Edge Computing — Always Just
Beyond the Horizon?

The economics of edge Al don't look great - or why
edge computing may always be the future

Henning Schulzrinne - Columbia University



Edge computing — science vs.
engineering



Premise: Edge computing is (largely) an
economic issue

e Edge computing = faster, cheaper, and better!
Constrained by performance or reliability = implement in end system

regardless of cost
o or make system economically unviable

e Otherwise, shift computation where cheapest:

o initial investment

o load factor: most end user applications are intermittent or have variable computational
needs

o energy
operations (system management)

o security costs



“Edge computing challenges: 5 Reasons why we

still do not have large scale deployments” (STL
Partners)

e The telco business case is still not fully defined
The market dynamics and roles are still evolving

e Telcos are going through major architectural and organizational changes

o “We are network plumbers that don’t want to be plumbers — and movie director didn't
work out so well”

e Building a telco edge node requires careful consideration
o “Also, If deployed across their access network (at the far edge), telcos risk edge nodes
which are costly, under-utilized, and unprofitable. If they only build a few edge nodes,
benefits compared to regional edges provided by other players such as neutral host and
data center providers may be relatively small.”

e The enterprise sector is also still exploring edge applications and
deployments

https://stlpartners.com/articles/edge-computing/edge-computing-challenges/



The rise of edge computing (publications)

— Edge Interest == Cloud Interest -v- Edge Pubs =¥- Cloud Pubs
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Figure 1: The popularity (in red) and publications (in blue) of
keywords “edge computing” (in solid line) and “cloud com-
puting” (in dashed line) in Google web searches and Google

scholar respectively.

Mohan, et al., “Pruning Edge Research with Latency Shears,” 2020.



Cloud hype cycle (2022)
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Edge Al — we've made progress
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Edge computing contains multitudes



Edge-to-cloud spectrum
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Increasing HW + SW customization, resource constraints and deployment scale

Typically owned and operated by users / enterprises but also SPs via CPE Shared resources (XaaS), typically owned and operated by Service Providers (SPs)

Distributed in accessible to semi-secure locations Inside secure data centers / Modular Data Centers (MDCs)

Latency critical applications Latency sensitive applications

Embedded software Increasing cloud-native development practices




B Enterprise M Telecom

5G

Internet of Things
(loT) applicartions
Ultrareliable, low-
latency applications
High-performance
content delivery
Artificial intelligence
applications
Hyperconverged
infrastructure

No specific application will
drive the deployment of edge

We have no plans to
deploy edge computing
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Source: Strategies for connecting the edge, heavy reading, September 2019
[Percent of respondents: N = 60 telecom, 23 enterprise]



Edge use cases

edge computing
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Easy and hard-edge computing

Conventional Architecture Software Centric Approach
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The end system itself. ns - ys

Tesla autopilot ECU
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Applications

Smartphone (camera, voice
commands)

Autonomous vehicles
Voice commands in vehicles

Games



Within 50 m: the home gateway: 4-5 ms

Advantages Applications
Security camera object
recognition



Within 1-2 km: macro cell sites: 1-5 ms

/i

142,100 cell sites in US

Use Case 3: Video Analytics
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Applications

?




Within a few km: central offices (telephone exchanges) — 10 to 50 ms
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5G latency

The Openreach Network Today

Openreach’s exchange footprint is a legacy of the original Public Switched Telephone Network (PSTN) rollout, which began over a century ago. Openreach leases space
in c. 5,600 BT exchange buildings providing services to CPs, who in turn then provide telephone and broadband services to their end customers.

Today, we use c. 1,000 exchanges - Openreach Handover Points (OHPs) — to provide nationwide coverage of fibre broadband services (FTTC, FTTP and Gfast). The
remaining c. 4,600 exchanges are used to provide ADSL broadband and “legacy” voice services (WLR, MPF and SMPF). Most are also used to provide Ethernet or other

leased line services.



