies
established by the entity deploying the server set, this probability
may not be constant over time. Finally, dij is the expected round
trip time (RTT) in milliseconds between client i and server j. In
Section 4, we will detail our observations in using average and
minimum RTT to estimate the expected RTT between a client and
a server. Next, we describe our measurement methodology.

3.3 Baseline Measurements
Baseline measurements were taken over a 33-day period starting
in July 2002, and produced two datasets. The first, A1, will
establish empirical values for aik, and the second, D1, comprises
observed values for dij, where i denotes clients in Table 2 and j
denotes servers specified by the ADNS of server sets in Table 1.
The dataset A1 was collected as follows. A measurement daemon
(digd) was installed on a system at each of the client locations
listed in Table 2. We refer to these client locations as collection
points (CPs). Digd uses the dig [10] tool to collect a single

Table 1: Server sets tested. Each server set is assigned a unique
identifier. Since some providers deploy multiple server sets, each
provider is assigned a unique provider identifier. The CDN Domain
column indicates whether the CNAME for the server set is registered to
a CDN. Also shown are the total number of IP addresses discovered in
the set, the number of addresses in a single DNS query response, and the
number of addresses per measurement sample.

ID Provider CDN IP Addrs Addr/rsp Addr/sample
ID Domain Discovered mean var mean var

SS1 1 No 114 2.0 0.08 2.3 2.13
SS2 2 Yes 98 2.0 0.00 2.1 0.56
SS3 1 No 99 2.0 0.03 2.1 0.55
SS4 2 Yes 81 2.0 0.00 2.1 0.32
SS5 2 Yes 88 2.0 0.00 2.2 0.79
SS6 2 Yes 97 2.0 0.00 2.2 0.87
SS7 3 No 28 1.0 0.00 1.2 0.16
SS8 4 No 21 16.0 0.30 15.9 0.54
SS9 5 Yes 76 2.0 0.00 3.4 3.77
SS10 6 No 3 2.0 0.00 2.0 0.00
SS11 7 Yes 9 8.0 0.01 8.0 0.00
SS12 5 Yes 76 2.0 0.00 3.2 3.11
SS13 8 No 21 1.0 0.00 5.4 3.19
SS14 9 No 5 4.0 0.00 4.0 0.00
SS15 2 Yes 4 1.0 0.02 1.2 0.29
SS16 10 Yes 14 1.0 0.00 2.6 2.17
SS17 10 Yes 13 1.0 0.00 2.6 2.09
SS18 11 No 6 5.0 0.01 5.0 0.01
SS19 10 Yes 14 1.0 0.00 2.7 2.72
SS20 12 No 5 1.1 0.41 4.0 0.07
SS21 2 Yes 5 1.0 0.00 1.0 0.03
SS22 4 No 5 1.0 0.00 4.0 0.09
SS23 13 Yes 3 1.0 0.00 1.0 0.01

redirection sample by issuing a series of DNS queries to the
ADNS of a target server set. DNS queries were sent directly to
the ADNS, as opposed to a local DNS server, to avoid receiving
information cached by the LDNS. Query invocations within a
series were randomly spaced according to a Poisson distribution,
with a mean of 2.5 seconds between each query. Each query
series lasted 60 seconds, resulting in an average of 24 queries per
sample. Digd measurement invocations were also randomly
spaced with a mean of 3 hours between measurements to any
given server set. Each CP collected samples independently of the
other CPs.
The D1 dataset was collected by issuing traceroutes [9] to
the IP addresses collected in A1 from each of the CPs.
Measurement invocations were randomly spaced with a mean 3
hours between each invocation, but were not synchronized with
A1 measurement invocations.

