

This material is based upon work supported by the National Science Foundation under Grant No. 1932418. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Scaling networks up and down: new network architectures for 6G

Henning Schulzrinne

Columbia University

Classical requirements pyramid

The most important metric is missing!

Without cost (and price) decrease, no advanced applications

Resolution	Data usage
Up to 4K (Stadia Pro only)	Up to 20 GB/hr
Up to 1080p	Up to 12.6 GB/hr
Up to 720p	Up to 4.5 GB/hr

The key performance metric is \$/GB (and maybe \$/km² coverage)

Network cost and price are highly variable

Mobile data usage

Ericsson Mobility Report Nov. 2021

US ARPU (2022) = \$35 → \$2.40/GB

~20 times more expensive per GB than home ("Wi-Fi")

Networks 1G through 4Gish

What exactly is a carrier?

6/14/22

Investment incentives for 5G are modest – are they going to be better for 6G?

Some of the world's first real 5G networks are coming online this year, sparking plenty of buzz and noise. However, a wide range of industry experts are cautioning that North American wireless network operators don't appear poised to invest in 5G networks like they did with 3G and 4G.

"We're negative on the prospects for a 5G investment 'cycle' from wireless operators -- at least over the near- and intermediate-term," wrote the Wall Street analysts at Jefferies Research. "Based on our analysis, we believe that the conditions for an acceptable return on investment (ROI) on 5G infrastructure are poor. Moreover, the 5G investment ROI looks drastically lower than the ROI associated with prior wireless investment cycles -- specifically 3G and 4G."

Why? It all comes down to flagging revenues in a saturated market. "The wireless service market is now a mature business," the analysts continued. "As such, operators' motivations for major capital investments will be reduced. To be clear, we still believe that 5G infrastructure deployment will happen. We expect that it will simply be a cutover of existing 4G investments to 5G technology. Most

Cell towers as cost driver (or revenue source)

349,344 cell towers in U.S. in 2019. Total number of CELL TOWER SITES (cell towers, rooftops, water towers, flagpoles, billboards, etc.) in United States: **1,082,544**

tower generates per year.

WHAT ARE CELL TOWER LEASES WORTH IN 2022?

On average, wireless carriers entered into new lease with landowners at an average of \$1,050/mo. on a nationwide basis. There is a wide variation though in what landowners are offered. Generally, most offers are between \$500/mo. and \$1,500/mo. for new ground leases for telecommunication towers. The average lease rate for all ground leases in our database in 2022 is just under \$1,300/mo. It hasn't changed from 2021 but is up from 2018 when it was \$1,220/mo. These averages include rural, suburban, and urban towers including newly-built 5G towers.

cellular revenue per cell site: \$190B US total \rightarrow \$175k

* Cost does not include radio equipment and backhaul!

https://www.celltowerleaseexperts.com/cell-tower-lease-news/cell-tower-industry-facts-figures-2016

New operator models – cable (HFC) industry

The Things Network

We are a global collaborative Internet of Things ecosystem that creates networks, devices and solutions using LoRaWAN®.

Learn more

The Things Network

April 2022 (Columbia U.)

IRT LoRa Gateway (Mudd Rooftop) ID: irt-mudd-rooftop-gateway EUI: E45F01FFFE5BB825 Network: NS_TTS_V3://ttn@000013

len Deou

iterdam Avenue

Saint Nichol

Last heard at 2022-06-11T20:34:50.177475Z Lat, Lon: 40.80937, -73.96031 Altitude: 100m Show only this gateway's coverage as: heatmap

e vice Dr

and ore

Frequerick Oquidass Bounderard

Clayton

Sair Michol

Helium LoRa model for IoT				Hotspots 853,028 +49,604 30 Day Trend				
Helium: 0.001c per → \$3.46 per month	24-byte message n and hotspot	e (→ \$41	L6/GB)		Block Height 1,392,452 +38,377	>	Market Price (i) \$8.88 -22.88%	>
5W of energy → \$0	0.37 electricity AVERAGE EARNINGS (7 DAYS) 0.061 HNT ^{0.52 USD}	ä	24 HOURS EARNINGS 17,754.080 HNT ^{151,97}	4.93 USD	DC Spent (30d) (i) 295.32 bn \$2,953,232.19	>	HNT Staked (i) 36.33M \$322,610,400.00	>
RECENTLY ADDED (24H) 576	ONLINE HPOTSPOTS 232,934	Ç	OFFLINE HOTSPOTS 99,193	ę				

Dish Network will be the first major carrier to use the Helium Network's blockchain-based incentive model – with customers deploying their own 5G hotspots using Citizens Band Radio Service (CBRS) spectrum.