Central offices

Advantages Applications

?




Edge computing is already boring
reality



Cloud provider edge computing: AWS
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Number of Facilities

Points of presence

Evolution of Number of Facilities
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Cloudflare




Most of the world is within 10-20 ms of a data center

O < 10ms

O 10 - 20ms

O 20 - 40 ms
@ 40 - 100 ms
@ 100 - 250 ms
O > 250 ms ¢
& cloud regions o

note: best probe data in each country
does not include 43 AWS local zones



Cloud latency distribution
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Density conundrum

e Where there is a market, there’s cloud infrastructure
o US: about 80% live in urban areas
o Europe: about 76%

e Low density means low utilization
e Example: 5G deployment in rural areas



Most common architecture

API calls

e.g., caching, WAF,
lambda with < 1 ms



Dependability



Cheap vs. dependable

Cheap: don't care about downtime or reachability

e roughly, batch computing

e e.g, training or analysis using datasets

e = re-use otherwise idle computing resources where power is “free” (e.g.,
excess solar or wind) = SETI@home (aliens don't have GDPR rights)

Dependable

e real-time needs (autonomous vehicles, consumer-facing interactions, real-
time transaction monitoring)

e fate sharing with application desirable

e latency matters in a few cases - closed loop (cyberphysical) systems



Sudden loss of broadband pressure
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Fate sharing

e Fate-sharing is an engineering design philosophy where related parts of a
system are yoked together, so that they either fail together or not at all.

(Wikipedia)

e “The fate-sharing model suggests that it is acceptable to lose the state
information associated with an entity if, at the same time, the entity itself
is lost.” (Clark, 1988) — about transport protocols

e New failure modes:
o loss of (5G) connectivity
o roaming capacity failure: no available suitable services (e.g., specific GPU)
o latency failure zones — no edge infrastructure within permissible latency range



Edge use cases: dependability requirements
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An economic analysis



Costs of computing

e Capital cost: cloud server lifetime = 5 years (may be less for
GPUs)
e Opex:

O

O O O O

Electricity: about 60-70% of total operational cost (TOC)
[BLS & Co.]

Network costs

Security cost (risk premium)

Development and DevOps costs (e.g., updates)

Failure risk (revenue, reputation, legal liability, ...)

= Which of these are lower for a multi-cloud & edge architecture?



Bandwidth



IP transit costs
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Bandwidth pipeline

5 Mb/s/customer

middle mile IP transit
access backhaul

X

0.2 Mb/s/customer

cost /




Bandwidth costs

IP transit HE 40G, $2,000/month $0.31
($0.25/m/customer)
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Consumer prices are driven by competition (and average consumption)
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Cost of compute



Intermittency

FOTW #1356, August 19, 2024:
Household Vehicles Were Parked

95% on a Typical Day in 2022

Household vehicles were driven an average of 64.6 minutes on a typical day in 2022 (including all trips made that day) and parked for

the remainder of the time (95%).



Compute costs: rent vs. buy

e NVIDIA H100: $25k to $31k
o for 5years: ~$0.57/hour

e DGX H100 (8 GPUs): $373k = $8/hour

e Bare metal GPU: $1.99/GPU/hour >
S16/hour

e AWS p5.48xlarge (8 GPUs): $23/hour (3
year reserved)

Dell XE9680: $320,499

m GPU Model VRAM (GB) Max pCPUsper Max RAM (GB)per Pricing Per Hour
—r— (c{ V] GPU
On-Demand GPU NVIDIA H200 SXM 141 22 225 $3.50
Pricing NVIDIA H100 SXM 80 24 240 $2.40
NVIDIA H100 NVLink 80 31 180 $1.95
NVIDIA H100 80 28 180 $1.90