A well-known difficulty with collecting RTT measurements to
servers is the practice of blocking or discarding the ICMP
messages used by tools such as traceroute and ping. In
those cases where traceroute failed to elicit a response from
the target server, we used the RTT between the client and the last
hop of the traceroute. While our argument for this
substitution is not formal, it is based on two observations.
First, administratively blocking undesired traffic is often
performed by a firewall at the ingress/egress of a data center.
Second, we developed a simple measurement utility, tcprtt,
which measures the time to successfully complete a connect
request on a TCP socket. Measurements that exceeded the
retransimit timeout value employed by TCP (e.g., 3 seconds on
Linux implementations) during connection establishment were
discarded. We used tcprtt to measure the RTT to the IP
addresses for which traceroute failed, from several of the
CPs. We compared the minimum connection time measured by
tcprtt for these IP addresses, to the minimum RTT to the last
hop of a traceroute to the same IP address. We used the minimum
times, as opposed to average or median, since we anticipated the
TCP connection time is more likely to vary with server load. For
the servers we tested, the minimum time to complete the
connect request was consistently within 1ms of the minimum
RTT observed to the last hop of the traceroute.

3.4 Validation Measurements
Measurements used in the validation phase of our analysis were
taken over a 15-day period starting in October 2002, and produced
two datasets, A2 and D2. The same target server sets and
measurement techniques employed for A1 were used to capture
A2, with the exception that data was collected using the PlanetLab
[12] servers listed in Table 3.

The procedure for D2 however, differed from that of D1 in one
additional aspect. At the time of our experiment, access to ICMP
sockets on the PlanetLab servers was limited to privileged users.
For this reason, we used the tcprtt utility to collect RTT
observations for D2..

4. RESULTS
Our first objective was to determine whether we could infer,
based on the data in A1 and D1, and the policy information
summarized in Section 2.2, a redirection policy for each of the
target server sets. After assigning an inferred policy for each
server set, the data in A2 and D2 was used to evaluate the accuracy
of this assignment across a more extensive set of clients.

4.1 Redirection Attributes
Columns 4-8 of Table 1 summarize some coarse-grained attributes
for each of the server sets’ redirection schemes. These statistics
provide a number of interesting insights. For example, the
number of servers discovered in server sets deployed by CDN
providers tended to be greater than those that were not, but this
was not strictly the case. Further, by comparing the total servers,
and servers per sample, we could broadly classify the sets into two
categories: those for which most or all of the set’s IP addresses
were present in a sample, versus those for which only a small
portion of the set’s IP addresses were present in a sample.
We were interested in comparing the effect of these attributes on
the server set distance observed from the various CPs. We used
the data in A1 and D1 to calculate the observed SSD from each CP
to each server set. That is, for each sample collected, A1 provides

Table 3: Set of collection points used in validation measurements.

Table 2: Collection points used for baseline measurements. While only a
small number of clients were used in the baseline measurements, the
number of collection points enlisted for verification measurements (Table
3) is significantly larger.

ID Hostname

C01 kupl2.ittc.ku.edu
C02 pl2.cs.utk.edu
C03 planet.cc.gt.atl.ga.us
C04 planet2.berkeley.intel-research.net
C05 planet2.cs.ucsb.edu
C06 planet2.pittsburgh.intel-research.net
C08 planet2.seattle.intel-research.net
C10 planetlab-2.cs.princeton.edu
C12 planetlab-2.stanford.edu
C13 planetlab02.cs.washington.edu
C14 planetlab1.cs.ucla.edu
C15 planetlab2.canterbury.ac.nz
C16 planetlab2.cis.upenn.edu
C17 planetlab2.cs-ipv6.lancs.ac.uk
C18 planetlab2.cs.arizona.edu
C19 planetlab2.cs.cornell.edu
C20 planetlab2.cs.duke.edu
C21 planetlab2.cs.ubc.ca
C22 planetlab2.cs.umass.edu
C23 planetlab2.cs.unibo.it
C24 planetlab2.cs.wisc.edu
C25 planetlab2.csres.utexas.edu
C26 planetlab2.eecs.umich.edu
C27 planetlab2.flux.utah.edu
C28 planetlab2.it.uts.edu.au
C29 planetlab2.lbl.gov
C30 planetlab2.lcs.mit.edu
C31 planetlab2.millennium.berkeley.edu
C32 planetlab2.netlab.uky.edu
C33 planetlab2.ucsd.edu
C34 planetlab2.xeno.cl.cam.ac.uk
C35 planlab2.cs.caltech.edu
C36 ricepl-2.cs.rice.edu
C37 righthand.eecs.harvard.edu
C38 vn2.cs.wustl.edu