Helium in Manhattan

6/14/22

But blockchain models are volatile

https://www.coinbase.com/price/helium

5G & 4G EPC

Users per ASN roughly constant

Home networks are now small enterprise networks

The average U.S. household has 25 connected devices – more than double the 11 that the average household had in 2019, according to a new Deloitte report.

Largely self-managed:

- routing (mesh)
- device management
- device & user authentication

identity management and trust still deficient

Network value is (much) more than PHY

Property	Requirements?	Example
Universality	Can I operate my system (almost) anywhere in the world?	Adaptive frequency use by region (device knows location)
Incremental system cost	How much does it cost to add the functionality to the system?	< \$5 for IoT devices
Data cost	Can I build "free" data systems, even if restricted? Can I leverage cheap landline BW?	< \$0.10/GB for in-home use
Network architecture	Can I build my own network?	peer-to-peer → mesh → access point → cellular → long-range
User management	Can I design my own user management?	database + credential device-based model coupled to other systems (e.g., combined with other services)
System management	Can the system largely manage itself?	Frequencies & power, but also users and traffic restrictions

What made Wi-Fi successful?

- Scalable complexity 802.11b/g/n to 802.11ax
- Architectural flexibility
 - peer-to-peer, access point, mesh, long haul Pt2MP & Pt2Pt
 - re-use cheap local wired network and shared (managed & firewalled) access
- Multiple authentication models
 - from open access to federated 802.1x RADIUS
- Minimal viable network functionality
 - Ethernet frames + IP
 - local multicast
- International usability
 - universal "bootstrap" band (2.4 GHz)
 - locally-discoverable spectrum availability

What's bad about having both Wi-Fi and (nG) cellular?

- System hardware complexity (e.g., for IoT devices)
- No seamless roaming
- Maintain multiple user identities
- Difficult to do consistent traffic restriction
 - cellular bypasses corporate firewall
- Inconsistent network behavior
 - e.g., IPv6 support
- More limited competition

Current authentication models

×	Wi-Fi settings	SAVE
Netwo	ork name	
Kindı	ness	
Passw	vord	
•••••	•••••	
	Show	8 characters minimum

WPA2-Personal

federated (RADIUS, DIAMETER)

Global WiFi Roaming For Academia an Internet 2-NET+ service

international roaming

Stacks always focus on data – complexity is in control

...

6/14/22

Requirements for simple networks

- Separate link layer from network architecture
 - Why can't 5G (or 6G) NR operate on a home router, without a carrier?
 - Assume flexible spectrum access (geo database)
- Every interface must be testable and self-testing
- Interface neutrality = every control needs to be accessible to network consumer, not just operator (bounded by slice or authorization)
- Clean interfaces particularly at layer 2 and 3
- No configuration files, ever
- No hard-coded addresses (e.g., gateways), ever

What's needed for down-scalable networks?

- Better frequency coordination for CBRS GAA (and similar systems)
 - e.g., allow time-domain (slot?) coordination
- Support simple self-contained EPC that can run on AP
 - or OpenRAN with many *untrusted* participants \rightarrow zero-trust networks
- Simplified roaming and settlement mechanisms
 - GSMA unlikely to scale
- May need new mobility models, but most new applications are likely nomadic and (somewhat) disruption-tolerant, not mobile and voicelike

Protocols matter, but programmability matters more

- Nobody wants to program raw protocols
- Most significant network application creation advances:
 - 1983: socket API \rightarrow abstract data stream or datagram
 - 1998: Java network API \rightarrow mostly names, HTTP, threads
 - 1998: PHP \rightarrow network input as script variables
 - 2005: Ruby on Rails \rightarrow simplify common patterns
- Many fine protocols and frameworks failed the programmer hate test
 - e.g., JAIN for VoIP, SOAP for RPC
- Most IoT programmers and factory automation specialists will not be computer scientists (and won't have a telecom background)
- Nobody learns ONAP in their CS BS

Two evolutionary paths for 6G

like 4G & 5G, just more highest mobility

NextG Summit 06/2022

Conclusion

- The key performance metric is \$/GB (and maybe \$/km² coverage)
- The key challenge is incentivizing investment
- 6G needs an architecture re-think, not (only) better PHY
- Cleaner separation between media/complexity-dependent layers, common data transport and control planes
- Design scalable, IP-based control plane for everything from peer-topeer mode to managed national cellular network
- Cleanly separate access from backbone
 - since likely continue to be both locally (enterprise) and third-party managed
- Opportunity to bridge the Wi-Fi cellular chasm