Erlang C does not favor small edge clouds
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Cloud scaling vs. edge scaling

e Classical geographic scaling (and adoption) problem: to be
useful, it needs to be everywhere (within a country or
region)

o andyou
e Contrast: original cloud computing: start with one region

and split demand
o demand is also (mostly) fungible geographically
o can afford to offer wide set of specialized compute services and
platforms
o e.g., AWS has 850 instance types
m multiple generations
m broad types with different memory and I/0 trade-offs: general-
purpose, compute-optimized, memory-optimized, accelerated,
high-performance
m multiple CPU (ARM, i86) and GPU types




Graceful degradation: The lesson of CDNs

Early edge computing: CDN
Dominant cost; backhaul and interconnection
Dominant cause of QoE variation: backhaul and interconnection

Edge failures:
o hardware & software: rare (minutes a year)
o load (“health”)
o no local cached copy: common

e Probabilistic performance model
o slightly lower video quality (increasingly less so)
o if only a small fraction fails at any point in time
m “Slashdot effect”
m software upgrade
m ‘reboot Manhattan”



Cost of energy



Data centers are defined by MW, not racks,

Recent technical issues with the
local utility's ability to distribute
enough power to substations could
delay projects currently planned or
under construction until at Least
2024 or later in Northern Virginia,
the world's biggest market.
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but also more power consumed.
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Data centers are driven by fiber and energy availability

Data Center Infrastructure in the United States, 2025
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Energy costs drive data center locations

“We’ve made savings of around 85%"”:
Embracing green energy for data centers by
migrating to Iceland

Shifting away from the UK helped Shearwater GeoServices adopt green energy for low-cost, clean seismic
processing

$42/MWh

PPPPP

4 LMP: $16.23
Marginal Losses: $0.05
(ﬁu‘m Congestion: $0.00

y

altimore;

$70-100

W $10-20 $100-200
$20-40 W $200-500
M $40-70 W > $500

2024: $55.54 per MWh wholesale



Energy costs are rising

Regional retail residential electricity prices (2022 and 2025) /j
cents per kilowatthour eia
2022 price 2025 price (forecast)
Pacific Qe +26%
New England Qe +19%
Middle Atlantic OImne +19% percentage
Mountain Qe +14% ehange
U.S. Average Qe +13%
East North Central Qe +12%
South Atlantic ONe +11%
West South Central One +9%
West North Central O'® +8%
East South Central O'® +8%

10 15 20 25 30



LCOE

Version: July 2024 https://www.ise.fraunhofer.de/en/publications/studies/cost-of-electricity.html

Levelized cost of electricity [€Ecent,,,,/kWh]
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Good PUE is hard with smaller centers

The Bottom Line: Annual Power Costs

When rack density, PUE, and local electricity rates are combined, the annual cost to
power a single rack can vary dramatically. The financial implications of deploying high-
density Al infrastructure are staggering.

Annual Cost to Power One Rack (at Industry Average PUE of 1.58)

+ liquid cooling

* hot-cold aisles

» server utilization
- —-I -.I .I

Low-Cost Locaon Average-Cost Locabon High-Cost Location

" . L geographic variation in
Power Z::eEE;fe-cl:l::ssc(Pll'JlEt)lr:aas:reE:)f:Z:Z:&faydam:(l:tspelsleen:gy. It's e I eCtri City rates :

the ratio of total facility power to IT equipment power. A lower PUE means less energy is $ 0 06 1 5/kWh = I
wasted on overhead like cooling, directly translating to lower costs. - I n OWa VS .

PUE Comparison: Average vs. Leading-Edge

Hyperscale operators like G

cy, with a PUE approaching 110, while the industry average
s gap is key to cost savings.