ID Location
CP1 Berlin, Germany
CP2 Chicago, Illinois
CP3 College Station, Texas
CP4 Lausanne, Switzerland
CP5 New York, New York
CP6 Amherst, Massachussetts
CP7 Almaden, California
CP8 Tokyo, Japan

a list of all IP addresses specified by the ADNS in a query
response. Thus, for each sample s, we have nj(s), the number of
times the IP address j was observed in the sample s, and Nk(s), the
total number of IP addresses observed in the corresponding
sample. From D1, we established an estimate for dij – we set dij
to the minimum observed RTT from CP i to the IP address of
server j, for each IP address in A1. For each sample, we calculated
the observed SSD, Rik(s), as the weighted sum, (nj(s) / Nk(s))* dij,
over all servers in the set.
We used these observed SSD values to confirm a number of
intuitions. For example, one would expect the SSD observed
from a single CP to different server sets to vary. Likewise, one
would anticipate the SSD experienced by different CPs when
accessing the same server set to vary. In the following paragraphs
we quantify this variances.
As illustrated in Figure 2, the observed SSD from a single CP to
different server sets varies widely. While plots for only a few of
the CPs are shown, the remaining CPs followed this pattern of
clear differentiation in SSD values for the target server sets. We
also calculated the SSD using the average RTT, as opposed to
minimum RTT, for dij. The differences were insignificant.
Additionally, we calculated the SSD using only the first IP
address listed in any DNS response. In this case, Nk(s) was the

number of queries in the sample s, and nj(s) was the number of
times IP address j was the first IP address specified by the ADNS
in a query response. The purpose of this test was to determine
whether LDNS implementations that used only the first IP address
in a query response would affect our results. We did not observe
any appreciable differences in SSD for this variation either.
Another interesting feature of Figure 2 is that the SSD values
between a single server set – CP pair were fairly stable over the
duration of our test period. This is not surprising since one would
expect CDNs to target consistent performance for a given client.
However, the SSD did vary over time for some server sets.
Consider SS20, which had varying SSD values from all 3 CPs and
the most widely varying SSD from CP6. According to Table 1,
we discovered only 5 IP addresses for SS20, and the mean number
of addresses returned in a single sample was 4. This indicates
SS20 may be uniformly distributing client requests across most or
all of its servers. The SSD from CP6 and CP8 to SS16 also
varied. According to the statistics in Table 1, it is unlikely that
SS16 is uniformly distributing client requests over all of its
servers. We speculate SS16’s redirection policy may consider
network congestion or server load, but defer more detailed
analysis of SS16’s policy to Section 4.3.
We were also interested in knowing whether the SSD of a single
server set was consistent across all collection points. In Figure 3,

Figure 2: Comparison of server set distances (SSDs) observed from
CP3, CP6, CP8. A legend for (a),(b), and (c) is provided in (d).

(d) legend

seconds into test period (x106)

Se
rv

er
 S

et
 D

is
ta

nc
e

(m
s)

(a) CP3 (b) CP6

Se
rv

er
 S

et
 D

is
ta

nc
e

(m
s)

seconds into test period (x106)

(c) CP8

Se
rv

er
 S

et
 D

is
ta

nc
e

(m
s)

seconds into test period (x106)

SS1
SS7
SS8
SS9
SS10
SS11
SS13
SS14
SS

2

SS15
SS16
SS18
SS20
SS21
SS22
SS23

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

160

180

200

we provide this comparison for 4 of the server sets. Each graph in
Figure 3 represents a single server set, and is divided into 8 rows.
Each row represents the SSD observed by one of the 8 CPs. The
vertical space allocated to each row represents 0-200ms. The
intent of this format is to enable visualization of the SSD for a
single server set – CP pair over time, and relative comparisons
across CPs. For example, in (a) the SSD from CP7 was
approximately 10 ms in the initial and final samples, but hovered
around 80ms in-between. In (b) the SSD from CP8 to SS11 was
consistently about 190ms. These graphs illustrate that the target
server sets did not provide uniform SSD values across all of the
collection points.
This initial assessment confirmed the SSD of the target server sets
was not uniform across all CPs for a single server. We also noted
that different server sets achieved better SSD results for certain
CPs than for others.

4.2 Redirection Model Definition
The insights derived in Section 4.1 helped us define a small
number of traffic redirection models. For example, Table 1 shows
that for several of the server sets, the mean number of addresses
per response and the mean number of addresses per sample were
equal. This might be indicative of a simple load balancing policy
where all of the server addresses for a set were returned on every

response, and only the order of these addresses changed on a per
response basis. Also, several server sets returned only a single
address per response. Intuitively, such a policy would likely
attempt to choose the single “best” address for this client, where
best might be defined in terms of expected network delay. A
variant could be to load balance over the two addresses expected
to provide the minimum delay. Finally, a server selection scheme
may intentionally direct a percentage of a client’s requests to the
server expected to provide minimum delay, but distribute the
remaining percentage uniformly across all servers. Such a policy
enables an assignment that predominantly conforms to the
minimum-delay, while still probing alternate servers.
We defined four traffic redirection models as follows.
LBP: under LBP, or load-balanced policy, traffic is uniformly
distributed over all servers in the server set.
MIN: traffic is directed to a server with the minimum expected
RTT.
MIN2: traffic is uniformly distributed over the 2 servers in the set
with the minimum expected RTT. We also tested MIN3, which
uniformly distributed clients over the 3 servers with the minimum
expected delay, but none of the server sets conformed better to
this policy.

Figure 3: Server set distances (SSD) to a representative 4 server sets, over a 33-day period. Namely, server sets: (a) SS1 (b) SS11
(c) SS12 (d) SS17 are depicted. Each server set’s graph is divided into 8 rows, with 1 row per collection point (CP). Each row
contains a plot of the SSD from the CP, to the SS. The vertical space allocated to each row represents 0-200ms.

 S
er

ve
r S

et
 D

ist
an

ce
 (m

s)

seconds into test period (x106)

Se
rv

er
 S

et
 D

is
ta

nc
e

(m
s)

seconds into test period (x106)

Se
rv

er
 S

et
 D

is
ta

nc
e

(m
s)

seconds into test period (x106)

(c) SS12

Se
rv

er
 S

et
 D

is
ta

nc
e

(m
s)

(d) SS17

seconds into test period (x106)

(a) SS1 (b) SS11

0 0.5 1 1.5 2 2.5 3
CP1

CP2

CP3

CP4

CP5

CP6

CP7

CP8

0 0.5 1 1.5 2 2.5 3
CP1

CP2

CP3

CP4

CP5

CP6

CP7

CP8

0 0.5 1 1.5 2 2.5 3
CP1

CP2

CP3

CP4

CP5

CP6

CP7

CP8

0 0.5 1 1.5 2 2.5 3
CP1

CP2

CP3

CP4

CP5

CP6

CP7

CP8

WGT: 80% of traffic is directed to the server with the minimum
expected RTT. The remaining 20% of traffic is uniformly
distributed over all other servers in the set. We explore other
distributions for some server sets later.
One might argue that expanding our evaluation to include
additional server sets may introduce the need for new models.
However, as we will illustrate in subsequent subsections, these
four simple models did provide good coverage of the server sets
we assessed. Further, we argue that the value of our study is not
limited to the assessment of these four models. Instead, we
anticipate the methodology used to discover these four models
would be useful for discovering and validating new models.