PUE Formula

PUE = Total Facility Energy

IT Squipmnt Snergy ! Small edge data centers
An ideal PUE is 1.0, meaning zero waste. The industry average, 06 may be effiCient and

however, shows significant room for improvement.

effective in low-cost,
rural areas where

Hyperscale

hyperscalers are far away




Trust, Security, Privacy, Complexity



Despite the many benefits, edge computing is full of challenges. For
instance, decentralizing data processing brings security and privacy
concerns. A friend who deployed edge systems on oil rigs had 10% of the
edge computing devices stolen, along with data stored on the devices. It
was encrypted, but what a huge wake-up call when systems can grow

legs and walk away. That's never been a problem with the cloud.

https://www.infoworld.com/article/3709050/what-happened-to-edge-computing.html

e Privacy: does not need to be “edge” to be within same
jurisdiction (for privacy purposes, e.g., EU)

e Security: not just physical security - do you know who
has access to the management console?

e Management credentials: Containers and images store
a lot of credentials (e.g., APIs, other cloud services).



Trust: The edge is also a black box

e Trustis given by enforceable commitments, not computing architecture
e Unless somebody is not just running their own system, but managing every
program (i.e., a classic Unix sys admin)




Challenges for edge clouds or servers

e Hard if heterogeneous needs (e.g., ARM vs. i368; GPU models)

e Hard if different host operating systems or versions (e.g., Linux
kernel)

e Transaction costs (set up accounts, payment, SLA
enforcement)

e Run-time risk (even if “same,” small chance of peculiar failure)
® hard to test and debug

e Failure impact (e.g., power outage - edge may not have UPS)
e Back-end latency: latency to cloud eco-system



Nomadic and roaming edge computing

static, dynamic,
single single
provider provider

static, dynamic,
multiple multiple
providers providers

roaming
(AAA)

need to create context (resources & data) on the fly

e.g., spin up containers
“nomadic” edge computing




The compute roaming problem

e Long-standing problem in wireless

communications
o  Wi-Fi: free or eduroam
m some attempts at paid roaming
o Cellular roaming & eSIM
m required regulatory intervention in EU
o loT via specialized MVNOs — model?

https://eduroam.org/where/



Compute roaming

e AAA - authentication, authorization, accounting
o RADIUS and DIAMETER in eduroam and 5G

e No attempts in compute roaming
o encourages hyperscaler economics
o currently, requires setting up contractual and billing relationships
o probably will require multi-cloud aggregators
o real-time cost optimization?

e Roaming model for compute
o authenticate via “home” network — ensures accountability
o provides some customer protection against malicious providers (see Wi-Fi hotspots, IMSI
catcher)
settlement mechanism — avoid retail billing by credit card
need temporary VPC extensions to remote edge provider
automated creation & deletion of resources



Compute is more than Docker containers

& Monitoring
(CloudTrail)

Amazon EventBridge

09
Lo
o_o

{v:% Amazon MQ

Load balancing
Amazon SNS ]

58 (ELB)

V.. o8

oD m (o)

U Amazon Managed
Workflows for

Amazon SQS Apache Airflow

Local storage
<= 2 83 kafka (E8S)

AWS Step Functions  Amazon Kinesis Amazon MSK
Data Streams

Identity management

Operational responsibility (IAM)

Virtual private cloud
(VPC)

Almost none of these have standard APlIs or
definitions (e.g., functions)

Databases
(e.g., RAG)




SenSQL & LoST — geographic
databases and discovery



SenSQL System Architecture

Applications Application Services

Private Data

SQL Query Application
Coordinator Database

LoST

LoST Resolver \ Cache fs--

LoST Service \

e ¢
e _.\oST Puble o8
Publisher [
Autonomous
@ Cyber-Physical System

(ACPS) A

’
.
7
’

" =
LoST
Publisher

ACPS B

LoST
Publisher
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Autonomous Cyber-Physical System (ACPS)

e Sensor & actuator infrastructure operated by a Configured service region

common administrative entity
e Geographically bounded by a service region
e Described by a service descriptor

Sensor location estimates

{ "@type": "ServiceDescriptor",
Geo - SQL | Storage "@context": "https://schema.org, |
Publisher Processor Agent "displayName": "IRT Lab Sensors' !
I | "lastUpdated”: "<ISO timestamp>' |
"expires": "<ISO timestamp>", ;