4.3 Redirection Model Assignment
To assign a policy to each server set, we calculated a predicted
SSD using each of the above policies and the minimum RTT
observed from D1, for each sample. For each CP, we then
computed the average predicted SSD, over all samples, for each
policy. Thus, for each CP we had the average predicted SSD,
under each of the policies, to each of the server sets. We also
calculated the average measured SSD from each of the CPs to
each of the server sets. We then calculated the mean squared
error (MSE) between the average observed SSD and the average
predicted SSD, for each of the policies. We averaged these MSE
values over all CPs, and refer to this value as the average MSE of
the policy.
For each server set, Figure 4 shows the average MSE of the four
policies. Since the y-axis of this plot is log-scale, MSE values of
0 were rounded up to 1 so they could be displayed. While the
minimum average MSE varied from one server set to another, all
server sets except SS7 had at least one policy for which the
average MSE was less than 100. That is, each had a policy for
which the average difference between the predicted and observed
SSD was less than 10ms.
Several servers had equivalent average MSE values for multiple
policies. For example, the MIN and MIN2 policies appear to
perform equivalently for SS1-SS7. This begs the question, if
multiple models result in equivalent average MSE values, would
choosing one model in an uninformed manner be good enough?

We anticipate it would not, and that having equivalent MSE
values is likely to be a side effect of evaluating the policy based
on a small number of CPs. In the discussion below, we attempt to
resolve which model better represents these server sets. Also, we
use a non-overlapping and substantially larger set of CP’s to
evaluate these assignments in Section 4.4.
For SS1-SS7, which had equivalent average MSE values for MIN
and MIN2, we further examined the maximum MSE values. The
maximum MSE value for MIN2 was lower than for MIN, for SS1-
SS7. Therefore, we assigned the MIN2 policy to SS1-SS7.
The average MSE values for SS13 were equivalent for all four
policies, as were the maximum MSE values. Since an overlap
between MIN and LBP might be indicative of a server set in
which all servers are located within close proximity, we checked
the raw data for SS13. We found that while the ADNS for SS13
had resolved SS13 to 21 different IP addresses, there were only 4
different subnets. On closer inspection, we found that all of the IP
addresses appeared to be in the New York or Washington DC
area. We determined this by issuing traceroute commands
to the IP addresses and inspecting the RTT times and DNS names
of intermediate routers, as described in Section 3.1. Further, an
inspection of the queries in A1 indicated SS13’s ADNS primarily
directed CPs to a single subnet, regardless of the location, but in
some cases would load balance over the various other subnets.
We classified SS13 as LBP.
For SS16, SS17 and SS19, the average MSE values for the WGT
policy were lower than for the other policies. However, the
average MSE values for WGT were higher than for policies
selected for other server sets. We experimented by varying the
weight assigned the server with the minimum RTT, versus the
remaining servers in the set. We also tested variations that
uniformly distributed a percentage of the traffic over the 2 servers
with the minimum RTT, and uniformly distributed the remaining
percentage over the other servers in the set. We were unable to
find a policy that achieved a better average MSE value. Likewise,
the MIN policy achieved the best results for SS7, but was higher
than the minimum average MSE values for other server sets. The
average difference between the observed SSD and the SSD
predicted by the MIN policy for SS7 was approximately 13ms.
To gain insights into this issue, we plotted the minimum MSE
values for each server set, on a per CP basis. This plot is provided
in Figure 5. Note that each graph in Figure 5 represents only the
MSE values for the policies selected for each server set. For
example, (a) contains those server sets assigned the LBP policy,
namely SS8, SS10, SS11, SS13, SS14, SS18, and SS20-23.
Graph (b) depicts server sets assigned the MIN2 policy. Server
sets assigned the remaining policies, WGT and MIN, are shown in
(c).
A prominent feature of Figure 5 is the large MSE observed at
CP7, for all of the server sets classified as MIN2 and for SS7. We
inspected the raw data for CP7 and found that, although CP7 is
located in California, it was frequently directed to servers in the
New York area.
There could be several reasons why a given redirection policy
would result in sending most clients to servers with low minimum
RTT values, but not doing so for other clients. For example, the
server with the minimum RTT value might be persistently
overloaded. Or, a more likely scenario is the redirection
mechanism might be incorrectly evaluating the location of the
client. Also, the redirection mechanism may base its proximity
evaluation on metrics other than observed RTT – such as the

Server Set ID

M
ea

n
Sq

ua
re

 E
rro

r (
M

SE
)

Figure 4: Average MSE of each policy over all CPs for a given SS. The symbols
used to represent policies are: o=LBP, *=MIN, =MIN2, (=WGT. Note the y-
axis is log-scale. MSE values of 0 were rounded up to 1 so they could be
displayed on this log-scale plot.

0 2 4 6 8 10 12 14 16 18 20 22 24
100

101

102

103

104

estimated geographic location of the client. It is interesting to
note that CP7’s IP address is allocated from a Class A address
block, known to be distributed across the US. The ARIN routing
registry [18] entry lists New York as the location for this Class A
address block.
Since the issue with the MIN policy for SS7 appeared to be
localized to CP7, we did not change its MIN classification. The
issues with the WGT policy for SS16, SS17, and SS19 also appear
to be dependent on the collection point, with CP4 showing the
largest deviation. We did not reclassify the WGT server sets.
Figure 5 (a) also indicates a potential issue with the LBP policy
for SS21. We inspected the raw data for SS21 and found that it
actually did not conform to the LBP policy. This server set had
the unusual characteristic that nearly all samples were identical,
regardless of the CP from which they were collected. More
specifically, all CPs were directed to a single IP address for over
97% of the samples. In rare instances, the ADNS would direct a
CP to different IP address, but return to the predominant IP
address for the next sample. Similar behavior was also observed
for another server set deployed by the same provider, SS15. SS15
had been classified as MIN. Both SS21 and SS15 achieved the
best MSE using a model that simply directed all requests to a
single IP address.

4.4 Evaluation of Assigned Model
For this portion of our analysis, we relied on the A2 and D2 data
sets. Our goal was to evaluate whether our model assignment
would hold for a different time period, and for a completely
different, and larger set of collection points.
We began our evaluation by calculating the observed SSD, Rik(s),
and the SSD predicted by the assigned model, pik(s), for each
sample in A2. The SSD values are calculated as described in
Sections 4.1 and 4.2, but using data from A2 and D2. For each
sample, we then calculated the sample prediction error eik(s) as:

|)()(|)(spsRse ikikik −=

The cumulative distributions of the sample prediction errors for
each server set are plotted in Figure 6. The distributions represent
all samples, taken from all of the collection points listed in Table
3. All of the server sets had prediction errors of less than 20 ms
for over 90% of the samples, with SS7 performing the worst. In
SS7, 9% of the samples had prediction errors of 20 ms or more.
Upon closer inspection, we noted that all of the samples with

prediction errors of 10ms or more were localized to 5 collection
points. An examination of the raw data indicated that C04 and
C08 were both consistently directed to hosts in the Chicago area.
C04 is located in the San Jose area; C08 is located in the Seattle
area. Other collection points proximal with C04 and C08 were
directed to San Jose and Seattle areas, respectively.
We also note from Figure 6 that 8% of the samples for SS1 and
SS4 had a prediction error of 20ms or more. Similarly to SS7, all
of the samples with a prediction error of 10ms or more were
limited to originating from 4 and 5 collection points for SS4 and
SS1, respectively.
In Section 4.3, we listed several potential causes for a given
redirection scheme to send most clients to servers with low
minimum RTT values, but not do so for other clients. We wished
to gain insights into which were the most likely issues for our
target server sets. A consistently high prediction error across the
majority of samples from a given CP is more likely to be caused
by an incorrect evaluation of the client’s location. Conversely, a
widely varying prediction error is more likely indicative of a

Prediction Error (ms)

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f S
am

pl
es

Figure 6: Cumulative distributions of prediction error for each server set
under the selected policy. The distributions are taken over all samples, from
all collection points listed in Table 3. Plots for SS1, SS4, SS7 are
distinguished (in black) from others as the poorest performers. All server
sets had prediction errors of less than 20ms for at least 90% of the samples.