!)ewce Protocol "coverageRegion": {
Discovery Server "type": "Polygon”, ;
Agent (MQTT) "bbox": [-10.0, -10.6, 10.0 |
"coordinates": [] }, =
"private”: false, i
Network "contact": "wss://as-123.exampli :
"sensorTypes": [ i

| | | | "urn:sensor:environmental : i

/ Sensor\\Actuato/ / Sensor\\Actuato/ MO SENAOENECULTIEY” »
urn: sensor:occupancy ],

"signature": {} }
Internal architecture Service descriptor

Computed service region
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Original Approach (SQL Interface)

Application Query Coordinator Geographic Naming Database LoST Service ACPS
— - — T e ———————— T
| <publishService> s
<! <mapping> ) H
SELECT device < ; <service>sensql</service>
FROM device, feature @ ! <serviceBoundary> :
WHERE SELECT * [Zl 1 <polygon>...</polygon> |
| device.type = “temperature” AND | FROM feature : </serviceBoundary> '
feature.name = “IRT Lab” AND [~ | WHERE —> - <uri>sql:...</uri> i
ST _Contains(feature, device) feature.name = “IRT Lab” ! </mapping> i
' </publishService> !
- Boundary polygon for IRT Lab E — <findService> E
<location>
A <polygon>. . .</polygon>
M </location> >
<service>sensql</service>
</findService>
<findServiceResponse> @
<mapping>
<service>sensql</service>
<serviceBoundary>
- <polygon>...</polygon> —
</serviceBoundary>
<uri>sql:...</uri>
</mapping>
</findServiceResponse>
SELECT * [E
A FROM device A ~
WHERE =
device.type = “temperature”
< Device data |Z| 4k 4k
. Group, aggregate, and filter
- device data
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SQL Spatial Query Example

SELECT
measurements. timestamp AS ‘Time’,
measurements.data: :numeric AS ‘PM2.5'
FROM
measurements, openstreetmap
WHERE
ST_Contains(openstreetmap.bounds, measurements.location)
AND openstreetmap.name = 'Morningside Heights'
AND measurements.quantity = ‘PM2.5'

AND measurements.timestamp > "2020-01-01"
ORDER BY timestamp

‘Return the measurements ordered from January 1st, 2020 until now from all PM2.5 sensors within the
Morningside Heights neighborhood.”
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Background: LoST Protocol

911 Application: Lookup PSAP by client’s
geographic coordinates (longitude, latitude)

LoST Client LoST Server k
Client location -~ ‘
<findService> ° * '
<location> ¢ {)

int>...</point x HTT o
<point>...</point>
</location> P POST
<service>urn:...</service>
</findService> . . Pre-provisioned service
<findServiceResponse>
<mapping> boundary database
<service>urn:...</service>
<serviceBoundary>
<+—— 200 OK <polygon>...</polygon>
</serviceBoundary>
<uri>sip:...</uri>
</mapping>
</findServiceResponse>
PSAP service boundary
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Summary & questions

e Edge computing is almost always the wrong answer
® “Attractive nuisance” for challenge-seeking researchers

e Need clear statement of when and why edge (computing|Al)
is superior - cannot assume result
o otherwise, this is religion, not engineering
e |s this about economic decentralization, better function
(how?) or lower cost (under what assumptions?)

e If provided by a single cloud provider, is there a challenge?
® just standard load balancer & DNS-based request routing



What's needed?

e Resource (not compute) discovery: sensors, APIs
e Compute costs reflecting current energy costs
o see AWS spot instances for compute
e Resource provisioning (“roaming”) - APl middlemen
o see Twilio for VoIP and texting (and loT universal e-SIMs)
e Generic identity and access management (beyond OAuth2

credentials)
o see Okta and similar companies as 1dS