Figure 5: MSE between the measured SSD and the SSD predicted by the policy assigned the given SS, from each CP. In (a), the LBP policy was used for all SSs. In
(b), MIN2 was used for all SSs. In (c), MIN was used for SS7 and SS15, while WGT was used for SS16, SS17, SS19. Each figure is divided into multiple rows, with 1
row per SS. The vertical space allocated to each row in (a), (b), and (c), represents 0-10ms2, 0-700ms2, and 0-1400ms2, respectively

Collection Point (CP)

M
ea

n
Sq

ua
re

 E
rro

r (
M

SE
)

(a) LBP policy
Collection Point (CP)

M
ea

n
Sq

ua
re

 E
rro

r (
M

SE
)

(b) MIN2 policy
Collection Point (CP)

M
ea

n
Sq

ua
re

 E
rro

r (
M

SE
)

(c) MIN and WGT policies

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

SS7

SS1

SS4

1 2 3 4 5 6 7 8
SS8

SS10

SS11

SS13

SS14

SS18

SS20

SS21

SS22

SS23

1 2 3 4 5 6 7 8
SS1

SS2

SS3

SS4

SS5

SS6

SS9

SS12

1 2 3 4 5 6 7 8
SS7

SS15

SS16

SS17

SS19

redirection scheme using dynamic metrics, such as server load.
In Figure 7, we plot the individual SSDs, both observed and
predicted, for those collection points that registered a prediction
error of 10ms or more on at least 1 sample. That is, Figure 7
includes only the server set – collection point pairs that achieved
the poorest prediction results. To be precise, only the server sets
with the highest percentage (8-9%) of samples with prediction
errors of 20ms or more, and only the collection points that had at
least one sample with a prediction error of 10 ms or more to these
server sets are represented.
For C01, C02, C04, C06, and C08, the majority of the samples
suffered from a relatively consistent error between the measured
and predicted SSD values – indicative of an incorrect evaluation
of the client’s location. However, the measured SSD, as well as
the prediction error, for C18, C21 and C29 varied more widely.
This behavior is more characteristic of a redirection scheme
compensating for issues such as server overload. In future work,
we intend to investigate methods to better model these behaviors.

5. CONCLUSIONS
In this paper, we have proposed an innovative approach to
modeling the redirection of traffic in geographically diverse server
sets. We defined a novel metric, server set distance (SSD), to
simplify the process of classifying redirection schemes. We
presented our measurement methodology and an analysis of over
4.3 million redirection transactions.
Our analysis demonstrates that, although existing deployments
factor in dynamic attributes, such as expected network delay and
server load, these schemes can be modeled with surprising
accuracy. All of our model assignments achieved a prediction
error of 20ms or less for over 90% of the samples. For 52% of the
model assignments, 100% of the predicted SSDs – across all
samples, from all collection points – were within 25ms of the
actual measured SSD. Additionally, 29% of the model
assignments predicted 100% of the sample SSDs within 10ms of
the measured SSD, again across all collection points and samples.
Our model provides a foundation for intelligent selection over
multiple, separately-administered server pools. Consider, for
example, the CDI scenario described in Section 1. A Web hosting
or CDN service provider seeks to achieve scalability, resiliency,
or network delay objectives by offloading content delivery
requests to partners. This provider might deploy a base
infrastructure and, under conditions such as a load surge, data
center failure, or unexpected demand from distant geographic
regions, direct client requests to one or more partners. Since the
partners retain load-balancing control within their own server sets,
the provider requires algorithms to intelligently select amongst the
sets of servers, as opposed to individual servers. Instead of
requiring each partner to specify how individual clients would be
serviced, our server set models could be used to determine the
expected performance that groups of clients would experience
from various partners. Our model-based approach is important
since having each partner communicate how it would service
millions of potential web clients would introduce significant
scalability issues, and requesting this information from each
partner at client request time would introduce substantial delays.
The value of such techniques is not limited to the CDN context in
which we have performed our analysis. Federated, multi-provider
computing systems are also sought for other applications,
including Grid and 3G wireless deployments. Our methodology

can be applied in these scenarios to develop models for predicting
client performance.

6. ACKNOWLEDGMENTS
We thank Pascal Frossard, Jim Kurose, Tak Kushida, Jiri Kuthan,
Dharshan Rangegowda, and Renu Tewari for assisting us with
baseline measurements. We also thank Andrew Campbell,
Stephen Chou, Brent Chun, and the rest of the PlanetLab team for
access to PlanetLab servers. Finally, we are grateful to the
anonymous reviewers for their useful and extensive feedback.

7. REFERENCES
[1] M. Day, B. Cain, G. Tomlinson, P. Rzewski, “A Model for

Content Internetworking,” Work in Progress,
http://www.ietf.org/internet-drafts/draft-ietf-cdi-model-
02.txt, May 2002.

[2] I. Foster, C. Kesselman, S. Teucke, “The Anatomy of the
Grid,” International Journal of Supercomputer Applications,
November 2001.

[3] R. Katz, A. Joseph, "A Revolutionary Confederated Service
Architecture for Future Telecommunications Systems,"
University of California MICRO Research Proposal, March
2001.
http://www.cs.berkeley.edu/~randy/proposals/micro01.pdf.

[4] S. Bhattacharjee, Z. Fei, "A Novel Server Selection
Technique for Improving the Response Time of a Replicated
Service," Proceedings of IEEE Infocom, March/April 1998.

[5] M. Crovella and R. Carter, "Dynamic Server Selection in the
Internet," Proceedings of the Third IEEE Workshop on the

Figure 7: Comparison of predicted to observed SSD for all collection
points that had at least 1 sample with a prediction error of 10ms or more,
for (a) SS7, (b) SS4, (c) SS1. Note that, for readability, only samples from
days 1-10 of the verification phase are shown.

0

50

100

c) SS1
C18C08 C04C01 C29

MIN2
measured

SS
D

 (m
s)

b) SS4
C01 C06 C08 C18

0

50

100
MIN2
measured

SS
D

 (m
s)

C02 C04 C06 C08 C21

0

50

100

a) SS7

MIN2
measured

SS
D

 (m
s)

Architecture and Implementation of High Performance
Communication Subsystems (HPCS'95), August 1995.

[6] A. Shaikh, R. Tewari, M. Agrawal. On the Effectiveness of
DNS-based Server Selection, Proceedings of IEEE Infocom,
2001.

[7] Z. Mao, C. Cranor, F. Douglis, M. Rabinovich, O.
Spatscheck, J. Wang, “A Precise and Efficient Evaluation of
the Proximity between Web Clients and their Local DNS
Servers,” Proceedings of Usenix Annual Technical
Conference, June 2001.

[8] P. Albitz, C. Liu, DNS and BIND, O’Reilly and Associates,
1998.

[9] V. Jacobson, Traceroute software,
ftp://ftp.ee.lbl.gov/traceroute.tar.gz, 1989.

[10] Internet Software Consortium,
http://www.isc.org/products/BIND.

[11] Hot100. http://www.100hot.com

[12] Planetlab, http://www.planet-lab.org.

[13] IBM Corporation, WebSphere Edge Server for
Multiplatforms: Network Dispatcher Administration Guide,
Version 2.0, September 2001.

[14] Foundry Networks, Foundry ServerIron Switch Installation
and Configuration Guide, June 2002.

[15] L. Wang, V. Pai, L. Peterson, “The Effectiveness of Request
Redirection on CDN Robustness,” to appear in Proceedings
of Fifth Symposium on Operating Systems Design and
Implementation (OSDI02), December 2002.

[16] B. Krishnamurthy, C. Wills, Y. Zhang, "On the Use and
Performance of Content Distribution Networks,"
Proceedings of ACM SIGCOMM Internet Measurement
Workshop (IMW'2001), November 2001.

[17] K. Hanna, N. Natarajan, and B. Levine, "Evaluation of a
Novel Two-Step Server Selection Metric," Proceedings of
IEEE International Conference on Network Protocols (ICNP
2001), November 2001.

[18] American Registry for Internet Numbers (ARIN).
http://www.arin.net.

